1,145
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Recent Advances in Nanomaterials Based Molecularly Imprinted Electrochemical Sensors

, &
Pages 88-97 | Published online: 21 Jun 2021

References

  • Chen, W.; Tian, X.; He, W.; Li, J.; Feng, Y.; Pan, G. Emerging Functional Materials Based on Chemically Designed Molecular Recognition. BMC Mat. 2020, 2, 1–22. DOI: 10.1186/s42833-019-0007-1.
  • Dong, J.; Lee, M. A.; Rajan, A. G.; Rahaman, I.; Sun, J. H.; Park, M.; Salem, D. P.; Strano, M. S. A Synthetic Mimic of Phosphodiesterase Type 5 Based on Corona Phase Molecular Recognition of Single-Walled Carbon Nanotubes. Proc. Natl. Acad. Sci. USA. 2020, 117, 26616–26625. DOI: 10.1073/pnas.1920352117.
  • Dai, H.; Xiao, D.; He, H.; Li, H.; Yuan, D.; Zhang, C. Synthesis and Analytical Applications of Molecularly Imprinted Polymers on the Surface of Carbon Nanotubes: A Review. Microchim. Acta 2015, 182, 893–908. DOI: 10.1007/s00604-014-1376-5.
  • Wulff, G.; Sarhan, A.; Zabrocki, K. Enzyme-Analogue Built Polymers and Their Use for the Resolution of Racemates. Tetrahedron Lett. 1973, 14, 4329–4332. DOI: 10.1016/S0040-4039(01)87213-0.
  • Ahmad, R.; Griffete, N.; Lamouri, A.; Felidj, N.; Chehimi, M. M.; Mangeney, C. Nanocomposites of Gold Nanoparticles@Molecularly Imprinted Polymers: Chemistry, Processing, and Applications in Sensors. Chem. Mater. 2015, 27, 5464–5478. DOI: 10.1021/acs.chemmater.5b00138.
  • Panasyuk, T. L.; Mirsky, V. M.; Piletsky, S. A.; Wolfbeis, O. S. Electropolymerized Molecularly Imprinted Polymers as Receptor Layers in Capacitive Chemical Sensors. Anal. Chem. 1999, 71, 4609–4613. DOI: 10.1021/ac9903196.
  • Ansari, S. Application of Magnetic Molecularly Imprinted Polymer as a Versatile and Highly Selective Tool in Food and Environmental Analysis: Recent Developments and Trends. TrAC - Trends Anal. Chem. 2017, 90, 89–106. DOI: 10.1016/j.trac.2017.03.001.
  • Ahmad, I.; Siddiqui, W. A.; Qadir, S.; Ahmad, T. Synthesis and Characterization of Molecular Imprinted Nanomaterials for the Removal of Heavy Metals from Water. J. Mater. Res. Technol. 2018, 7, 270–282. DOI: 10.1016/j.jmrt.2017.04.010.
  • Figueiredo, L.; Erny, G. L.; Santos, L.; Alves, A. Applications of Molecularly Imprinted Polymers to the Analysis and Removal of Personal Care Products: A Review. Talanta 2016, 146, 754–765. DOI: 10.1016/j.talanta.2015.06.027.
  • Wei, P.; Zhu, Z.; Song, R.; Li, Z.; Chen, C. An Ion-Imprinted Sensor Based on Chitosan-Graphene Oxide Composite Polymer Modified Glassy Carbon Electrode for Environmental Sensing Application. Electrochim. Acta 2019, 317, 93–101. DOI: 10.1016/j.electacta.2019.05.136.
  • Alizadeh, T.; Amjadi, S. A Tryptophan Assay Based on the Glassy Carbon Electrode Modified with a Nano-Sized Tryptophan-Imprinted Polymer and Multi-Walled Carbon Nanotubes. New J. Chem. 2017, 41, 4493–4502. DOI: 10.1039/C6NJ04108F.
  • Gültekin, A.; Ersöz, A.; SarIözlü, N. Y.; Denizli, A.; Say, R. Nanosensors Having Dipicolinic Acid Imprinted Nanoshell for Bacillus Cereus Spores Detection. J. Nanopart. Res. 2010, 12, 2069–2079. DOI: 10.1007/s11051-009-9766-z.
