707
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Natural and Artificial Chiral-Based Systems for Separation Applications

, , , ORCID Icon, &
Pages 27-45 | Published online: 21 Jun 2021

References

  • Teixeira, J.; Tiritan, M. E.; Pinto, M. M.; Fernandes, C. Chiral Stationary Phases for Liquid Chromatography: Recent Developments. Molecules 2019, 24, 865. DOI: 10.3390/molecules24050865.
  • Shuang, Y.; Zhang, T.; Li, L. Preparation of a Stilbene Diamido-Bridged Bis(β-Cyclodextrin)-Bonded Chiral Stationary Phase for Enantioseparations of Drugs and Pesticides by High Performance Liquid Chromatography. J. Chromatogr. A 2020, 1614, 460702. DOI: 10.1016/j.chroma.2019.460702.
  • Dixit, S.; Park, J. Application of Antibiotics as Chiral Selectors for Capillary Electrophoretic Enantioseparation of Pharmaceuticals: A Review. Biomed. Chromatogr. 2014, 28, 10–26. DOI: 10.1002/bmc.2950.
  • Jiao, J.; Tan, C.; Li, Z.; Liu, Y.; Han, X.; Cui, Y. Design and Assembly of Chiral Coordination Cages for Asymmetric Sequential Reactions. J. Am. Chem. Soc. 2018, 140, 2251–2259. DOI: 10.1021/jacs.7b11679.
  • Vyviurska, O.; Zvrškovcová, H.; Špánik, I. Distribution of Enantiomers of Volatile Organic Compounds in Selected Fruit Distillates. Chirality 2017, 29, 14–18. DOI: 10.1002/chir.22669.
  • He, F.; Qian, Y. L.; Qian, M. C. Flavor and Chiral Stability of Lemon-Flavored Hard Tea during Storage. Food Chem. 2018, 239, 622–630. DOI: 10.1016/j.foodchem.2017.06.136.
  • Lehn, J. M. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1988, 27, 89–112. DOI: 10.1002/anie.198800891.
  • Kuhn, R.; Erni, F.; Bereuter, T.; Haeusler, J. Chiral Recognition and Enantiomeric Resolution Based on Host-Guest Complexation with Crown Ethers in Capillary Zone Electrophoresis. Anal. Chem. 1992, 64, 2815–2820. DOI: 10.1021/ac00046a026.
  • Ward, T. J.; Farris Iii, A. B. Chiral Separations Using the Macrocyclic Antibiotics: A Review. J. Chromatogr. A 2001, 906, 73–89. DOI: 10.1016/S0021-9673(00)00941-9.
  • Ilisz, I.; Grecso, N.; Forro, E.; Fulop, F.; Armstrong, D.; Peter, A. High-Performance Liquid Chromatographic Separation of Paclitaxel Intermediate Phenylisoserine Derivatives on Macrocyclic Glycopeptide and Cyclofructan-Based Chiral Stationary Phases. J. Pharm. Biomed. Anal. 2015, 114, 312–320. DOI: 10.1016/j.jpba.2015.06.007.
  • Ali, I.; Suhail, M.; Sanagi, M.; Aboul-Enein, H. Ionic Liquids in HPLC and CE: A Hope for Future. Crit. Rev. Anal. Chem. 2017, 47, 332–339. DOI: 10.1080/10408347.2017.1294047.
  • Catani, M.; Felletti, S.; Ismail, O. H.; Gasparrini, F.; Pasti, L.; Marchetti, N.; De Luca, C.; Costa, V.; Cavazzini, A. New Frontiers and Cutting Edge Applications in Ultra High Performance Liquid Chromatography through Latest Generation Superficially Porous Particles with Particular Emphasis to the Field of Chiral Separations. Anal. Bioanal. Chem. 2018, 410, 2457–2465. DOI: 10.1007/s00216-017-0842-4.
  • Gassmann, E.; Kuo, J. E.; Zare, R. N. Electrokinetic Separation of Chiral Compounds. Science 1985, 230, 813–814. DOI: 10.1126/science.230.4727.813.
  • Mallik, R.; Jiang, T.; Hage, D. High-Performance Affinity Monolith Chromatography: Development and Evaluation of Human Serum Albumin Columns. Anal. Chem. 2004, 76, 7013–7022. DOI: 10.1021/ac049001q.
  • Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmann-Chen, S.; Arnold, F. Enantioselective, Intermolecular Benzylic C–H Amination Catalysed by an Engineered Iron-Haem Enzyme. Nat. Chem. 2017, 9, 629–634. DOI: 10.1038/nchem.2783.
  • Kim, C. R.; Uemura, T.; Kitagawa, S. Inorganic Nanoparticles in Porous Coordination Polymers. Chem. Soc. Rev. 2016, 45, 3828–3845. DOI: 10.1039/c5cs00940e.
  • Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal–Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808. DOI: 10.1039/C6CS00724D.
  • Kotake, M.; Sakan, T.; Nakamura, N.; Senoh, S. Resolution into Optical Isomers of Some Amino Acids by Paper Chromatography. J. Am. Chem. Soc. 1951, 73, 2973–2974. DOI: 10.1021/ja01150a548.
  • Hesse, G.; Hagel, R. Über Inclusions-Chromatographie und in neues Retentionsprinzip für benzolderivate. Chromatographia 1976, 9, 62–68. DOI: 10.1007/BF02269220.
  • Ikai, T.; Yamamoto, C.; Kamigaito, M.; Okamoto, Y. Immobilized-Type Chiral Packing Materials for HPLC Based on Polysaccharide Derivatives. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 875, 2–11. DOI: 10.1016/j.jchromb.2008.04.047.
  • Yamamoto, C.; Yashima, E.; Okamoto, Y. Structural Analysis of Amylose Tris(3,5-Dimethylphenylcarbamate) by NMR Relevant to Its Chiral Recognition Mechanism in HPLC. J. Am. Chem. Soc. 2002, 124, 12583–12589. DOI: 10.1021/ja020828g.
  • Wang, X.; House, D. W.; Oroskar, P. A.; Oroskar, A.; Oroskar, A.; Jameson, C. J.; Murad, S. Molecular Dynamics Simulations of the Chiral Recognition Mechanism for a Polysaccharide Chiral Stationary Phase in Enantiomeric Chromatographic Separations. Mol. Phys. 2019, 117, 3569–3588. DOI: 10.1080/00268976.2019.1647360.
  • Tang, S. W.; Jin, Z. L.; Sun, B. S.; Wang, F.; Tang, W. Y. Preparation and Evaluation of Regioselectively Substituted Amylose Derivatives for Chiral Separations. Chirality 2017, 29, 512–521. DOI: 10.1002/chir.22720.
  • Shen, J.; Wang, F.; Bi, W.; Liu, B.; Liu, S.; Okamoto, Y. Synthesis of Cellulose Carbamates Bearing Regioselective Substituents at 2,3- and 6-Positions for Efficient Chromatographic Enantioseparation. J. Chromatogr. A 2018, 1572, 54–61. DOI: 10.1016/j.chroma.2018.08.032.
  • Dai, X.; Bi, W. Y.; Sun, M. C.; Wang, F.; Shen, J.; Okamoto, Y. Chiral Recognition Ability of Amylose Derivatives Bearing Regioselectively Different Carbamate Pendants at 2, 3-and 6-Positions. Carbohydr. Polym. 2019, 218, 30–36. DOI: 10.1016/j.carbpol.2019.03.052.
  • Ogasawara, M.; Enomoto, Y.; Uryu, M.; Yang, X. C.; Kataoka, A.; Ohnishi, A. Application of Polysaccharide-Based Chiral Hplc Columns for Separation of Nonenantiomeric Isomeric Mixtures of Organometallic Compounds. Organometallics 2019, 38, 512–518. DOI: 10.1021/acs.organomet.8b00819.
  • Sadutto, D.; Ferretti, R.; Zanitti, L.; Casulli, A.; Cirilli, R. Analytical and Semipreparative High Performance Liquid Chromatography Enantioseparation of Bicalutamide and Its Chiral Impurities on an Immobilized Polysaccharide-Based Chiral Stationary Phase. J. Chromatogr. A 2016, 1445, 166–171. DOI: 10.1016/j.chroma.2016.04.011.
  • Zeng, Q. L.; Wen, Q.; Xiang, Y.; Zhang, L. Chromatographic Enantioseparation of Chiral Sulfinamide Derivatives on Polysaccharide-Based Chiral Stationary Phases. J. Chromatogr. A 2018, 1571, 240–244. DOI: 10.1016/j.chroma.2018.08.010.
  • Rane, V. P.; Ahirrao, V. K.; Patil, K. R.; Jadhav, A. K.; More, K. B.; Yeole, R. D. Liquid Chromatographic Separation and Thermodynamic Investigation of Ethyl Nipecotate Enantiomers on Immobilized Amylose-Based Chiral Stationary Phase. J. Chromatogr. Sci. 2019, 57, 815–820. DOI: 10.1093/chromsci/bmz065.
  • Armstrong, D. W.; Tang, Y.; Chen, S.; Zhou, Y.; Bagwill, C.; Chen, J. R. Macrocyclic Antibiotics as a New Class of Chiral Selectors for Liquid Chromatography. Anal. Chem. 1994, 66, 1473–1484. DOI: 10.1021/ac00081a019.
  • Armstrong, D. W.; Rundlett, K. L.; Chen, J. R. Evaluation of the Macrocyclic Antibiotic Vancomycin as a Chiral Selector for Capillary Electrophoresis. Chirality 1994, 6, 496–509. DOI: 10.1002/chir.530060609.
