591
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Recent Applications of Nano-Liquid Chromatography in Food Safety and Environmental Monitoring: A Review

ORCID Icon & ORCID Icon
Pages 98-122 | Published online: 15 Aug 2021

References

  • Novotny, M. Microcolumns in Liquid Chromatography. Anal. Chem. 1981, 53, 1294A–1308A. DOI: 10.1021/ac00235a001.
  • Karlsson, K. E.; Novotny, M. Separation Efficiency of Slurry-Packed Liquid Chromatography Microcolumns with Very Small Inner Diameters. Anal. Chem. 1988, 60, 1662–1665. DOI: 10.1021/ac00168a006.
  • Knox, J. H. Theoretical Aspects of LC with Packed and Open Small-Bore Columns. J. Chromatogr. Sci. 1980, 18, 453–461. DOI: 10.1093/chromsci/18.9.453.
  • Knox, J. H.; Gilbert, M. T. Kinetic Optimization of Straight Open-Tubular Liquid Chromatography. J. Chromatogr. A 1979, 186, 405–418. DOI: 10.1016/S0021-9673(00)95263-4..
  • Chervet, J. P.; Ursem, M.; Salzmann, J. P. Instrumental Requirements for Nanoscale Liquid Chromatography. Anal. Chem. 1996, 68, 1507–1512. DOI: 10.1021/ac9508964.
  • Yandamuri, N.; Nagabattula, K. R. S.; Kurra, S. S.; Batthula, S.; Allada, L. P. S. N.; Bandam, P. Comparative Study of New Trends in HPLC: A Review. Int. J. Pharm. Sci. Rev. Res. 2013, 23, 167–172.
  • Fanali, S. An Overview to Nano-Scale Analytical Techniques: Nano-Liquid Chromatography and Capillary Electrochromatography. Electrophoresis 2017, 38, 1822–1829. DOI: 10.1002/elps.201600573.
  • Gama, M. R.; Collins, C. H.; Bottoli, C. B. G. Nano-Liquid Chromatography in Pharmaceutical and Biomedical Research. J. Chromatogr. Sci. 2013, 51, 694–703. DOI: 10.1093/chromsci/bmt023.
  • Xie, X.; Tolley, L. T.; Truong, T. X.; Tolley, H. D.; Farnsworth, P. B.; Lee, M. L. Dual-Wavelength Light-Emitting Diode-Based Ultraviolet Absorption Detector for Nano-Flow Capillary Liquid Chromatography. J. Chromatogr. A 2017, 1523, 242–247. DOI: 10.1016/j.chroma.2017.07.097.
  • Hsieh, S.-H.; Huang, H.-Y.; Lee, S. Determination of Eight Penicillin Antibiotics in Pharmaceuticals, Milk and Porcine Tissues by Nano-Liquid Chromatography. J. Chromatogr. A 2009, 1216, 7186–7194. DOI: 10.1016/j.chroma.2009.05.080.
  • Fanali, C.; Asensio-Ramos, M.; D'Orazio, G.; Hernández-Borges, J.; Rocco, A.; Fanali, S. Nano-Liquid Chromatographic Separations. In Handbook of Advanced Chromatography/Mass Spectrometry Techniques; Holčapek, M., Byrdwell, Wm. C., Eds.; AOCS Press: Urbana, Illinois, 2017; Chapter 9, pp 309–363. DOI: 10.1016/B978-0-12-811732-3.00009-1.
  • Fanali, C.; Dugo, L.; Dugo, P.; Mondello, L. Capillary-Liquid Chromatography (CLC) and Nano-LC in Food Analysis. TrAC Trends Anal. Chem. 2013, 52, 226–238. DOI: 10.1016/j.trac.2013.05.021.
  • Yandamuri, N.; Dinakaran, S. K. Advanced Study of Nano Liquid Chromatography and Its Application-A Review. World J. Pharm. Res. 2015, 4, 1355–1367.
  • Šesták, J.; Moravcová, D.; Kahle, V. Instrument Platforms for Nano Liquid Chromatography. J. Chromatogr. A 2015, 1421, 2–17. DOI: 10.1016/j.chroma.2015.07.090.
  • Vehus, T.; Roberg-Larsen, H.; Waaler, J.; Aslaksen, S.; Krauss, S.; Wilson, S. R.; Lundanes, E. Versatile, sensitive liquid chromatography mass spectrometry – Implementation of 10 μm OT columns suitable for small molecules, peptides and proteins. Sci Rep 2016, 6, 37507. DOI: 10.1038/srep37507
  • D'Orazio, G.; Fanali, S. Combination of Two Different Stationary Phases for on-Line Pre-Concentration and Separation of Basic Drugs by Using Nano-Liquid Chromatography. J. Chromatogr. A 2013, 1285, 118–123. DOI: 10.1016/j.chroma.2013.02.035.
  • Wilson, S. R.; Vehus, T.; Berg, H. S.; Lundanes, E. Nano-LC in Proteomics: Recent Advances and Approaches. Bioanalysis 2015, 7, 1799–1815. DOI: 10.4155/bio.15.92.
