751
Views
10
CrossRef citations to date
0
Altmetric
Review Article

New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review

, &
Pages 1343-1369 | Published online: 09 Feb 2021

References

  • Kalia, A.; Gosal, S. Effect of Pesticide Application on Soil Microorganisms. Arch. Agron. Soil Sci. 2011, 57, 569–596. DOI: 10.1080/03650341003787582.
  • Kim, K.-H.; Kabir, E.; Jahan, S. A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. DOI: 10.1016/j.scitotenv.2016.09.009.
  • Buerge, I. J.; Bächli, A.; Kasteel, R.; Portmann, R.; López-Cabeza, R.; Schwab, L. F.; Poiger, T. Behavior of the Chiral Herbicide Imazamox in Soils: pH-Dependent, Enantioselective Degradation, Formation and Degradation of Several Chiral Metabolites. Environ. Sci. Technol. 2019, 53, 5725–5732. DOI: 10.1021/acs.est.8b07209.
  • Xie, J.; Zhao, L.; Liu, K.; Guo, F.; Gao, L.; Liu, W. Activity, Toxicity, Molecular Docking, and Environmental Effects of Three Imidazolinone Herbicides Enantiomers. Sci. Total Environ. 2018, 622-623, 594–602. DOI: 10.1016/j.scitotenv.2017.11.333.
  • Rani, M.; Shanker, U.; Jassal, V. Recent Strategies for Removal and Degradation of Persistent & Toxic Organochlorine Pesticides Using Nanoparticles: A Review. J. Environ. Manage. 2017, 190, 208–222. DOI: 10.1016/j.jenvman.2016.12.068.
  • Birolli, W. G.; Arai, M. S.; Nitschke, M.; Porto, A. L. The Pyrethroid (±)-Lambda-Cyhalothrin Enantioselective Biodegradation by a Bacterial Consortium. Pestic. Biochem. Physiol. 2019, 156, 129–137. DOI: 10.1016/j.pestbp.2019.02.014.
  • Machado, I.; Gérez, N.; Pistón, M.; Heinzen, H.; Cesio, M. V. Determination of Pesticide Residues in Globe Artichoke Leaves and Fruits by GC-MS and LC-MS/MS Using the Same QuEChERS Procedure. Food Chem. 2017, 227, 227–236. DOI: 10.1016/j.foodchem.2017.01.025.
  • Suganthi, A.; Bhuvaneswari, K.; Ramya, M. Determination of Neonicotinoid Insecticide Residues in Sugarcane Juice Using LCMSMS. Food Chem. 2018, 241, 275–280. DOI: 10.1016/j.foodchem.2017.08.098.
  • Atwood, D.; Paisley Jones, C. Pesticides Industry Sales and Usage (Rep.) from U.S. Environmental Protection Agency.http://www.epa.gov/sites/production/files/2017-01/documents/pesticides-industry-sales-usage-2016_0.pdf. January 13, 2018.
  • Lawal, A.; Wong, R. C. S.; Tan, G. H.; Abdulra’uf, L. B.; Alsharif, A. M. A. Multi-Pesticide Residues Determination in Samples of Fruits and Vegetables Using Chemometrics Approach to QuEChERS-dSPE Coupled with Ionic Liquid-Based DLLME and LC–MS/MS. Chromatographia 2018, 81, 759–768. DOI: 10.1007/s10337-018-3511-7.
  • Tong, Z.; Dong, X.; Yang, S.; Sun, M.; Gao, T.; Duan, J.; Cao, H. Enantioselective Effects of the Chiral Fungicide Tetraconazole in Wheat: Fungicidal Activity and Degradation Behavior. Environ. Pollut. 2019, 247, 1–8. DOI: 10.1016/j.envpol.2019.01.013.
  • Lin, X.-Y.; Mou, R.-X.; Cao, Z.-Y.; Cao, Z.-Z.; Chen, M.-X. Analysis of Pyrethroid Pesticides in Chinese Vegetables and Fruits by GC–MS/MS. Chem. Pap. 2018, 72, 1953–1962. DOI: 10.1007/s11696-018-0447-1.
  • Pirsaheb, M.; Fattahi, N.; Karami, M.; Ghaffari, H. R. Simultaneous Determination of Deltamethrin, Permethrin and Malathion in Stored Wheat Samples Using Continuous Sample Drop Flow Microextraction Followed by HPLC–UV. Food Measure. 2018, 12, 118–127. DOI: 10.1007/s11694-017-9622-2.
  • Kabir, E. R.; Rahman, M. S.; Rahman, I. A Review on Endocrine Disruptors and Their Possible Impacts on Human Health. Environ. Toxicol. Pharmacol. 2015, 40, 241–258. DOI: 10.1016/j.etap.2015.06.009.
  • Aguilera-Luiz, M. M.; Plaza-Bolanos, P.; Romero-Gonzalez, R.; Vidal, J. L.; Frenich, A. G. Comparison of the Efficiency of Different Extraction Methods for the Simultaneous Determination of Mycotoxins and Pesticides in Milk Samples by Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2011, 399, 2863–2875. DOI: 10.1007/s00216-011-4670-7.
  • Mohammadi, M.; Tavakoli, H.; Abdollahzadeh, Y.; Khosravi, A.; Torkaman, R.; Mashayekhi, A. Ultra-Preconcentration and Determination of Organophosphorus Pesticides in Soil Samples by a Combination of Ultrasound Assisted Leaching-Solid Phase Extraction and Low-Density Solvent Based Dispersive Liquid–Liquid Microextraction. RSC Adv. 2015, 5, 75174–75181. DOI: 10.1039/C5RA11959F.
  • Bidari, A.; Ganjali, M. R.; Norouzi, P.; Hosseini, M. R. M.; Assadi, Y. Sample Preparation Method for the Analysis of Some Organophosphorus Pesticides Residues in Tomato by Ultrasound-Assisted Solvent Extraction Followed by Dispersive Liquid-Liquid Microextraction. Food Chem. 2011, 126, 1840–1844. DOI: 10.1016/j.foodchem.2010.11.142.
  • Samsidar, A.; Siddiquee, S.; Shaarani, S. M. A Review of Extraction, Analytical and Advanced Methods for Determination of Pesticides in Environment and Foodstuffs. Trends Food Sci. Technol. 2018, 71, 188–201. DOI: 10.1016/j.tifs.2017.11.011.
  • Ware, G. W.; Whitacre, D. M. An Introduction to Insecticides. In The Pesticide Book, 6 th ed. Published by InTech 2012. ISBN: 978-953-51-0007-2.
  • Verma, N.; Bhardwaj, A. Biosensor Technology for Pesticides - A Review. Appl. Biochem. Biotechnol. 2015, 175, 3093–3119. DOI: 10.1007/s12010-015-1489-2.
  • Bunch, M. J.; Suresh, V. M.; Kumaran, T. V. S. Environment and health aspects of pesticides use in Indian agriculture. International Conference on Environment and Health. Citeseer; 2003, p. 17.
  • Helou, K.; Harmouche-Karaki, M.; Karake, S.; Narbonne, J.-F. A Review of Organochlorine Pesticides and Polychlorinated Biphenyls in Lebanon: Environmental and Human Contaminants. Chemosphere 2019, 231, 357–368. DOI: 10.1016/j.chemosphere.2019.05.109.
  • Thomas, K. V.; Bijlsma, L.; Castiglioni, S.; Covaci, A.; Emke, E.; Grabic, R.; Hernández, F.; Karolak, S.; Kasprzyk-Hordern, B.; Lindberg, R. H.; et al. Comparing Illicit Drug Use in 19 European Cities through Sewage Analysis. Sci. Total Environ. 2012, 432, 432–439. DOI: 10.1016/j.scitotenv.2012.06.069.
  • Parada, H., Jr; Wolff, M. S.; Engel, L. S.; White, A. J.; Eng, S. M.; Cleveland, R. J.; Khankari, N. K.; Teitelbaum, S. L.; Neugut, A. I.; Gammon, M. D. Organochlorine Insecticides DDT and Chlordane in Relation to Survival following Breast Cancer. Int. J. Cancer. 2016, 138, 565–575. DOI: 10.1002/ijc.29806.
  • McGlynn, K. A.; Abnet, C. C.; Zhang, M.; Sun, X.-D.; Fan, J.-H.; O'Brien, T. R.; Wei, W.-Q.; Ortiz-Conde, B. A.; Dawsey, S. M.; Weber, J.-P.; et al. Serum Concentrations of 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and 1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) and Risk of Primary Liver Cancer. J. Natl. Cancer Inst. 2006, 98, 1005–1010., DOI: 10.1093/jnci/djj266.
  • Li, J.; Jiang, S.; Chang, Y.; Guo, Z.; Yao, S.; Yuan, J.; Li, G. Association among Serum Organochlorine Pesticide Residues, Glutathione S-Transferase M1 Genetic Polymorphism and Female Breast Cancer. Scientific Research 2013, 5. DOI:10.4236/abcr.2013.22005.
  • Sharma, T.; Banerjee, B. D.; Mazumdar, D.; Tyagi, V.; Thakur, G.; Guleria, K.; Ahmed, R. S.; Tripathi, A. K. Association of Organochlorine Pesticides and Risk of Epithelial Ovarian Cancer: A Case Control Study. J. Reprod. Health Med. 2015, 1, 76–82. DOI: 10.1016/j.jrhm.2015.01.006.
  • Rodríguez, Á. G. P.; López, M. I. R.; Casillas, T. Á. D.; León, J. A. A.; Mahjoub, O.; Prusty, A. K. Monitoring of Organochlorine Pesticides in Blood of Women with Uterine Cervix Cancer. Environ. Pollut. 2017, 220, 853–862. DOI: 10.1016/j.envpol.2016.10.068.
  • Boada, L.; Henríquez-Hernández, L.; Zumbado, M.; Almeida-Gonzalez, M.; Alvarez-Leon, E.; Navarro, P.; Luzardo, O. Organochlorine Pesticides Exposure and Bladder Cancer: Evaluation from a Gene-Environment Perspective in a Hospital-Based Case-Control Study in the Canary Islands (Spain). J. Agromed. 2016, 21, 34–42. DOI: 10.1080/1059924X.2015.1106374.
  • Yang, J.-Z.; Wang, Z.-X.; Ma, L.-H.; Shen, X.-B.; Sun, Y.; Hu, D.-W.; Sun, L.-X. The Organochlorine Pesticides Residues in the Invasive Ductal Breast Cancer Patients. Environ. Toxicol. Pharmacol. 2015, 40, 698–703. DOI: 10.1016/j.etap.2015.07.007.
  • Xiang, D.; Zhong, L.; Shen, S.; Song, Z.; Zhu, G.; Wang, M.; Wang, Q.; Zhou, B. Chronic Exposure to Environmental Levels of Cis-Bifenthrin: Enantioselectivity and Reproductive Effects on Zebrafish (Danio rerio). Environ. Pollut. 2019, 251, 175–184. DOI: 10.1016/j.envpol.2019.04.089.
  • Yue, M.-E.; Lin, Q.; Xu, J.; Jiang, T.-F. Headspace in-Tube Microextraction Combined with Reverse-Flow Micellar Electrokinetic Capillary Chromatography for Detection of Pyrethroid Herbicides in Fruits. Acta Chromatogr. 2019, 31, 189–193. DOI: 10.1556/1326.2018.00436.
  • Kim, S.-A.; Kim, K.-S.; Lee, Y.-M.; Jacobs, D. R.; Lee, D.-H. Associations of Organochlorine Pesticides and Polychlorinated Biphenyls with Total, Cardiovascular, and Cancer Mortality in Elders with Differing Fat Mass. Environ. Res. 2015, 138, 1–7. DOI: 10.1016/j.envres.2015.01.021.
  • Medehouenou, T. C. M.; Ayotte, P.; Carmichael, P.-H.; Kröger, E.; Verreault, R.; Lindsay, J.; Dewailly, É.; Tyas, S. L.; Bureau, A.; Laurin, D. Plasma Polychlorinated Biphenyl and Organochlorine Pesticide Concentrations in Dementia: The Canadian Study of Health and Aging. Environ. Int. 2014, 69, 141–147. DOI: 10.1016/j.envint.2014.04.016.
  • Ornoy, A.; Weinstein-Fudim, L.; Ergaz, Z. Prenatal Factors Associated with Autism Spectrum Disorder (ASD). Reprod. Toxicol. 2015, 56, 155–169. DOI: 10.1016/j.reprotox.2015.05.007.
  • Carrão, D. B.; dos Reis Gomes, I. C.; Junior, F. B.; de Oliveira, A. R. M. Evaluation of the Enantioselective in Vitro Metabolism of the Chiral Pesticide Fipronil Employing a Human Model: Risk Assessment through in Vitro-in Vivo Correlation and Prediction of Toxicokinetic Parameters. Food Chem. Toxicol. 2019, 123, 225–232. DOI: 10.1016/j.fct.2018.10.060.
