1,558
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Current Progress in Natural Deep Eutectic Solvents for the Extraction of Active Components from Plants

, , ORCID Icon, , ORCID Icon, ORCID Icon & show all
Pages 177-198 | Published online: 29 Jul 2021

References

  • Ahn, K. The Worldwide Trend of Using Botanical Drugs and Strategies for Developing Global Drugs. BMB Rep. 2017, 50, 111–116. DOI: 10.5483/BMBRep.2017.50.3.221.
  • Lee, E.; Choi, J.-H.; Jeong, H.-J.; Hwang, S.-G.; Lee, S.; Oh, J.-W. Hematologic and Serologic Status of Military Working Dogs Given Standard Diet Containing Natural Botanical Supplements. Toxicol. Rep. 2018, 5, 343–347. DOI: 10.1016/j.toxrep.2018.02.016.
  • Ang, L.; Lee, H. W.; Choi, J. Y.; Zhang, J. H.; Lee, M. S. Herbal Medicine and Pattern Identification for Treating COVID-19: A Rapid Review of Guidelines. Chin. J. Integr. Med. 2020, 9, 100407. DOI: doi:10.1016/j.imr.2020.100407.
  • György, R.; Ákos, O.; Zoltán, R.; György, F. A Modern Approach to Traditional Chinese Medicine. IFAC Proc. Vol. 2012, 45, 196–200. DOI: 10.3182/20120829-3-HU-2029.00049..
  • Chuo, S. C.; Nasir, H. M.; Mohd-Setapar, S. H.; Mohamed, S. F.; Ahmad, A.; Wani, W. A.; Muddassir, M.; Alarifi, A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit. Rev. Anal. Chem. 2020. DOI: doi:10.1080/10408347.2020.1820851.
  • Lu, Y.; Jiang, J. G. Application of Enzymatic Method in the Extraction and Transformation of Natural Botanical Active Ingredients. Appl. Biochem. Biotechnol. 2013, 169, 923–940. DOI: 10.1007/s12010-012-0026-9.
  • Chemat, F.; Vian, M. A.; Ravi, H. K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Tixier, A. S. F. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules 2019, 24, 3007. DOI: doi:.10.3390/molecules24163007.
  • Khoddami, A.; Wilkes, M.; Roberts, T. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. DOI: 10.3390/molecules18022328.
  • Wang, B. S.; Qin, L.; Mu, T. C.; Xue, Z. N.; Gao, G. H. Are Ionic Liquids Chemically Stable? Chem. Rev. 2017, 117, 7113–7131. doi:10.1021/acs.chemrev.6b00594.
  • Xue, Z. M.; Qin, L.; Jiang, J. Y.; Mu, T. C.; Gao, G. H. Thermal, Electrochemical and Radiolytic Stabilities of Ionic Liquids. Phys. Chem. Chem. Phys. 2018, 20, 8382–8402. DOI: 10.1039/c7cp07483b.
  • Chen, Y.; Hu, X. H.; Chen, W. J.; Liu, C.; Qiao, K. P.; Zhu, M. J.; Lou, Y. Y.; Mu, T. C. High Volatility of Superbase-Derived Eutectic Solvents Used for CO2 Capture. Phys. Chem. Chem. Phys. 2021, 23, 2193–2210. DOI: 10.1039/d0cp05885h.
  • Li, Q. B.; Jiang, J. Y.; Li, G. F.; Zhao, W. C.; Zhao, X. H.; Mu, T. C. The Electrochemical Stability of Ionic Liquids and Deep Eutectic Solvents. Sci. China Chem. 2016, 59, 571–577. DOI: 10.1007/s11426-016-5566-3.
  • Toledo Hijo, A. A. C.; Maximo, G. J.; Costa, M. C.; Batista, E. A. C.; Meirelles, A. J. A. Applications of Ionic Liquids in the Food and Bioproducts Industries. ACS Sustain. Chem. Eng. 2016, 4, 5347–5369. DOI: 10.1021/acssuschemeng.6b00560.
  • Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 1, 70–71. DOI: 10.1039/b210714g.
  • Choi, Y. H.; van Spronsen, J.; Dai, Y. T.; Verberne, M.; Hollmann, F.; Arends, I. W. C. E.; Witkamp, G. J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology. Plant Physiol. 2011, 156, 1701–1705. DOI: 10.1104/pp.111.178426.
  • Kumar, M. Deep Eutectic Solvent Promoted Efficient and Environmentally Benign Four-Component Domino Protocol for Synthesis of Spirooxindoles. RSC Adv. 2014, 4, 5105–5112. DOI: 10.1039/c3ra44600j.