  • Shimizu, H.; Smirnova, A.; Mawatari, K.; Kitamori, T. Extended-Nano Chromatography. J. Chromatogr. A 2017, 1490, 11–20. DOI: 10.1016/j.chroma.2016.09.012.
  • Kovalakova, P.; Cizmas, L.; McDonald, T. J.; Marsalek, B.; Feng, M.; Sharma, K. V. Occurrence and Toxicity of Antibiotics in the Aquatic Environment: A Review. Chemosphere 2020, 251, 126351. DOI: 10.1016/j.chemosphere.2020.126351.
  • Gunther, F. A.; Whitacre, D. M.; Albert, L. A.; Hutzinger, O.; Knaak, J. B.; Mayer, F. L.; Morgan, D. P.; Park, D. L.; Tjeerdema, R. S.; de Voogt, P. Occurrence and Fate of Human Pharmaceuticals in the Environment. In Reviews of Environmental Contamination and Toxicology; Springer New York: New York, NY, 2010; Vol. 202, pp 53–154. DOI: 10.1007/978-1-4419-1157-5_2.
  • Sui, Q.; Cao, X.; Lu, S.; Zhao, W.; Qiu, Z.; Yu, G. Occurrence, Sources and Fate of Pharmaceuticals and Personal Care Products in the Groundwater: A Review. Emerg. Contam. 2015, 1, 14–24. DOI: 10.1016/j.emcon.2015.07.001.
  • Gross, B.; Montgomery‐Brown, J.; Naumann, A.; Reinhard, M. Occurrence and Fate of Pharmaceuticals and Alkylphenol Ethoxylate Metabolites in an Effluent-Dominated River and Wetland. Environ. Toxicol. Chem. 2004, 23, 2074–2083. DOI: 10.1897/03-606.
  • Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EECText with EEA relevance.
  • Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.
  • Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin.
  • Commission Decision of 14 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results.
  • 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results.
  • Szumski, M.; Buszewski, B. State of the Art in Miniaturized Separation Techniques. Crit. Rev. Anal. Chem. 2002, 32, 1–46. DOI: 10.1080/10408340290765434.
  • Vissers, J. P. C.; Claessens, H. A.; Cramers, C. A. Microcolumn Liquid Chromatography: Instrumentation, Detection and Applications. J. Chromatogr. A 1997, 779, 1–28. DOI: 10.1016/S0021-9673(97)00422-6.
  • Schmidt, A.; Karas, M.; Dülcks, T. Effect of Different Solution Flow Rates on Analyte Ion Signals in Nano-ESI MS, or: When Does ESI Turn into Nano-ESI? J. Am. Soc. Mass Spectrom. 2003, 14, 492–500. DOI: 10.1016/S1044-0305(03)00128-4.
  • Rigano, F.; Tranchida, P. Q.; Dugo, P.; Mondello, L. High-Performance Liquid Chromatography Combined with Electron Ionization Mass Spectrometry: A Review. TrAC Trends Anal. Chem. 2019, 118, 112–122. DOI: 10.1016/j.trac.2019.05.032.
  • El-Faramawy, A.; Siu, K. W. M.; Thomson, B. A. Efficiency of Nano-Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2005, 16, 1702–1707. DOI: 10.1016/j.jasms.2005.06.011.
  • D'Orazio, G.; Rocco, A.; Fanali, S. Fast-Liquid Chromatography Using Columns of Different Internal Diameters Packed with Sub-2 Μm Silica Particles. J. Chromatogr. A 2012, 1228, 213–220. DOI: 10.1016/j.chroma.2011.05.053.
  • Noga, M.; Sucharski, F.; Suder, P.; Silberring, J. A Practical Guide to Nano-LC Troubleshooting. J. Sep. Sci. 2007, 30, 2179–2189. DOI: 10.1002/jssc.200700225.
  • Cappiello, A.; Famiglini, G.; Pierini, E.; Palma, P.; Trufelli, H. Advanced Liquid Chromatography − Mass Spectrometry Interface Based on Electron Ionization. Anal. Chem. 2007, 79, 5364–5372. DOI: 10.1021/ac070468l.
  • Cappiello, A.; Famiglini, G.; Palma, P.; Pierini, E.; Termopoli, V.; Trufelli, H. Overcoming Matrix Effects in Liquid Chromatography − Mass Spectrometry. Anal. Chem. 2008, 80, 9343–9348. DOI: 10.1021/ac8018312.
  • Moreno-González, D.; Pérez-Ortega, P.; Gilbert-López, B.; Molina-Díaz, A.; García-Reyes, J. F.; Fernández-Alba, A. R. Evaluation of Nanoflow Liquid Chromatography High Resolution Mass Spectrometry for Pesticide Residue Analysis in Food. J. Chromatogr. A 2017, 1512, 78–87. DOI: 10.1016/j.chroma.2017.07.019.
