380
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Analysis of Wine and Its Use in Tracing the Origin of Grape Cultivation

ORCID Icon & ORCID Icon
Pages 1901-1912 | Published online: 01 Jun 2021

References

  • Liu, L.; Wang, J.; Levin, M. J.; Sinnott-Armstrong, N.; Zhao, H.; Zhao, Y.; Shao, J.; Di, N.; Zhang, T. The Origins of Specialized Pottery and Diverse Alcohol Fermentation Techniques in Early Neolithic China. Proc. Natl. Acad. Sci. USA. 2019, 116, 12767–12774. DOI: 10.1073/pnas.1902668116.
  • Scopus - Analyze search results. 2020. https://www-scopus-com.proxy.library.ohio.edu/term/analyzer.uri?sid=ed30691ff8bae1c82520f40b6db2f091&origin=resultslist&src=s&s=TITLE-ABS-KEY%28chemical+analysis+of+wine%29&sort=plf-f&sdt=b&sot=b&sl=40&count=5059&analyzeResults=Analyze+results&txGid=cbedbdb8c637da697abb1b4a9b7a3b24 (accessed Nov 17, 2020).
  • Zoroddu, M. A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V. M. The Essential Metals for Humans: A Brief Overview. J. Inorg. Biochem. 2019, 195, 120–129. DOI: 10.1016/j.jinorgbio.2019.03.013.
  • Maret, W. The Metals in the Biological Periodic System of the Elements: Concepts and Conjectures. Int J Mol Sci. 2016, 17, 66. DOI: 10.3390/ijms17010066.
  • Płotka-Wasylka, J.; Polkowska, Ż.; Namieśnik, J.; Frankowski, M.; Simeonov, V. Determination of Metals Content in Wine Samples by Inductively Coupled Plasma-Mass Spectrometry. Molecules 2018, 23, 2886. DOI: 10.3390/molecules23112886.
  • Vystavna, Y.; Schmidt, S. I.; Klimenko, O. E.; Plugatar, Y. V.; Klimenko, N. I.; Klimenko, N. N. Species-Dependent Effect of Cover Cropping on Trace Elements and Nutrients in Vineyard Soil and Vitis. J. Sci. Food Agric. 2020, 100, 885–890. DOI: 10.1002/jsfa.10006.
  • Trentin, E.; Facco, D. B.; Hammerschmitt, R. K.; Avelar Ferreira, P. A.; Morsch, L.; Belles, S. W.; Ricachenevsky, F. K.; Nicoloso, F. T.; Ceretta, C. A.; Tiecher, T. L.; et al. Potential of Vermicompost and Limestone in Reducing Copper Toxicity in Young Grapevines Grown in Cu-Contaminated Vineyard Soil. Chemosphere 2019, 226, 421–430. DOI: 10.1016/j.chemosphere.2019.03.141.
  • Hill, R. Aptitude or Adaptation: What Lies at the Root of Terroir? Geogr. J. 2020, 186, 346–350. DOI: 10.1111/geoj.12346.
  • Grindlay, G.; Mora, J.; Gras, L.; de Loos-Vollebregt, M. T. C. Atomic Spectrometry Methods for Wine Analysis: A Critical Evaluation and Discussion of Recent Applications. Anal. Chim. Acta. 2011, 691, 18–32. DOI: 10.1016/j.aca.2011.02.050.
  • Blotevogel, S.; Schreck, E.; Laplanche, C.; Besson, P.; Saurin, N.; Audry, S.; Viers, J.; Oliva, P. Soil Chemistry and Meteorological Conditions Influence the Elemental Profiles of West European Wines. Food Chem. 2019, 298, 125033. DOI: 10.1016/j.foodchem.2019.125033.
  • Conrad, S. R.; Santos, I. R.; White, S. A.; Hessey, S.; Sanders, C. J. Elevated Dissolved Heavy Metal Discharge following Rainfall Downstream of Intensive Horticulture. Appl. Geochem. 2020, 113, 104490. DOI: 10.1016/j.apgeochem.2019.104490.
  • Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R. K.; Sharma, S.; Tripathi, D. K.; Dubey, N. K.; Chauhan, D. K. Influence of High and Low Levels of Plant-Beneficial Heavy Metal Ions on Plant Growth and Development. Front. Environ. Sci. 2016, 4, 69. DOI: 10.3389/fenvs.2016.00069.
  • Qaswar, M.; Yiren, L.; Jing, H.; Kaillou, L.; Mudasir, M.; Zhenzhen, L.; Hongqian, H.; Xianjin, L.; Jianhua, J.; Ahmed, W.; et al. Soil Nutrients and Heavy Metal Availability under Long-Term Combined Application of Swine Manure and Synthetic Fertilizers in Acidic Paddy Soil. J. Soils Sediments 2020, 20, 2093–2106. DOI: 10.1007/s11368-020-02576-5.
  • Liu, Y.-M.; Liu, D.-Y.; Zhang, W.; Chen, X.-X.; Zhao, Q.-Y.; Chen, X.-P.; Zou, C.-Q. Health Risk Assessment of Heavy Metals (Zn, Cu, Cd, Pb, as and Cr) in Wheat Grain Receiving Repeated Zn Fertilizers. Environ. Pollut. 2020, 257, 113581. DOI: 10.1016/j.envpol.2019.113581.
  • Peña, N.; Antón, A.; Kamilaris, A.; Fantke, P. Modeling Ecotoxicity Impacts in Vineyard Production: Addressing Spatial Differentiation for Copper Fungicides. Sci. Total Environ. 2018, 616–617, 796–804. DOI: 10.1016/j.scitotenv.2017.10.243.
  • Gimeno-García, E.; Andreu, V.; Boluda, R. Heavy Metals Incidence in the Application of Inorganic Fertilizers and Pesticides to Rice Farming Soils. Environ. Pollut. 1996, 92, 19–25. DOI: 10.1016/0269-7491(95)00090-9.
  • He, J.; Zhang, B.; Zhang, H.; Hao, L.-L.; Ma, T.-Z.; Wang, J.; Han, S.-Y. Monitoring of 49 Pesticides and 17 Mycotoxins in Wine by QuEChERS and UHPLC–MS/MS Analysis. J. Food Sci. 2019, 84, 2688–2697. DOI: 10.1111/1750-3841.14695.
  • Epova, E. N.; Bérail, S.; Séby, F.; Barre, J. P. G.; Vacchina, V.; Médina, B.; Sarthou, L.; Donard, O. F. X. Potential of Lead Elemental and Isotopic Signatures for Authenticity and Geographical Origin of Bordeaux Wines. Food Chem. 2020, 303, 125277. DOI: 10.1016/j.foodchem.2019.125277.
  • Mirzaei, M.; Marofi, S.; Solgi, E.; Abbasi, M.; Karimi, R.; Riyahi Bakhtyari, H. R. Ecological and Health Risks of Soil and Grape Heavy Metals in Long-Term Fertilized Vineyards (Chaharmahal and Bakhtiari Province of Iran). Environ. Geochem. Health 2020, 42, 27–43. DOI: 10.1007/s10653-019-00242-5.
  • Hopfer, H.; Nelson, J.; Collins, T. S.; Heymann, H.; Ebeler, S. E. The Combined Impact of Vineyard Origin and Processing Winery on the Elemental Profile of Red Wines. Food Chem. 2015, 172, 486–496. DOI: 10.1016/j.foodchem.2014.09.113.
  • Castiñeira, M. d M.; Brandt, R.; Jakubowski, N.; Andersson, J. T. Changes of the Metal Composition in German White Wines through the Winemaking Process. A Study of 63 Elements by Inductively Coupled Plasma − Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 2953–2961. DOI: 10.1021/jf035119g.
  • Shimizu, H.; Akamatsu, F.; Kamada, A.; Koyama, K.; Iwashita, K.; Goto-Yamamoto, N. Variation in the Mineral Composition of Wine Produced Using Different Winemaking Techniques. J. Biosci. Bioeng. 2020, 130, 166–172. DOI: 10.1016/j.jbiosc.2020.03.012.