  • Dabrowski, M.; Lach, P.; Cieplak, M.; Kutner, W. Nanostructured Molecularly Imprinted Polymers for Protein Chemosensing. Biosens. Bioelectron. 2018, 102, 17–26. DOI: 10.1016/j.bios.2017.10.045.
  • Ye, L.; Zhou, T.; Shen, X. Molecular Imprinting in Particle-Stabilized Emulsions: Enlarging Template Size from Small Molecules to Proteins and Cells. Mol. Imprinting 2015, 3, 37–45. DOI: 10.1515/molim-2015-0002.
  • Huang, J.; Wei, Z.; Chen, J. Molecular Imprinted Polypyrrole Nanowires for Chiral Amino Acid Recognition. Sensors Actuators B Chem. 2008, 134, 573–578. DOI: 10.1016/j.snb.2008.05.038.
  • Feroz, M.; Vadgama, P. Molecular Imprinted Polymer Modified Electrochemical Sensors for Small Drug Analysis: Progress to Practical Application. Electroanalysis 2020, 32, 2361–2386. DOI: 10.1002/elan.202060276.
  • Ulusoy, B. Ö.; Odabaşi, M.; Aksoy, N. H. Molecular Imprinting Technology for Sensing and Separation in Food Safety. Adv. Mol. Imprinting Mater. 2016, 353–387. DOI: 10.1002/9781119336181.ch9.
  • Arias, P. G.; Martínez-Pérez-Cejuela, H.; Combès, A.; Pichon, V.; Pereira, E.; Herrero-Martínez, J. M.; Bravo, M. Selective Solid-Phase Extraction of Organophosphorus Pesticides and Their Oxon-Derivatives from Water Samples Using Molecularly Imprinted Polymer Followed by High-Performance Liquid Chromatography with UV Detection. J. Chromatogr. A. 2020, 1626, 461346. DOI: 10.1016/j.chroma.2020.461346.
  • Shen, X.; Zhu, L.; Wang, N.; Ye, L.; Tang, H. Molecular Imprinting for Removing Highly Toxic Organic Pollutants. Chem. Commun. 2012, 48, 788–798. DOI: 10.1039/c2cc14654a.
  • Bossi, A. M.; Haupt, K. Tailoring a Dress to Single Protein Molecules: Proteins Can Do It Themselves through Localized Photo-Polymerization and Molecular Imprinting. Chem. Eur. J. 2020, 26, 14556–14559. DOI: 10.1002/chem.202002787.
  • Huang, C.; Tu, Z.; Shen, X. Molecularly Imprinted Photocatalyst with a Structural Analogue of Template and Its Application. J. Hazard. Mater. 2013, 248-249, 379–386. DOI: 10.1016/j.jhazmat.2013.01.037.
  • Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J. M. Electrochemical Sensors Based on Magnetic Molecularly Imprinted Polymers: A Review. Anal. Chim. Acta. 2017, 960, 1–17. DOI: 10.1016/j.aca.2017.01.003.
  • Maria C G, A.; K B, A.; Rison, S.; Varghese, A.; George, L. Molecularly Imprinted PEDOT on Carbon Fiber Paper Electrode for the Electrochemical Determination of 2,4-Dichlorophenol. Synth. Met. 2020, 261, 116309. DOI: 10.1016/j.synthmet.2020.116309.
  • Akshaya, K. B.; Anitha, V.; Nidhin, M.; Sudhakar, Y. N.; Louis, G. Electrochemical Sensing of Vitamin B12 Deficiency Marker Methylmalonic Acid Using PdAu-PPy Tailored Carbon Fiber Paper Electrode. Talanta 2020, 217, 121028. DOI: 10.1016/j.talanta.2020.121028.
  • Suryanarayanan, V.; Wu, C. T.; Ho, K. C. Molecularly Imprinted Electrochemical Sensors. Electroanalysis 2010, 22, 1795–1811. DOI: 10.1002/elan.200900616.
  • Lahcen, A. A.; Amine, A. Recent Advances in Electrochemical Sensors Based on Molecularly Imprinted Polymers and Nanomaterials. Electroanalysis 2019, 31, 188–201. DOI: 10.1002/elan.201800623.
  • Xu, L.; Huang, Y. A.; Zhu, Q. J.; Ye, C. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects. Int. J. Mol. Sci. 2015, 16, 18328–18347. DOI: 10.3390/ijms160818328.