  • Cardoso, P. A.; César, I. C. Chiral Method Development Strategies for Hplc Using Macrocyclic Glycopeptide-Based Stationary Phases. Chromatographia 2018, 81, 841–850. DOI: 10.1002/chir.20600.
  • Berthod, A. Chiral Recognition Mechanisms with Macrocyclic Glycopeptide Selectors. Chirality 2009, 21, 167–175. DOI: 10.1002/chir.20600.
  • Phyo, Y.; Cravo, S.; Palmeira, A.; Tiritan, M.; Kijjoa, A.; Pinto, M.; Fernandes, C. Enantiomeric Resolution and Docking Studies of Chiral Xanthonic Derivatives on Chirobiotic Columns. Molecules 2018, 23, 142. DOI: 10.3390/molecules23010142.
  • Ali, I.; Suhail, M.; Asnin, L. Chiral Separation and Modeling of Quinolones on Teicoplanin Macrocyclic Glycopeptide Antibiotics CSP. Chirality 2018, 30, 1304–1311. DOI: 10.1002/chir.23024.
  • Ismail, O. H.; Antonelli, M.; Ciogli, A.; De Martino, M.; Catani, M.; Villani, C.; Cavazzini, A.; Ye, M.; Bell, D. S.; Gasparrini, F. Direct Analysis of Chiral Active Pharmaceutical Ingredients and Their Counterions by Ultra High Performance Liquid Chromatography with Macrocyclic Glycopeptide-Based Chiral Stationary Phases. J. Chromatogr. A 2018, 1576, 42–50. DOI: 10.1016/j.chroma.2018.09.029.
  • Jang, M. G.; Jang, M. D.; Park, J. H. Doxycycline as a New Chiral Selector in Capillary Electrophoresis. J. Chromatogr. A 2017, 1508, 176–181. DOI: 10.1016/j.chroma.2017.06.019.
  • Zheng, Y.; Wang, X.; Ji, Y. B. Monoliths with Proteins as Chiral Selectors for Enantiomer Separation. Talanta 2012, 91, 7–17. DOI: 10.1016/j.talanta.2012.01.039.
  • Tan, H. L.; Chen, Q. B.; Chen, T. T.; Liu, H. L. Effects of Rigid Conjugated Groups: Toward Improving Enantioseparation Performances of Chiral Porous Organic Polymers. ACS Appl. Mater. Interfaces 2019, 11, 37156–37162. DOI: 10.1021/acsami.9b14144.
  • Septiana, D.; Angga, S. C.; Amalia, S.; Iftitah, E. D.; Sabarudin, A. Modification of Monolithic Stationary Phase Using Human Serum Albumin as Chiral Separation. AIP Conf. Proc. 2018, 2021, 050004. DOI: 10.1063/1.5062754.
  • Kan, S. B. J.; Lewis, R. D.; Chen, K.; Arnold, F. H. Directed Evolution of Cytochrome c for Carbon-Silicon Bond Formation: Bringing Silicon to Life. Science 2016, 354, 1048–1051. DOI: 10.1126/science.aah6219.
  • Ji, L. K.; Sang, Y. T.; Ouyang, G. H.; Yang, D.; Duan, P. F.; Jiang, Y. Q.; Liu, M. H. Cooperative Chirality and Sequential Energy Transfer in a Supramolecular Light-Harvesting Nanotube. Angew. Chem. Int. Ed. 2019, 58, 844–848. DOI: 10.1002/anie.201812642.
  • Scriba, G. K. E. Chiral Recognition Mechanisms in Analytical Separation Sciences. Chromatographia 2012, 75, 815–838. DOI: 10.1007/s10337-012-2261-1.
  • Armstrong, D. W.; DeMond, W. Cyclodextrin Bonded Phases for the Liquid Chromatographic Separation of Optical, Geometrical, and Structural Isomers. J. Chromatogr. Sci. 1984, 22, 411–415. DOI: 10.1093/chromsci/22.9.411.
  • Wang, S. Y.; Li, L.; Xiao, Y.; Wang, Y. Recent Advances in Cyclodextrins-Based Chiralrecognizing Platforms. TrAC-Trend. Anal. Chem. 2019, 121, 115691. DOI: 10.1016/j.trac.2019.115691.
  • Rahim, N. Y.; Tay, K. S.; Mohamad, S. Chromatographic and Spectroscopic Studies on β-Cyclodextrin Functionalized Ionic Liquid as Chiral Stationary Phase: enantioseparation of Flavonoids. Chromatographia 2016, 79, 1445–1455. DOI: 10.1007/s10337-016-3169-y.
