720
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Nanoparticles Based Extraction Strategies for Accurate and Sensitive Determination of Different Pesticides

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1370-1385 | Published online: 12 Feb 2021

References

  • Bolognesi, C.; Merlo, F. D. Pesticides: Human Health Effects. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, 2019; pp 118–132. DOI: 10.1016/B978-0-12-409548-9.11818-4.
  • Sharma, A.; Shukla, A.; Attri, K.; Kumar, M.; Kumar, P.; Suttee, A.; Singh, G.; Barnwal, R. P.; Singla, N. Global Trends in Pesticides: A Looming Threat and Viable Alternatives. Ecotoxicol. Environ. Saf. 2020, 201, 110812. DOI: 10.1016/j.ecoenv.2020.110812.
  • Colosio, C.; Rubino, F. M.; Moretto, A. Pesticides. In International Encyclopedia of Public Health; Elsevier: Kidlington, Oxford, 2017; pp 454–462DOI: 10.1016/B978-0-12-803678-5.00329-5.
  • Ensley, S. Pesticides and Herbicides. In Encyclopedia of Food and Health; Elsevier: Kidlington, Oxford, 2015; pp 307–310.DOI: 10.1016/B978-0-12-384947-2.00534-1.
  • Sarwar, M. Families of Common Synthetic Agrochemicals Designed to Target Insect Pests or Vectors in Landscapes and Households. Chem. Res. J. 2016, 1, 7–13. https://chemrj.org/families-of-common-synthetic-agrochemicals-designed-to-target-insect-pests-or-vectors-in-landscapes-and-households/.
  • Tankiewicz, M.; Fenik, J.; Biziuk, M. Determination of Organophosphorus and Organonitrogen Pesticides in Water Samples. Trends in Analytical Chemistry 2010, 29, 1050–1063. Elsevier October pp . DOI: 10.1016/j.trac.2010.05.008.
  • Wong, J. W.; Wang, J.; Zhang, K.; Hayward, D. G.; Yang, P.; Wittenberg, J. B. Pesticides: An Update on Mass Spectrometry Approaches. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, 2019; pp 433–448. DOI: 10.1016/B978-0-08-100596-5.21813-1.
  • Wallace, D. R.; Buha Djordjevic, A. Heavy Metal and Pesticide Exposure: A Mixture of Potential Toxicity and Carcinogenicity. Curr. Opin. Toxicol. 2020, 19, 72–79. Elsevier B.V. February pp . DOI: 10.1016/j.cotox.2020.01.001.
  • Corsini, E.; Colosio, C.; J. B, B. Immunotoxicology of Pesticides. In Comprehensive Toxicology, 3rd ed; Elsevier: Amsterdam, 2018; Vol. 11–15, pp 761–773.DOI: 10.1016/B978-0-12-801238-3.02007-9.
  • Saad-Hussein, A.; Beshir, S.; Taha, M. M.; Shahy, E. M.; Shaheen, W.; Abdel-Shafy, E. A.; Thabet, E. Early Prediction of Liver Carcinogenicity Due to Occupational Exposure to Pesticides. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 838, 46–53. DOI: 10.1016/j.mrgentox.2018.12.004.
  • Arambula, S. E.; Patisaul, H. B. Endocrine Disrupting Chemicals and Behavior. In Encyclopedia of Endocrine Diseases; Elsevier: Amsterdam, 2019; pp 812–820. DOI: 10.1016/B978-0-12-801238-3.65191-7.
  • Pleština, R. Pesticides and Herbicides | Types of Pesticide. In Encyclopedia of Food Sciences and Nutrition; Elsevier: London, 2003; pp 4473–4483. DOI: 10.1016/B0-12-227055-X/00909-3.
  • Upadhayay, J.; Rana, M.; Juyal, V.; Bisht, S. S.; Joshi, R. Impact of Pesticide Exposure and Associated Health Effects. In Pesticides in Crop Production; Wiley: New Jersey, 2020; pp 69–88DOI: 10.1002/9781119432241.ch5.
  • Jayaraj, R.; Megha, P.; Sreedev, P.; Review, A. Organochlorine Pesticides, Their Toxic Effects on Living Organisms and Their Fate in the Environment. Interdiscip. Toxicol. 2016, 9, 90–100. December pp . DOI: 10.1515/intox-2016-0012.
  • El Megid, A. A.; Abd Al Fatah, M. E.; El Asely, A.; El Senosi, Y.; Moustafa, M. M. A.; Dawood, M. A. O. Impact of Pyrethroids and Organochlorine Pesticides Residue on IGF-1 and CYP1A Genes Expression and Muscle Protein Patterns of Cultured Mugil Capito. Ecotoxicol. Environ. Saf 2020, 188, 109876. DOI: 10.1016/j.ecoenv.2019.109876.
  • García-Reyes, J. F.; Ferrer, C.; Gómez-Ramos, M. J.; Fernández-Alba, A. R.; García-Reyes, J. F.; Molina-Díaz, A. Determination of Pesticide Residues in Olive Oil and Olives. Trends Anal. Chem. 2007, 26, 239–251. DOI: 10.1016/j.trac.2007.01.004.
  • de Souza Pinheiro, A.; de Andrade, J. B. Development, Validation and Application of a SDME/GC-FID Methodology for the Multiresidue Determination of Organophosphate and Pyrethroid Pesticides in Water. Talanta 2009, 79, 1354–1359. DOI: 10.1016/j.talanta.2009.06.002.
  • Sánchez, R.; Cortés, J. M.; Villén, J.; Vázquez, A. Determination of Organophosphorus and Triazine Pesticides in Olive Oil by on-Line Coupling Reversed-Phase Liquid Chromatography/Gas Chromatography with Nitrogen-Phosphorus Detection and an Automated through-Oven Transfer Adsorption-Desorption Interface. J. AOAC Int. 2005, 88, 1255–1260. DOI: 10.1093/jaoac/88.4.1255.
  • Ling, T.; Xiaodong, M.; Chongjiu, L. Application of Gas Chromatography-Tandem Mass Spectrometry (GC-MS-MS) with Pulsed Splitless Injection for the Determination of Multiclass Pesticides in Vegetables. Anal. Lett. 2006, 39, 985–996. DOI: 10.1080/00032710600614230.