  • Habenschus, M. D.; Nardini, V.; Dias, L. G.; Rocha, B. A.; Barbosa, F.; Jr.; de Oliveira, A. R. M. In Vitro Enantioselective Study of the Toxicokinetic Effects of Chiral Fungicide Tebuconazole in Human Liver Microsomes. Ecotoxicol. Environ. Saf. 2019, 181, 96–105. DOI: 10.1016/j.ecoenv.2019.05.071.
  • Qian, Y.; Ji, C.; Yue, S.; Zhao, M. Exposure of Low-Dose Fipronil Enantioselectively Induced Anxiety-like Behavior Associated with DNA Methylation Changes in Embryonic and Larval Zebrafish. Environ. Pollut. 2019, 249, 362–371. DOI: 10.1016/j.envpol.2019.03.038.
  • Xu, X.; Xu, X.; Han, M.; Qiu, S.; Hou, X. Development of a Modified QuEChERS Method Based on Magnetic Multiwalled Carbon Nanotubes for the Simultaneous Determination of Veterinary Drugs, Pesticides and Mycotoxins in Eggs by UPLC-MS/MS. Food Chem. 2019, 276, 419–426. DOI: 10.1016/j.foodchem.2018.10.051.
  • Xu, C.; Sun, X.; Niu, L.; Yang, W.; Tu, W.; Lu, L.; Song, S.; Liu, W. Enantioselective Thyroid Disruption in Zebrafish Embryo-Larvae via Exposure to Environmental Concentrations of the Chloroacetamide Herbicide Acetochlor. Sci. Total Environ. 2019, 653, 1140–1148. DOI: 10.1016/j.scitotenv.2018.11.037.
  • Zhang, X.; Wang, X.; Luo, F.; Sheng, H.; Zhou, L.; Zhong, Q.; Lou, Z.; Sun, H.; Yang, M.; Cui, X.; Chen, Z. Application and Enantioselective Residue Determination of Chiral Pesticide Penconazole in Grape, Tea, Aquatic Vegetables and Soil by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. Ecotoxicol. Environ. Saf. 2019, 172, 530–537. DOI: 10.1016/j.ecoenv.2019.01.103.
  • Tankiewicz, M.; Fenik, J.; Biziuk, M. Determination of Organophosphorus and Organonitrogen Pesticides in Water Samples. TrAC Trends Anal. Chem. 2010, 29, 1050–1063. DOI: 10.1016/j.trac.2010.05.008.
  • Zhao, E.; Han, L.; Jiang, S.; Wang, Q.; Zhou, Z. Application of a Single-Drop Microextraction for the Analysis of Organophosphorus Pesticides in Juice. J. Chromatogr. A. 2006, 1114, 269–273. DOI: 10.1016/j.chroma.2006.03.011.
  • Abbas, M. S.; Soliman, A. S.; El-Gammal, H. A.; Amer, M. E.; Attallah, E. R. Development and Validation of a Multiresidue Method for the Determination of 323 Pesticide Residues in Dry Herbs Using QuEChERS Method and LC-ESI-MS/MS. Int. J. Environ. Anal. Chem. 2017, 97, 1003–1023. DOI: 10.1080/03067319.2017.1381954.
  • Kim, Y.-A.; Abd El-Aty, A.; Rahman, M. M.; Jeong, J. H.; Shin, H.-C.; Wang, J.; Shin, S.; Shim, J.-H. Method Development, Matrix Effect, and Risk Assessment of 49 Multiclass Pesticides in Kiwifruit Using Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Chromatogr. B. 2018, 1076, 130–138. DOI: 10.1016/j.jchromb.2018.01.015.
  • Rong, L.; Wu, X.; Xu, J.; Dong, F.; Liu, X.; Pan, X.; Du, P.; Wei, D.; Zheng, Y. Simultaneous Determination of Three Pesticides and Their Metabolites in Unprocessed Foods Using Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk. Assess. 2018, 35, 273–281. DOI: 10.1080/19440049.2017.1398419.
  • Lu, M.; Ding, C.-C. Determination of Acetamide-Group Herbicides by High Performance Liquid Chromatography. Admin. Tech. Environ. Monitor. 2007, 3. 3.
  • Buerge, I. J.; Krauss, J.; López-Cabeza, R.; Siegfried, W.; Stüssi, M.; Wettstein, F. E.; Poiger, T. Stereoselective Metabolism of the Sterol Biosynthesis Inhibitor Fungicides Fenpropidin, Fenpropimorph, and Spiroxamine in Grapes, Sugar Beets, and Wheat. J. Agric. Food Chem. 2016, 64, 5301–5309. DOI: 10.1021/acs.jafc.6b00919.
  • Dallegrave, A.; Pizzolato, T. M.; Barreto, F.; Eljarrat, E.; Barceló, D. Methodology for Trace Analysis of 17 Pyrethroids and Chlorpyrifos in Foodstuff by Gas Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2016, 408, 7689–7697. DOI: 10.1007/s00216-016-9865-5.
  • He, R.; Fan, J.; Tan, Q.; Lai, Y.; Chen, X.; Wang, T.; Jiang, Y.; Zhang, Y.; Zhang, W. Enantioselective Determination of Metconazole in Multi Matrices by High-Performance Liquid Chromatography. Talanta 2018, 178, 980–986. DOI: 10.1016/j.talanta.2017.09.045.
  • Wang, J.; Duan, H.-L.; Ma, S.-Y.; Zhang, J.; Zhang, Z.-Q. Solidification of a Switchable Solvent-Based QuEChERS Method for Detection of 16 Pesticides in Some Fruits and Vegetables. J. Agric. Food Chem. 2019, 67, 8045–8052. DOI: 10.1021/acs.jafc.9b00686.
  • Zhang, P.; Yu, Q.; He, X.; Qian, K.; Xiao, W.; Xu, Z.; Li, T.; He, L. Enantiomeric Separation of Type I and Type II Pyrethroid Insecticides with Different Chiral Stationary Phases by Reversed-Phase High-Performance Liquid Chromatography. Chirality 2018, 30, 420–431. DOI: 10.1002/chir.22801.
  • Cao, X.; Hogan, A.; Moore, E. Rapid Separation of Organophosphate Pesticides Using Micellar Electrokinetic Chromatography and Short-end Injection. J. Forensic. Sci. 2019, 64, 1213–1220. DOI: 10.1111/1556-4029.13963.
  • García, M. Á.; Menéndez-López, N.; Boltes, K.; Castro-Puyana, M.; Marina, M. L. A Capillary Micellar Electrokinetic Chromatography Method for the Stereoselective Quantitation of Bioallethrin in Biotic and Abiotic Samples. J. Chromatogr. A. 2017, 1510, 108–116. DOI: 10.1016/j.chroma.2017.06.056.
  • Yang, Q.; Chen, B.; He, M.; Hu, B. Sensitive Determination of Seven Triazine Herbicide in Honey, Tomato and Environmental Water Samples by Hollow Fiber Based Liquid-Liquid-Liquid Microextraction Combined with Sweeping Micellar Electrokinetic Capillary Chromatography. Talanta 2018, 186, 88–96. DOI: 10.1016/j.talanta.2018.04.012.
  • Cheng, Y.; Zheng, Y.; Dong, F.; Li, J.; Zhang, Y.; Sun, S.; Li, N.; Cui, X.; Wang, Y.; Pan, X.; Zhang, W. Stereoselective Analysis and Dissipation of Propiconazole in Wheat, Grapes, and Soil by Supercritical Fluid Chromatography-Tandem Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 234–243. DOI: 10.1021/acs.jafc.6b04623.
  • Jiang, Y.; Fan, J.; He, R.; Guo, D.; Wang, T.; Zhang, H.; Zhang, W. High-Fast Enantioselective Determination of Prothioconazole in Different Matrices by Supercritical Fluid Chromatography and Vibrational Circular Dichroism Spectroscopic Study. Talanta 2018, 187, 40–46. DOI: 10.1016/j.talanta.2018.04.097.
  • Tan, Q.; Fan, J.; Gao, R.; He, R.; Wang, T.; Zhang, Y.; Zhang, W. Stereoselective Quantification of Triticonazole in Vegetables by Supercritical Fluid Chromatography. Talanta 2017, 164, 362–367. DOI: 10.1016/j.talanta.2016.08.077.
  • Tao, Y.; Zheng, Z.; Yu, Y.; Xu, J.; Liu, X.; Wu, X.; Dong, F.; Zheng, Y. Supercritical Fluid Chromatography-Tandem Mass Spectrometry-Assisted Methodology for Rapid Enantiomeric Analysis of Fenbuconazole and Its Chiral Metabolites in Fruits, Vegetables, Cereals, and Soil. Food Chem. 2018, 241, 32–39. DOI: 10.1016/j.foodchem.2017.08.038.
  • Johnson, W. E.; Fendinger, N. J.; Plimmer, J. R. Solid-Phase Extraction of Pesticides from Water: Possible Interferences from Dissolved Organic Material. Anal. Chem. 1991, 63, 1510–1513. DOI: 10.1021/ac00015a003.
  • Wang, H.; Yuan, X.; Wu, Y.; Chen, X.; Leng, L.; Wang, H.; Li, H.; Zeng, G. Facile Synthesis of Polypyrrole Decorated Reduced Graphene Oxide–Fe3O4 Magnetic Composites and Its Application for the Cr (VI) Removal. Chem. Eng. J. 2015, 262, 597–606. DOI: 10.1016/j.cej.2014.10.020.
  • Xu, X.; Yang, H.; Wang, L.; Han, B.; Wang, X.; Lee, F. S.-C. Analysis of Chloroacetanilide Herbicides in Water Samples by Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. Anal. Chim. Acta. 2007, 591, 87–96. DOI: 10.1016/j.aca.2007.03.044.
  • Heidari, H.; Razmi, H. Multi-Response Optimization of Magnetic Solid Phase Extraction Based on Carbon Coated Fe3O4 Nanoparticles Using Desirability Function Approach for the Determination of the Organophosphorus Pesticides in Aquatic Samples by HPLC-UV. Talanta 2012, 99, 13–21. DOI: 10.1016/j.talanta.2012.04.023.
  • Amiri, A.; Baghayeri, M.; Vahdati-Nasab, N. Effective Extraction of Organophosphorus Pesticides Using Sol–Gel Based Coated Stainless Steel Mesh as Novel Solid-Phase Extraction Sorbent. J. Chromatogr. A. 2020, 1620, 461020. DOI: 10.1016/j.chroma.2020.461020.
  • Kunene, P.; Mahlambi, P. Optimization and Application of Ultrasonic Extraction and Soxhlet Extraction Followed by Solid Phase Extraction for the Determination of Triazine Pesticides in Soil and Sediment. J. Environ. Chem. Eng. 2020, 8, 103665. DOI: 10.1016/j.jece.2020.103665.
  • Özer, E. T.; Osman, B.; Parlak, B. An Experimental Design Approach for the Solid Phase Extraction of Some Organophosphorus Pesticides from Water Samples with Polymeric Microbeads. Microchem. J. 2020, 154, 104537. DOI: 10.1016/j.microc.2019.104537.
  • Zhao, J.; Meng, Z.; Zhao, Z.; Zhao, L. Ultrasound-Assisted Deep Eutectic Solvent as Green and Efficient Media Combined with Functionalized Magnetic Multi-Walled Carbon Nanotubes as Solid-Phase Extraction to Determine Pesticide Residues in Food Products. Food Chem. 2020, 310, 125863. DOI: 10.1016/j.foodchem.2019.125863.
  • Soylak, M.; Ozalp, O.; Uzcan, F. Magnetic Nanomaterials for the Removal, Separation and Preconcentration of Organic and Inorganic Pollutants at Trace Levels and Their Practical Applications: A Review. Trends Environ. Anal. Chem. 2021, 29, e00109. DOI: 10.1016/j.teac.2020.e00109.
  • Soylak, M.; Agirbas, M.; Yilmaz, E. A New Strategy for the Combination of Supramolecular Liquid Phase Microextraction and UV-Vis Spectrophotometric Determination for Traces of Maneb in Food and Water Samples. Food Chem. 2021, 338, 128068 DOI: 10.1016/j.foodchem.2020.128068.
  • Habila, M.; Alhenaki, B.; El‐Marghany, A.; Sheikh, M.; Ghfar, A.; ALOthman, Z.; Soylak, M. Metal Organic Frameworks Enhanced Dispersive Solid Phase Microextraction of Malathion before Detection by Ultra‐Performance Liquid Chromatography‐Tandem Mass Spectrometry. J. Sep. Sci. 2020, 43, 3103–3109. DOI: 10.1002/jssc.202000033.
  • Soylak, M.; Gorucu, H. H.; Yilmaz, E. Micelle-Based Restricted Access Ion-Pair Microextraction of Phosphate at Trace Levels in Water Samples for Separation, Preconcentration and Determination. EuroBiotech J. 2020, 4, 89–96. DOI: 10.2478/ebtj-2020-0010.
  • ALOthman, Z. A.; Yilmaz, E.; Habila, M.; Ghfar, A. A.; Alhenaki, B.; Soylak, M.; Ahmed, A.; Hadj, B. Supramolecular Solvent Microextraction and Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Combination for the Preconcentration and Determination of Malathion in Environmental Samples. Desalin. Water Treat. 2019, 144, 166–171. DOI: 10.5004/dwt.2019.23574.