  • Zhao, Y.; Wang, J. L.; Liu, Y. R.; Jiang, Z.; Song, Y. B.; Guo, X. J. Enantioseparation Using Carboxymethyl-6-(4-Methoxybenzylamino)-β-Cyclodextrin as a Chiral Selector by Capillary Electrophoresis and Molecular Modeling Study of the Recognition Mechanism. New J. Chem. 2020, 44, 958–972. DOI: 10.1039/C9NJ04771A.
  • Yuan, L. M.; Ma, W.; Xu, M.; Zhao, H. L.; Li, Y. Y.; Wang, R. L.; Duan, A. H.; Ai, P.; Chen, X. X. Optical Resolution and Mechanism Using Enantioselective Cellulose, Sodium Alginate and Hydroxypropyl-β-Cyclodextrin Membranes. Chirality 2017, 29, 315–324. DOI: 10.1002/chir.22693.
  • Guo, J.; Wang, Q.; Xu, D.; Crommen, J.; Jiang, Z. Recent Advances in Preparation and Applications of Monolithic Chiral Stationary Phases. TrAC-Trend. Anal. Chem. 2020, 123, 115774. DOI: 10.1016/j.trac.2019.115774.
  • Li, Q.; Li, Y. Y.; Zhu, N.; Gao, Z. X.; Li, T. J.; Zhou, T.; Ma, Y. L. Preparation of Cyclodextrin Type Stationary Phase Based on Graphene Oxide and Its Application in Enantioseparation and Hydrophilic Interaction Chromatography. Chin. J. Anal. Chem. 2018, 46, 1455–1463. DOI: 10.1016/S1872-2040(18)61111-9.
  • Adhikari, S.; Lee, W. Chiral Separation Using Chiral Crown Ethers as Chiral Selectors in Chirotechnology. J. Pharm. Investig. 2018, 48, 225–231. DOI: 10.1007/s40005-017-0348-2.
  • Kuhn, R. Enantiomeric Separation by Capillary Electrophoresis Using a Crown Ether as Chiral Selector. Electrophoresis 1999, 20, 2605–2613. DOI: 10.1002/(SICI)1522-2683(19990901)20:13 < 2605::AID-ELPS2605 > 3.0.CO;2-M.
  • Lv, L. Q.; Bu, Z. S.; Sun, W. Y.; Wang, C. Y.; Xu, C.; Tong, S. Q. Application of pH-Zone-Refining Countercurrent Chromatography in the Chiral Separation of Two β-Adrenergic Blocking Agents. J. Sep. Sci. 2018, 41, 1433–1441. DOI: 10.1002/jssc.201701181.
  • Bang, E.; Jung, J. W.; Lee, W.; Lee, D. W.; Lee, W. Chiral Recognition of (18-Crown-6)-Tetracarboxylic Acid as a Chiral Selector Determined by NMR Spectroscopy. J. Chem. Soc. Perkin. Trans. 2. 2001, 2, 1685–1692. DOI: 10.1039/b102026i.
  • Mohammadzadeh Kakhki, R.; Assadi, H. Capillary Electrophoresis Analysis Based on Crown Ethers. J. Incl. Phenom. Macrocycl. Chem. 2015, 81, 1–12. DOI: 10.1007/s10847-014-0419-1.
  • Hyun, M. H. Liquid Chromatographic Enantioseparations on Crown Ether-Based Chiral Stationary Phases. J. Chromatogr. A 2016, 1467, 19–32. DOI: 10.1016/j.chroma.2016.07.049.
  • Lee, S.; Kim, S. J.; Bang, E.; Na, Y. C. Chiral Separation of Intact Amino Acids by Capillary Electrophoresis-Mass Spectrometry Employing a Partial Filling Technique with a Crown Ether Carboxylic Acid. J. Chromatogr. A 2019, 1586, 128–138. DOI: 10.1016/j.chroma.2018.12.001.
  • Liu, L. Z.; He, C. H.; Yang, L.; Huang, Y.; Wu, Q.; Duan, W. G.; Wang, H. S.; Pan, Y. M. Novel C1-Symmetric Chiral Crown Ethers Bearing Rosin Acids Groups: Synthesis and Enantiomeric Recognition for Ammonium Salts. Tetrahedron 2014, 70, 9545–9553. 10.050. DOI: 10.1016/j.tet.2014.
  • Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging Multifunctional Metal–Organic Framework Materials. Adv. Mater. 2016, 28, 8819–8860. DOI: 10.1002/adma.201601133.
  • Schurig, V.; Betschinger, F. Metal-Mediated Enantioselective Access to Unfunctionalized Aliphatic Oxiranes: Prochiral and Chiral Recognition. Chem. Rev. 1992, 92, 873–888. DOI: 10.1021/cr00013a006.
  • Gus’kov, V. Y.; Maistrenko, V. N. New Chiral Stationary Phases: Preparation, Properties, and Applications in Gas Chromatography. J. Anal. Chem. 2018, 73, 937–945. DOI: 10.1134/S1061934818100027.