  • Wittsiepe, J.; Nestola, M.; Kohne, M.; Zinn, P.; Wilhelm, M. Determination of Polychlorinated Biphenyls and Organochlorine Pesticides in Small Volumes of Human Blood by High-Throughput on-Line SPE-LVI-GC-HRMS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 945–946, 217–224. DOI: 10.1016/j.jchromb.2013.11.059.
  • Patel, K.; Fussell, R. J.; Goodall, D. M.; Keely, B. J. Analysis of Pesticide Residues in Lettuce by Large Volume-Difficult Matrix Introduction-Gas Chromatography-Time of Flight-Mass Spectrometry (LV-DMI-GC-TOF-MS). Analyst 2003, 128, 1228–1231. DOI: 10.1039/B306482D.
  • Lozano, A.; Uclés, S.; Uclés, A.; Ferrer, C.; Fernández-Alba, A. R. Pesticide Residue Analysis in Fruit-And Vegetable-Based Baby Foods Using GC-Orbitrap MS. J. AOAC Int. 2018, 101, 374–382. DOI: 10.5740/jaoacint.17-0413.
  • Tadeo, J. L. Analysis of Pesticides in Food and Environmental Samples; CRC Press: Florida, 2019. DOI: 10.1201/9781351047081.
  • Filho, A. M.; Dos Santos, F. N.; De Paula Pereira, P. A. Multi-Residue Analysis of Pesticide Residues in Mangoes Using Solid-phase Microextraction Coupled to Liquid Chromatography and UV–Vis Detection. J. Sep. Sci. 2011, 34, 2960–2966. DOI: 10.1002/jssc.201100341.
  • Asensio-Ramos, M.; Hernández-Borges, J.; Borges-Miquel, T. M.; Rodríguez-Delgado, M. Á. Ionic Liquid-Dispersive Liquid–Liquid Microextraction for the Simultaneous Determination of Pesticides and Metabolites in Soils Using High-Performance Liquid Chromatography and Fluorescence Detection. J. Chromatogr. A. 2011, 1218, 4808–4816. DOI: 10.1016/j.chroma.2010.11.030.
  • Famiglini, G.; Palma, P.; Pierini, E.; Trufelli, H.; Cappiello, A. Organochlorine Pesticides by LC-MS. Anal. Chem. 2008, 80, 3445–3449. DOI: 10.1021/ac8000435.
  • Huang, Y.; Shi, T.; Luo, X.; Xiong, H.; Min, F.; Chen, Y.; Nie, S.; Xie, M. Determination of Multi-Pesticide Residues in Green Tea with a Modified QuEChERS Protocol Coupled to HPLC-MS/MS. Food Chem. 2019, 275, 255–264. DOI: 10.1016/j.foodchem.2018.09.094.
  • Narenderan, S. T.; Meyyanathan, S. N.; Babu, B. Review of Pesticide Residue Analysis in Fruits and Vegetables. Pre-Treatment, Extraction and Detection Techniques. Food Res. Int. 2020, 133, 109141. Elsevier Ltd July p . DOI: 10.1016/j.foodres.2020.109141.
  • Chormey, D. S.; Bakırdere, S. Principles and Recent Advancements in Microextraction Techniques. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, 2018; Vol. 81, pp 257–294. DOI: 10.1016/BS.COAC.2018.03.011.
  • Wells, M. J. M. Principles of Extraction and the Extraction of Semivolatile Organics from Liquids. In Sample Preparation Techniques in Analytical Chemistry 2003, Vol. 162, pp 37–138. pp DOI: 10.1002/0471457817.ch2.
  • Rutkowska, M.; Płotka-Wasylka, J.; Sajid, M.; Andruch, V. Liquid–Phase Microextraction: A Review of Reviews. Microchem. J 2019, 149, 103989. DOI: 10.1016/j.microc.2019.103989.
  • Alshana, U.; Hassan, M.; Al-Nidawi, M.; Yilmaz, E.; Soylak, M. Switchable-Hydrophilicity Solvent Liquid-Liquid Microextraction. Trends Anal. Chem. 2020, 131, 116025. DOI: 10.1016/j.trac.2020.116025.
  • Campillo, N.; Gavazov, K.; Viñas, P.; Hagarova, I.; Andruch, V. Liquid-Phase Microextraction: Update May 2016 to December 2018. Appl. Spectrosc. Rev. 2020, 55, 307–326. Taylor and Francis Inc. April pp . DOI: 10.1080/05704928.2019.1604537.
  • Arthur, C. L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. DOI: 10.1021/ac00218a019.
  • Dugheri, S.; Mucci, N.; Bonari, A.; Marrubini, G.; Cappelli, G.; Ubiali, D.; Campagna, M.; Montalti, M.; Arcangeli, G. Solid Phase Microextraction Techniques Used for Gas Chromatography: A Review. Acta Chromatogr. 2020, 32, 1–9. pp . DOI: 10.1556/1326.2018.00579.
  • Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive Solid Phase Microextraction. Trends Analyt. Chem. 2019, 118, 793–809. Elsevier B.V. September pp . DOI: 10.1016/j.trac.2019.07.012.
  • Poole, C. F.; Poole, S. K. Principles and Practice of Solid-Phase Extraction. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, 2012; pp 273–297. DOI: 10.1016/B978-0-12-381373-2.00041-7.
  • Poole, C. F. Solid-Phase Extraction with Discs. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Oxford, 2015. DOI: 10.1016/B978-0-12-409547-2.11720-2.
  • Poole, C. F. Extraction | Solid-Phase Extraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Oxford, 2016. DOI: 10.1016/B978-0-12-409547-2.12175-4.
  • Mitra, S. Sample Preparation Techniques in Analytical Chemistry; Mitra, S., Ed.; Hoboken, NJ: John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471457817.
  • Juhascik, M. P.; Jenkins, A. J. Comparison of Liquid/Liquid and Solid-Phase Extraction for Alkaline Drugs. J. Chromatogr. Sci. 2009, 47, 553–557. DOI: 10.1093/chromsci/47.7.553.
  • Fontanals, N.; Marcé, R. M.; Borrull, F. New Hydrophilic Materials for Solid-Phase Extraction. TrAC Trends Anal. Chem. 2005, 24, 394–406. DOI: 10.1016/j.trac.2005.01.012.