  • Sneddon, J.; Vincent, M. D. ICP- and ICP-MS for the Determination of Metals: Application to Oysters. Anal. Lett. 2008, 41, 1291–1303. DOI: 10.1080/00032710802013991.
  • Stafilov, T.; Karadjova, I. Atomic Absorption Spectrometry in Wine Analysis – a Review. Maced. J. Chem. Chem. Eng. 2009, 28, 17–31. DOI: 10.20450/mjcce.2009.218.
  • Pyrzyńska, K. Analytical Methods for the Determination of Trace Metals in Wine. Crit. Rev. Anal. Chem. 2004, 34, 69–83. DOI: 10.1080/10408340490475858.
  • Godshaw, J.; Hopfer, H.; Nelson, J.; Ebeler, S. E. Comparison of Dilution, Filtration, and Microwave Digestion Sample Pretreatments in Elemental Profiling of Wine by ICP-MS. Molecules 2017, 22, 1609. DOI: 10.3390/molecules22101609.
  • Gonzálvez, A.; Armenta, S.; Pastor, A.; de la Guardia, M. Searching the Most Appropriate Sample Pretreatment for the Elemental Analysis of Wines by Inductively Coupled Plasma-Based Techniques. J. Agric. Food Chem. 2008, 56, 4943–4954. DOI: 10.1021/jf800286y.
  • Cvetković, J.; Stafilov, T.; Mihajlović, D. Nickel and Strontium Nitrates as Modifiers for the Determination of Selenium in Wine by Zeeman Electrothermal Atomic Absorption Spectrometry. Fresenius. J. Anal. Chem. 2001, 370, 1077–1081. DOI: 10.1007/s002160100896.
  • Spangenberg, J. E.; Zufferey, V. Carbon Isotope Compositions of Whole Wine, Wine Solid Residue, and Wine Ethanol, Determined by EA/IRMS and GC/C/IRMS, Can Record the Vine Water Status—a Comparative Reappraisal. Anal. Bioanal. Chem. 2019, 411, 2031–2043. DOI: 10.1007/s00216-019-01625-4.
  • Davis, P. M.; Qian, M. C. Effect of Wine Matrix Composition on the Quantification of Volatile Sulfur Compounds by Headspace Solid-Phase Microextraction-Gas Chromatography-Pulsed Flame Photometric Detection. Molecules 2019, 24, 3320. DOI: 10.3390/molecules24183320.
  • Rocchetti, G.; Gatti, M.; Bavaresco, L.; Lucini, L. Untargeted Metabolomics to Investigate the Phenolic Composition of Chardonnay Wines from Different Origins. J. Food Compos. Anal. 2018, 71, 87–93. DOI: 10.1016/j.jfca.2018.05.010.
  • Agazzi, F. M.; Nelson, J.; Tanabe, C. K.; Doyle, C.; Boulton, R. B.; Buscema, F. Aging of Malbec Wines from Mendoza and California: Evolution of Phenolic and Elemental Composition. Food Chem. 2018, 269, 103–110. DOI: 10.1016/j.foodchem.2018.06.142.
  • Fan, S.; Zhong, Q.; Gao, H.; Wang, D.; Li, G.; Huang, Z. Elemental Profile and Oxygen Isotope Ratio (Δ18O) for Verifying the Geographical Origin of Chinese Wines. J. Food Drug Anal. 2018, 26, 1033–1044. DOI: 10.1016/j.jfda.2017.12.009.
  • Spangenberg, J. E.; Vogiatzaki, M.; Zufferey, V. Gas Chromatography and Isotope Ratio Mass Spectrometry of Pinot Noir Wine Volatile Compounds (Δ13C) and Solid Residues (Δ13C, Δ15N) for the Reassessment of Vineyard Water-Status. J. Chromatogr. A 2017, 1517, 142–155. DOI: 10.1016/j.chroma.2017.08.038.