  • Nakashima, A.; Yamaguchi, H.; Kodani, Y.; Kaneko, Y. S.; Kawata, M.; Nagasaki, H.; Nagatsu, T.; Ota, A. Identification by Nano-LC-MS/MS of NT5DC2 as a Protein Binding to Tyrosine Hydroxylase: Down-Regulation of NT5DC2 by SiRNA Increases Catecholamine Synthesis in PC12D Cells. Biochem. Biophys. Res. Commun. 2019, 516, 1060–1065. DOI: 10.1016/j.bbrc.2019.06.156.
  • Oedit, A.; Vulto, P.; Ramautar, R.; Lindenburg, P. W.; Hankemeier, T. Lab-on-a-Chip Hyphenation with Mass Spectrometry: Strategies for Bioanalytical Applications. Curr. Opin. Biotechnol. 2015, 31, 79–85. DOI: 10.1016/j.copbio.2014.08.009.
  • Kim, W.; Guo, M.; Yang, P.; Wang, D. Microfabricated Monolithic Multinozzle Emitters for Nanoelectrospray Mass Spectrometry. Anal. Chem. 2007, 79, 3703–3707. DOI: 10.1021/ac070010j.
  • Wilson, S. R.; Malerod, H.; Holm, A.; Molander, P.; Lundanes, E.; Greibrokk, T. On-Line SPE–Nano-LC–Nanospray-MS for Rapid and Sensitive Determination of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in River Water. J. Chromatogr. Sci. 2007, 45, 146–152. DOI: 10.1093/chromsci/45.3.146.
  • New Objective : Innovation in High-Performance LC-MS http://www.newobjective.com/products/emitters/coatings.shtml (accessed Oct 29, 2020).
  • Wilson, S. R.; Olsen, C.; Lundanes, E. Nano Liquid Chromatography Columns. Analyst 2019, 144, 7090–7104. DOI: 10.1039/c9an01473j.
  • Fouad, A.; Shaykoon, M. S. A.; Ibrahim, S. M.; El-Adl, S. M.; Ghanem, A. Colistin Sulfate Chiral Stationary Phase for the Enantioselective Separation of Pharmaceuticals Using Organic Polymer Monolithic Capillary Chromatography. Molecules 2019, 24, 833. DOI: 10.3390/molecules24050833.
  • Chankvetadze, B. Recent Developments on Polysaccharide-Based Chiral Stationary Phases for Liquid-Phase Separation of Enantiomers. J Chromatogr A 2012, 1269, 26–51. DOI: 10.1016/j.chroma.2012.10.033.
  • Fanali, S.; Rocchi, S.; Chankvetadze, B. Use of Novel Phenyl-Hexyl Core-Shell Particles in Nano-LC. Electrophoresis 2013, 34, 1737–1742. DOI: 10.1002/elps.201200639.
  • D'Orazio, G.; Fanali, C.; Fanali, S.; Gentili, A.; Karchkhadze, M.; Chankvetadze, B. Further Study on Enantiomer Resolving Ability of Amylose Tris(3-Chloro-5-Methylphenylcarbamate) Covalently Immobilized onto Silica in Nano-Liquid Chromatography and Capillary Electrochromatography. J. Chromatogr. A 2020, 1623, 461213. DOI: 10.1016/j.chroma.2020.461213.
  • D'Orazio, G.; Fanali, C.; Fanali, S.; Gentili, A.; Chankvetadze, B. Comparative Study on Enantiomer Resolving Ability of Amylose Tris(3-Chloro-5-Methylphenylcarbamate) Covalently Immobilized onto Silica in Nano-Liquid Chromatography and Capillary Electrochromatography. J. Chromatogr. A 2019, 1606, 460425. DOI: 10.1016/j.chroma.2019.460425.
  • Buonasera, K.; D'Orazio, G.; Fanali, S.; Dugo, P.; Mondello, L. Separation of Organophosphorus Pesticides by Using Nano-Liquid Chromatography. J. Chromatogr. A 2009, 1216, 3970–3976. DOI: 10.1016/j.chroma.2009.03.005.
  • Vasconcelos Soares Maciel, E.; de Toffoli, A. L.; Sobieski, E.; Domingues Nazário, C. E.; Lanças, F. M. Miniaturized Liquid Chromatography Focusing on Analytical Columns and Mass Spectrometry: A Review. Anal. Chim. Acta 2020, 1103, 11–31. DOI: 10.1016/j.aca.2019.12.064.
  • Fanali, S. Nano-Liquid Chromatography Applied to Enantiomers Separation. J. Chromatogr. A 2017, 1486, 20–34. DOI: 10.1016/j.chroma.2016.10.028.
  • Pérez-Fernández, V.; Dominguez-Vega, E.; Chankvetadze, B.; Crego, A. L.; García, M. Á.; Marina, M. L. Evaluation of New Cellulose-Based Chiral Stationary Phases Sepapak-2 and Sepapak-4 for the Enantiomeric Separation of Pesticides by Nano Liquid Chromatography and Capillary Electrochromatography. J. Chromatogr. A 2012, 1234, 22–31. DOI: 10.1016/j.chroma.2012.01.035.