  • Poole, C. F. New Trends in Solid-Phase Extraction. Trends Anal. Chem. 2003, 22, 362–373. DOI: 10.1016/S0165-9936(03)00605-8.
  • Camel, V. Solid Phase Extraction of Trace Elements. Spectrochim. Acta B: Spectrosc 2003, 58, 1177–1233. https://doi.org/10.1016/S0584-8547.(03)00072-7. DOI: 10.1016/S0584-8547(03)00072-7.
  • Erger, C.; Schmidt, T. C. Disk-Based Solid-Phase Extraction Analysis of Organic Substances in Water. Trends Anal. Chem. 2014, 61, 74–82. DOI: 10.1016/j.trac.2014.05.006.
  • Bielicka-Daszkiewicz, K.; Voelkel, A. Theoretical and Experimental Methods of Determination of the Breakthrough Volume of SPE Sorbents. Talanta 2009, 80, 614–621. DOI: 10.1016/j.talanta.2009.07.037.
  • Hemmati, M.; Rajabi, M.; Asghari, A. Magnetic Nanoparticle Based Solid-Phase Extraction of Heavy Metal Ions: A Review on Recent Advances. Microchim. Acta 2018, 185, 160. DOI: 10.1007/s00604-018-2670-4.
  • Poole, C. F. Chapter 12 Principles and Practice of Solid-Phase Extraction. Comprehensive Analytical Chemistry; Elsevier: Amsterdam, 2002; pp 341–387. DOI: 10.1016/S0166-526X(02)80049-6.
  • Buszewski, B.; Szultka, M. Past, Present, and Future of Solid Phase Extraction: A Review. Crit. Rev. Anal. Chem. 2012, 42, 198–213. DOI: 10.1080/07373937.2011.645413.
  • López, P.; Batlle, R.; Nerín, C.; Cacho, J.; Ferreira, V. Use of New Generation Poly(Styrene-Divinylbenzene) Resins for Gas-Phase Trapping-Thermal Desorption. Application to the retention of seven volatile organic compounds. J. Chromatogr. A. 2007, 1139, 36–44. DOI: 10.1016/j.chroma.2006.11.005.
  • Rawa‐Adkonis, M.; Wolska, L.; Przyjazny, A.; Namieśnik, J. Sources of Errors Associated with the Determination of PAH and PCB Analytes in Water Samples. Anal. Lett. 2006, 39, 2317–2331. DOI: 10.1080/00032710600755793.
  • Augusto, F.; Hantao, L. W.; Mogollón, N. G. S.; Braga, S. C. G. N. New Materials and Trends in Sorbents for Solid-Phase Extraction. Trends Anal. Chem. 2013, 43, 14–23. DOI: 10.1016/j.trac.2012.08.012.
  • Sajid, M.; Płotka-Wasylka, J. Nanoparticles: Synthesis, Characteristics, and Applications in Analytical and Other Sciences. Microchem. J. 2020, 154, 104623. DOI: 10.1016/j.microc.2020.104623.
  • Khajeh, M.; Laurent, S.; Dastafkan, K. Nanoadsorbents: Classification, Preparation, and Applications (with Emphasis on Aqueous Media). Chem. Rev. 2013, 113, 7728–7768. DOI: 10.1021/cr400086v.
  • Tabrizi, A. B.; Rashidi, M. R.; Ostadi, H. A Nanoparticle-Based Solid-Phase Extraction Procedure Followed by Spectrofluorimetry to Determine Carbaryl in Different Water Samples. J. Braz. Chem. Soc. 2014, 25, 709–715. DOI: 10.5935/0103-5053.20140024.
  • Ahmadi, M.; Elmongy, H.; Madrakian, T.; Abdel-Rehim, M. Nanomaterials as Sorbents for Sample Preparation in Bioanalysis: A Review. Anal. Chim. Acta. 2017, 958, 1–21. DOI: 10.1016/j.aca.2016.11.062.
  • Azzouz, A.; Kailasa, S. K.; Lee, S. S.; J. Rascón, A.; Ballesteros, E.; Zhang, M.; Kim, K.-H. Review of Nanomaterials as Sorbents in Solid-Phase Extraction for Environmental Samples. Trends Anal. Chem. 2018, 108, 347–369. DOI: 10.1016/j.trac.2018.08.009.
  • Castillo-García, M. L.; Aguilar-Caballos, M. P.; Gómez-Hens, A. Gómez-Hens, A. Nanomaterials as Tools in Chromatographic Methods. Trends Anal. Chem. 2016, 82, 385–393. DOI: 10.1016/j.trac.2016.06.019.
  • Lucena, R.; Simonet, B. M.; Cárdenas, S.; Valcárcel, M. Potential of Nanoparticles in Sample Preparation. J. Chromatogr. A. 2011, 1218, 620–637. DOI: 10.1016/j.chroma.2010.10.069.
  • Salas, G.; Costo, R.; M. del P, M. Synthesis of Inorganic Nanoparticles. Front. Nanosci. 2012; Vol. 4, pp 35–79. DOI: 10.1016/B978-0-12-415769-9.00002-9.
  • Romero, G.; Moya, S. E. Synthesis of Organic Nanoparticles. Front. Nanosci. 2012; Vol. 4, pp 115–141. DOI: 10.1016/B978-0-12-415769-9.00004-2.
  • Subbiah, R.; Veerapandian, M.; Yun, K. S. Nanoparticles: Functionalization and Multifunctional Applications in Biomedical Sciences. Curr. Med. Chem. 2010, 17, 4559–4577. DOI: 10.2174/092986710794183024.
  • de Dios, A. S.; Díaz-García, M. E. Multifunctional Nanoparticles: Analytical Prospects. Anal. Chim. Acta. 2010, 666, 1–22. DOI: 10.1016/j.aca.2010.03.038.
  • Li, W.-K.; Shi, Y.-P. Recent Advances of Magnetic Extractants in Food Analysis. Trends Anal. Chem. 2020, 129, 115951. DOI: 10.1016/j.trac.2020.115951.
  • Kaur, Y.; Bhatia, Y.; Chaudhary, S.; Chaudhary, G. R. Comparative Performance of Bare and Functionalize ZnO Nanoadsorbents for Pesticide Removal from Aqueous Solution. J. Mol. Liq. 2017, 234, 94–103. DOI: 10.1016/j.molliq.2017.03.069.