  • Tahboub, Y. R.; Zaater, M. F.; Al-Talla, Z. A. Determination of the Limits of Identification and Quantitation of Selected Organochlorine and Organophosphorous Pesticide Residues in Surface Water by Full-Scan Gas Chromatography/Mass Spectrometry. J. Chromatogr. A. 2005, 1098, 150–155. DOI: 10.1016/j.chroma.2005.08.064.
  • Sankararamakrishnan, N.; Sharma, A. K.; Sanghi, R. Organochlorine and Organophosphorous Pesticide Residues in Ground Water and Surface Waters of Kanpur, Uttar Pradesh, India. Environ. Int. 2005, 31, 113–120. DOI: 10.1016/j.envint.2004.08.001.
  • Pirard, C.; Widart, J.; Nguyen, B. K.; Deleuze, C.; Heudt, L.; Haubruge, E.; De Pauw, E.; Focant, J.-F. Development and Validation of a Multi-Residue Method for Pesticide Determination in Honey Using On-Column Liquid-Liquid Extraction and Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2007, 1152, 116–123. DOI: 10.1016/j.chroma.2007.03.035.
  • Tse, H.; Comba, M.; Alaee, M. Method for the Determination of Organophosphate Insecticides in Water, Sediment and Biota. Chemosphere 2004, 54, 41–47. DOI: 10.1016/S0045-6535(03)00659-3.
  • Sabik, H.; Jeannot, R. Determination of Organonitrogen Pesticides in Large Volumes of Surface Water by Liquid–Liquid and Solid-Phase Extraction Using Gas Chromatography with Nitrogen–Phosphorus Detection and Liquid Chromatography with Atmospheric Pressure Chemical Ionization Mass Spectrometry. J. Chromatogr. A. 1998, 818, 197–207. DOI: 10.1016/S0021-9673(98)00555-X.
  • Fatoki, O.; Awofolu, R. Methods for Selective Determination of Persistent Organochlorine Pesticide Residues in Water and Sediments by Capillary Gas Chromatography and Electron-Capture Detection. J. Chromatogr. A. 2003, 983, 225–236. DOI: 10.1016/S0021-9673(02)01730-2.
  • Mahara, B. M.; Borossay, J.; Torkos, K. Liquid–Liquid Extraction for Sample Preparation Prior to Gas Chromatography and Gas Chromatography–Mass Spectrometry Determination of Herbicide and Pesticide Compounds. Microchem. J. 1998, 58, 31–38. DOI: 10.1006/mchj.1997.1517.
  • Lopez-Blanco, M.; Blanco-Cid, S.; Cancho-Grande, B.; Simal-Gandara, J. Application of Single-Drop Microextraction and Comparison with Solid-Phase Microextraction and Solid-Phase Extraction for the Determination of α-and β-Endosulfan in Water Samples by Gas Chromatography–Electron-Capture Detection. J. Chromatogr. A. 2003, 984, 245–252. DOI: 10.1016/S0021-9673(02)01873-3.
  • Albero, B.; Sánchez-Brunete, C.; Tadeo, J. L. Multiresidue Determination of Pesticides in Juice by Solid-Phase Extraction and Gas Chromatography-Mass Spectrometry. Talanta 2005, 66, 917–924. DOI: 10.1016/j.talanta.2004.12.046.
  • Navarro, S.; Barba, A.; Navarro, G.; Vela, N.; Oliva, J. Multiresidue Method for the Rapid Determination–in Grape, Must and Wine–of Fungicides Frequently Used on Vineyards. J. Chromatogr. A. 2000, 882, 221–229. DOI: 10.1016/S0021-9673(00)00337-X.
  • Torres, C.; Picó, Y.; Manes, J. Determination of Pesticide Residues in Fruit and Vegetables. J. Chromatogr. A. 1996, 754, 301–331. DOI: 10.1016/S0021-9673(96)00407-4.
  • Anastassiades, M.; Lehotay, S. J.; Štajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. DOI: 10.1093/jaoac/86.2.412.
  • Walorczyk, S.; Gnusowski, B. Development and Validation of a Multi-Residue Method for the Determination of Pesticides in Honeybees Using Acetonitrile-Based Extraction and Gas Chromatography–Tandem Quadrupole Mass Spectrometry. J. Chromatogr. A. 2009, 1216, 6522–6531. DOI: 10.1016/j.chroma.2009.07.045.
  • Kin, C. M.; Huat, T. G. Headspace Solid-Phase Microextraction for the Evaluation of Pesticide Residue Contents in Cucumber and Strawberry after Washing Treatment. Food Chem. 2010, 123, 760–764.
  • Armenta, S.; Garrigues, S.; De la Guardia, M. Green Analytical Chemistry. TrAC Trends Anal. Chem. 2008, 27, 497–511. DOI: 10.1016/j.trac.2008.05.003.
  • Greulich, K.; Alder, L. Fast Multiresidue Screening of 300 Pesticides in Water for Human Consumption by LC-MS/MS. Anal. Bioanal. Chem. 2008, 391, 183–197. DOI: 10.1007/s00216-008-1935-x.
  • Escuderos-Morenas, M.; Santos-Delgado, M.; Rubio-Barroso, S.; Polo-Dıez, L. Direct Determination of Monolinuron, Linuron and Chlorbromuron Residues in Potato Samples by Gas Chromatography with Nitrogen–Phosphorus Detection. J. Chromatogr. A. 2003, 1011, 143–153. DOI: 10.1016/S0021-9673(03)01139-7.
  • Molina-Díaz, A.; García-Reyes, J. F.; Gilbert-López, B. Solid-Phase Spectroscopy from the Point of View of Green Analytical Chemistry. TrAC Trends Anal. Chem. 2010, 29, 654–666. DOI: 10.1016/j.trac.2010.03.010.
  • Kurowska-Susdorf, A.; Zwierżdżyński, M.; Bevanda, A. M.; Talić, S.; Ivanković, A.; Płotka-Wasylka, J. Green Analytical Chemistry: Social Dimension and Teaching. TrAC Trends Anal. Chem. 2019, 111, 185–196. DOI: 10.1016/j.trac.2018.10.022.
  • Tobiszewski, M.; Mechlińska, A.; Zygmunt, B.; Namieśnik, J. Green Analytical Chemistry in Sample Preparation for Determination of Trace Organic Pollutants. TrAC Trends Anal. Chem. 2009, 28, 943–951. DOI: 10.1016/j.trac.2009.06.001.
  • Zuin, V. G.; Segatto, M. L.; Zandonai, D. P.; Grosseli, G. M.; Stahl, A.; Zanotti, K.; Andrade, R. S. Integrating Green and Sustainable Chemistry into Undergraduate Teaching Laboratories: Closing and Assessing the Loop on the Basis of a Citrus Biorefinery Approach for the Biocircular Economy in Brazil. J. Chem. Educ. 2019, 96, 2975–2983. DOI: 10.1021/acs.jchemed.9b00286.
  • Castro, J. R.; García-Hernández, L.; Ortega, P. A. R.; Islas, D. A. Green Synthesis of Gold Nanoparticles (AuNPs) by Cupressus Goveniana Extract. ECS Trans. 2018, 84, 207–215. DOI: 10.1149/08401.0207ecst.
  • Quintana, J. B.; Rodríguez, I. Strategies for the Microextraction of Polar Organic Contaminants in Water Samples. Anal. Bioanal. Chem. 2006, 384, 1447–1461. DOI: 10.1007/s00216-005-0242-z.
  • Kokosa, J. M. Advances in Solvent-Microextraction Techniques. TrAC Trends Anal. Chem. 2013, 43, 2–13. DOI: 10.1016/j.trac.2012.09.020.
  • Arthur, C. L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. DOI: 10.1021/ac00218a019.
  • Gionfriddo, E.; Souza-Silva, É. A.; Ho, T. D.; Anderson, J. L.; Pawliszyn, J. Exploiting the Tunable Selectivity Features of Polymeric Ionic Liquid-Based SPME Sorbents in Food Analysis. Talanta 2018, 188, 522–530. DOI: 10.1016/j.talanta.2018.06.011.
  • Pang, L.; Yang, P.; Pang, R.; Yuan, Y.; Ge, L.; Zhang, H. Polymeric Ionic Liquid Based Fused Silica Fiber by Chemical Binding for Headspace Solid-Phase Microextraction of Organophosphate Esters in Water Samples. Int. J. Environ. Anal. Chem. 2017, 97, 1094–1106. DOI: 10.1080/03067319.2017.1381955.
  • Sapahin, H. A.; Makahleh, A.; Saad, B. Determination of Organophosphorus Pesticide Residues in Vegetables Using Solid Phase Micro-Extraction Coupled with Gas Chromatography–Flame Photometric Detector. Arabian J. Chem. 2019, 12, 1934–1944. DOI: 10.1016/j.arabjc.2014.12.001.
  • Wu, M.; Chen, G.; Liu, P.; Zhou, W.; Jia, Q. Polydopamine-Based Immobilization of a Hydrazone Covalent Organic Framework for Headspace Solid-Phase Microextraction of Pyrethroids in Vegetables and Fruits. J. Chromatogr. A. 2016, 1456, 34–41. DOI: 10.1016/j.chroma.2016.05.100.
  • Habila, M. A.; ALOthman, Z. A.; Al-Tamrah, S. A.; Ghafar, A. A.; Soylak, M. Activated Carbon from Waste as an Efficient Adsorbent for Malathion for Detection and Removal Purposes. J. Ind. Eng. Chem. 2015, 32, 336–344. DOI: 10.1016/j.jiec.2015.09.009.
  • Shahid, R.; Kazi, T. G.; Afridi, H. I.; Talpur, F. N.; Akhtar, A.; Baig, J. A. Deep-Eutectic-Solvent-Based Dispersive and Emulsification Liquid-Liquid Microextraction Methods for the Speciation of Selenium in Water and Determining Its Total Content Levels in Milk Formula and Cereals. Anal. Methods 2020, 12, 5186–5194. DOI: 10.1039/d0ay01517b.
  • Liu, H.; Dasgupta, P. K. Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop. Anal. Chem. 1996, 68, 1817–1821. DOI: 10.1021/ac960145h.
  • Jeannot, M. A.; Przyjazny, A.; Kokosa, J. M. Single Drop Microextraction-Development, Applications and Future Trends. J. Chromatogr. A. 2010, 1217, 2326–2336. DOI: 10.1016/j.chroma.2009.10.089.
  • Kokosa, J. M. Recent Trends in Using Single-Drop Microextraction and Related Techniques in Green Analytical Methods. TrAC Trends Anal. Chem. 2015, 71, 194–204. DOI: 10.1016/j.trac.2015.04.019.
  • Xu, L.; Basheer, C.; Lee, H. K. Developments in Single-Drop Microextraction. J. Chromatogr. A. 2007, 1152, 184–192. DOI: 10.1016/j.chroma.2006.10.073.
  • Deng, W.; Yu, L.; Li, X.; Chen, J.; Wang, X.; Deng, Z.; Xiao, Y. Hexafluoroisopropanol-Based Hydrophobic Deep Eutectic Solvents for Dispersive Liquid-Liquid Microextraction of Pyrethroids in Tea Beverages and Fruit Juices. Food Chem. 2019, 274, 891–899. DOI: 10.1016/j.foodchem.2018.09.048.
  • Farajzadeh, M. A.; Abbaspour, M.; Kazemian, R.; Afshar Mogaddam, M. R. Preparation of a New Three-Component Deep Eutectic Solvent and Its Use as an Extraction Solvent in Dispersive Liquid-Liquid Microextraction of Pesticides in Green Tea and Herbal Distillates. J. Sci. Food. Agric. 2020, 100, 1904–1912. DOI: 10.1002/jsfa.10200.
  • Liu, W.; Quan, J. A Novel Ionic Liquid of [BeMIM][Tf 2 N] for Extracting Pesticides Residues in Tea Sample by Dispersive Liquid–Liquid Microextraction. Chromatographia 2020, 83, 41–51. DOI: 10.1007/s10337-019-03819-5.
  • Mokhtari, N.; Torbati, M.; Farajzadeh, M. A.; Afshar Mogaddam, M. R. Synthesis and Characterization of Phosphocholine Chloride-Based Three-Component Deep Eutectic Solvent: Application in Dispersive Liquid-Liquid Microextraction for Determination of Organothiophosphate Pesticides. J. Sci. Food Agric. 2020, 100, 2364–2371. DOI: 10.1002/jsfa.10203.
  • Bedendo, G. C.; Jardim, I. C. S. F.; Carasek, E. Multiresidue Determination of Pesticides in Industrial and Fresh Orange Juice by Hollow Fiber Microporous Membrane Liquid-Liquid Extraction and Detection by Liquid Chromatography-Electrospray-Tandem Mass Spectrometry. Talanta 2012, 88, 573–580. DOI: 10.1016/j.talanta.2011.11.037.