  • Aydoğan, C. A New Anion-Exchange/Hydrophobic Monolith as Stationary Phase for Nano Liquid Chromatography of Small Organic Molecules and Inorganic Anions. J. Chromatogr. A 2015, 1392, 63–68. DOI: 10.1016/j.chroma.2015.03.014.
  • Aydoğan, C.; Yılmaz, F.; Denizli, A. Cation Exchange/Hydrophobic Interaction Monolithic Chromatography of Small Molecules and Proteins by Nano Liquid Chromatography. J. Sep. Sci. 2013, 36, 1685–1692. DOI: 10.1002/jssc.201300089.
  • Aydoğan, C.; Gökaltun, A.; Denizli, A.; El‐Rassi, Z. Organic Polymer-Based Monolithic Capillary Columns and Their Applications in Food Analysis. J. Sep. Sci. 2019, 42, 962–979. DOI: 10.1002/jssc.201801051.
  • Fanali, S.; Aturki, Z.; D'Orazio, G.; Rocco, A. Separation of Basic Compounds of Pharmaceutical Interest by Using Nano-Liquid Chromatography Coupled with Mass Spectrometry. J. Chromatogr. A 2007, 1150, 252–258. DOI: 10.1016/j.chroma.2006.10.021.
  • Alcántara-Durán, J.; Moreno-González, D.; Gilbert-López, B.; Molina-Díaz, A.; García-Reyes, J. F. Matrix-Effect Free Multi-Residue Analysis of Veterinary Drugs in Food Samples of Animal Origin by Nanoflow Liquid Chromatography High Resolution Mass Spectrometry. Food Chem. 2018, 245, 29–38. DOI: 10.1016/j.foodchem.2017.10.083.
  • Moreno-González, D.; Alcántara-Durán, J.; Gilbert-López, B.; García-Reyes, J. F.; Molina-Díaz, A. Matrix-Effect Free Quantitative Liquid Chromatography Mass Spectrometry Analysis in Complex Matrices Using Nanoflow Liquid Chromatography with Integrated Emitter Tip and High Dilution Factors. J. Chromatogr. A 2017, 1519, 110–120. DOI: 10.1016/j.chroma.2017.09.006.
  • Marginean, I.; Kelly, R. T.; Moore, R. J.; Prior, D. C.; LaMarche, B. L.; Tang, K.; Smith, R. D. Selection of the Optimum Electrospray Voltage for Gradient Elution LC-MS Measurements. J. Am. Soc. Mass Spectrom. 2009, 20, 682–688. DOI: 10.1016/j.jasms.2008.12.004.
  • Lehotay, S. J.; Chen, Y. Hits and Misses in Research Trends to Monitor Contaminants in Foods. Anal. Bioanal. Chem. 2018, 410, 5331–5351. DOI: 10.1007/s00216-018-1195-3.
  • Desmet, G.; Eeltink, S. Fundamentals for LC Miniaturization. Anal. Chem. 2013, 85, 543–556. DOI: 10.1021/ac303317c.
  • Liu, H.-Y.; Lin, S.-L.; Chan, S.-A.; Lin, T.-Y.; Fuh, M.-R. Microfluidic Chip-Based Nano-Liquid Chromatography Tandem Mass Spectrometry for Quantification of Aflatoxins in Peanut Products. Talanta 2013, 113, 76–81. DOI: 10.1016/j.talanta.2013.03.053.
  • Eikel, D.; Henion, J. Liquid Extraction Surface Analysis (LESA) of Food Surfaces Employing Chip-Based Nano-Electrospray Mass Spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2345–2354. DOI: 10.1002/rcm.5107.
  • Sainiemi, L.; Nissilä, T.; Kostiainen, R.; Franssila, S.; Ketola, R. A. A Microfabricated Micropillar Liquid Chromatographic Chip Monolithically Integrated with an Electrospray Ionization Tip. Lab Chip 2012, 12, 325–332. DOI: 10.1039/c1lc20874h.
  • Aydoğan, C.; Rassi, Z. E. MWCNT Based Monolith for the Analysis of Antibiotics and Pesticides in Milk and Honey by Integrated Nano-Liquid Chromatography-High Resolution Orbitrap Mass Spectrometry. Anal. Methods 2019, 11, 21–28. DOI: 10.1039/C8AY02173B.
  • Contreras, M. d M.; Arráez-Román, D.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Nano-Liquid Chromatography Coupled to Time-of-Flight Mass Spectrometry for Phenolic Profiling: A Case Study in Cranberry Syrups. Talanta 2015, 132, 929–938. DOI: 10.1016/j.talanta.2014.10.049.
  • D'Orazio, G.; Rocchi, S.; Fanali, S. Nano-Liquid Chromatography Coupled with Mass Spectrometry: Separation of Sulfonamides Employing Non-Porous Core–Shell Particles. J. Chromatogr. A 2012, 1255, 277–285. DOI: 10.1016/j.chroma.2012.03.032.