  • Huo, H.; Jiang, Y.; Zhao, T.; Wang, Z.; Hu, Y.; Xu, X.; Lin, K. Quantitatively Loaded Ultra-Small Ag Nanoparticles on Molecularly Imprinted Mesoporous Silica for Highly Efficient Catalytic Reduction Process. J. Mater. Sci. 2020, 55, 1475–1488. DOI: 10.1007/s10853-019-04054-x.
  • Rostamizadeh, K.; Abdollahi, H.; Parsajoo, C. Synthesis, Optimization, and Characterization of Molecularly Imprinted Nanoparticles. Int. Nano Lett. 2013, 3, 1–9. DOI: 10.1186/2228-5326-3-20.
  • Nasrollahzadeh, M.; Sajadi, S. M.; Sajjadi, M.; Issaabadi, Z. Applications of Nanotechnology in Daily Life, 1st ed.; Elsevier Ltd.: Amsterdam, 2019; Vol. 28. DOI: 10.1016/B978-0-12-813586-0.00004-3.
  • Beluomini, M. A.; da Silva, J. L.; de Sá, A. C.; Buffon, E.; Pereira, T. C.; Stradiotto, N. R. Electrochemical Sensors Based on Molecularly Imprinted Polymer on Nanostructured Carbon Materials: A Review. J. Electroanal. Chem. 2019, 840, 343–366. DOI: 10.1016/j.jelechem.2019.04.005.
  • Zhong, C.; Yang, B.; Jiang, X.; Li, J. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing. Crit. Rev. Anal. Chem. 2018, 48, 15–32. DOI: 10.1080/10408347.2017.1360762.
  • Pérez-Moral, N.; Mayes, A. G. Comparative Study of Imprinted Polymer Particles Prepared by Different Polymerisation Methods. Anal. Chim. Acta 2004, 504, 15–21. DOI: 10.1016/S0003-2670(03)00533-6.
  • Fauzi, D.; Saputri, F. A. Molecularly Imprinted Polymer Nanoparticles (MIP-NPs) Applications in Electrochemical Sensors. Int. J. App. Pharm. 2019, 11, 1–6. DOI: 10.22159/ijap.2019v11i6.35088.
  • Fu, X. C.; Wu, J.; Nie, L.; Xie, C. G.; Liu, J. H.; Huang, X. J. Electropolymerized Surface Ion Imprinting Films on a Gold Nanoparticles/Single-Wall Carbon Nanotube Nanohybrids Modified Glassy Carbon Electrode for Electrochemical Detection of Trace Mercury(II) in Water. Anal. Chim. Acta. 2012, 720, 29–37. DOI: 10.1016/j.aca.2011.12.071.
  • Pandey, H.; Khare, P.; Singh, S.; Singh, S. P. Carbon Nanomaterials Integrated Molecularly Imprinted Polymers for Biological Sample Analysis: A Critical Review. Mater. Chem. Phys. 2020, 239, 121966. DOI: 10.1016/j.matchemphys.2019.121966.
  • Singh, M.; Singh, S.; Singh, S. P.; Patel, S. S. Recent Advancement of Carbon Nanomaterials Engrained Molecular Imprinted Polymer for Environmental Matrix. Trends Environ. Anal. Chem. 2020, 27, e00092. DOI: 10.1016/j.teac.2020.e00092.
  • Roushani, M.; Rahmati, Z.; Hoseini, S. J.; Hashemi Fath, R. Impedimetric Ultrasensitive Detection of Chloramphenicol Based on Aptamer MIP Using a Glassy Carbon Electrode Modified by 3-Ampy-RGO and Silver Nanoparticle. Colloids Surf. B Biointerfaces 2019, 183, 110451. DOI: 10.1016/j.colsurfb.2019.110451.
  • Yang, S.; Yang, X.; Tang, R.; Xiong, L.; Yang, Y.; Hu, Y.; Zhang, C.; Zhao, Z. A Novel Rutin Electrochemical Sensor Using Reduced Graphene Oxide/Magnetite/Silver Nanoparticle-Molecularly Imprinted Polymer Composite Modified Electrode. Int. J. Electrochem. Sci. 2018, 13, 2483–2497. DOI: 10.20964/2018.03.55.