  • Schurig, V. Resolution of a Chiral Olefin by Complexation Chromatography on an Optically Active Rhodium(I) Complex. Angew. Chem. Int. Ed. Engl. 1977, 16, 110–110. DOI: 10.1002/anie.197701101.
  • Janczak, J.; Prochowicz, D.; Lewiński, J.; Fairen-Jimenez, D.; Bereta, T.; Lisowski, J. Trinuclear Cage-like ZnII Macrocyclic Complexes: Enantiomeric Recognition and Gas Adsorption Properties. Chemistry 2016, 22, 598–609. DOI: 10.1002/chem.201503479.
  • Xie, S. M.; Fu, N.; Li, L.; Yuan, B. Y.; Zhang, J. H.; Li, Y. X.; Yuan, L. M. Homochiral Metal–Organic Cage for Gas Chromatographic Separations. Anal. Chem. 2018, 90, 9182–9188. DOI: 10.1021/acs.analchem.8b01670.
  • Xie, S. M.; Chen, X. X.; Zhang, J. H.; Yuan, L. M. Gas Chromatographic Separation of Enantiomers on Novel Chiral Stationary Phases. TrAC-Trend. Anal. Chem. 2020, 124, 115808. DOI: 10.1016/j.trac.2020.115808.
  • Zhang, J. Y.; Chen, J. X.; Peng, S.; Peng, S. Y.; Zhang, Z. Z.; Tong, Y. X.; Miller, P. W.; Yan, X. P. Emerging Porous Materials in Confined Spaces: From Chromatographic Applications to Flow Chemistry. Chem. Soc. Rev. 2019, 48, 2566–2595. DOI: 10.1039/C8CS00657A.
  • Suchandra, B.; Khan, M.; Li, X. F.; Zhu, Q. L.; Wu, X. Recent Progress in Asymmetric Catalysis and Chromatographic Separation by Chiral Metal–Organic. Catalysts 2018, 8, 120. DOI: 10.3390/catal8030120.
  • Gupta, A. K.; De, D.; Katoch, R.; Garg, A.; Bharadwaj, P. K. Synthesis of a nbO Type Homochiral Cu(II) Metal–Organic Framework: Ferroelectric Behavior and Heterogeneous Catalysis of Three-Component Coupling and Pechmann Reactions. Inorg. Chem. 2017, 56, 4697–4705. DOI: 10.1021/acs.inorgchem.7b00342.
  • Xia, Q. C.; Li, Z. J.; Tan, C. X.; Liu, Y.; Gong, W.; Cui, Y. Multivariate Metal–Organic Frameworks as Multifunctional Heterogeneous Asymmetric Catalysts for Sequential Reactions. J. Am. Chem. Soc. 2017, 139, 8259–8266. DOI: 10.1021/jacs.7b03113.
  • Hou, X.; Xu, T.; Wang, Y.; Liu, S.; Tong, J.; Liu, B. Superficial Chiral Etching on Achiral Metal-Organic Framework for Enantioselective Sorption. ACS Appl. Mater. Interfaces 2017, 9, 32264–32269. DOI: 10.1021/acsami.7b10147.
  • Chen, J.; Chen, X.; Zhang, Z.; Bao, Z.; Xing, H.; Yang, Q.; Ren, Q. MIL-101(Cr) as a Synergistic Catalyst for the Reduction of Imines with Trichlorosilane. Mol. Catal. 2018, 445, 163–169. DOI: 10.1016/j.mcat.2017.11.012.
  • Chen, B. L.; Liang, C. D.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. A Microporous Metal–Organic Framework for Gas-Chromatographic Separation of Alkanes. Angew. Chem. Int. Ed. Engl. 2006, 45, 1390–1393. DOI: 10.1002/anie.200502844.
  • Xie, S. M.; Zhang, Z. J.; Wang, Z. Y.; Yuan, L. M. Chiral Metal–Organic Frameworks for High-Resolution Gas Chromatographic Separations. J. Am. Chem. Soc. 2011, 133, 11892–11895. DOI: 10.1021/ja2044453.
  • Li, L.; Xie, S. M.; Zhang, J. H.; Chen, L.; Zhu, P. J.; Yuan, L. M. A Gas Chromatographic Stationary of Homochiral Metal-Peptide Framework Material and Its Applications. Chem. Res. Chin. Univ. 2017, 33, 24–30. DOI: 10.1007/s40242-017-6270-3.
  • Brandt, K.; Dötterl, S.; Fuchs, R.; Navarro, D. M. d A. F.; Machado, I. C. S.; Dobler, D.; Reiser, O.; Ayasse, M.; Milet-Pinheiro, P. Subtle Chemical Variations with Strong Ecological Significance: Stereoselective Responses of Male Orchid Bees to Stereoisomers of Carvone Epoxide. J. Chem. Ecol. 2019, 45, 464–473. DOI: 10.1007/s10886-019-01072-6.