  • Moreno-González, D.; Alcántara-Durán, J.; Addona, S. M.; Beneito-Cambra, M. Multi-Residue Pesticide Analysis in Virgin Olive Oil by Nanoflow Liquid Chromatography High Resolution Mass Spectrometry. J. Chromatogr. A 2018, 1562, 27–35. DOI: 10.1016/j.chroma.2018.05.053.
  • Mirabelli, M. F.; Wolf, J.-C.; Zenobi, R. Pesticide Analysis at Ppt Concentration Levels: Coupling Nano-Liquid Chromatography with Dielectric Barrier Discharge Ionization-Mass Spectrometry. Anal. Bioanal. Chem. 2016, 408, 3425–3434. DOI: 10.1007/s00216-016-9419-x.
  • Berlioz-Barbier, A.; Baudot, R.; Wiest, L.; Gust, M.; Garric, J.; Cren-Olivé, C.; Buleté, A. MicroQuEChERS–Nanoliquid Chromatography–Nanospray–Tandem Mass Spectrometry for the Detection and Quantification of Trace Pharmaceuticals in Benthic Invertebrates. Talanta 2015, 132, 796–802. DOI: 10.1016/j.talanta.2014.10.030.
  • Quality of wastewater in the El Paso, Texas region — Analysis of pharmaceuticals and personal care products using high performance liquid chromatography tandem mass spectrometry - ProQuest https://search.proquest.com/docview/916754906/?pq-origsite=primo (accessed Nov 4, 2019.
  • Berlioz-Barbier, A.; Buleté, A.; Faburé, J.; Garric, J.; Cren-Olivé, C.; Vulliet, E. Multi-Residue Analysis of Emerging Pollutants in Benthic Invertebrates by Modified Micro-Quick-Easy-Cheap-Efficient-Rugged-Safe Extraction and Nanoliquid Chromatography–Nanospray–Tandem Mass Spectrometry Analysis. J. Chromatogr. A 2014, 1367, 16–32. DOI: 10.1016/j.chroma.2014.09.044.
  • Alcántara-Durán, J.; Moreno-González, D.; García-Reyes, J. F.; Molina-Díaz, A. Use of a Modified QuEChERS Method for the Determination of Mycotoxin Residues in Edible Nuts by Nano Flow Liquid Chromatography High Resolution Mass Spectrometry. Food Chem. 2019, 279, 144–149. DOI: 10.1016/j.foodchem.2018.11.149.
  • Asensio-Ramos, M.; D'Orazio, G.; Hernandez-Borges, J.; Rocco, A.; Fanali, S. Multi-Walled Carbon Nanotubes–Dispersive Solid-Phase Extraction Combined with Nano-Liquid Chromatography for the Analysis of Pesticides in Water Samples. Anal. Bioanal. Chem. 2011, 400, 1113–1123. DOI: 10.1007/s00216-011-4885-7.
  • Moreno-González, D.; Cutillas, V.; Hernando, M. D.; Alcántara-Durán, J.; García-Reyes, J. F.; Molina-Díaz, A. Quantitative Determination of Pesticide Residues in Specific Parts of Bee Specimens by Nanoflow Liquid Chromatography High Resolution Mass Spectrometry. Sci. Total Environ. 2020, 715, 137005. DOI: 10.1016/j.scitotenv.2020.137005.
  • Moreno-González, D.; Alcántara-Durán, J.; Gilbert-López, B.; Beneito-Cambra, M.; Cutillas, V. M.; Rajski, Ł.; Molina-Díaz, A.; García-Reyes, J. F. Sensitive Detection of Neonicotinoid Insecticides and Other Selected Pesticides in Pollen and Nectar Using Nanoflow Liquid Chromatography Orbitrap Tandem Mass Spectrometry. J. AOAC Int. 2018, 101, 367–373. DOI: 10.5740/jaoacint.17-0412.
  • Zhang, Z.; Li, X.; Ding, S.; Jiang, H.; Shen, J.; Xia, X. Multiresidue Analysis of Sulfonamides, Quinolones, and Tetracyclines in Animal Tissues by Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry. Food Chem. 2016, 204, 252–262. DOI: 10.1016/j.foodchem.2016.02.142.
  • Kaufmann, A.; Butcher, P.; Maden, K.; Widmer, M. Quantitative Multiresidue Method for about 100 Veterinary Drugs in Different Meat Matrices by Sub 2-Μm Particulate High-Performance Liquid Chromatography Coupled to Time of Flight Mass Spectrometry. J. Chromatogr. A 2008, 1194, 66–79. DOI: 10.1016/j.chroma.2008.03.089.
  • Dasenaki, M. E.; Michali, C. S.; Thomaidis, N. S. Analysis of 76 Veterinary Pharmaceuticals from 13 Classes Including Aminoglycosides in Bovine Muscle by Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1452, 67–80. DOI: 10.1016/j.chroma.2008.03.089.