  • Antonello, D. C.; Matteo, T.; Romina, Z.; Boncompagni, S.; Di Profio, P.; Ettorre, V.; Fontana, A.; Germani, R.; Siani, G. Novel Zwitterionic Natural Deep Eutectic Solvents as Environmentally Friendly Media for Spontaneous Self-Assembly of Gold Nanoparticles. J. Mol. Liq. 2018, 268, 371–375. DOI: 10.1016/j.molliq.2018.07.060.
  • Ali, M. C.; Liu, R. R.; Chen, J.; Cai, T. P.; Zhang, H. J.; Li, Z.; Zhai, H. L.; Qiu, H. D. New Deep Eutectic Solvents Composed of Crown Ether, Hydroxide and Polyethylene Glycol for Extraction of Non-Basic N-Compounds. Chinese Chemm Lett 2019, 30, 871–874. DOI: 10.1016/j.cclet.2019.02.025.
  • Liu, F. J.; Chen, W.; M. J, X.; Zhang, J. Y.; Kan, X.; Zhong, F. Y.; Huang, K.; Zheng, A. M.; Jiang, L. L. Thermodynamic and Molecular Insights into the Absorption of H2S, CO2, and CH4 in Choline Chloride plus Urea Mixtures. AIChE. J. 2019, 65,e16574. DOI: 10.1002/aic.16574.]
  • Pradeepkumar, P.; Subbiah, A.; Rajan, M. Synthesis of Bio-Degradable Poly(2-Hydroxyethyl Methacrylate) Using Natural Deep Eutectic Solvents for SustainableCancer Drug Delivery. SN Appl. Sci. 2019, 1, 1–13. DOI: 10.1007/s42452-019-0591-4.
  • Torres-Vega, J.; Gómez-Alonso, S.; Pérez-Navarro, J.; Pastene-Navarrete, E. Green Extraction of Alkaloids and Polyphenols from Peumus boldus Leaves with Natural Deep Eutectic Solvents and Profiling by HPLC-PDA-IT-MS/MS and HPLC-QTOF-MS/MS. Plants 2020, 9, 242. DOI: 10.3390/plants9020242.
  • Sofia, C.; Constantina, T. Extraction of Phenolic Compounds from Olive Pomace by Using Natural Deep Eutectic Solvents and Innovative Extraction Techniques. Innov. Food. Sci. Emerg. 2018, 48, 228–239. DOI: 10.1016/j.ifset.2018.07.001.
  • Wan Mahmood, W. M. A.; Lorwirachsutee, A.; Theodoropoulos, C.; Gonzalez-Miquel, M. Polyol-Based Deep Dutectic Solvents for Extraction of Natural Polyphenolic Antioxidants from Chlorella vulgaris. ACS Sustain. Chem. Eng. 2019, 7,‏ 5018–5026. 10.1021/acssuschemeng.8b05642. DOI: doi:.
  • Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of Polyphenolic Antioxidants from Orange Peel Waste Using Deep Eutectic Solvents. Sep. Purif. Technol. 2018, 206, 1–13. DOI: 10.1016/j.seppur.2018.05.052.
  • Huang, J.; Guo, X.; Xu, T.; Fan, L.; Zhou, X.; Wu, S. Ionic Deep Eutectic Solvents for the Extraction and Separation of Natural products. J. Chromatogr. A 2019, 1598, 1–19. DOI: 10.1016/j.chroma.2019.03.046.
  • Chen, J.; Ali, M. C.; Liu, R. R.; Munyemana, J. C.; Li, Z.; Zhai, H. L.; Qiu, H. D. Basic Deep Eutectic Solvents as Reactant, Template and Solvents for Ultra-Fast Preparation of Transition Metal Oxide Nanomaterials. Chin. Chem. Lett. 2020, 31, 1584–1587. DOI: 10.1016/j.cclet.2019.09.055.
  • Santana, A. P.; Mora-Vargas, J. A.; Guimaraes, T. G. S.; Amaral, C. D. B.; Oliveira, A.; Gonzalez, M. H. Sustainable Synthesis of Natural Deep Eutectic Solvents (NADES) by Different Methods. J. Mol. Liq. 2019, 293, 111452. DOI: 10.1016/j.molliq.2019.111452.
  • Koutsoukos, S.; Tsiaka, T.; Tzani, A.; Zoumpoulakis, P.; Detsi, A. Choline Chloride and Tartaric Acid, a Natural Deep Eutectic Solvent for the Efficient Extraction of Phenolic and Carotenoid Compounds. J. Clean. Prod. 2019, 241, 118384. DOI: 10.1016/j.jclepro.2019.118384.
  • Florindo, C.; Oliveira, F. S.; Rebelo, L. P. N.; Fernandes, A. M.; Marrucho, I. M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425. DOI: 10.1021/sc500439w.
  • Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y. H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. DOI: 10.1016/j.aca.2012.12.019.
  • Gutiérrez, M. C.; Ferrer, M. L.; Mateo, C. R.; del Monte, F. Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. Langmuir 2009, 25, 5509–5515. DOI: 10.1021/la900552b.
  • Zhu, X. H.; Hang, Q. M. Microscopical and Physical Characterization of Microwave and Microwave-Hydrothermal Synthesis Products. Micron 2013, 44, 21–44. DOI: 10.1016/j.micron.2012.06.005.
  • Fu, N.; Li, L.; Liu, K.; Kim, C. K.; Li, J.; Zhu, T.; Li, J.; Tang, B. A Choline chloride-Acrylic Acid Deep Eutectic Solvent Polymer Based on Fe3O4 Particles and MoS2 Sheets (Poly(ChCl-AA DES)@Fe3O4@MoS2) with Specific Recognition and Good Antibacterial Properties for β-Lactoglobulin in Milk. Talanta 2019, 197, 567–577. DOI: 10.1016/j.talanta.2019.01.072.
  • Sun, H.; Li, Y.; Wu, X.; Li, G. Theoretical Study on the Structures and Properties of Mixtures of Urea and Choline Chloride. J. Mol. Model. 2013, 19, 2433–2441. DOI: 10.1007/s00894-013-1791-2.
  • Hammond, O. S.; Bowron, D. T.; Edler, K. J. Liquid Structure of the Choline Chloride-Urea Deep Eutectic Solvent (Reline) from Neutron Diffraction and Atomistic Modelling. Green Chem. 2016, 18, 2736–2744. DOI: 10.1039/C5GC02914G.
  • Fetisov, E. O.; Harwood, D. B.; Kuo, I. F. W.; Warrag, S. E. E.; Kroon, M. C.; Peters, C. J.; Siepmann, J. I. First Principles Molecular Dynamics Study of a Deep Eutectic Solvent: Choline Chloride/Urea and Its Mixture with Water. J. Phys. Chem. B 2017, 255, 1245–1254. DOI: 10.1021/acs.jpcb.7b10422.
  • Saha, M.; Rahman, M. D. S.; Hossain, M. D. N.; Raynie, D. E.; Halim, M. A. Molecular and Spectroscopic Insights of a Choline Chloride Based Therapeutic Deep Eutectic Solvent. J. Phys. Chem. A 2020, 124, ‏ 4690–4699. DOI: 10.1021/acs.jpca.0c00851.
  • Yu, D. K.; Mu, T. C. Strategy to Form Eutectic Molecular Liquids Based on Noncovalent Interactions. J. Phys. Chem. B 2019, 123, 4958–4966. DOI: 10.1021/acs.jpcb.9b02891.
  • Yu, D. K.; Mou, H. Y.; Fu, H.; Lan, X.; Wang, Y. X.; Mu, T. C. "Inverted" Deep Eutectic Solvents Based on Host-Guest Interactions . Chem. Asian J. 2019, 14, 4183–4188. DOI: 10.1002/asia.201901365.
  • Yu, D. K.; Mou, H. Y.; Zhao, X. H.; Wang, Y. Q.; Mu, T. C. Eutectic Molecular Liquids Based on Hydrogen Bonding and π-π Interaction for Exfoliating Two-dimensional Materials and Recycling Polymers . Chem. Asian J. 2019, 14, 3350–3356. DOI: 10.1002/asia.201900990.
  • Shang, X. C.; Dou, Y. Q.; Zhang, Y. J.; Tan, J. N.; Liu, X. M.; Zhang, Z. F. Tailor-Made Natural Deep Eutectic Solvents for Green Extraction of Isoflavones from Chickpea (Cicer arietinum L.) Sprouts. Ind. Crop. Prod. 2019, 140, 111724-111731. DOI: 10.1016/j.indcrop.2019.111724.
  • Xu, M. L.; Ran, L.; Chen, N.; Fan, X. W.; Ren, D. D.; Yi, L. Z. Polarity-Dependent Extraction of Flavonoids from Citrus Peel Waste Using a Tailor-Made Deep Eutectic Solvent. Food Chem. 2019, 297, 124970-124979. DOI: 10.1016/j.foodchem.2019.124970
  • He, X.; Yang, J.; Huang, Y.; Zhang, Y.; Wan, H.; Li, C. Green and Efficient Ultrasonic-Assisted Extraction of Bioactive Components from Salvia miltiorrhiza by Natural Deep Eutectic Solvents. Molecules 2019, 25, 140. DOI: 10.3390/molecules25010140.