  • Zhang, M.; Ma, G.; Zhang, L.; Chen, H.; Zhu, L.; Wang, C.; Liu, X. Chitosan-Reduced Graphene Oxide Composites with 3D Structures as Effective Reverse Dispersed Solid Phase Extraction Adsorbents for Pesticides Analysis. Analyst 2019, 144, 5164–5171. DOI: 10.1039/c9an00927b.
  • Er, E. Ö.; Çağlak, A.; Engin, G. Ö.; Bakirdere, S. Ultrasound-Assisted Dispersive Solid Phase Extraction Based on Fe3O4/Reduced Graphene Oxide Nanocomposites for the Determination of 4-Tert Octylphenol and Atrazine by Gas Chromatography–Mass Spectrometry. Microchem. J. 2019, 146, 423–428. DOI: 10.1016/j.microc.2019.01.040.
  • Sun, P.; Liu, M.; Zhang, X.; Yan, R. 3D Graphene–Carbon Nanotubes-Based Solid-Phase Extraction Technique Combined with GC–MS for the Determination of Organophosphorus Pesticides in Water Samples. J. Iran. Chem. Soc. 2020, 17, 2275–2282. DOI: 10.1007/s13738-020-01923-0.
  • Guo, L.; Wu, J.; Xing, F.; Liu, W.; Hao, L.; Wang, C.; Wu, Q.; Wang, Z. Graphene Intercalated with Carbon Nanosphere: A Novel Solid-Phase Extraction Sorbent for Five Carbamate Pesticides. Microchim. Acta 2020, 187, 521. DOI: 10.1007/s00604-020-04497-z.
  • Zhu, B.; Xu, X.; Luo, J.; Jin, S.; Chen, W.; Liu, Z.; Tian, C. Simultaneous Determination of 131 Pesticides in Tea by on-Line GPC-GC-MS/MS Using Graphitized Multi-walled Carbon Nanotubes as Dispersive Solid Phase Extraction Sorbent . Food Chem. 2019, 276, 202–208. DOI: 10.1016/j.foodchem.2018.09.152.
  • Asadi, M.; Sereshti, H.; Rashidi Nodeh, H. Development of Magnetic Dispersive Microsolid-Phase Extraction Using Lanthanum Phosphate Nanoparticles Doped on Magnetic Graphene Oxide as a Highly Selective Adsorbent for Pesticide Residues Analysis in Water and Fruit Samples. Res. Chem. Intermed. 2020, 46, 2789–2803. DOI: 10.1007/s11164-020-04121-y.
  • Kermani, M.; Jafari, M. T.; Saraji, M. Porous Magnetized Carbon Sheet Nanocomposites for Dispersive Solid-Phase Microextraction of Organophosphorus Pesticides Prior to Analysis by Gas Chromatography-Ion Mobility Spectrometry. Microchim. Acta 2019, 186, 88. DOI: 10.1007/s00604-018-3215-6.
  • Du, Z.; Liu, M.; Li, G. Novel Magnetic SPE Method Based on Carbon Nanotubes Filled with Cobalt Ferrite for the Analysis of Organochlorine Pesticides in Honey and Tea. J. Sep. Sci. 2013, 36, 3387–3394. DOI: 10.1002/jssc.201300710.
  • Patrudu, T. B.; Manohra Naidu, T.; Parvatamma, B.; Nageswara Rao, T. Extraction of Triazine Herbicides in Environmental Water Samples Using Alumina Nanoparticles and Determination of Residues by LC–MS/MS. Mater. Today Proc. 2020, 27, 130–135. DOI: 10.1016/j.matpr.2019.09.065.
  • Akkaya, E.; Bozyiğit, G. D.; Bakirdere, S. Simultaneous Determination of 4-Tert-Octylphenol, Chlorpyrifos-Ethyl and Penconazole by GC–MS after Sensitive and Selective Preconcentration with Stearic Acid Coated Magnetic Nanoparticles. Microchem. J. 2019, 146, 1190–1194. DOI: 10.1016/j.microc.2019.01.077.
  • Li, C.; Chen, L.; Li, W. Magnetic Titanium Oxide Nanoparticles for Hemimicelle Extraction and HPLC Determination of Organophosphorus Pesticides in Environmental Water. Microchim. Acta 2013, 180, 1109–1116. DOI: 10.1007/s00604-013-1029-0.
  • Sereshti, H.; Afsharsaveh, Z.; Gaikani, H.; Rashidi Nodeh, H. Electroless-Coated Magnetic Three-Dimensional Graphene with Silver Nanoparticles Used for the Determination of Pesticides in Fruit Samples. J. Sep. Sci. 2018, 41, 1567–1575. DOI: 10.1002/jssc.201700956.
  • Gutiérrez-Serpa, A.; Rocío-Bautista, P.; Pino, V.; Jiménez-Moreno, F.; Jiménez-Abizanda, A. I. Gold Nanoparticles Based Solid-Phase Microextraction Coatings for Determining Organochlorine Pesticides in Aqueous Environmental Samples. J. Sep. Sci. 2017, 40, 2009–2021. DOI: 10.1002/jssc.201700046.
  • Yu, X.; Ang, H. C.; Yang, H.; Zheng, C.; Zhang, Y. Low Temperature Cleanup Combined with Magnetic Nanoparticle Extraction to Determine Pyrethroids Residue in Vegetables Oils. Food Control 2017, 74, 112–120. DOI: 10.1016/j.foodcont.2016.11.036.
  • Xiong, Z.; Zhang, L.; Zhang, R.; Zhang, Y.; Chen, J.; Zhang, W. Solid-Phase Extraction Based on Magnetic Core-Shell Silica Nanoparticles Coupled with Gas Chromatography-Mass Spectrometry for the Determination of Low Concentration Pesticides in Aqueous Samples. J. Sep. Sci. 2012, 35, 2430–2437. DOI: 10.1002/jssc.201200260.
  • Nodeh, H. R.; Wan Ibrahim, W. A.; Kamboh, M. A.; Sanagi, M. M. Dispersive Graphene-Based Silica Coated Magnetic Nanoparticles as a New Adsorbent for Preconcentration of Chlorinated Pesticides from Environmental Water. RSC Adv. 2015, 5, 76424–76434. DOI: 10.1039/C5RA13450A.