  • Aguilera-Luiz, M. M.; Martínez Vidal, J. L.; Romero-González, R.; Frenich, A. G. Multi-Residue Determination of Veterinary Drugs in Milk by Ultra-High-Pressure Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2008, 1205, 10–16. DOI: 10.1016/j.chroma.2008.07.066.
  • Martins, M. T.; Barreto, F.; Hoff, R. B.; Jank, L.; Arsand, J. B.; Motta, T. M. C.; Schapoval, E. E. C. Multiclass and Multi-Residue Determination of Antibiotics in Bovine Milk by Liquid Chromatography–Tandem Mass Spectrometry: Combining Efficiency of Milk Control and Simplicity of Routine Analysis. Int. Dairy J. 2016, 59, 44–51. DOI: 10.1016/j.idairyj.2016.02.048.
  • Romero-González, R.; Aguilera-Luiz, M. M.; Plaza-Bolaños, P.; Garrido Frenich, A.; Martínez Vidal, J. L. Food Contaminant Analysis at High Resolution Mass Spectrometry: Application for the Determination of Veterinary Drugs in Milk. J. Chromatogr. A 2011, 1218, 9353–9365. DOI: 10.1016/j.chroma.2011.10.074.
  • Jin, Y.; Zhang, J.; Zhao, W.; Zhang, W.; Wang, L.; Zhou, J.; Li, Y. Development and Validation of a Multiclass Method for the Quantification of Veterinary Drug Residues in Honey and Royal Jelly by Liquid Chromatography–Tandem Mass Spectrometry. Food Chem. 2017, 221, 1298–1307. DOI: 10.1016/j.foodchem.2016.11.026.
  • Xiu-Ping, Z.; Lin, M.; Lan-Qi, H.; Jian-Bo, C.; Li, Z. The Optimization and Establishment of QuEChERS-UPLC–MS/MS Method for Simultaneously Detecting Various Kinds of Pesticides Residues in Fruits and Vegetables. J. Chromatogr. B 2017, 1060, 281–290. DOI: 10.1016/j.jchromb.2017.06.008.
  • Yang, X.; Luo, J.; Duan, Y.; Li, S.; Liu, C. Simultaneous Analysis of Multiple Pesticide Residues in Minor Fruits by Ultrahigh-Performance Liquid Chromatography/Hybrid Quadrupole Time-of-Fight Mass Spectrometry. Food Chem. 2018, 241, 188–198. DOI: 10.1016/j.foodchem.2017.08.102.
  • Dias, J. V.; Cutillas, V.; Lozano, A.; Pizzutti, I. R.; Fernández-Alba, A. R. Determination of Pesticides in Edible Oils by Liquid Chromatography-Tandem Mass Spectrometry Employing New Generation Materials for Dispersive Solid Phase Extraction Clean-Up. J. Chromatogr. A 2016, 1462, 8–18. DOI: 10.1016/j.chroma.2016.07.072.
  • Anagnostopoulos, C.; Miliadis, G. E. Development and Validation of an Easy Multiresidue Method for the Determination of Multiclass Pesticide Residues Using GC–MS/MS and LC–MS/MS in Olive Oil and Olives. Talanta 2013, 112, 1–10. DOI: 10.1016/j.talanta.2013.03.051.
  • Kasiotis, K. M.; Anagnostopoulos, C.; Anastasiadou, P.; Machera, K. Pesticide Residues in Honeybees, Honey and Bee Pollen by LC–MS/MS Screening: Reported Death Incidents in Honeybees. Sci. Total Environ. 2014, 485–486, 633–642. DOI: 10.1016/j.scitotenv.2014.03.042.
  • Sivaperumal, P.; Anand, P.; Riddhi, L. Rapid Determination of Pesticide Residues in Fruits and Vegetables, Using Ultra-High-Performance Liquid Chromatography/Time-of-Flight Mass Spectrometry. Food Chem. 2015, 168, 356–365. DOI: 10.1016/j.foodchem.2014.07.072.
  • Jallow, M. F. A.; Awadh, D. G.; Albaho, M. S.; Devi, V. Y. Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait. Int. J. Environ. Res. Public. Health 2017, 14, 833, DOI: 10.3390/ijerph14080833.
  • Vuković, G.; Shtereva, D.; Bursić, V.; Mladenova, R.; Lazić, S. Application of GC–MSD and LC–MS/MS for the Determination of Priority Pesticides in Baby Foods in Serbian Market. LWT - Food Sci. Technol. 2012, 49, 312–319. DOI: 10.1016/j.lwt.2012.07.021.
  • Gómez-Pérez, M. L.; Romero-González, R.; Vidal, J. L. M.; Frenich, A. G. Analysis of Pesticide and Veterinary Drug Residues in Baby Food by Liquid Chromatography Coupled to Orbitrap High Resolution Mass Spectrometry. Talanta 2015, 131, 1–7. DOI: 10.1016/j.talanta.2014.07.066.