  • Sobiech, M.; Bujak, P.; Luliński, P.; Pron, A. Semiconductor Nanocrystal-Polymer Hybrid Nanomaterials and Their Application in Molecular Imprinting. Nanoscale 2019, 11, 12030–12074. DOI: 10.1039/c9nr02585e.
  • Canfarotta, F.; Whitcombe, M. J.; Piletsky, S. A. Polymeric Nanoparticles for Optical Sensing. Biotechnol. Adv. 2013, 31, 1585–1599. DOI: 10.1016/j.biotechadv.2013.08.010.
  • Yuan, X.; Yuan, Y.; Gao, X.; Xiong, Z.; Zhao, L. Magnetic Dummy-Template Molecularly Imprinted Polymers Based on Multi-Walled Carbon Nanotubes for Simultaneous Selective Extraction and Analysis of Phenoxy Carboxylic Acid Herbicides in Cereals. Food Chem. 2020, 333, 127540. DOI: 10.1016/j.foodchem.2020.127540.
  • Almotiri, R. A.; Ham, K. J.; Vijayan, V. M.; Catledge, S. A. Molecularly Imprinted Polyacrylamide with Fluorescent Nanodiamond for Creatinine Detection. Materials (Basel) 2019, 12, 2097. DOI: 10.3390/ma12132097.
  • Amatatongchai, M.; Sitanurak, J.; Sroysee, W.; Sodanat, S.; Chairam, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P. A. Highly Sensitive and Selective Electrochemical Paper-Based Device Using a Graphite Screen-Printed Electrode Modified with Molecularly Imprinted Polymers Coated Fe3O4@Au@SiO2 for Serotonin Determination. Anal. Chim. Acta. 2019, 1077, 255–265. DOI: 10.1016/j.aca.2019.05.047.
  • Ertuğrul Uygun, H. D.; Uygun, Z. O.; Canbay, E.; Gi Rgi N Sağın, F.; Sezer, E. Non-Invasive Cortisol Detection in Saliva by Using Molecularly Cortisol Imprinted Fullerene-Acrylamide Modified Screen Printed Electrodes. Talanta 2020, 206, 120225. DOI: 10.1016/j.talanta.2019.120225.
  • Huang, F.; Zhu, B.; Zhang, H.; Gao, Y.; Ding, C.; Tan, H.; Li, J. A Glassy Carbon Electrode Modified with Molecularly Imprinted Poly(Aniline Boronic Acid) Coated onto Carbon Nanotubes for Potentiometric Sensing of Sialic Acid. Microchim. Acta 2019, 186, 1–11. DOI: 10.1007/s00604-019-3387-8.
  • Sooraj, M. P.; Mathew, B. Fabrication of a Structure-Specific Molecular Imprinted Polymer–Based Electrochemical Sensor Based on Cunp-Decorated Vinyl-Functionalized Graphene for the Detection of Parathion Methyl in Vegetable and Fruit Samples. Food Anal. Methods 2019, 12, 1028–1039. DOI: 10.1007/s12161-018-01428-w.
  • Kıran, T. R.; Yola, M. L.; Atar, N. Electrochemical Sensor Based on Au@nitrogen-Doped Carbon Quantum Dots@Ag Core-Shell Composite Including Molecular Imprinted Polymer for Metobromuron Recognition. J. Electrochem. Soc. 2019, 166, H691–H697. DOI: 10.1149/2.0451914jes.
  • Akhoundian, M.; Alizadeh, T.; Ganjali, M. R.; Rafiei, F. A New Carbon Paste Electrode Modified with MWCNTs and Nano-Structured Molecularly Imprinted Polymer for Ultratrace Determination of Trimipramine: The Crucial Effect of Electrode Components Mixing on Its Performance. Biosens. Bioelectron. 2018, 111, 27–33. DOI: 10.1016/j.bios.2018.03.061.
  • Tadi, K. K.; Motghare, R. V.; Ganesh, V. Electrochemical Detection of Sulfanilamide Using Pencil Graphite Electrode Based on Molecular Imprinting Technology. Electroanalysis 2014, 26, 2328–2336. DOI: 10.1002/elan.201400251.