  • Ma, X.; Wang, J.; Wu, Q.; Wang, C.; Wang, Z. Extraction of Carbamate Pesticides in Fruit Samples by Graphene Reinforced Hollow Fibre Liquid Microextraction Followed by High Performance Liquid Chromatographic Detection. Food Chem. 2014, 157, 119–124. DOI: 10.1016/j.foodchem.2014.02.007.
  • Ridgway, K.; Lalljie, S. P.; Smith, R. M. Sample Preparation Techniques for the Determination of Trace Residues and Contaminants in Foods. J. Chromatogr. A. 2007, 1153, 36–53. DOI: 10.1016/j.chroma.2007.01.134.
  • David, F.; Sandra, P. Stir Bar Sorptive Extraction for Trace Analysis. J. Chromatogr. A. 2007, 1152, 54–69. DOI: 10.1016/j.chroma.2007.01.032.
  • Giordano, A.; Fernández-Franzón, M.; Ruiz, M.; Font, G.; Picó, Y. Pesticide Residue Determination in Surface Waters by Stir Bar Sorptive Extraction and Liquid Chromatography/Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2009, 393, 1733–1743. DOI: 10.1007/s00216-009-2627-x.
  • Murtada, K. Trends in Nanomaterial-Based Solid-Phase Microextraction with a Focus on Environmental Applications-A Review. Trends Environ. Anal. Chem. 2020, 25, e00077. DOI: 10.1016/j.teac.2019.e00077.
  • Płotka-Wasylka, J.; Owczarek, K.; Namieśnik, J. Modern Solutions in the Field of Microextraction Using Liquid as a Medium of Extraction. TrAC - Trends Anal. Chem. 2016, 85, 46–64. DOI: 10.1016/j.trac.2016.08.010.
  • Rutkowska, M.; Płotka-Wasylka, J.; Sajid, M.; Andruch, V. Liquid–Phase Microextraction: A Review of Reviews. Microchem. J. 2019, 149, 103989. DOI: 10.1016/j.microc.2019.103989.
  • Aydin, F.; Yilmaz, E.; Soylak, M. A Simple and Novel Deep Eutectic Solvent Based Ultrasound-Assisted Emulsification Liquid Phase Microextraction Method for Malachite Green in Farmed and Ornamental Aquarium Fish Water Samples. Microchem. J. 2017, 132, 280–285. DOI: 10.1016/j.microc.2017.02.014.
  • Alveroglu, E.; Balouch, A.; Talpur, F. N.; Shah, M. T.; Kumar, A.; Mahar, A. M.; Jagirani, M. S. Ultrasonic Mediated Synthesis of Arsenic Imprinted Polymer and Their Analytical Practicality as a Selective Sorbent for Removal of Toxic as 3+ Ion from Real Samples. J. Polym. Res. 2020, 27, 1–11. DOI: 10.1007/s10965-020-02196-0.
  • Jagirani, M. S.; Balouch, A.; Abdullah; Mahar, A. M.; Mustafai, F. A.; Rajar, K.; Tunio, A.; Sabir, S.; Samoon, M. K. Arsenic Remediation by Synthetic and Natural Adsorbents. Pak. J. Anal. Environ. Chem. 2017, 18, 18–36.
  • Jagirani, M. S.; Balouch, A.; Mahesar, S. A.; Kumar, A.; Abdullah; Mustafai, F. A.; Bhanger, M. I. Preparation of Novel Arsenic-Imprinted Polymer for the Selective Extraction and Enhanced Adsorption of Toxic As3+ Ions from the Aqueous Environment. Polym. Bull. 2019, 77, 5261–5279. DOI: 10.1007/s00289-019-03008-2.
  • Jagirani, M. S.; Balouch, A.; Mahesar, S. A.; Kumar, A.; Baloch, A. R.; Abdullah; Bhanger, M. I. Fabrication of Cadmium Tagged Novel Ion Imprinted Polymer for Detoxification of the Toxic Cd2 + Ion from Aqueous Environment. Microchem. J. 2020, 158, 105247. DOI: 10.1016/j.microc.2020.105247.
  • Jagirani, M. S.; Soylak, M. A Review: Recent Advances in Solid Phase Microextraction of Toxic Pollutants Using Nanotechnology Scenario. Microchem. J. 2020, 159, 105436. DOI: 10.1016/j.microc.2020.105436.
  • Jagirani, M. S.; Uzcan, F.; Soylak, M. A Selective and Sensitive Procedure for Magnetic Solid-Phase Microextraction of Lead (II) on Magnetic Cellulose Nanoparticles from Environmental Samples Prior to Its Flame Atomic Absorption Spectrometric Detection. J. Iran. Chem. Soc. 2020, 1–9. DOI: 10.1007/s13738-02085-9.
  • Kori, A. H.; Jakhrani, M. A.; Mahesar, S. A.; Shar, G. Q.; Jagirani, M. S.; Shar, A. R.; Sahito, O. M. Risk Assessment of Arsenic in Ground Water of Larkana City. Geol. Ecol. Landsc. 2018, 2, 8–14. DOI: 10.1080/24749508.2018.1438742.
  • Kori, A. H.; Mahesar, S. A.; Jagirani, M. S.; Laghari, Z. H.; Panhwar, T.; Jagirani, M. D.; Sahito, O. M.; Lanjwani, M. F. Human Exposure and Risk Assessment Due to Toxic Heavy Metals in Groundwater of Larkana City. Water Air Soil Pollut. 2020, 231, 1–10.
  • Kumar, A.; Balouch, A.; Pathan, A. A.; A.; Jagirani, M. S.; Mahar, A. M.; Rajput, M.-U.-H. Novel Chromium Imprinted Polymer: Synthesis, Characterization and Analytical Applicability for the Selective Remediation of Cr(VI) from an Aqueous System. Int. J. Environ. Anal. Chem. 2019, 99, 454–473. DOI: 10.1080/03067319.2019.1599876.
  • Kumar, A.; Balouch, A.; Pathan, A. A.; Jagirani, M. S.; Mahar, A. M.; Zubair, M.; Laghari, B, Abdullah Remediation of Nickel Ion from Wastewater by Applying Various Techniques: A Review. Acta Chem. Malaysia 2019, 3, 1–15. DOI: 10.2478/acmy-2019-0001.
  • Kumar, A.; Balouch, A. A.; Pathan, A. M.; Mahar, Abdullah, M. S.; Jagirani, F. A.; Mustafai, M.; Zubair, B.; Laghari, P. Panah, Remediation Techniques Applied for Aqueous System Contaminated by Toxic Chromium and Nickel Ion. Geol. Ecol. Landsc. 2017, 1, 143–153. DOI: 10.1080/24749508.2017.1332860.
  • Kumar, S.; Alveroglu, E.; Balouch, A.; Talpur, F. N.; Jagirani, M. S.; Mahar, A. M.; Pato, A. H.; Mal, D.; Lal, S. Fabrication of Chromium Imprinted Polymer: A Real Magneto Selective Sorbent for Chromium Cr (VI) Removal in a Real Water Sample. N. J. Chem. 2020, DOI: 10.1039/D0NJ04054A.
  • Kataoka, H.; Lord, H. L.; Pawliszyn, J. Applications of Solid-Phase Microextraction in Food Analysis. J. Chromatogr. A. 2000, 880, 35–62. DOI: 10.1016/S0021-9673(00)00309-5.
  • Ozdemir, S.; Mohamedsaid, S. A.; Kilinc, E.; Yıldırım, A.; Soylak, M. Application of Magnetized Fungal Solid Phase Extractor with Fe2O3 Nanoparticle for Determination and Preconcentration of Co (II) and Hg (II) from Natural Water Samples. Microchem. J. 2018, 143, 198–204. DOI: 10.1016/j.microc.2018.07.032.
  • Ozdemir, S.; Serkan Yalcin, M.; Kilinc, E.; Soylak, M. Boletus Edulis Loaded with γ-Fe 2 O 3 Nanoparticles as a Magnetic Sorbent for Preconcentration of Co (II) and Sn (II) Prior to Their Determination by ICP-OES. Microchim Acta 2017, 185,73–73.
  • Beltran, J.; López, F. J.; Hernández, F. Solid-Phase Microextraction in Pesticide Residue Analysis. J. Chromatogr. A. 2000, 885, 389–404. DOI: 10.1016/S0021-9673(00)00142-4.
  • Buldini, P. L.; Ricci, L.; Sharma, J. L. Recent Applications of Sample Preparation Techniques in Food Analysis. J. Chromatogr. A. 2002, 975, 47–70. DOI: 10.1016/S0021-9673(02)01335-3.
  • Aydin, F.; Yilmaz, E.; Ölmez, E.; Soylak, M. Cu2O-CuO Ball like/Multiwalled Carbon Nanotube Hybrid for Fast and Effective Ultrasound-Assisted Solid Phase Extraction of Uranium at Ultra-Trace Level Prior to ICP-MS Detection. Talanta 2020, 207, 120295. DOI: 10.1016/j.talanta.2019.120295.
  • Erbas, Z.; Soylak, M.; Ozdemir, S.; Kilinc, E. Fe3O4@ SiO2@ Bacillus Pumilis: Magnetised Solid Phase Bio-Extractor for Preconcentration of Pb (II) and Cu (II) from Water Samples. Int. J. Environ. Anal. Chem. 2019, 99, 1112–1122. DOI: 10.1080/03067319.2019.1616710.
  • Ozdemir, S.; Yalcin, M. S.; Kilinc, E.; Soylak, M. Boletus Edulis Loaded with γ-Fe2O3 Nanoparticles as a Magnetic Sorbent for Preconcentration of Co(II) and Sn(II) Prior to their Determination by ICP-OES. Mikrochim. Acta. 2017, 185, 73. DOI: 10.1007/s00604-017-2605-5.
  • Ozdemir, S.; Yalcin, M. S.; Kilinc, E.; Soylak, M. Magnetic Solid-Phase Extraction Based on Coriolus Versicolor-Immobilized gamma-Fe2O3 Nanoparticles for Preconcentration and Determination of Al (III) in Water and Food Samples. Turk. J. Chem. 2019, 43, 1217–1228. DOI: 10.3906/kim-1904-18.
  • Ozkantar, N.; Yilmaz, E.; Soylak, M.; Tuzen, M. Pyrocatechol Violet Impregnated Magnetic Graphene Oxide for Magnetic Solid Phase Microextraction of Copper in Water, Black Tea and Diet Supplements. Food Chem. 2020, 321, 126737. DOI: 10.1016/j.foodchem.2020.126737.
  • Kanberoglu, G. S.; Yilmaz, E.; Soylak, M. Fabrication and Characterization of SiO2@ Fe3O4@ Nanodiamonds for Vortex-Assisted Magnetic Solid-Phase Extraction of Lead in Cigarette Samples Prior to FAAS Detection. Journal of the Iranian Chemical Society. 2020, 17, 1627–1634. DOI:10.1007/s13738-020-01882-6.
  • Jain, R.; Singh, R. Microextraction Techniques for Analysis of Cannabinoids. TrAC Trends Anal. Chem. 2016, 80, 156–166. DOI: 10.1016/j.trac.2016.03.012.
  • Spietelun, A.; Marcinkowski, Ł.; de la Guardia, M.; Namieśnik, J. Green Aspects, Developments and Perspectives of Liquid Phase Microextraction Techniques. Talanta 2014, 119, 34–45. DOI: 10.1016/j.talanta.2013.10.050.
  • Dias, A. N.; Simão, V.; Merib, J.; Carasek, E. Use of Green Coating (Cork) in Solid-Phase Microextraction for the Determination of Organochlorine Pesticides in Water by Gas Chromatography-Electron Capture Detection. Talanta 2015, 134, 409–414. DOI: 10.1016/j.talanta.2014.11.045.
  • Souza-Silva, E. A.; Lopez-Avila, V.; Pawliszyn, J. Fast and Robust Direct Immersion Solid Phase Microextraction Coupled with Gas Chromatography-Time-of-Flight Mass Spectrometry Method Employing a Matrix Compatible Fiber for Determination of Triazole Fungicides in Fruits. J. Chromatogr. A. 2013, 1313, 139–146. DOI: 10.1016/j.chroma.2013.07.071.
  • Tuzen, M.; Saygi, K. O.; Soylak, M. Solid Phase Extraction of Heavy Metal Ions in Environmental Samples on Multiwalled Carbon Nanotubes. J. Hazard Mater. 2008, 152, 632–639. DOI: 10.1016/j.jhazmat.2007.07.026.
  • Tuzen, M.; Saygi, K. O.; Usta, C.; Soylak, M. Pseudomonas aeruginosa Immobilized Multiwalled Carbon Nanotubes as Biosorbent for Heavy Metal Ions. Bioresour. Technol. 2008, 99, 1563–1570. DOI: 10.1016/j.biortech.2007.04.013.
  • Li, J.; Zhang, Z.; Sun, M.; Zhang, B.; Fan, C. Use of a Headspace Solid-Phase Microextraction-Based Methodology Followed by Gas Chromatography–Tandem Mass Spectrometry for Pesticide Multiresidue Determination in Teas. Chromatographia 2018, 81, 809–821. DOI: 10.1007/s10337-018-3499-z.