  • Hidalgo-Ruiz, J. L.; Romero-González, R.; Vidal, J. L. M.; Frenich, A. G. Determination of Mycotoxins in Nuts by Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry: Looking for a Representative Matrix. J. Food Compos. Anal. 2019, 82, 103228. DOI: 10.1016/j.jfca.2019.05.011.
  • Arroyo-Manzanares, N.; Huertas-Pérez, J. F.; Gámiz-Gracia, L.; García-Campaña, A. M. A New Approach in Sample Treatment Combined with UHPLC-MS/MS for the Determination of Multiclass Mycotoxins in Edible Nuts and Seeds. Talanta 2013, 115, 61–67. DOI: 10.1016/j.talanta.2013.04.024.
  • Manizan, A. L.; Oplatowska-Stachowiak, M.; Piro-Metayer, I.; Campbell, K.; Koffi-Nevry, R.; Elliott, C.; Akaki, D.; Montet, D.; Brabet, C. Multi-Mycotoxin Determination in Rice, Maize and Peanut Products Most Consumed in Côte D’Ivoire by UHPLC-MS/MS. Food Control 2018, 87, 22–30. DOI: 10.1016/j.foodcont.2017.11.032.
  • Cunha, S. C.; Sá, S. V. M.; Fernandes, J. O. Multiple Mycotoxin Analysis in Nut Products: Occurrence and Risk Characterization. Food Chem. Toxicol. 2018, 114, 260–269. DOI: 10.1016/j.fct.2018.02.039.
  • Thompson, M.; Ellison, S. L. R.; Wood, R. Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. DOI: 10.1351/pac200274050835.
  • ICH Q2(R1) Validation of Analytical Procedures: Text and Methodology - ECA Academy. https://www.gmp-compliance.org/guidelines/gmp-guideline/ich-q2r1-validation-of-analytical-procedures-text-and-methodology (accessed Aug 1, 2020).
  • Method Validation and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed (SANTE/12682/2019) https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727&LabID=100&Lang=EN (accessed Aug 1, 2020).
  • Aqai, P.; Peters, J.; Gerssen, A.; Haasnoot, W.; Nielen, M. W. F. Immunomagnetic Microbeads for Screening with Flow Cytometry and Identification with Nano-Liquid Chromatography Mass Spectrometry of Ochratoxins in Wheat and Cereal. Anal. Bioanal. Chem. 2011, 400, 3085–3096. DOI: 10.1007/s00216-011-4974-7.
  • Cappiello, A.; Famiglini, G.; Mangani, F.; Palma, P.; Siviero, A. Nano-High-Performance Liquid Chromatography–Electron Ionization Mass Spectrometry Approach for Environmental Analysis. Anal. Chim. Acta 2003, 493, 125–136. DOI: 10.1016/S0003-2670(03)00868-7.
  • D'Orazio, G.; Fanali, S. Pressurized Nano-Liquid–Junction Interface for Coupling Capillary Electrochromatography and Nano-Liquid Chromatography with Mass Spectrometry. J. Chromatogr. A 2013, 1317, 67–76. DOI: 10.1016/j.chroma.2013.08.052.
  • Li, L.; Zheng, B.; Liu, L. Biomonitoring and Bioindicators Used for River Ecosystems: Definitions, Approaches and Trends. Proc. Environ. Sci. 2010, 2, 1510–1524. DOI: 10.1016/j.proenv.2010.10.164.
  • Huerta, B.; Jakimska, A.; Llorca, M.; Ruhí, A.; Margoutidis, G.; Acuña, V.; Sabater, S.; Rodriguez-Mozaz, S.; Barcelò, D. Development of an Extraction and Purification Method for the Determination of Multi-Class Pharmaceuticals and Endocrine Disruptors in Freshwater Invertebrates. Talanta 2015, 132, 373–381. DOI: 10.1016/j.talanta.2014.09.017.
  • Marín, J. M.; Gracia-Lor, E.; Sancho, J. V.; López, F. J.; Hernández, F. Application of Ultra-High-Pressure Liquid Chromatography–Tandem Mass Spectrometry to the Determination of Multi-Class Pesticides in Environmental and Wastewater Samples: Study of Matrix Effects. J. Chromatogr. A 2009, 1216, 1410–1420. DOI: 10.1016/j.chroma.2008.12.094.
  • Nödler, K.; Licha, T.; Bester, K.; Sauter, M. Development of a Multi-Residue Analytical Method, Based on Liquid Chromatography–Tandem Mass Spectrometry, for the Simultaneous Determination of 46 Micro-Contaminants in Aqueous Samples. J. Chromatogr. A 2010, 1217, 6511–6521. DOI: 10.1016/j.chroma.2010.08.048.
  • Alvarez-Muñoz, D.; Huerta, B.; Fernandez-Tejedor, M.; Rodríguez-Mozaz, S.; Barceló, D. Multi-Residue Method for the Analysis of Pharmaceuticals and Some of Their Metabolites in Bivalves. Talanta 2015, 136, 174–182. DOI: 10.1016/j.talanta.2014.12.035.