  • Zhang, M.; Yang, J.; Geng, X.; Li, Y.; Zha, Z.; Cui, S.; Yang, J. Magnetic Adsorbent Based on Mesoporous Silica Nanoparticles for Magnetic Solid Phase Extraction of Pyrethroid Pesticides in Water Samples. J. Chromatogr. A. 2019, 1598, 20–29. DOI: 10.1016/j.chroma.2019.03.048.
  • Pellicer-Castell, E.; Belenguer-Sapiña, C.; Amorós, P.; El Haskouri, J.; Herrero-Martínez, J. M.; Mauri-Aucejo, A. Study of Silica-Structured Materials as Sorbents for Organophosphorus Pesticides Determination in Environmental Water Samples. Talanta 2018, 189, 560–567. DOI: 10.1016/j.talanta.2018.07.044.
  • Wang, X. M.; Kou, H.; Wang, J.; Teng, R.; Du, X.; Lu, X. An Octahedral Magnetic Metal Organic Frameworks for Efficient Extraction and Enrichment of Six Pesticides with Benzene Ring Prior to High Performance Liquid Chromatography Analysis. J. Porous Mater. 2020, 27, 1171–1177. DOI: 10.1007/s10934-020-00895-z.
  • Jin, R.; Ji, F.; Lin, H.; Luo, C.; Hu, Y.; Deng, C.; Cao, X.; Tong, C.; Song, G. The Synthesis of Zr-Metal-Organic Framework Functionalized Magnetic Graphene Nanocomposites as an Adsorbent for Fast Determination of Multi-Pesticide Residues in Tobacco Samples. J. Chromatogr. A 2018, 1577, 1–7. DOI: 10.1016/j.chroma.2018.09.041.
  • Heravizadeh, O. R.; Khadem, M.; Dehghani, F.; Shahtaheri, S. J. Determination of Fenthion in Urine Samples Using Molecularly Imprinted Nanoparticles: Modelling and Optimisation by Response Surface Methodology. Int. J. Environ. Anal. Chem. 2020, 1–15. DOI: 10.1080/03067319.2020.1808630.
  • Shakourian, M.; Yamini, Y.; Safari, M. Facile Magnetization of Metal-organic Framework TMU-6 for Magnetic Solid-phase Extraction of Organophosphorus pesticides in Water and Rice Samples . Talanta 2020, 218, 121139. DOI: 10.1016/j.talanta.2020.121139.
  • Fan, J.; Liu, Z.; Li, J.; Zhou, W.; Gao, H.; Zhang, S.; Lu, R. PEG-Modified Magnetic Schiff Base Network-1 Materials for the Magnetic Solid Phase Extraction of Benzoylurea Pesticides from Environmental Water Samples. J. Chromatogr. A. 2020, 1619, 460950. DOI: 10.1016/j.chroma.2020.460950.
  • Zhang, J.; Chen, Y.; Wu, W.; Wang, Z.; Chu, Y.; Chen, X. Hollow Porous Dummy Molecularly Imprinted Polymer as a Sorbent of Solid-Phase Extraction Combined with Accelerated Solvent Extraction for Determination of Eight Bisphenols in Plastic Products. Microchem. J. 2019, 145, 1176–1184. DOI: 10.1016/j.microc.2018.12.031.
  • Ma, Q.; Liu, X.; Zhang, Y.; Chen, L.; Dang, X.; Ai, Y.; Chen, H. Fe3O4 nanoparticles Coated with Polyhedral Oligomeric Silsesquioxanes and β-cyclodextrin for Magnetic Solid-Phase Extraction of Carbaryl and Carbofuran . J. Sep. Sci. 2020, 43, 1514–1522. DOI: 10.1002/jssc.201900896.
  • Yang, X.; Mi, Y.; Liu, F.; Li, J.; Gao, H.; Zhang, S.; Zhou, W.; Lu, R. Preparation of Magnetic Attapulgite/Polypyrrole Nanocomposites for Magnetic Effervescence-assisted Dispersive Solid-phase Extraction of Pyrethroids from Honey Samples . J. Sep. Sci. 2020, 43, 2419–2428. DOI: 10.1002/jssc.202000049.
  • Mohebbi, A.; Farajzadeh, M. A.; Mahmoudzadeh, A.; Etemady, A. Combination of Poly (ε–Caprolactone) Grafted Graphene Quantum Dots–Based Dispersive Solid Phase Extraction Followed by Dispersive Liquid–Liquid Microextraction for Extraction of Some Pesticides from Fruit Juices Prior to Their Quantification by Gas Chroma. Microchem. J. 2020, 153, 104328. DOI: 10.1016/j.microc.2019.104328.
  • Badawy, M. E. I.; El-Nouby, M. A. M.; Marei, A. E.-S. M. Development of a Solid-Phase Extraction (SPE) Cartridge Based on Chitosan-Metal Oxide Nanoparticles (Ch-MO NPs) for Extraction of Pesticides from Water and Determination by HPLC. Int. J. Anal. Chem. 2018, 2018, 3640691–3640616. DOI: 10.1155/2018/3640691.
  • Yousefi, S. M.; Shemirani, F.; Ghorbanian, S. A. Deep Eutectic Solvent Magnetic Bucky Gels in Developing Dispersive Solid Phase Extraction: Application for Ultra Trace Analysis of Organochlorine Pesticides by GC-Micro ECD Using a Large-Volume Injection Technique. Talanta 2017, 168, 73–81. DOI: 10.1016/j.talanta.2017.03.020.
  • Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. DOI: 10.1038/318162a0.
  • Hussain, C. M.; Mitra, S. Nanomaterials for Sample Preparation. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, 2012; pp 389–418. DOI: 10.1016/B978-0-12-381373-2.00057-0.
  • Serrano, A.; Gallego, M. Fullerenes as Sorbent Materials for Benzene, Toluene, Ethylbenzene, and Xylene Isomers Preconcentration. J. Sep. Sci. 2006, 29, 33–40. DOI: 10.1002/jssc.200500200.