  • Lu, Y.; Sun, F.; Wang, W.; Liu, Y.; Wang, J.; Sun, J.; Mu, J.; Gao, Z. Effects of Spontaneous Fermentation on the Microorganisms Diversity and Volatile Compounds during ‘Marselan’ from Grape to Wine. Lwt 2020, 134, 110193. DOI: 10.1016/j.lwt.2020.110193.
  • Ouyang, X.; Zhu, B.; Liu, R.; Gao, Q.; Lin, G.; Wu, J.; Hu, Z.; Zhang, B. Comparison of Volatile Composition and Color Attributes of Mulberry Wine Fermented by Different Commercial Yeasts. J. Food Proc. Preserv. 2018, 42, 1–1. DOI: 10.1111/jfpp.13432..
  • Horvat, I.; Radeka, S.; Plavša, T.; Lukić, I. Bentonite Fining during Fermentation Reduces the Dosage Required and Exhibits Significant Side-Effects on Phenols, Free and Bound Aromas, and Sensory Quality of White Wine. Food Chem. 2019, 285, 305–315. DOI: 10.1016/j.foodchem.2019.01.172.
  • Wang, Y.-Q.; Ye, D.-Q.; Liu, P.-T.; Duan, L.-L.; Duan, C.-Q.; Yan, G.-L. Synergistic Effects of Branched-Chain Amino Acids and Phenylalanine Addition on Major Volatile Compounds in Wine during Alcoholic Fermentation. South African J. Enol. Vitic. 2016, 37, 169–175. DOI: 10.21548/37-2-683..
  • Gabur, G.-D. D.; Teodosiu, C.; Cotea, V. V.; Peinado, R. A.; Gabur, I.; Lopez de Lerma, N. Study of Volatile Compounds of Romanian Red Wines Aged with Oak Chips. Environ. Eng. Manag. J. 2020, 19, 229–234. DOI: 10.30638/eemj.2020.021.
  • Coelho, E.; Teixeira, J. A.; Tavares, T.; Domingues, L.; Oliveira, J. M. Reuse of Oak Chips for Modification of the Volatile Fraction of Alcoholic Beverages. LWT 2021, 135, 110046. DOI: 10.1016/j.lwt.2020.110046.
  • Moreno, D.; Valdés, E.; Uriarte, D.; Gamero, E.; Talaverano, I.; Vilanova, M. Early Leaf Removal Applied in Warm Climatic Conditions: Impact on Tempranillo Wine Volatiles. Food Res. Int. 2017, 98, 50–58. DOI: 10.1016/j.foodres.2016.09.017.
  • Beale, D.; Jones, O.; Karpe, A.; Dayalan, S.; Oh, D.; Kouremenos, K.; Ahmed, W.; Palombo, E. A Review of Analytical Techniques and Their Application in Disease Diagnosis in Breathomics and Salivaomics Research. Int. J. Mol. Sci. 2016, 18, 24. DOI: 10.3390/ijms18010024.
  • Cao, Y.; Wu, Z.; Weng, P. Comparison of Bayberry Fermented Wine Aroma from Different Cultivars by GC‐MS Combined with Electronic Nose Analysis. Food Sci. Nutr. 2020, 8, 830–840. DOI: 10.1002/fsn3.1343.
  • Cortese, M.; Gigliobianco, M.; Censi, R.; Di Martino, P.; Magnoni, F. Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review. Molecules 2020, 25, 3047. DOI: 10.3390/molecules25133047.
  • Petronilho, S.; Coimbra, M. A.; Rocha, S. M. A. Critical Review on Extraction Techniques and Gas Chromatography Based Determination of Grapevine Derived Sesquiterpenes. Anal. Chim. Acta. 2014, 846, 8–35. DOI: 10.1016/j.aca.2014.05.049.
  • Andujar-Ortiz, I.; Moreno-Arribas, M. V.; Martín-Álvarez, P. J.; Pozo-Bayón, M. A. Analytical Performance of Three Commonly Used Extraction Methods for the Gas Chromatography–Mass Spectrometry Analysis of Wine Volatile Compounds. J. Chromatogr. A 2009, 1216, 7351–7357. DOI: 10.1016/j.chroma.2009.08.055.