  • Klosterhaus, S. L.; Grace, R.; Hamilton, M. C.; Yee, D. Method Validation and Reconnaissance of Pharmaceuticals, Personal Care Products, and Alkylphenols in Surface Waters, Sediments, and Mussels in an Urban Estuary. Environ. Int. 2013, 54, 92–99. DOI: 10.1016/j.envint.2013.01.009.
  • González-Fuenzalida, R. A.; López-García, E.; Moliner-Martínez, Y. Campíns-Falcó, P. Adsorbent Phases with Nanomaterials for in-Tube Solid-Phase Microextraction Coupled on-Line to Liquid Nanochromatography. J. Chromatogr. A 2016, 1432, 17–25. DOI: 10.1016/j.chroma.2016.01.009.
  • D'Orazio, G.; Hernández‐Borges, J.; Asensio‐Ramos, M.; Rodríguez‐Delgado, M. Á.; Fanali, S. Capillary Electrochromatography and Nano-Liquid Chromatography Coupled to Nano-Electrospray Ionization Interface for the Separation and Identification of Estrogenic Compounds. Electrophoresis 2016, 37, 356–362. DOI: 10.1002/elps.201500327.
  • Serra-Mora, P.; Jornet-Martinez, N.; Moliner-Martinez, Y. Campíns-Falcó, P. In Tube-Solid Phase Microextraction-Nano Liquid Chromatography: Application to the Determination of Intact and Degraded Polar Triazines in Waters and Recovered Struvite. J. Chromatogr. A 2017, 1513, 51–58. DOI: 10.1016/j.chroma.2017.07.053.
  • Berlioz-Barbier, A.; Buleté, A.; Fildier, A.; Garric, J.; Vulliet, E. Non-Targeted Investigation of Benthic Invertebrates (Chironomus Riparius) Exposed to Wastewater Treatment Plant Effluents Using Nanoliquid Chromatography Coupled to High-Resolution Mass Spectrometry. Chemosphere 2018, 196, 347–353. DOI: 10.1016/j.chemosphere.2018.01.001.
  • Albergamo, A.; Rigano, F.; Purcaro, G.; Mauceri, A.; Fasulo, S.; Mondello, L. Free Fatty Acid Profiling of Marine Sentinels by NanoLC-EI-MS for the Assessment of Environmental Pollution Effects. Sci. Total Environ. 2016, 571, 955–962. DOI: 10.1016/j.scitotenv.2016.07.082.
  • Rigano, F.; Albergamo, A.; Sciarrone, D.; Beccaria, M.; Purcaro, G.; Mondello, L. Nano Liquid Chromatography Directly Coupled to Electron Ionization Mass Spectrometry for Free Fatty Acid Elucidation in Mussel. Anal. Chem. 2016, 88, 4021–4028. DOI: 10.1021/acs.analchem.6b00328.
  • Serra-Mora, P.; Herráez-Hernández, R.; Campíns-Falcó, P. Minimizing the Impact of Sample Preparation on Analytical Results: In-Tube Solid-Phase Microextraction Coupled on-Line to Nano-Liquid Chromatography for the Monitoring of Tribenuron Methyl in Environmental Waters. Sci. Total Environ. 2020, 721, 137732. DOI: 10.1016/j.scitotenv.2020.137732.
  • Pan, H. T.; Guo, M. X.; Xiong, Y. M.; Ren, J.; Zhang, J. Y.; Gao, Q.; Ke, Z. H.; Xu, G. F.; Tan, Y. J.; Sheng, J. Z.; Huang, H. F. Differential Proteomic Analysis of Umbilical Artery Tissue from Preeclampsia Patients, Using ITRAQ Isobaric Tags and 2D Nano LC–MS/MS. J. Proteomics 2015, 112, 262–273. DOI: 10.1016/j.jprot.2014.09.006.
  • Nägele, E.; Vollmer, M.; Hörth, P. Improved 2D Nano-LC/MS for Proteomics Applications: A Comparative Analysis Using Yeast Proteome. J. Biomol. Tech. 2004, 15, 134–143.
  • Watson, G. W.; Wickramasekara, S.; Maier, C. S.; Williams, D. E.; Dashwood, R. H.; Ho, E. Assessment of Global Proteome in LNCaP Cells by 2D-RP/RP LC–MS/MS following Sulforaphane Exposure. EuPA Open Proteomics 2015, 9, 34–40. DOI: 10.1016/j.euprot.2015.08.002.
  • Luo, Q.; Yue, G.; Valaskovic, G. A.; Gu, Y.; Wu, S.-L.; Karger, B. L. On-Line 1D and 2D Porous Layer Open Tubular/LC-ESI-MS Using 10-Μm-i.d. Poly(Styrene − Divinylbenzene) Columns for Ultrasensitive Proteomic Analysis. Anal. Chem. 2007, 79, 6174–6181. DOI: 10.1021/ac070583w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.