  • Gumustas, M.; Ozkan, S. A.; Chankvetadze, B. Analytical and Preparative Scale Separation of Enantiomers of Chiral Drugs by Chromatography and Related Methods. Curr. Med. Chem. 2018, 25, 4152–4188. DOI: 10.2174/0929867325666180129094955.
  • Waller, P. J.; Gándara, F.; Yaghi, O. M. Chemistry of Covalent Organic Frameworks. Acc. Chem. Res. 2015, 48, 3053–3063. DOI: 10.1021/acs.accounts.5b00369.
  • Yang, C. X.; Liu, C.; Cao, Y. M.; Yan, X. P. Facile Room-Temperature Solution-Phase Synthesis of a Spherical Covalent Organic Framework for High-Resolution Chromatographic Separation. Chem. Commun. (Camb.) 2015, 51, 12254–12257. DOI: 10.1039/C5CC03413B.
  • Qian, H. L.; Yang, C. X.; Yan, X. P. Bottom-up Synthesis of Chiral Covalent Organic Frameworks and Their Bound Capillaries for Chiral Separation. Nat. Commun. 2016, 7, 12104. DOI: 10.1038/ncomms12104.
  • Liu, L. H.; Yang, C. X.; Yan, X. P. Methacrylate-Bonded Covalent-Organic Framework Monolithic Columns for High Performance Liquid Chromatography. J. Chromatogr. A 2017, 1479, 137–144. DOI: 10.1016/j.chroma.2016.12.004.
  • Wang, S. L.; Zhang, L. Y.; Xiao, R. L.; Chen, H. H.; Chu, Z. Y.; Zhang, W. B.; Liu, F. Fabrication of SiO2@COF5 Microspheres and Its Application in High Performance Liquid Chromatography. Anal. Methods 2018, 10, 1968–1976. DOI: 10.1039/C8AY00459E.
  • Han, X.; Huang, J. J.; Yuan, C.; Liu, Y.; Cui, Y. Chiral 3D Covalent Organic Frameworks for High Performance Liquid Chromatographic Enantioseparation. J. Am. Chem. Soc. 2018, 140, 892–895. DOI: 10.1021/jacs.7b12110.
  • Chen, L.; Gao, J.; Wu, Q.; Li, H.; Dong, S.; Shi, X.; Zhao, L. Preparation and Performance of a Novel Multi-Mode COF-300@SiO2 Chromatographic Stationary Phase. Eur. Polym. J. 2019, 116, 9–19. DOI: 10.1016/j.eurpolymj.2019.04.002.
  • Huang, X. L.; Lan, H. H.; Yan, Y. L.; Chen, G.; He, Z. H.; Zhang, K.; Cai, S. L.; Zheng, S. R.; Fan, J.; Zhang, W. G. Fabrication of a Hydrazone-Linked Covalent Organic Framework-Bound Capillary Column for Gas Chromatography Separation. Sep. Sci. Plus. 2019, 2, 120–128. DOI: 10.1002/sscp.201800146.
  • Dixit, S.; Park, J. H. Enantioseparation of Basic Chiral Drugs on a Carbamoylated Erythromycin-Zirconia Hybrid Monolith Using Capillary Electrochromatography. J. Chromatogr. A 2015, 1416, 129–136. DOI: 10.1016/j.chroma.2015.09.018.
  • Holst, J. R.; Trewin, A.; Cooper, A. I. Porous Organic Molecules. Nat. Chem. 2010, 2, 915–920. DOI: 10.1038/nchem.873.
  • Zhang, J. H.; Xie, S. M.; Zi, M.; Yuan, L. M. Recent Advances of Application of Porous Molecular Cages for Enantioselective Recognition and Separation. J. Sep. Sci. 2020, 43, 134–149. DOI: 10.1002/jssc.201900762.
  • Quan, M. L. C.; Cram, D. J. Constrictive Binding of Large Guests by a Hemicarcerand Containing Four Portals. J. Am. Chem. Soc. 1991, 113, 2754–2755. DOI: 10.1021/ja00007a060.
  • Zhang, J. H.; Xie, S. M.; Chen, L.; Wang, B. J.; He, P. G.; Yuan, L. M. Homochiral Porous Organic Cage with High Selectivity for the Separation of Racemates in Gas Chromatography. Anal. Chem. 2015, 87, 7817–7824. DOI: 10.1021/acs.analchem.5b01512.
  • Saroj, S.; Rajput, S. J. Composite Smart Mesoporous Silica Nanoparticles as Promising Therapeutic and Diagnostic Candidates: Recent Trends and Applications. J. Drug Deliv. Sci. Technol. 2018, 44, 349–365. DOI: 10.1016/j.jddst.2018.01.014.