  • Muñoz, J.; Gallego, M.; Valcárcel, M. Speciation of Organometallic Compounds in Environmental Samples by Gas Chromatography After Flow Preconcentration on Fullerenes and Nanotubes. Anal. Chem. 2005, 77, 5389–5395. DOI: 10.1021/ac050600m.
  • Zhang, B.-T.; Zheng, X.; Li, H.-F.; Lin, J.-M. Application of Carbon-Based Nanomaterials in Sample Preparation: A Review. Anal. Chim. Acta. 2013, 784, 1–17. DOI: 10.1016/j.aca.2013.03.054.
  • Wepasnick, K. A.; Smith, B. A.; Bitter, J. L.; Howard Fairbrother, D. Chemical and Structural Characterization of Carbon Nanotube Surfaces. Anal. Bioanal. Chem. 2010, 396, 1003–1014. DOI: 10.1007/s00216-009-3332-5.
  • Pyrzynska, K. Carbon Nanotubes as Sorbents in the Analysis of Pesticides. Chemosphere 2011, 83, 1407–1413. DOI: 10.1016/j.chemosphere.2011.01.057.
  • Long, R. Q.; Yang, R. T. Carbon Nanotubes as Superior Sorbent for Dioxin Removal. J. Am. Chem. Soc. 2001, 123, 2058–2059. DOI: 10.1021/ja003830l.
  • Wang, S.; Zhao, P.; Min, G.; Fang, G. Multi-Residue Determination of Pesticides in Water Using Multi-Walled Carbon Nanotubes Solid-Phase Extraction and Gas chromatography-mass spectrometry. J. Chromatogr. A. 2007, 1165, 166–171. DOI: 10.1016/j.chroma.2007.07.061.
  • López-Feria, S.; Cárdenas, S.; Valcárcel, M. One Step Carbon Nanotubes-Based Solid-Phase Extraction for the Gas Chromatographic-mass Spectrometric Multiclass Pesticide Control in Virgin Olive Oils. J. Chromatogr. A. 2009, 1216, 7346–7350. DOI: 10.1016/j.chroma.2009.02.060.
  • Sitko, R.; Zawisza, B.; Malicka, E. Graphene as a New Sorbent in Analytical Chemistry. Trends Anal. Chem. 2013, 51, 33–43. DOI: 10.1016/j.trac.2013.05.011.
  • Liu, Q.; Shi, J.; Zeng, L.; Wang, T.; Cai, Y.; Jiang, G. Evaluation of Graphene as an Advantageous Adsorbent for Solid-Phase Extraction with Chlorophenols as Model Analytes. J. Chromatogr. A. 2011, 1218, 197–204. DOI: 10.1016/j.chroma.2010.11.022.
  • Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Modern Trends in Solid Phase Extraction: New Sorbent Media. Trends Anal. Chem. 2016, 77, 23–43. DOI: 10.1016/j.trac.2015.10.010.
  • Guan, W.; Li, Z.; Zhang, H.; Hong, H.; Rebeyev, N.; Ye, Y.; Ma, Y. Amine Modified Graphene as Reversed-Dispersive Solid Phase Extraction Materials Combined with Liquid Chromatography–Tandem Mass Spectrometry for Pesticide Multi-Residue Analysis in Oil Crops. J. Chromatogr. A 2013, 1286, 1–8. DOI: 10.1016/j.chroma.2013.02.043.
  • Bui, N.-N.; Kim, B.-H.; Yang, K. S.; Dela Cruz, M. E.; Ferraris, J. P. Activated Carbon Fibers from Electrospinning of Polyacrylonitrile/Pitch Blends. Carbon N. Y 2009, 47, 2538–2539. DOI: 10.1016/j.carbon.2009.05.007.
  • Boonjob, W.; Miró, M.; Segundo, M. A.; Cerdà, V. Flow-through Dispersed Carbon Nanofiber-Based Microsolid-Phase Extraction Coupled to Liquid Chromatography for Automatic Determination of Trace Levels of Priority Environmental Pollutants. Anal. Chem. 2011, 83, 5237–5244. DOI: 10.1021/ac2005058.
  • Mohammadi Nilash, M.; Avar, S.; Mirzaei, F.; Fakhari, A. R.; Rezaee Shirin‐Abadi, A. Electrospun Terpolymeric Nanofiber Membrane for Micro Solid-phase Extraction of Diazinon and Chlorpyrifos from Aqueous Samples . J. Sep. Sci. 2020, 43, 920–928. DOI: 10.1002/jssc.201900798.
  • Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy Metal Removal from Water/Wastewater by Nanosized Metal Oxides: A Review. J. Hazard. Mater. 2012, 211-212, 317–331. DOI: 10.1016/j.jhazmat.2011.10.016.
  • Sajid, M.; Nazal, M. K.; Ihsanullah, I. Novel Materials for Dispersive (Micro) Solid-Phase Extraction of Polycyclic Aromatic Hydrocarbons in Environmental Water Samples: A Review. Anal. Chim. Acta 2020, 1141, 246–262. DOI: 10.1016/j.aca.2020.07.064.
  • Yu, M.; Wang, L.; Hu, L.; Li, Y.; Luo, D.; Mei, S. Recent Applications of Magnetic Composites as Extraction Adsorbents for Determination of Environmental Pollutants. Trends Anal. Chem. 2019, 119, 115611. DOI: 10.1016/j.trac.2019.07.022.
  • Ibarra, I. S.; Rodriguez, J. A.; Galán-Vidal, C. A.; Cepeda, A.; Miranda, J. M. Magnetic Solid Phase Extraction Applied to Food Analysis. J. Chem. 2015, 2015, 1–13. DOI: 10.1155/2015/919414.
  • Bodur, S.; Erarpat, S.; Bakırdere, S. Fe3O4/Reduced Graphene Oxide Nanocomposites Based Dispersive Solid Phase Microextraction for Trace Determination of Profenofos in White Rice Flour Samples. J. Food Compos. Anal. 2020, 91, 103516. DOI: 10.1016/j.jfca.2020.103516.
  • Giakisikli, G.; Anthemidis, A. N. Magnetic Materials as Sorbents for Metal/Metalloid Preconcentration and/or Separation. A Review. Anal. Chim. Acta. 2013, 789, 1–16. DOI: 10.1016/j.aca.2013.04.021.