  • Hallaj, T.; Amjadi, M. Determination of 2,4-Dichlorophenol in Water Samples Using a Chemiluminescence System Consisting of Graphene Quantum Dots, Rhodamine B and Cerium(IV) Ion. Microchim. Acta 2016, 183, 1219–1225. DOI: 10.1007/s00604-016-1749-z.
  • Su, C.; Li, Z.; Zhang, D.; Wang, Z.; Zhou, X.; Liao, L.; Xiao, X. A Highly Sensitive Sensor Based on a Computer-Designed Magnetic Molecularly Imprinted Membrane for the Determination of Acetaminophen. Biosens. Bioelectron. 2020, 148, 111819. DOI: 10.1016/j.bios.2019.111819.
  • Fiorenza, R.; Di Mauro, A.; Cantarella, M.; Privitera, V.; Impellizzeri, G. Selective Photodegradation of 2,4-D Pesticide from Water by Molecularly Imprinted TiO2. J. Photochem. Photobiol. A Chem. 2019, 380, 111872. DOI: 10.1016/j.jphotochem.2019.111872.
  • Ma, Y.; Hu, Q.; Liu, C.; Wang, L. A Nanospherical Conjugated Microporous Polymer-Graphene Nanosheets Modified Molecularly Imprinted Electrochemical Sensor for High Sensitivity Detection of α-Synuclein. J. Electroanal. Chem. 2020, 862, 113994. DOI: 10.1016/j.jelechem.2020.113994.
  • Mugo, S. M.; Alberkant, J. Flexible Molecularly Imprinted Electrochemical Sensor for Cortisol Monitoring in Sweat. Anal. Bioanal. Chem. 2020, 412, 1825–1833. DOI: 10.1007/s00216-020-02430-0.
  • Cui, B.; Liu, P.; Liu, X.; Liu, S.; Zhang, Z. Molecularly Imprinted Polymers for Electrochemical Detection and Analysis: Progress and Perspectives. J. Mater. Res. Technol. 2020, 9, 12568–12584. DOI: 10.1016/j.jmrt.2020.08.052.
  • Wang, Y.; Yao, L.; Liu, X.; Cheng, J.; Liu, W.; Liu, T.; Sun, M.; Zhao, L.; Ding, F.; Lu, Z.; et al. CuCo2O4/N-Doped CNTs Loaded with Molecularly Imprinted Polymer for Electrochemical Sensor: Preparation, Characterization and Detection of Metronidazole. Biosens. Bioelectron. 2019, 142, 111483. DOI: 10.1016/j.bios.2019.111483.
  • Ma, X.; Tu, X.; Gao, F.; Xie, Y.; Huang, X.; Fernandez, C.; Qu, F.; Liu, G.; Lu, L.; Yu, Y. Hierarchical Porous MXene/Amino Carbon Nanotubes-Based Molecular Imprinting Sensor for Highly Sensitive and Selective Sensing of Fisetin. Sensors Actuators B Chem. 2020, 309, 127815. DOI: 10.1016/j.snb.2020.127815.
  • Yola, M. L.; Atar, N. Development of Molecular Imprinted Sensor Including Graphitic Carbon Nitride/N-Doped Carbon Dots Composite for Novel Recognition of Epinephrine. Compos. Part B Eng. 2019, 175, 107113. DOI: 10.1016/j.compositesb.2019.107113.
  • Zheng, W.; Wu, H.; Jiang, Y.; Xu, J.; Li, X.; Zhang, W.; Qiu, F. A Molecularly-Imprinted-Electrochemical-Sensor Modified with Nano-Carbon-Dots with High Sensitivity and Selectivity for Rapid Determination of Glucose. Anal. Biochem. 2018, 555, 42–49. DOI: 10.1016/j.ab.2018.06.004.
  • Hao, T.; Wei, X.; Nie, Y.; Xu, Y.; Yan, Y.; Zhou, Z. An Eco-Friendly Molecularly Imprinted Fluorescence Composite Material Based on Carbon Dots for Fluorescent Detection of 4-Nitrophenol. Microchim. Acta 2016, 183, 2197–2203. DOI: 10.1007/s00604-016-1851-2.
  • Pompeu Prado Moreira, L. F.; Buffon, E.; Stradiotto, N. R. Electrochemical Sensor Based on Reduced Graphene Oxide and Molecularly Imprinted Poly(Phenol) for D-Xylose Determination. Talanta 2020, 208, 120379. DOI: 10.1016/j.talanta.2019.120379.