  • Du, L.; Li, J.; Li, W.; Li, Y.; Li, T.; Xiao, D. Characterization of Volatile Compounds of pu-Erh Tea Using Solid-Phase Microextraction and Simultaneous Distillation–Extraction Coupled with Gas Chromatography–Mass Spectrometry. Food Res. Int. 2014, 57, 61–70. DOI: 10.1016/j.foodres.2014.01.008.
  • Gutiérrez‐Serpa, A.; Rocío-Bautista, P.; Pino, V.; Jiménez-Moreno, F.; Jiménez-Abizanda, A. I. Gold Nanoparticles Based Solid‐Phase Microextraction Coatings for Determining Organochlorine Pesticides in Aqueous Environmental Samples. J. Sep. Sci 2017, 40, 2009–2021.
  • Wu, F.; Lu, W.; Chen, J.; Liu, W.; Zhang, L. Single-Walled Carbon Nanotubes Coated Fibers for Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometric Determination of Pesticides in Tea Samples. Talanta 2010, 82, 1038–1043. DOI: 10.1016/j.talanta.2010.06.016.
  • Zhang, S.; Yang, Q.; Yang, X.; Wang, W.; Li, Z.; Zhang, L.; Wang, C.; Wang, Z. A Zeolitic Imidazolate Framework Based Nanoporous Carbon as a Novel Fiber Coating for Solid-Phase Microextraction of Pyrethroid Pesticides. Talanta 2017, 166, 46–53. DOI: 10.1016/j.talanta.2017.01.042.
  • Wang, Q.; Li, G.; Wang, C.; Wu, Q.; Wang, Z. Layered Porous Organic Frameworks as a Novel Adsorbent for the Solid Phase Extraction of Chlorophenols Prior to Their Determination by HPLC-DAD. Microchim. Acta 2020, 187, 1–11. DOI: 10.1007/s00604-020-4195-x.
  • Boyd-Boland, A. A.; Pawliszyn, J. B. Solid-Phase Microextraction of Nitrogen-Containing Herbicides. J. Chromatogr. A. 1995, 704, 163–172. DOI: 10.1016/0021-9673(95)00151-C.
  • Falqui-Cao, C.; Wang, Z.; Urruty, L.; Pommier, J.-J.; Montury, M. Focused Microwave Assistance for Extracting Some Pesticide Residues from Strawberries into Water before Their Determination by SPME/HPLC/DAD. J. Agric. Food Chem. 2001, 49, 5092–5097. DOI: 10.1021/jf010519u.
  • Ulusoy, H. İ.; Yılmaz, E.; Soylak, M. Magnetic Solid Phase Extraction of Trace Paracetamol and Caffeine in Synthetic Urine and Wastewater Samples by a Using Core Shell Hybrid Material Consisting of Graphene Oxide/Multiwalled Carbon Nanotube/Fe3O4/SiO2. Microchem. J. 2019, 145, 843–851. DOI: 10.1016/j.microc.2018.11.056.
  • Wennrich, L.; Popp, P.; Köller, G.; Breuste, J. Determination of Organochlorine Pesticides and Chlorobenzenes in Strawberries by Using Accelerated Solvent Extraction Combined with Sorptive Enrichment and Gas Chromatography/Mass Spectrometry. J. AOAC Int. 2001, 84, 1194–1201. DOI: 10.1093/jaoac/84.4.1194.
  • Barnabas, I.; Dean, J.; Fowlis, I.; Owen, S. Automated Determination of s-Triazine Herbicides Using Solid-Phase Microextraction. J. Chromatogr. A. 1995, 705, 305–312. DOI: 10.1016/0021-9673(95)00279-V.
  • Eisert, R.; Levsen, K. Determination of Pesticides in Aqueous Samples by Solid-Phase Microextraction in-Line Coupled to Gas Chromatography—Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 1119–1130. DOI: 10.1016/1044-0305(95)00527-7.
  • Tuzen, M.; Soylak, M.; Citak, D.; Ferreira, H. S.; Korn, M. G.; Bezerra, M. A. A Preconcentration System for Determination of Copper and Nickel in Water and Food Samples Employing Flame Atomic Absorption Spectrometry. J. Hazard. Mater. 2009, 162, 1041–1045. DOI: 10.1016/j.jhazmat.2008.05.154.
  • Ulusoy, H. İ.; Gülle, S.; Yilmaz, E.; Soylak, M. Trace Determination of Vitamin B12 in Food Samples by Using Fe3O4 Magnetic Particles Including Multi-Walled Carbon Nanotubes and Nanodiamonds. Anal. Methods 2019, 11, 5108–5117. DOI: 10.1039/C9AY01504C.
  • Yilmaz, E.; Soylak, M. Ultrasound Assisted-Deep Eutectic Solvent Based on Emulsification Liquid Phase Microextraction Combined with Microsample Injection Flame Atomic Absorption Spectrometry for Valence Speciation of Chromium(III/VI) in Environmental Samples. Talanta 2016, 160, 680–685. DOI: 10.1016/j.talanta.2016.08.001.
  • Cai, L.; Xing, J.; Dong, L.; Wu, C. Application of Polyphenylmethylsiloxane Coated Fiber for Solid-Phase Microextraction Combined with Microwave-Assisted Extraction for the Determination of Organochlorine Pesticides in Chinese Teas. J. Chromatogr. A. 2003, 1015, 11–21. DOI: 10.1016/S0021-9673(03)01328-1.
  • Yao, Z-w.; Jiang, G-b.; Liu, J-m.; Cheng, W. Application of Solid-Phase Microextraction for the Determination of Organophosphorous Pesticides in Aqueous Samples by Gas Chromatography with Flame Photometric Detector. Talanta 2001, 55, 807–814. DOI: 10.1016/S0039-9140(01)00504-5.
  • Lambropoulou, D. A.; Sakkas, V. A.; Hela, D. G.; Albanis, T. A. Application of Solid-Phase Microextraction in the Monitoring of Priority Pesticides in the Kalamas River (NW Greece). J. Chromatogr. A 2002, 963, 107–116. DOI: 10.1016/S0021-9673(02)00173-5.
  • Song, X.-Y.; Shi, Y.-P.; Chen, J. Carbon Nanotubes-Reinforced Hollow Fibre Solid-Phase Microextraction Coupled with High Performance Liquid Chromatography for the Determination of Carbamate Pesticides in Apples. Food Chem. 2013, 139, 246–252. DOI: 10.1016/j.foodchem.2013.01.112.
  • Doong, R.-A.; Liao, P.-L. Determination of Organochlorine Pesticides and Their Metabolites in Soil Samples Using Headspace Solid-Phase Microextraction. J. Chromatogr. A. 2001, 918, 177–188. DOI: 10.1016/S0021-9673(01)00740-3.
  • Dong, C.; Zeng, Z.; Li, X. Determination of Organochlorine Pesticides and Their Metabolites in Radish after Headspace Solid-Phase Microextraction Using Calix[4]Arene Fiber. Talanta 2005, 66, 721–727. DOI: 10.1016/j.talanta.2004.12.020.
  • Júnior, J. L. R. N. Re-Poppi, Determination of Organochlorine Pesticides in Ground Water Samples Using Solid-Phase Microextraction by Gas Chromatography-Electron Capture Detection. Talanta 2007, 72, 1833–1841.
  • Fernandez, M.; Padron, C.; Marconi, L.; Ghini, S.; Colombo, R.; Sabatini, A.; Girotti, S. Determination of Organophosphorus Pesticides in Honeybees after Solid-Phase Microextraction. J. Chromatogr. A. 2001, 922, 257–265. DOI: 10.1016/S0021-9673(01)00880-9.
  • Yu, J.; Wu, C.; Xing, J. Development of New Solid-Phase Microextraction Fibers by Sol-Gel Technology for the Determination of Organophosphorus Pesticide Multiresidues in Food. J. Chromatogr. A. 2004, 1036, 101–111. DOI: 10.1016/j.chroma.2004.02.081.
  • Li, H.-P.; Li, G.-C.; Jen, J.-F. Determination of Organochlorine Pesticides in Water Using Microwave Assisted Headspace Solid-Phase Microextraction and Gas Chromatography. J. Chromatogr. A 2003, 1012, 129–137. DOI: 10.1016/S0021-9673(03)00916-6.
  • Wang, W.; Wang, W.; Zhang, S.; Li, Z.; Wang, C.; Wang, Z. Hyper-Crosslinked Polymer Nanoparticles as the Solid-Phase Microextraction Fiber Coating for the Extraction of Organochlorines. J. Chromatogr. A. 2018, 1556, 47–54. DOI: 10.1016/j.chroma.2018.05.001.
  • Ebrahimi, M.; Es‘Haghi, Z.; Samadi, F.; Hosseini, M.-S. Ionic Liquid Mediated Sol-Gel Sorbents for Hollow Fiber Solid-Phase Microextraction of Pesticide Residues in Water and Hair Samples. J. Chromatogr. A. 2011, 1218, 8313–8321. DOI: 10.1016/j.chroma.2011.09.058.
  • Jabbari, M.; Razmi, H.; Farrokhzadeh, S. Application of Magnetic Graphene Nanoparticles for Determination of Organophosphorus Pesticides Using Solid-Phase Microextraction. Chromatographia 2016, 79, 985–993. DOI: 10.1007/s10337-016-3117-x.
  • Liu, S.; Xie, L.; Zheng, J.; Jiang, R.; Zhu, F.; Luan, T.; Ouyang, G. Mesoporous TiO2 Nanoparticles for Highly Sensitive Solid-Phase Microextraction of Organochlorine Pesticides. Anal. Chim. Acta. 2015, 878, 109–117. DOI: 10.1016/j.aca.2015.03.054.
  • Zhang, S.; Du, Z.; Li, G. Metal-Organic Framework-199/Graphite Oxide Hybrid Composites Coated Solid-Phase Microextraction Fibers Coupled with Gas Chromatography for Determination of Organochlorine Pesticides from Complicated Samples. Talanta 2013, 115, 32–39. DOI: 10.1016/j.talanta.2013.04.029.
  • Chen, T.; Xu, H. In Vivo Investigation of Pesticide Residues in Garlic Using Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry. Anal. Chim. Acta. 2019, 1090, 72–81. DOI: 10.1016/j.aca.2019.09.011.
  • Frı́as, S.; Rodrı́guez, M. A.; Conde, J. E.; Pérez-Trujillo, J. P. ; Optimisation of a Solid-Phase Microextraction Procedure for the Determination of Triazines in Water with Gas Chromatography–Mass Spectrometry Detection. J. Chromatogr. A. 2003, 1007, 127–135. DOI: 10.1016/S0021-9673(03)00957-9.
  • Ibrahim, W. A. W.; Farhani, H.; Sanagi, M. M.; Aboul-Enein, H. Y. Solid Phase Microextraction Using New Sol-Gel Hybrid Polydimethylsiloxane-2-Hydroxymethyl-18-Crown-6-Coated Fiber for Determination of Organophosphorous Pesticides. J. Chromatogr. A. 2010, 1217, 4890–4897. DOI: 10.1016/j.chroma.2010.05.050.
  • Li, D.; He, M.; Chen, B.; Hu, B. Magnetic Porous Organic Polymers for Magnetic Solid-Phase Extraction of Triazole Fungicides in Vegetables Prior to Their Determination by Gas Chromatography-Flame Ionization Detection. J. Chromatogr. A. 2019, 1601, 1–8. DOI: 10.1016/j.chroma.2019.04.062.
  • Mukdasai, S.; Thomas, C.; Srijaranai, S. Two-Step Microextraction Combined with High Performance Liquid Chromatographic Analysis of Pyrethroids in Water and Vegetable Samples. Talanta 2014, 120, 289–296. DOI: 10.1016/j.talanta.2013.12.005.
  • Shakourian, M.; Yamini, Y.; Safari, M. Facile Magnetization of Metal–Organic Framework TMU-6 for Magnetic Solid-Phase Extraction of Organophosphorus Pesticides in Water and Rice Samples. Talanta 2020, 218, 121139. DOI: 10.1016/j.talanta.2020.121139.
  • Obuseng, V. C.; Mookantsa, B. M.; Okatch, H.; Mosepele, K.; Torto, N. Extraction of Pesticides from Plants Using Solid Phase Microextraction and QuEChERS. S. Afr. J. Chem. 2013, 66, 183–188.
  • do Carmo, S. N.; Mendes, L. D.; Corazza, G.; Comelli, H.; Merib, J.; Carasek, E. Determination of Pesticides of Different Chemical Classes in Drinking Water of the State of Santa Catarina (Brazil) Using Solid-Phase Microextraction Coupled to Chromatographic Determinations. Environ. Sci. Pollut. Res. 2020, 27, 43870–43874. DOI: 10.1007/s11356-020-10287-0.
  • Asadi, M.; Sereshti, H. Magnetic Amino-Functionalized Hollow Silica-Titania Microsphere as an Efficient Sorbent for Extraction of Pesticides in Green and Roasted Coffee Beans. J. Sep. Sci. 2020, 43, 2115–2124. DOI: 10.1002/jssc.201901135.