  • Che, S. N.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. Synthesis and Characterization of Chiral Mesoporous Silica. Nature 2004, 429, 281–284. DOI: 10.1038/nature02529.
  • Trewyn, B. G.; Whitman, C. M.; Lin, V. S. Y. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano Lett. 2004, 4, 2139–2143. [Database] DOI: 10.1021/nl048774r.
  • He, Y. Y.; Pu, Q.; Zhang, J. H.; Xie, S. M.; Chen, X. X.; Yuan, L. M. Chiral Inorganic Mesoporous Materials Used as the Stationary Phase in GC. Sep. Sci. Plus. 2019, 2, 432–439. DOI: 10.1002/sscp.201900067.
  • He, Y. Y.; Zhang, J. H.; Pu, Q.; Xie, S. M.; Li, Y. X.; Luo, L.; Chen, X. X.; Yuan, L. M. A Novel Chiral Inorganic Mesoporous Silica Used as a Stationary Phase in GC. Chirality 2019, 31, 1053–1059. DOI: 10.1002/chir.23134.
  • Pirkle, W.; House, D. Chiral High-Performance Liquid Chromatographic Stationary Phases. 1. Separation of the Enantiomers of Sulfoxides, Amines, Amino Acids, Alcohols, Hydroxy Acids, Lactones, and Mercaptans. J. Org. Chem. 1979, 44, 1957–1960. DOI: 10.1016/s0021-9673(00)00917-1.
  • Welch, C. J. Evolution of Chiral Stationary Phase Design in the Pirkle Laboratories. J. Chromatogr. A 1994, 666, 3–26. DOI: 10.1016/0021-9673(94)80367-6.
  • Pirkle, W. H. The Nonequivalence of Physical Properties of Enantiomers in Optically Active Solvents. differences in Nuclear Magnetic Resonance Spectra. I. J. Am. Chem. Soc. 1966, 88, 1837–1837. DOI: 10.1021/ja00960a060.
  • Scriba, G. K. E. Chiral Recognition in Separation Sciences. Part II: Macrocyclic Glycopeptide, Donor-Acceptor, Ion-Exchange, Ligand-Exchange and Micellar Selectors. TrAC-Trend. Anal. Chem. 2019, 119, 115628. DOI: 10.1016/j.trac.2019.115628.
  • Scriba, G. K. E. Chiral Recognition in Separation Science - An Update. J. Chromatogr. A 2016, 1467, 56–78. DOI: 10.1016/j.chroma.2016.05.061.
  • Fernandes, C.; Tiritan, M. E.; Pinto, M. Small Molecules as Chromatographic Tools for HPLC Enantiomeric Resolution: Pirkle-Type Chiral Stationary Phases Evolution. Chromatographia 2013, 76, 871–897. DOI: 10.1007/s10337-013-2469-8.
  • Fernandes, C.; Phyo, Y. Z.; Silva, A. S.; Tiritan, M. E.; Kijjoa, A.; Pinto, M. M. Chiral Stationary Phases Based on Small Molecules: An Update of the Last 17 Years. Sep. Purif. Rev. 2018, 47, 89–123. DOI: 10.1080/15422119.2017.1326939.
  • Sabia, R.; De Martino, M.; Cavazzini, A.; Villani, C. Dynamic Behavior of Clobazam on High-Performance Liquid Chromatography Chiral Stationary Phases. Chirality 2016, 28, 17–21. DOI: 10.1002/chir.22542.
  • Knežević, A.; Novak, J.; Vinković, V. New Brush-Type Chiral Stationary Phases for Enantioseparation of Pharmaceutical Drugs. Molecules 2019, 24, 823. DOI: 10.3390/molecules24040823.
  • Çakmak, R.; Ercan, S.; Sünkür, M.; Yılmaz, H.; Topal, G. Design, Preparation and Application of a Pirkle-Type Chiral Stationary Phase for Enantioseparation of Some Racemic Organic Acids and Molecular Dynamics Studies. Org. Commun. 2017, 10, 216–227. DOI: 10.25135/acg.oc.25.17.07.037.
  • Sung, J. Y.; Choi, S. H.; Hyun, M. H. Preparation of a New Chiral Stationary Phase Based on Macrocyclic Amide Chiral Selector for the Liquid Chromatographic Chiral Separations. Chirality 2016, 28, 253–258. DOI: 10.1002/chir.22569.
  • Yu, J.; Armstrong, D. W.; Ryoo, J. J. Synthesis of New C3 Symmetric Amino Acid‐and Aminoalcohol‐Containing Chiral Stationary Phases and Application to HPLC Enantioseparations. Chirality 2018, 30, 74–84. DOI: 10.1002/chir.22766.
  • Yu, J.; Ryoo, D. H.; Lee, J. M.; Ryoo, J. J. Synthesis and Application of C2 and C3 Symmetric (R)‐Phenylglycinol‐Derived Chiral Stationary Phases. Chirality 2016, 28, 186–191. DOI: 10.1002/chir.22572.