  • Deepa, J. R.; Anirudhan, T. S.; Soman, G.; Sekhar, V. C. Electrochemical Sensing of Methylmalonic Acid Based on Molecularly Imprinted Polymer Modified with Graphene Oxide and Gold Nanoparticles. Microchem. J. 2020, 159, 105489. DOI: 10.1016/j.microc.2020.105489.
  • El Jaouhari, A.; Yan, L.; Zhu, J.; Zhao, D.; Zaved Hossain Khan, M.; Liu, X. Enhanced Molecular Imprinted Electrochemical Sensor Based on Zeolitic Imidazolate Framework/Reduced Graphene Oxide for Highly Recognition of Rutin. Anal. Chim. Acta. 2020, 1106, 103–114. DOI: 10.1016/j.aca.2020.01.039.
  • Güney, S.; Arslan, T.; Yanık, S.; Güney, O. An Electrochemical Sensing Platform Based on Graphene Oxide and Molecularly Imprinted Polymer Modified Electrode for Selective Detection of Amoxicillin. Electroanalysis 2021, 33, 46–56. DOI: 10.1002/elan.202060129.
  • Lu, Z.; Li, Y.; Liu, T.; Wang, G.; Sun, M.; Jiang, Y.; He, H.; Wang, Y.; Zou, P.; Wang, X.; et al. A Dual-Template Imprinted Polymer Electrochemical Sensor Based on AuNPs and Nitrogen-Doped Graphene Oxide Quantum Dots Coated on NiS2/Biomass Carbon for Simultaneous Determination of Dopamine and Chlorpromazine. Chem. Eng. J. 2020, 389, 124417. DOI: 10.1016/j.cej.2020.124417.
  • Cheng, J.; Li, Y.; Zhong, J.; Lu, Z.; Wang, G.; Sun, M.; Jiang, Y.; Zou, P.; Wang, X.; Zhao, Q.; et al. Molecularly Imprinted Electrochemical Sensor Based on Biomass Carbon Decorated with MOF-Derived Cr2O3 and Silver Nanoparticles for Selective and Sensitive Detection of Nitrofurazone. Chem. Eng. J. 2020, 398, 125664. DOI: 10.1016/j.cej.2020.125664.
  • Sehit, E.; Drzazgowska, J.; Buchenau, D.; Yesildag, C.; Lensen, M.; Altintas, Z. Ultrasensitive Nonenzymatic Electrochemical Glucose Sensor Based on Gold Nanoparticles and Molecularly Imprinted Polymers. Biosens. Bioelectron. 2020, 165, 112432. DOI: 10.1016/j.bios.2020.112432.
  • Motia, S.; Bouchikhi, B.; Llobet, E.; El Bari, N. Synthesis and Characterization of a Highly Sensitive and Selective Electrochemical Sensor Based on Molecularly Imprinted Polymer with Gold Nanoparticles Modified Screen-Printed Electrode for Glycerol Determination in Wastewater. Talanta 2020, 216, 120953. DOI: 10.1016/j.talanta.2020.120953.
  • Hatamluyi, B.; Hashemzadeh, A.; Darroudi, M. A Novel Molecularly Imprinted Polymer Decorated by CQDs@HBNNS Nanocomposite and UiO-66-NH2 for Ultra-Selective Electrochemical Sensing of Oxaliplatin in Biological Samples. Sensors Actuators B Chem. 2020, 307, 127614. DOI: 10.1016/j.snb.2019.127614.
  • Axin Liang, A.; Huipeng Hou, B.; Shanshan Tang, C.; Liquan Sun, D.; Aiqin Luo, E. An Advanced Molecularly Imprinted Electrochemical Sensor for the Highly Sensitive and Selective Detection and Determination of Human IgG. Bioelectrochemistry 2021, 137, 107671. DOI: 10.1016/j.bioelechem.2020.107671.
  • Zhang, L.; He, L.; Wang, Q.; Tang, Q.; Liu, F. Theoretical and Experimental Studies of a Novel Electrochemical Sensor Based on Molecularly Imprinted Polymer and GQDs-PtNPs Nanocomposite. Microchem. J. 2020, 158, 105196. DOI: 10.1016/j.microc.2020.105196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.