  • He, X.; Zhou, Y.; Yang, W.; Li, S.; Liu, T.; Wang, T.; Hou, X. Microwave Assisted Magnetic Solid Phase Extraction Using a Novel Amino-Functionalized Magnetic Framework Composite of Type Fe3O4-NH2@MIL-101(Cr) for the Determination of Organochlorine Pesticides in Soil Samples. Talanta 2019, 196, 572–578. DOI: 10.1016/j.talanta.2018.12.019.
  • Mocuta, C.; Barbier, A.; Renaud, G. CoO(111) Surface Study by Surface X-Ray Diffraction. Appl. Surf. Sci. 2000, 162-163, 56–61. DOI: 10.1016/S0169-4332(00)00170-7.
  • Salam, M. A.; AbuKhadra, M. R.; Mohamed, A. S. Effective Oxidation of Methyl Parathion Pesticide in Water over Recycled Glass Based-MCM-41 Decorated by Green Co3O4 Nanoparticles. Environ. Pollut. 2020, 259, 113874. DOI: 10.1016/j.envpol.2019.113874.
  • Mohamed, A. S.; Abukkhadra, M. R.; Abdallah, E. A.; El-Sherbeeny, A. M.; Mahmoud, R. K. The Photocatalytic Performance of Silica Fume Based Co3O4/MCM-41 Green Nanocomposite for Instantaneous Degradation of Omethoate Pesticide under Visible Light. J. Photochem. Photobiol. A Chem. 2020, 392, 112434. DOI: 10.1016/j.jphotochem.2020.112434.
  • Bristy, S. S.; Rahman, M. A.; Tauer, K.; Minami, H.; Ahmad, H. Preparation and Characterization of Magnetic γ-Al2O3 Ceramic Nanocomposite Particles with Variable Fe3O4 Content and Modification with Epoxide Functional Polymer. Ceram. Int. 2018, 44, 3951–3959. DOI: 10.1016/j.ceramint.2017.11.187.
  • Sulpizi, M.; Gaigeot, M.-P.; Sprik, M. The Silica-Water Interface: How the Silanols Determine the Surface Acidity and Modulate the Water Properties. J. Chem. Theory Comput. 2012, 8, 1037–1047. DOI: 10.1021/ct2007154.
  • Jadhav, S. A.; Garud, H. B.; Patil, A. H.; Patil, G. D.; Patil, C. R.; Dongale, T. D.; Patil, P. S. Recent Advancements in Silica Nanoparticles Based Technologies for Removal of Dyes from Water. Colloid Interface Sci. Commun. 2019, 30, 100181. DOI: 10.1016/j.colcom.2019.100181.
  • Bapat, G.; Labade, C.; Chaudhari, A.; Zinjarde, S. Silica Nanoparticle Based Techniques for Extraction, Detection, and Degradation of Pesticides. Adv. Colloid Interface Sci . 2016, 237, 1–14. DOI: 10.1016/j.cis.2016.06.001.
  • Chen, J.; Zhu, X. Ionic Liquid Coated Magnetic Core/Shell Fe3O4@SiO2 Nanoparticles for the Separation/Analysis of Linuron in Food Samples. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, 137, 456–462. DOI: 10.1016/j.saa.2014.08.113.
  • Zhu, R.; Zhao, W.; Zhai, M.; Wei, F.; Cai, Z.; Sheng, N.; Hu, Q. Molecularly Imprinted Layer-Coated Silica Nanoparticles for Selective Solid-Phase Extraction of Bisphenol a from Chemical Cleansing and Cosmetics Samples. Anal. Chim. Acta. 2010, 658, 209–216. DOI: 10.1016/j.aca.2009.11.008.
  • González-Fuenzalida, R.; Moliner-Martínez, Y.; Prima-Garcia, H.; Ribera, A.; Campins-Falcó, P.; Zaragozá, R. Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography. Nanomaterials (Basel) 2014, 4, 242–255. DOI: 10.3390/nano4020242.
  • Sajid, M. Dendrimers Based Sorbents: Promising Materials for Analytical Extractions. Trends Anal. Chem. 2018, 98, 114–127. DOI: 10.1016/j.trac.2017.11.005.
  • Kumar, P.; Pournara, A.; Kim, K.-H.; Bansal, V.; Rapti, S.; Manos, M. J. Metal-Organic Frameworks: Challenges and Opportunities for Ion-Exchange/Sorption Applications. Prog. Mater. Sci. 2017, 86, 25–74. DOI: 10.1016/j.pmatsci.2017.01.002.
  • Ma, J.; Yao, Z.; Hou, L.; Lu, W.; Yang, Q.; Li, J.; Chen, L. Metal Organic Frameworks (MOFs) for Magnetic Solid-Phase Extraction of Pyrazole/Pyrrole Pesticides in Environmental Water Samples Followed by HPLC-DAD Determination. Talanta 2016, 161, 686–692. DOI: 10.1016/j.talanta.2016.09.035.
  • Bashir, K.; Chen, G.; Han, J.; Shu, H.; Cui, X.; Wang, L.; Li, W.; Fu, Q. Preparation of Magnetic Metal Organic Framework and Development of Solid Phase Extraction Method for Simultaneous Determination of Fluconazole and Voriconazole in Rat Plasma Samples by HPLC. J. Chromatogr. B: Analyt Technol. Biomed Life Sci. 2020, 1152, 122201. DOI: 10.1016/j.jchromb.2020.122201.
  • Wang, Q.-Y.; Yang, J.; Dong, X.; Chen, Y.; Ye, L.-H.; Hu, Y.-H.; Zheng, H.; Cao, J. Zirconium Metal-Organic Framework Assisted Miniaturized Solid Phase Extraction of Phenylurea Herbicides in Natural Products by Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. J. Pharm. Biomed. Anal. 2020, 180, 113071. DOI: 10.1016/j.jpba.2019.113071.
  • Wang, Y.; Ye, Q.; Yu, M.; Zhang, X.; Deng, C. Sulfonic Acid-Based Metal Organic Framework Functionalized Magnetic Nanocomposite Combined with Gas Chromatography-Electron Capture Detector for Extraction and Determination of Organochlorine. Chinese Chem. Lett. 2020, 31, 1843–1846. DOI: 10.1016/j.cclet.2020.02.054.