  • Rigano, F.; Tranchida, P. Q.; Dugo, P.; Mondello, L. High-Performance Liquid Chromatography Combined with Electron Ionization Mass Spectrometry: A Review. Trac. Trends Anal. Chem. 2019, 118, 112–122. DOI: 10.1016/j.trac.2019.05.032.
  • Pereira, L.; Gomes, S.; Barrias, S.; Gomes, E. P.; Baleiras-Couto, M.; Fernandes, J. R.; Martins-Lopes, P. From the Field to the Bottle—an Integrated Strategy for Wine Authenticity. Beverages 2018, 4, 71. DOI: 10.3390/beverages4040071.
  • Geană, E.-I.; Ciucure, C. T.; Apetrei, C. Electrochemical Sensors Coupled with Multivariate Statistical Analysis as Screening Tools for Wine Authentication Issues: A Review. Chemosensors 2020, 8, 59. DOI: 10.3390/chemosensors8030059.
  • Rodrigues, S. M.; Otero, M.; Alves, A. A.; Coimbra, J.; Coimbra, M. A.; Pereira, E.; Duarte, A. C. Elemental Analysis for Categorization of Wines and Authentication of Their Certified Brand of Origin. J. Food Compos. Anal. 2011, 24, 548–562. DOI: 10.1016/j.jfca.2010.12.003.
  • Shimizu, H.; Akamatsu, F.; Kamada, A.; Koyama, K.; Okuda, M.; Fukuda, H.; Iwashita, K.; Goto-Yamamoto, N. Discrimination of Wine from Grape Cultivated in Japan, Imported Wine, and Others by Multi-Elemental Analysis. J. Biosci. Bioeng. 2018, 125, 413–418. DOI: 10.1016/j.jbiosc.2017.10.016.
  • Rocha, S.; Pinto, E.; Almeida, A.; Fernandes, E. Multi-Elemental Analysis as a Tool for Characterization and Differentiation of Portuguese Wines according to Their Protected Geographical Indication. Food Control. 2019, 103, 27–35. DOI: 10.1016/j.foodcont.2019.03.034.
  • Canuti, V.; Frost, S.; Lerno, L. A.; Tanabe, C. K.; Zweigenbaum, J.; Zanoni, B.; Ebeler, S. E. Chemical Characteristics of Sangiovese Wines from California and Italy of 2016 Vintage. J. Agric. Food Chem. 2019, 67, 2647–2659. DOI: 10.1021/acs.jafc.8b05674.
  • Bentlin, F. R. S.; Pulgati, F. H.; Dressler, V. L.; Pozebon, D. Elemental Analysis of Wines from South America and Their Classification according to Country. J. Braz. Chem. Soc. 2011, 22, 327–336. DOI: 10.1590/S0103-50532011000200019.
  • Dembroszky, X. O.; May, Z.; Hartel, T.; Zsigmond, A.-R. Elemental Profile of Non-Commercial Wines in Changing Traditional Rural Regions from Eastern Europe. Environ. Eng. Manag. J. 2020, 19, 625–632. DOI: 10.30638/eemj.2020.059.
  • Orellana, S.; Johansen, A. M.; Gazis, C. Geographic Classification of U.S. Food Chem. X. 2019, 1, 100007. DOI: 10.1016/j.fochx.2019.100007.
  • Gremaud, G.; Quaile, S.; Piantini, U.; Pfammatter, E.; Corvi, C. Characterization of Swiss Vineyards Using Isotopic Data in Combination with Trace Elements and Classical Parameters. Eur. Food Res. Technol. 2004, 219, 97–104. DOI: 10.1007/s00217-004-0919-0.
  • Salvatore, E.; Cocchi, M.; Marchetti, A.; Marini, F.; de Juan, A. Determination of Phenolic Compounds and Authentication of PDO Lambrusco Wines by HPLC-DAD and Chemometric Techniques. Anal. Chim. Acta. 2013, 761, 34–45. DOI: 10.1016/j.aca.2012.11.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.