  • Mohammadi, P.; Masrournia, M.; Es’haghi, Z. Magnetic Dispersive Solid-Phase Microextraction for Determination of Two Organophosphorus Pesticides in Cucumber and Orange Samples. J. Iran. Chem. Soc. 2020, 17, 3285–3294. DOI: 10.1007/s13738-020-01991-2.
  • Lu, N.; He, X.; Wang, T.; Liu, S.; Hou, X. Magnetic Solid-Phase Extraction Using MIL-101 (Cr)-Based Composite Combined with Dispersive Liquid-Liquid Microextraction Based on Solidification of a Floating Organic Droplet for the Determination of Pyrethroids in Environmental Water and Tea Samples. Microchem. J. 2018, 137, 449–455. DOI: 10.1016/j.microc.2017.12.009.
  • Kirschner, N.; Dias, A. N.; Budziak, D.; da Silveira, C. B.; Merib, J.; Carasek, E. Novel Approach to High-Throughput Determination of Endocrine Disruptors Using Recycled Diatomaceous Earth as a Green Sorbent Phase for Thin-Film Solid-Phase Microextraction Combined with 96-Well Plate System. Anal. Chim. Acta. 2017, 996, 29–37. DOI: 10.1016/j.aca.2017.09.047.
  • Omena, E.; Oenning, A. L.; Merib, J.; Richter, P.; Rosero-Moreano, M.; Carasek, E. A Green and Simple Sample Preparation Method to Determine Pesticides in Rice Using a Combination of SPME and Rotating Disk Sorption Devices. Anal. Chim. Acta. 2019, 1069, 57–65. DOI: 10.1016/j.aca.2019.04.002.
  • Farajzadeh, M. A.; Dabbagh, M. S. Development of a Dispersive Solid Phase Extraction Method Based on in Situ Formation of Adsorbent Followed by Dispersive Liquid-Liquid Microextraction for Extraction of Some Pesticide Residues in Fruit Juice Samples. J. Chromatogr. A. 2020, 1627, 461398. DOI: 10.1016/j.chroma.2020.461398.
  • Valenzuela, E. F.; de Paula, F. G.; Teixeira, A. P. C.; Menezes, H. C.; Cardeal, Z. L. A New Carbon Nanomaterial Solid-Phase Microextraction to Pre-Concentrate and Extract Pesticides in Environmental Water. Talanta 2020, 217, 121011. DOI: 10.1016/j.talanta.2020.121011.
  • Wang, R.; Sun, X.; Wang, X.; Chen, J.; Wang, B.; Ji, W. Spherical Conjugated Microporous Polymers for Solid Phase Microextraction of Carbamate Pesticides from Water samples. J. Chromatogr. A. 2020, 1626, 461360. DOI: 10.1016/j.chroma.2020.461360.
  • Hu, J.; Qian, C.; Zhang, Y.; Tian, Y.; Duan, Y. Sol-Gel Fabrication and Performance Evaluation of Graphene-Based Hydrophobic Solid-Phase Microextraction Fibers for Multi-Residue Analysis of Pesticides in Water Samples. Anal. Methods 2020, 12, 3954–3963. DOI: 10.1039/d0ay01153c.
  • Khoshmanesh, S. M.; Hamishehkar, H.; Razmi, H. Trace Analysis of Organophosphorus Pesticide Residues in Fruit Juices and Vegetables by an Electrochemically Fabricated Solid-Phase Microextraction Fiber Coated with a Layer-by-Layer Graphenized Graphite/Graphene Oxide/Polyaniline Nanocomposite. Anal. Methods 2020, 12, 3268–3276. DOI: 10.1039/d0ay00626b.
  • Pang, Y.; Zang, X.; Li, H.; Liu, J.; Chang, Q.; Zhang, S.; Wang, C.; Wang, Z. Solid-Phase Microextraction of Organophosphorous Pesticides from Food Samples with a Nitrogen-Doped Porous Carbon Derived from g-C3N4 Templated MOF as the Fiber Coating. J. Hazard. Mater. 2020, 384, 121430. DOI: 10.1016/j.jhazmat.2019.121430.
  • Xiang, X.; Wang, Y.; Zhang, X.; Huang, M.; Li, X.; Pan, S. Multifiber Solid-Phase Microextraction using Different Molecularly Imprinted Coatings for Simultaneous Selective Extraction and Sensitive Determination of Organophosphorus Pesticides. J. Sep. Sci. 2020, 43, 756–765. DOI: 10.1002/jssc.201900994.
  • Feriduni, B.; Mohebbi, A.; Farajzadeh, M. A.; Namvar, M. Magnetic Graphene Oxide–Based Solid-Phase Extraction Combined with Dispersive Liquid–Liquid Microextraction for the Simultaneous Preconcentration of Four Typical Pesticide Residues in Fruit Juice and Pulp. Food Anal. Methods 2019, 12, 2742–2752. DOI: 10.1007/s12161-019-01635-z.
  • Li, C.; Begum, A.; Xue, J. Analytical Methods to Analyze Pesticides and Herbicides. Water Environ. Res. 2020, 92, 1770–1785.
  • Wu, J.; Mei, M.; Huang, X. Fabrication of Boron-Rich Multiple Monolithic Fibers for the Solid-Phase Microextraction of Carbamate Pesticide Residues in Complex Samples. J. Sep. Sci. 2019, 42, 878–887. DOI: 10.1002/jssc.201800996.
  • Hercegová, A.; Dömötörová, M.; Kružlicová, D.; Matisová, E. Comparison of Sample Preparation Methods Combined with Fast Gas Chromatography–Mass Spectrometry for Ultratrace Analysis of Pesticide Residues in Baby Food. J. Sep. Sci. 2006, 29, 1102–1109. DOI: 10.1002/jssc.200500422.
  • Leandro, C. C.; Fussell, R. J.; Keely, B. J. Determination of Priority Pesticides in Baby Foods by Gas Chromatography Tandem Quadrupole Mass Spectrometry. J. Chromatogr. A. 2005, 1085, 207–212. DOI: 10.1016/j.chroma.2005.06.054.
  • Jiménez Soto, J. M.; Aranzana, M. S. C. Conical Carbon Nanoparticles in Analytical Chemistry. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; Wiley: Hoboken, 2006. 10.1002/9780470027318.a9283.
  • Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive Solid Phase Microextraction. TrAC Trends Anal. Chem. 2019, 118, 793–809. DOI: 10.1016/j.trac.2019.07.012.
  • Ouyang, G.; Zhao, W.; Pawliszyn, J. Automation and Optimization of Liquid-Phase Microextraction by Gas Chromatography. J. Chromatogr. A. 2007, 1138, 47–54. DOI: 10.1016/j.chroma.2006.10.093.
  • Bedendo, G. C.; Jardim, I. C. S. F.; Carasek, E. A Simple Hollow Fiber Renewal Liquid Membrane Extraction Method for Analysis of Sulfonamides in Honey Samples with Determination by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2010, 1217, 6449–6454. DOI: 10.1016/j.chroma.2010.08.030.
  • Rezaee, M.; Assadi, Y.; Hosseini, M.-R. M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A. 2006, 1116, 1–9. DOI: 10.1016/j.chroma.2006.03.007.
  • Ccanccapa-Cartagena, A.; Masiá, A.; Picó, Y. Simultaneous Determination of Pyrethroids and Pyrethrins by Dispersive Liquid-Liquid Microextraction and Liquid Chromatography Triple Quadrupole Mass Spectrometry in Environmental Samples. Anal. Bioanal. Chem. 2017, 409, 4787–4799. DOI: 10.1007/s00216-017-0422-7.
  • Noori, A. H.; Rezaee, M.; Kazemipour, M.; Mashayekhi, H. A. Simultaneous Determination of Permethrin and Deltamethrin in Water Samples by Magnetic Solid-Phase Extraction Coupled with Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography. S. Afr. J. Chem. 2017, 70, 200–208.
  • Farajzadeh, M. A.; Yadeghari, A.; Khoshmaram, L. Combination of Dispersive Solid Phase Extraction and Dispersive Liquid–Liquid Microextraction for Extraction of Some Aryloxy Pesticides Prior to Their Determination by Gas Chromatography. Microchem. J. 2017, 131, 182–191. DOI: 10.1016/j.microc.2016.12.013.
  • Jahan, K.; Ordóñez, R.; Ramachandran, R.; Balzer, S.; Stern, M. Modeling Biodegradation of Nonylphenol. Water Air Soil Pollut. Focus 2008, 8, 395–404. DOI: 10.1007/s11267-007-9148-4.
  • Yan, Y.; Chen, X.; Hu, S.; Bai, X. Applications of Liquid-Phase Microextraction Techniques in Natural Product Analysis: A Review. J. Chromatogr. A. 2014, 1368, 1–17. DOI: 10.1016/j.chroma.2014.09.068.
  • Jeannot, M. A.; Cantwell, F. F. Solvent Microextraction into a Single Drop. Anal. Chem. 1996, 68, 2236–2240. DOI: 10.1021/ac960042z.
  • Bagheri, H.; Khalilian, F. Immersed Solvent Microextraction and Gas Chromatography–Mass Spectrometric Detection of s-Triazine Herbicides in Aquatic Media. Anal. Chim. Acta 2005, 537, 81–87. DOI: 10.1016/j.aca.2005.01.036.
  • Cacho, J.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. In Situ Ionic Liquid Dispersive Liquid-Liquid Microextraction Coupled to Gas Chromatography-Mass Spectrometry for the Determination of Organophosphorus Pesticides. J. Chromatogr. A. 2018, 1559, 95–101. DOI: 10.1016/j.chroma.2017.12.059.
  • Hamid, Y.; Fat’hi, M. R. A Fast and Green Preconcentration Method Based on Surfactant Ion Pair-Switchable Solvent Dispersive Liquid–Liquid Microextraction for Determination of Phenazopyridine in Pharmaceutical and Biological Samples. J. Iran. Chem. Soc. 2018, 15, 1813–1820. DOI: 10.1007/s13738-018-1378-z.
  • Rykowska, I.; Ziemblińska, J.; Nowak, I. Modern Approaches in Dispersive Liquid-Liquid Microextraction (DLLME) Based on Ionic Liquids: A Review. J. Mol. Liq. 2018, 259, 319–339. DOI: 10.1016/j.molliq.2018.03.043.
  • Wang, H.; Hu, L.; Li, W.; Yang, X.; Lu, R.; Zhang, S.; Zhou, W.; Gao, H.; Li, J. In-Syringe Dispersive Liquid-Liquid Microextraction Based on the Solidification of Ionic Liquids for the Determination of Benzoylurea Insecticides in Water and Tea Beverage Samples. Talanta 2017, 162, 625–633. DOI: 10.1016/j.talanta.2016.10.035.
  • Pedersen-Bjergaard, S.; Rasmussen, K. E. Liquid-Liquid-Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis. Anal. Chem. 1999, 71, 2650–2656. DOI: 10.1021/ac990055n.
  • Alsharif, A. M. A.; Tan, G.-H.; Choo, Y.-M.; Lawal, A. Efficiency of Hollow Fiber Liquid-Phase Microextraction Chromatography Methods in the Separation of Organic Compounds: A Review. J. Chromatogr. Sci. 2017, 55, 378–391. DOI: 10.1093/chromsci/bmw188.]
  • Chimuka, L.; Cukrowska, E.; Michel, M.; Buszewski, B. Advances in Sample Preparation Using Membrane-Based Liquid-Phase Microextraction Techniques. TrAC Trends Anal. Chem. 2011, 30, 1781–1792. DOI: 10.1016/j.trac.2011.05.008.
  • Xiao, Q.; Hu, B.; Duan, J.; He, M.; Zu, W. Analysis of PBDEs in Soil, Dust, Spiked Lake Water, and Human Serum Samples by Hollow Fiber-Liquid Phase Microextraction Combined with GC-ICP-MS. J. Am. Soc. Mass. Spectrom. 2007, 18, 1740–1748. DOI: 10.1016/j.jasms.2007.07.006.
  • King, S.; Meyer, J. S.; Andrews, A. R. Screening Method for Polycyclic Aromatic Hydrocarbons in Soil Using Hollow Fiber Membrane Solvent Microextraction. J. Chromatogr. A. 2002, 982, 201–208. DOI: 10.1016/S0021-9673(02)01594-7.
  • Jiang, X.; Basheer, C.; Zhang, J.; Lee, H. K. Dynamic Hollow Fiber-Supported Headspace Liquid-Phase Microextraction. J. Chromatogr. A. 2005, 1087, 289–294. DOI: 10.1016/j.chroma.2005.06.010.
  • Banimuslem, H. A. Organic/Carbon Nanotubes Hybrid Thin Films for Chemical Detection; Sheffield Hallam University: Sheffield, UK, 2015.
  • Hou, L.; Lee, H. K. Determination of Pesticides in Soil by Liquid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. J. Chromatogr. A. 2004, 1038, 37–42. DOI: 10.1016/j.chroma.2004.03.012.