  • Zhao, Q.-Y.; Zhao, H.-T.; Yang, X.; Zhang, H.; Dong, A.-J.; Wang, J.; Li, B. Selective Recognition and Fast Enrichment of Anthocyanins by Dummy Molecularly Imprinted Magnetic Nanoparticles. J. Chromatogr. A. 2018, 1572, 9–19. DOI: 10.1016/j.chroma.2018.08.029.
  • Manesiotis, P.; Fitzhenry, L.; Theodoridis, G.; Jandera, P. Applications of SPE-MIP in the Field of Food Analysis. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, 2012; pp 457–471. DOI: 10.1016/B978-0-12-381373-2.00144-7.
  • Bazrafshan, A. A.; Ghaedi, M.; Rafiee, Z.; Hajati, S.; Ostovan, A. Nano-Sized Molecularly Imprinted Polymer for Selective Ultrasound-Assisted Microextraction of Pesticide Carbaryl from Water Samples: Spectrophotometric Determination. J. Colloid Interface Sci. 2017, 498, 313–322. DOI: 10.1016/j.jcis.2017.03.076.
  • Wu, Y.; Zhang, Y.; Zhang, M.; Liu, F.; Wan, Y.; Huang, Z.; Ye, L.; Zhou, Q.; Shi, Y.; Lu, B. Selective and Simultaneous Determination of Trace Bisphenol a and Tebuconazole in Vegetable and Juice Samples by Membrane-Based Molecularly Imprinted Solid-Phase Extraction and HPLC. Food Chem. 2014, 164, 527–535. DOI: 10.1016/j.foodchem.2014.05.071.
  • Moradi Dehaghi, S.; Rahmanifar, B.; Moradi, A. M.; Azar, P. A. Removal of Permethrin Pesticide from Water by Chitosan–Zinc Oxide Nanoparticles Composite as an Adsorbent. J. Saudi Chem. Soc. 2014, 18, 348–355. DOI: 10.1016/j.jscs.2014.01.004.
  • Badawy, M. E. I.; Marei, A. E.-S. M.; El-Nouby, M. A. M. Preparation and Characterization of Chitosan-Siloxane Magnetic Nanoparticles for the Extraction of Pesticides from Water and Determination by HPLC. Sep. Sci. Plus. 2018, 1, 506–519. DOI: 10.1002/sscp.201800084.
  • Arias, A.; Heuzey, M.-C.; Huneault, M. A.; Ausias, G.; Bendahou, A. Enhanced Dispersion of Cellulose Nanocrystals in Melt-Processed Polylactide-Based Nanocomposites. Cellulose 2015, 22, 483–498. DOI: 10.1007/s10570-014-0476-z.
  • Yi, X.; Liu, C.; Liu, X.; Wang, P.; Zhou, Z.; Liu, D. Magnetic Partially Carbonized Cellulose Nanocrystal-Based Magnetic Solid Phase Extraction for the Analysis of Triazine and Triazole Pesticides in Water. Microchim. Acta 2019, 186, 825. DOI: 10.1007/s00604-019-3911-x.
  • Farajzadeh, M. A.; Mohebbi, A.; Fouladvand, H.; Mogaddam, M. R. A. A New and Facile Method for Preparation of Amorphous Carbon Nanoparticles and Their Application as an Efficient and Cheap Sorbent for the Extraction of Some Pesticides from Fruit Juices. Microchem. J. 2020, 155, 104795. DOI: 10.1016/j.microc.2020.104795.
  • He, Z.; Alexandridis, P. Ionic Liquid and Nanoparticle Hybrid Systems: Emerging Applications. Adv. Colloid Interface Sci. 2017, 244, 54–70. DOI: 10.1016/j.cis.2016.08.004.
  • Wang, T.; Zhang, R.; Gong, Z.; Su, P.; Yang, Y. Poly (Ionic Liquids) Functionalized Magnetic Nanoparticles as Efficient Adsorbent for Determination of Pyrethroids from Environmental Water Samples by GC‐MS. ChemistrySelect. 2020, 5, 91–96. DOI: 10.1002/slct.201904231.
  • Abolghasemi, M. M.; Taheri, H.; Jaymand, M.; Piryaei, M. Nanostructured Star-Shaped Polythiophene Dendrimer as a Highly Efficient Sorbent for Microextraction in Packed Syringe for HPLC Analysis of the Clofentezine in Milk and Juice Samples. Sep. Sci. Plus. 2018, 1, 202–208. DOI: 10.1002/sscp.201700036.
  • Wang, B.; Wang, X.; Lou, W.; Hao, J. Ionic Liquid-Based Stable Nanofluids Containing Gold Nanoparticles. J. Colloid Interface Sci. 2011, 362, 5–14. DOI: 10.1016/j.jcis.2011.06.023.
  • Saien, J.; Bamdadi, H. Mass Transfer from Nanofluid Single Drops in Liquid–Liquid Extraction Process. Ind. Eng. Chem. Res. 2012, 51, 5157–5166. DOI: 10.1021/ie300291k.
  • Wu, X.; Li, X.; Yang, M.; Zeng, H.; Zhang, S.; Lu, R.; Gao, H.; Xu, D. An Ionic Liquid-Based Nanofluid of Titanium Dioxide Nanoparticles for Effervescence-Assisted Dispersive Liquid–liquid Extraction for Acaricide Detection. J. Chromatogr. A. 2017, 1497, 1–8. DOI: 10.1016/j.chroma.2017.03.005.
  • Yang, D.; Li, X.; Meng, D.; Yang, Y. Carbon Quantum Dots-Modified Ferrofluid for Dispersive Solid-Phase Extraction of Phenolic Compounds in Water and Milk Samples. J. Mol. Liq. 2018, 261, 155–161. DOI: 10.1016/j.molliq.2018.04.036.
  • Akbarzade, S.; Chamsaz, M.; Rounaghi, G. H.; Ghorbani, M. Zero Valent Fe-Reduced Graphene Oxide Quantum Dots as a Novel Magnetic Dispersive Solid Phase Microextraction Sorbent for Extraction of Organophosphorus Pesticides in Real Water and Fruit Juice Samples Prior to Analysis by Gas Chromatography-Mass Spectrometry. Anal. Bioanal. Chem. 2018, 410, 429–439. DOI: 10.1007/s00216-017-0732-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.