  • Poole, C. F.; Lenca, N. Gas Chromatography on Wall-Coated Open-Tubular Columns with Ionic Liquid Stationary Phases. J. Chromatogr. A 2014, 1357, 87–109. DOI: 10.1016/j.chroma.2014.03.029.
  • Kimaru, I. W.; Morris, L.; Vassiliou, J.; Savage, N. Synthesis and Evaluation of l-Phenylalanine Ester-Based Chiral Ionic Liquids for GC Stationary Phase Ability. J. Mol. Liq. 2017, 237, 193–200. DOI: 10.1016/j.molliq.2017.04.079.
  • Kapnissi-Christodoulou, C. P.; Stavrou, I. J.; Mavroudi, M. C. Chiral Ionic Liquids in Chromatographic and Electrophoretic Separations. J. Chromatogr. A 2014, 1363, 2–10. DOI: 10.1016/j.chroma.2014.05.059.
  • Xu, H.; Feng, Z. J.; Du, Y. X. Synthesis, Application and Molecular Modeling Study of Ionic Liquid Functionalized Lactobionic Acid, 3-Methyl-1-(3-Sulfopropyl)-1H-Imidazol-3-Ium Lactobionate, as a Chiral Selector in Capillary Electrophoresis. Analyst 2020, 145, 1025–1032. DOI: 10.1039/C9AN02009H.
  • Sedghamiz, T.; Bahrami, M. Molecular Dynamics Simulation Study of the Effect of Single-Walled Carbon Nanotube on the Enantioseparation Ability of a Chiral Ionic Liquid. J. Mol. Liq. 2020, 304, 112769. DOI: 10.1016/j.molliq.2020.112769.
  • Sedghamiz, T.; Ghalami, F.; Sedghamiz, E.; Bahrami, M. Chiral Recognition of Propranolol Enantiomers by Chiral Ionic Liquid: A Quantum Chemical Calculation Analysis. Comput. Theor. Chem. 2018, 1140, 38–48. DOI: 10.1016/j.comptc.2018.07.017.
  • Xu, G. F.; Du, Y. X.; Du, F.; Chen, J. Q.; Yu, T.; Zhang, Q.; Zhang, J. J.; Du, S. J.; Feng, Z. J. Establishment and Evaluation of the Novel tetramethylammonium-L-Hydroxyproline Chiral Ionic Liquid Synergistic System Based on Clindamycin Phosphate for Enantioseparation by Capillary Electrophoresis. Chirality 2015, 27, 598–604. DOI: 10.1002/chir.22463.
  • Zhu, X. Q.; Chen, C.; Chen, J. Q.; Xu, G. F.; Du, Y. X.; Ma, X. F.; Sun, X. D.; Feng, Z. J.; Huang, Z. F. Synthesis and Application of Tetramethylammonium-Carboxymethylated-β-Cyclodextrin: A Novel Ionic Liquid in Capillary Electrophoresis Enantioseparation. J. Pharm. Biomed. Anal. 2020, 180, 113030. DOI: 10.1016/j.jpba.2019.113030.
  • Ma, X. F.; Du, Y. X.; Sun, X. D.; Liu, J.; Huang, Z. F. Synthesis and Application of Amino Alcohol-Derived Chiral Ionic Liquids, as Additives for Enantioseparation in Capillary Electrophoresis. J. Chromatogr. A 2019, 1601, 340–349. DOI: 10.1016/j.chroma.2019.04.040.
  • Zhang, Q.; Zhang, J.; Xue, S.; Rui, M.; Gao, B.; Li, A.; Bai, J.; Yin, Z.; Anochie, E. M. Enhanced Enantioselectivity of Native α-Cyclodextrins by the Synergy of Chiral Ionic Liquids in Capillary Electrophoresis. J. Sep. Sci. 2018, 41, 4525–4532. DOI: 10.1002/jssc.201800792.
  • Banerjee-Ghosh, K.; Ben Dor, O.; Tassinari, F.; Capua, E.; Yochelis, S.; Capua, A.; Yang, S. H.; Parkin, S. S. P.; Sarkar, S.; Kronik, L.; et al. Separation of Enantiomers by Their Enantiospecific Interaction with Achiral Magnetic Substrates. Science 2018, 360, 1331. DOI: 10.1126/science.aar4265.
  • Li, H.; Huang, Q.; Li, D.; Li, S.; Wu, X.; Wen, L.; Ban, C. Generation of a Molecular Imprinted Membrane by Coating Cellulose Acetate onto a ZrO2-Modified Alumina Membrane for the Chiral Separation of Mandelic Acid Enantiomers. Org. Process. Res. Dev. 2018, 22, 278–285. DOI: 10.1021/acs.oprd.7b00054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.