  • Lambropoulou, D. A.; Albanis, T. A. Sensitive Trace Enrichment of Environmental Andiandrogen Vinclozolin from Natural Waters and Sediment Samples Using Hollow-Fiber Liquid-Phase Microextraction. J. Chromatogr. A. 2004, 1061, 11–18. DOI: 10.1016/j.chroma.2004.10.064.
  • Xiong, J.; Hu, B. Comparison of Hollow Fiber Liquid Phase Microextraction and Dispersive Liquid-Liquid Microextraction for the Determination of Organosulfur Pesticides in Environmental and Beverage Samples by Gas Chromatography with Flame Photometric Detection. J. Chromatogr. A. 2008, 1193, 7–18. DOI: 10.1016/j.chroma.2008.03.072.
  • Asensio-Ramos, M.; Hernández-Borges, J.; Borges-Miquel, T. M.; Rodríguez-Delgado, M. Á. Ionic Liquid-Dispersive Liquid-Liquid Microextraction for the Simultaneous Determination of Pesticides and Metabolites in Soils Using High-Performance Liquid Chromatography and Fluorescence Detection. J. Chromatogr. A. 2011, 1218, 4808–4816. DOI: 10.1016/j.chroma.2010.11.030.
  • Vidal, J. M.; Plaza-Bolanos, P.; Romero-González, R.; Frenich, A. G. Determination of Pesticide Transformation Products: A Review of Extraction and Detection Methods. J. Chromatogr. A. 2009, 1216, 6767–6788. DOI: 10.1016/j.chroma.2009.08.013.
  • Zhang, J.; Lee, H. K. Application of Liquid-Phase Microextraction and On-Column Derivatization Combined with Gas Chromatography-Mass Spectrometry to the Determination of Carbamate Pesticides. J. Chromatogr. A. 2006, 1117, 31–37. DOI: 10.1016/j.chroma.2006.03.102.
  • Huang, S.-P.; Huang, S.-D. Determination of Organochlorine Pesticides in Water Using Solvent Cooling Assisted Dynamic Hollow-Fiber-Supported Headspace Liquid-Phase Microextraction. J. Chromatogr. A. 2007, 1176, 19–25. DOI: 10.1016/j.chroma.2007.10.073.
  • Basheer, C.; Alnedhary, A. A.; Rao, B. M.; Lee, H. K. Determination of Organophosphorous Pesticides in Wastewater Samples Using Binary-Solvent Liquid-Phase Microextraction and Solid-Phase Microextraction: A Comparative Study. Anal. Chim. Acta 2007, 605, 147–152. DOI: 10.1016/j.aca.2007.10.006.
  • Seebunrueng, K.; Phosiri, P.; Apitanagotinon, R.; Srijaranai, S. A New Environment-Friendly Supramolecular Solvent-Based Liquid Phase Microextraction Coupled to High Performance Liquid Chromatography for Simultaneous Determination of Six Phenoxy Acid Herbicides in Water and Rice Samples. Microchem. J. 2020, 152, 104418. DOI: 10.1016/j.microc.2019.104418.
  • Chullasat, K.; Huang, Z.; Bunkoed, O.; Kanatharana, P.; Lee, H. K. Bubble-in-Drop Microextraction of Carbamate Pesticides Followed by Gas Chromatography-Mass Spectrometric Analysis. Microchem. J. 2020, 155, 104666. DOI: 10.1016/j.microc.2020.104666.
  • Mogaddam, M. R. A.; Farajzadeh, M. A.; Mohebbi, A. Application of Temperature-Assisted Tandem Dispersive Liquid–Liquid Microextraction for the Extraction and High Preconcentration of Triazole Pesticides. Int. J. Environ. Anal. Chem. 2020, 1–17.
  • Mardani, A.; Torbati, M.; Farajzadeh, M. A.; Mohebbi, A.; Mogaddam, M. R. A. Combination of Homogeneous Liquid–Liquid Extraction and Dispersive Liquid–Liquid Microextraction for Extraction of Some Organochlorine Pesticides from Cocoa. Int. J. Environ. Anal. Chem. 2020, 1–14.
  • Wang, X.; Cheng, J.; Zhou, H.; Wang, X.; Cheng, M. Development of a Simple Combining Apparatus to Perform a Magnetic Stirring-Assisted Dispersive Liquid-Liquid Microextraction and Its Application for the Analysis of Carbamate and Organophosphorus Pesticides in Tea Drinks. Anal. Chim. Acta. 2013, 787, 71–77. DOI: 10.1016/j.aca.2013.05.033.
  • Ramos-Payan, M.; Maspoch, S.; Llobera, A. An Effective Microfluidic Based Liquid-Phase Microextraction Device (μLPME) for Extraction of Non-Steroidal anti-Inflammatory Drugs from Biological and Environmental Samples. Anal. Chim. Acta 2016, 946, 56–63. DOI: 10.1016/j.aca.2016.09.040.
  • Huang, S.-P.; Huang, S.-D. Dynamic Hollow Fiber Protected Liquid Phase Microextraction and Quantification Using Gas Chromatography Combined with Electron Capture Detection of Organochlorine Pesticides in Green Tea Leaves and Ready-to-Drink Tea. J. Chromatogr. A. 2006, 1135, 6–11. DOI: 10.1016/j.chroma.2006.09.027.
  • Farajzadeh, M. A.; Mogaddam, M. R. A.; Aghdam, A. A. Comparison of Air-Agitated Liquid-Liquid Microextraction Technique and Conventional Dispersive Liquid-Liquid Micro-Extraction for Determination of Triazole Pesticides in Aqueous Samples by Gas Chromatography with Flame Ionization Detection. J. Chromatogr. A. 2013, 1300, 70–78. DOI: 10.1016/j.chroma.2013.02.033.
  • Kumari, R.; Patel, D. K.; Panchal, S.; Jha, R. R.; Satyanarayana, G.; Asati, A.; Ansari, N. G.; Pathak, M. K.; Kesavachandran, C.; Murthy, R. C. Fast Agitated Directly Suspended Droplet Microextraction Technique for the Rapid Analysis of Eighteen Organophosphorus Pesticides in Human Blood. J. Chromatogr. A. 2015, 1377, 27–34. DOI: 10.1016/j.chroma.2014.12.006.
  • Farajzadeh, M. A.; Abbaspour, M.; Kazemian, R. Synthesis of a Green High Density Deep Eutectic Solvent and Its Application in Microextraction of Seven Widely Used Pesticides from Honey. J. Chromatogr. A. 2019, 1603, 51–60. DOI: 10.1016/j.chroma.2019.06.051.
  • Chen, Z.; Li, Q.; Yang, T.; Zhang, Y.; He, M.; Zeng, H.; Mai, X.; Liu, Y.; Fan, H. Sequential Extraction and Enrichment of Pesticide Residues in Longan Fruit by Ultrasonic-Assisted Aqueous Two-Phase Extraction Linked to Vortex-Assisted Dispersive Liquid-Liquid Microextraction Prior to High Performance Liquid Chromatography Analysis. J. Chromatogr. A. 2020, 1619, 460929. DOI: 10.1016/j.chroma.2020.460929.
  • Farajzadeh, M. A.; Khoshmaram, L. Air-Assisted Liquid-Liquid Microextraction-Gas Chromatography-Flame Ionisation Detection: A Fast and Simple Method for the Assessment of Triazole Pesticides Residues in Surface Water, Cucumber, Tomato and Grape Juices Samples. Food Chem. 2013, 141, 1881–1887. DOI: 10.1016/j.foodchem.2013.05.088.
  • Boonchiangma, S.; Ngeontae, W.; Srijaranai, S. Determination of Six Pyrethroid Insecticides in Fruit Juice Samples Using Dispersive Liquid-Liquid Microextraction Combined With High Performance Liquid Chromatography. Talanta 2012, 88, 209–215. DOI: 10.1016/j.talanta.2011.10.033.
  • San Román, I.; Alonso, M.; Bartolomé, L.; Alonso, R. Hollow Fibre-Based Liquid-Phase Microextraction Technique Combined With Gas Chromatography-Mass Spectrometry for the Determination of Pyrethroid Insecticides in Water Samples. Talanta 2012, 100, 246–253. DOI: 10.1016/j.talanta.2012.04.039.
  • Torbati, M.; Farajzadeh, M. A.; Torbati, M.; Nabil, A. A. A.; Mohebbi, A.; Mogaddam, M. R. A. Development of Salt and pH-Induced Solidified Floating Organic Droplets Homogeneous Liquid-Liquid Microextraction for Extraction of Ten Pyrethroid Insecticides in Fresh Fruits and Fruit Juices Followed by Gas Chromatography-Mass Spectrometry. Talanta 2018, 176, 565–572. DOI: 10.1016/j.talanta.2017.08.074.
  • Farajzadeh, M. A.; Khorram, P.; Nabil, A. A. A. Development of a Green Liquid–Liquid Microextraction Method Using a Solid Disperser Performed in a Narrow-Bore Tube for Trace Analysis of Some Organophosphorus Pesticides in Fruit Juices. J. Food Compos. Anal. 2015, 43, 96–105. DOI: 10.1016/j.jfca.2015.04.012.
  • Naeeni, M. H.; Yamini, Y.; Rezaee, M. Combination of Supercritical Fluid Extraction with Dispersive Liquid–Liquid Microextraction for Extraction of Organophosphorus Pesticides from Soil and Marine Sediment Samples. J. Supercrit. Fluids 2011, 57, 219–226. DOI: 10.1016/j.supflu.2011.03.005.
  • Mogaddam, M. R. A.; Mohebbi, A.; Farajzadeh, M. A. A Sensitive Determination of Triazole Pesticides in Grape Juice by Combining Solid Phase Extraction–Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Flame Ionisation Detection. Int. J. Environ. Anal. Chem. 2020, 1–16.
  • Xiong, J.; Guan, Z.; Zhou, G.; Tang, X.; Lv, Y.; Wang, H. Determination of Chlorpyrifos in Environmental Water Samples by Dispersive Liquid–Liquid Microextraction with Solidification of a Floating Organic Drop Followed by Gas Chromatography with Flame Photometry Detection. Anal. Methods 2012, 4, 3246–3250. DOI: 10.1039/c2ay25451d.
  • Bessonova, E.; Deev, V.; Kartsova, L. Dispersive Liquid–Liquid Microextraction of Pesticides Using Ionic Liquids as Extractants. J. Anal. Chem. 2020, 75, 991–999. DOI: 10.1134/S1061934820080043.
  • Li, Z.; Zhang, S.; Yin, X.; Wang, C.; Wang, Z. Micellar Electrokinetic Chromatographic Determination of Triazine Herbicides in Water Samples. J. Chromatogr. Sci. 2014, 52, 926–931. DOI: 10.1093/chromsci/bmt124.
  • Özcan, R.; Büyükpınar, Ç.; Bakırdere, S. Determination of Fipronil and Bixafen Pesticides Residues Using Gas Chromatography Mass Spectroscopy with Matrix Matching Calibration Strategy after Binary Dispersive Liquid-Liquid Microextraction. J. Environ. Sci. Health Pt. B. 2020, 55, 1041–1047. DOI: 10.1080/03601234.2020.1808417.
  • Farajzadeh, M. A.; Feriduni, B.; Afshar Mogaddam, M. R. Extraction and Preconcentration of Triazine Pesticides Using Rapid, Simple, and Disperser Solventless Microextraction Technique Followed by Gas Chromatography–Nitrogen Phosphorous Detection. Eur. J. Lipid Sci. Technol. 2017, 119, 1600208. DOI: 10.1002/ejlt.201600208.
  • Farajzadeh, M. A.; Bahram, M.; Jafary, F.; Bamorowat, M. Combination of Extraction by Silylated Vessel-Dispersive Liquid–Liquid Microextraction as a High-Enrichment Factor Technique: Optimization and Application in Preconcentration of Some Triazole Pesticides from Aqueous Samples Followed by GC-FID Determination. Chromatographia 2011, 73, 393–401. DOI: 10.1007/s10337-010-1895-0.
  • Farajzadeh, M. A.; Mohebbi, A.; Mogaddam, M. R. A.; Davaran, M.; Norouzi, M. Development of Salt-Induced Homogenous Liquid–Liquid Microextraction Based on Iso-Propanol/Sodium Sulfate System for Extraction of Some Pesticides in Fruit Juices. Food Anal. Methods 2018, 11, 2497–2507. DOI: 10.1007/s12161-018-1238-6.
  • Li, S.; Han, W.; Zhao, W.; Luo, Y. Flexible Dispersive Liquid–Liquid Microextraction for on-Site Sample Pre-Concentration. Int. J. Environ. Anal. Chem. 2021, 101, 281–299. DOI: 10.1080/03067319.2019.1665654.
  • Khalili-Zanjani, M. R.; Yamini, Y.; Yazdanfar, N.; Shariati, S. Extraction and Determination of Organophosphorus Pesticides in Water Samples by a New Liquid Phase Microextraction–Gas Chromatography–Flame Photometric Detection. Anal. Chim. Acta 2008, 606, 202–208. DOI: 10.1016/j.aca.2007.11.032.
  • Zheng, Y.-Z.; Wang, K.; Liang, Q.; Xue, X.-F.; Zhao, L.-W.; Chen, D.-F.; Wu, L.-M.; Guo, R.; Xiong, C.-L. Ionic Liquid Dispersive Liquid–Liquid Microextraction for Pesticide Residue Analysis in Honey. J. Apic. Res. 2020, 59, 458–467. DOI: 10.1080/00218839.2019.1656701.
  • Sereshti, H.; Jamshidi, F.; Nouri, N.; Nodeh, H. R. Hyphenated Dispersive Solid- and Liquid-Phase Microextraction Technique Based on a Hydrophobic Deep Eutectic Solvent: Application for Trace Analysis of Pesticides in Fruit Juices. J. Sci. Food Agric. 2020, 100, 2534–2543. DOI: 10.1002/jsfa.10279.
  • Yan, H.; Du, J.; Zhang, X.; Yang, G.; Row, K. H.; Lv, Y. Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Coupled With Capillary Gas Chromatography for Simultaneous Analysis of Nine Pyrethroids in Domestic Wastewaters. J. Sep. Sci. 2010, 33, 1829–1835. DOI: 10.1002/jssc.200900716.
  • Farajzadeh, M. A.; Djozan, D.; Mogaddam, M. A.; Bamorowat, M. Extraction and Preconcentration Technique for Triazole Pesticides from Cow Milk Using Dispersive Liquid–Liquid Microextraction Followed by GC‐FID and GC‐MS Determinations. J. Sep. Sci. 2011, 34, 1309–1316. DOI: 10.1002/jssc.201000928.
  • Alves, A. C. H.; Gonçalves, M. M. P. B.; Bernardo, M. M. S.; Mendes, B. S. Validated Dispersive Liquid-Liquid Microextraction for Analysis of Organophosphorous Pesticides in Water. J. Sep. Sci. 2011, 34, 1326–1332. DOI: 10.1002/jssc.201100111.
  • Tayyebi, M.; Yamini, Y.; Moradi, M. Reverse Micelle-Mediated Dispersive Liquid-Liquid Microextraction of 2,4-Dichlorophenoxyacetic Acid and 4-Chloro-2-Methylphenoxyacetic Acid. J. Sep. Sci. 2012, 35, 2491–2498. DOI: 10.1002/jssc.201200150.
  • Mardani, A.; Afshar Mogaddam, M. R.; Farajzadeh, M. A.; Mohebbi, A.; Nemati, M.; Torbati, M. A Three-Phase Solvent Extraction System Combined With Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction for Extraction of Some Organochlorine Pesticides in Cocoa Samples Prior to Gas Chromatography With Electron Capture Detection. J. Sep. Sci. 2020, 43, 3674–3682. DOI: 10.1002/jssc.202000507.
  • Liu, L.; Cheng, J.; Matsadiq, G.; Zhou, H.; Li, J. Application of DLLME to the Determination of Pyrethroids in Aqueous Samples. Chroma 2010, 72, 1017–1020. DOI: 10.1365/s10337-010-1732-5.
  • Shirani, M.; Akbari-Adergani, B.; Jazi, M. B.; Akbari, A. Green Ultrasound Assisted Magnetic Nanofluid-Based Liquid Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry for Determination of Permethrin, Deltamethrin, and Cypermethrin Residues. Mikrochim Acta 2019, 186, 674. DOI: 10.1007/s00604-019-3763-4.
  • Amri, F.; Niazi, A.; Yazdanipour, A. Three-Pesticide Residue Analysis in Tomato Using a Fast Pressure Variation in-Syringe Dispersive Liquid-Phase Microextraction Technique Coupled with Gas Chromatography-Mass Spectrometry by Assisting Experimental Design. Int. J. Environ. Anal. Chem. 2020, 99, 1–18. DOI: 10.1080/03067319.2020.1724988.
  • Zhang, S.; Yin, X.; Yang, Q.; Wang, C.; Wang, Z. Determination of Some Sulfonylurea Herbicides in Soil by a Novel Liquid-Phase Microextraction Combined With Sweeping Micellar Electrokinetic Chromatography. Anal. Bioanal. Chem. 2011, 401, 1071–1081. DOI: 10.1007/s00216-011-5138-5.
  • Zhou, S.; Chen, H.; Wu, B.; Ma, C.; Ye, Y. Sensitive Determination of Carbamates in Fruit and Vegetables by a Combination of Solid-Phase Extraction and Dispersive Liquid-Liquid Microextraction Prior to HPLC. Microchim. Acta. 2012, 176, 419–427. DOI: 10.1007/s00604-011-0735-8.
  • Anvar, S. A.; Torbati, M.; Farajzadeh, M. A.; Mogaddam, M. R. A. Elevated Temperature Homogeneous Liquid Phase Extraction Coupled to Ionic Liquid–Based Dispersive Liquid–Liquid Microextraction Followed by High-Performance Liquid Chromatography: application of Water-Miscible Ionic Liquids as Extraction Solvent in Determination of Carbamate Pesticides. Food Anal. Methods 2020, 13, 1282–1291. DOI: 10.1007/s12161-020-01742-2.
  • Berijani, S.; Sadigh, M.; Pournamdari, E. Homogeneous Liquid-Liquid Microextraction for Determination of Organophosphorus Pesticides in Environmental Water Samples Prior to Gas Chromatography-Flame Photometric Detection. J. Chromatogr. Sci. 2016, 54, 1061–1067. DOI: 10.1093/chromsci/bmw020.
  • Sheikhzadeh, F.; Mogaddam, M. R. A.; Farajzadeh, M. A.; Khandaghi, J. Development of Microwave Radiations-Induced Homogeneous Liquid-Liquid Microextraction Method for Extraction of Pyrethroid Pesticides in Fruit and Vegetable Samples. Int. J. Environ. Anal. Chem. 2020, 100, 1–12. DOI: 10.1080/03067319.2020.1758686.
  • Musarurwa, H.; Tavengwa, N. T. Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Micro-Extraction of Pesticides in Food Samples. Food Chem. 2020, 127943. DOI: 10.1016/j.foodchem.2020.127943.
  • Farajzadeh, M. A.; Sohrabi, H.; Mohebbi, A. Combination of Modified QuEChERS Extraction Method and Dispersive Liquid–Liquid Microextraction as an Efficient Sample Preparation Approach for Extraction and Preconcentration of Pesticides from Fruit and Vegetable Samples. Food Anal. Methods 2019, 12, 534–543. DOI: 10.1007/s12161-018-1384-x.
  • Farajzadeh, M. A.; Alavian, A. S.; Dabbagh, M. S. Development of an Efficient Sample Preparation Method Based on Homogeneous Liquid-Liquid Extraction Combined with Dispersive Liquid-Liquid Microextraction Solidification of Floating Organic Drop for Trace Analysis of Pesticide Residues in Fruit and Fruit Juice Samples. Food Anal. Methods 2019, 12, 2730–2741. DOI: 10.1007/s12161-019-01628-y.
  • Gao, Y.; Xu, C.; Liu, S.; Sun, P. Determination of Seven Pyrethroid Pesticides in Liquid Milk by Dispersive Liquid–Liquid Microextraction Based on the Solidification of a Floating Organic Droplet Followed by GC. Chromatographia 2018, 81, 539–544. DOI: 10.1007/s10337-017-3457-1.
  • Talaee, M.; Lorestani, B.; Ramezani, M.; Cheraghi, M.; Jamehbozorgi, S. Microfunnel-Filter-Based Emulsification Microextraction Followed by Gas Chromatography for Simple Determination of Organophosphorus Pesticides in Environmental Water Samples. J. Sep. Sci. 2019, 42, 2418–2425. DOI: 10.1002/jssc.201900132.
  • Mohebbi, A.; Farajzadeh, M. A.; Mahmoudzadeh, A.; Etemady, A. Combination of Poly (ε–Caprolactone) Grafted Graphene Quantum Dots–Based Dispersive Solid Phase Extraction Followed by Dispersive Liquid–Liquid Microextraction for Extraction of Some Pesticides from Fruit Juices Prior to Their Quantification by Gas Chromatography. Microchem. J. 2020, 153, 104328. DOI: 10.1016/j.microc.2019.104328.
  • Bazrafshan, A.; Ghaedi, M.; Rafiee, Z.; Hajati, S.; Ostovan, A. Nano-Sized Molecularly Imprinted Polymer for Selective Ultrasound-Assisted Microextraction of Pesticide Carbaryl from Water Samples: Spectrophotometric Determination. J. Colloid Interface Sci. 2017, 498, 313–322. DOI: 10.1016/j.jcis.2017.03.076.
  • Jouyban, A.; Farajzadeh, M. A.; Mogaddam, M. R. A. In Matrix Formation of Deep Eutectic Solvent Used in Liquid Phase Extraction Coupled with Solidification of Organic Droplets Dispersive Liquid-Liquid Microextraction; Application in Determination of Some Pesticides in Milk Samples. Talanta 2020, 206, 120169 DOI: 10.1016/j.talanta.2019.120169.
  • Farajzadeh, M. A.; Asghari, A.; Feriduni, B. An Efficient, Rapid and Microwave-Accelerated Dispersive Liquid–Liquid Microextraction Method for Extraction and Pre-Concentration of Some Organophosphorus Pesticide Residues from Aqueous Samples. J. Food Compos. Anal. 2016, 48, 73–80. DOI: 10.1016/j.jfca.2016.02.007.
  • Shamsipur, M.; Yazdanfar, N.; Ghambarian, M. Combination of Solid-Phase Extraction with Dispersive Liquid-Liquid Microextraction Followed by GC-MS for Determination of Pesticide Residues From Water, Milk, Honey and Fruit Juice. Food Chem. 2016, 204, 289–297. DOI: 10.1016/j.foodchem.2016.02.090.
  • Liu, X.; Liu, C.; Qian, H.; Qu, Y.; Zhang, S.; Lu, R.; Gao, H.; Zhou, W. Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on a Hydrophobic Deep Eutectic Solvent for the Preconcentration of Pyrethroid Insecticides Prior to Determination by High-Performance Liquid Chromatography. Microchem. J. 2019, 146, 614–621. DOI: 10.1016/j.microc.2019.01.048.
  • Zahiri, E.; Khandaghi, J.; Farajzadeh, M. A.; Mogaddam, M. R. A. Combination of Dispersive Solid Phase Extraction with Solidification Organic Drop-Dispersive Liquid-Liquid Microextraction Based on Deep Eutectic Solvent for Extraction of Organophosphorous Pesticides from Edible Oil Samples. J. Chromatogr. A. 2020, 1627, 461390. DOI: 10.1016/j.chroma.2020.461390.
  • Zhao, W.; Jing, X.; Chang, M.; Meng, J.; Feng, C. Vortex‐Assisted Emulsification Microextraction for the Determination of Pyrethroids in Mushroom. Bull. Korean Chem. Soc. 2019, 40, 943–950. DOI: 10.1002/bkcs.11850.
  • Solaesa, A. G.; Fernandes, J. O.; Sanz, M. T.; Benito-Román, Ó.; Cunha, S. C. Green Determination of Brominated Flame Retardants and Organochloride Pollutants in Fish Oils by Vortex Assisted Liquid-Liquid Microextraction and Gas Chromatography-Tandem Mass Spectrometry. Talanta 2019, 195, 251–257. DOI: 10.1016/j.talanta.2018.11.048.
  • Li, X.; Wang, M.; Zhao, J.; Guo, H.; Gao, X.; Xiong, Z.; Zhao, L. Ultrasound-Assisted Emulsification Liquid Phase Microextraction Method Based on Deep Eutectic Solvent as Extraction Solvent for Determination of Five Pesticides in Traditional Chinese Medicine. J. Pharm. Biomed. Anal. 2019, 166, 213–221. DOI: 10.1016/j.jpba.2019.01.018.
  • Yao, F.; Song, Z.-Y.; Nie, J.; Li, Z.-G.; Zhu, G.-H.; Lee, M.-R. Development of a Microextraction Method Based on Dissolved Carbon Dioxide Flotation after Emulsification for the Determination of Triazole Pesticides Residues in Water Samples by Gas Chromatography-Mass Spectrometry. Anal. Sci. 2016, 32, 1083–1088. DOI: 10.2116/analsci.32.1083.
  • El-Deen, A. K.; Shimizu, K. Application of D-Limonene as a Bio-based Solvent in Low Density-Dispersive Liquid-Liquid Microextraction of Acidic Drugs from Aqueous Samples. Anal. Sci. 2019, 35, 1385–1391. DOI: 10.2116/analsci.19P360.
  • Lu, D.; Liu, C.; Deng, J.; Zhou, X.; Shi, G.; Zhou, T. Rational Design of an Ionic Liquid Dispersive Liquid-Liquid Micro-Extraction Method for the Detection of Organophosphorus Pesticides. Analyst 2019, 144, 2166–2172. DOI: 10.1039/c9an00123a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.