  • Hayyan, M.; Hashim, M. A.; Al-Saadi, M. A.; Hayyan, A.; AlNashef, I. M.; Mirghani, M. E. S. Assessment of Cytotoxicity and Toxicity for Phosphonium-Based Deep Eutectic Solvents. Chemosphere 2013, 93, 455–459. DOI: 10.1016/j.chemosphere.2013.05.013.
  • Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.-G. Green and Efficient Extraction of Rutin from Tartary Buckwheat Hull by Using Natural Deep Eutectic solvents. Food Chem. 2017, 221, ‏1400–1405. DOI: 10.1016/j.foodchem.2016.11.013.
  • de Morais, P.; Gonçalves, F.; Coutinho, J. A. P.; Ventura, S. P. M. Ecotoxicity of Cholinium-Based Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2015, 3, 3398–3404. DOI: 10.1021/acssuschemeng.5b01124.
  • Zhao, B. Y.; Xu, P.; Yang, F. X.; Wu, H.; Zong, M. H.; Lou, W. Y. Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. DOI: 10.1021/acssuschemeng.5b00619.
  • Macário, I. P. E.; Fátima, J.; Pereira, J. L.; Ventura, S. P. M.; Gonçalves, A. M. M.; Coutinho, J. A. P.; Gonçalves, F. J. M. Unraveling the Ecotoxicity of Deep Eutectic Solvents Using the Mixture Toxicity Theory. Chemosphere 2018, 121, 890–897. DOI: 10.1016/j.chemosphere.2018.08.153.
  • Hayyan, M.; Mbous, Y. P.; Looi, C. Y.; Wong, W. F.; Hayyan, A.; Salleh, Z.; Mohd-Ali, O. Natural Deep Eutectic Solvents: Cytotoxic Profile. SpringerPlus 2016, 5, 12. DOI: 10.1186/s40064-016-2575-9.
  • Wen, Q.; Chen, J.-X.; Tang, Y.-L.; Wang, J.; Yang, Z. Assessing the Toxicity and Biodegradability of Deep Eutectic Solvents. Chemosphere 2015, 132, 63–69. DOI: 10.1016/j.chemosphere.2015.02.061.
  • Hou, X.-D.; Liu, Q.-P.; Smith, T. J.; Li, N.; Zong, M.-H. Evaluation of Toxicity and Biodegradability of Cholinium Amino Acids Ionic Liquids. PLoS One. 2013, 8, e59145. DOI: 10.1371/journal.pone.0059145.
  • Chen, Y.; Wang, Q.; Liu, Z. H.; Li, Z.; Chen, W. J.; Zhou, L. Y.; Qin, J. Q.; Meng, Y. X.; Mu, T. C. Vaporization Enthalpy, Long-Term Evaporation and Evaporation Mechanism of Polyethylene Glycol-Based Deep Eutectic Solvents. New J. Chem. 2020, 44, 9493–9501. DOI: 10.1039/D0NJ01601B.
  • Rodriguez, N. R.; van den Bruinhorst, A.; Kollau, L. J. B. M.; Kroon, M. C.; Binnemans, K. Degradation of Deep-Eutectic Solvents Based on Choline Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2019, 7, 11521–11528. DOI: 10.1021/acssuschemeng.9b01378.
  • Chen, Y.; Yu, D. K.; Lu, Y. H.; Li, G. H.; Fu, L.; A Mu, T. C. Volatility of Deep Eutectic Solvent Choline Chloride:N‑Methylacetamide at Ambient Temperature and Pressure. Ind. Eng. Chem. Res. 2019, 58, 7308–7317. DOI: 10.1021/acs.iecr.8b04723.
  • Chen, Y.; Mu, T. C. Revisiting Greenness of Ionic Liquids and Deep Eutectic Solvents. Green Chem. Eng. 2021. DOI: 10.1016/j.gce.2021.01.004.
  • Chen, Y.; Yu, D. K.; Chen, W. J.; Fu, L.; Mu, T. C. Water Absorption by Deep Eutectic Solvents. Phys. Chem. Chem. Phys. 2019, 21, 2601–2610. DOI: 10.1039/c8cp07383j.
  • Ghayour, N.; Hosseini, S. M. H.; Eskandari, M. H.; Esteghlal, S.; Nekoei, A.-R.; Hashemi Gahruie, H.; Tatar, M.; Naghibalhossaini, F. Nanoencapsulation of Quercetin and Curcumin in Casein-Based Delivery Systems. Food Hydrocoll. 2019, 87, 394–403. DOI: 10.1016/j.foodhyd.2018.08.031.
  • Wang, X. H.; Wang, J. P. Effective Extraction with Deep Eutectic Solvents and Enrichment by Macroporous Adsorption Resin of Flavonoids from Carthamus tinctorius L. J. Pharm. Biomed. Anal. 2019, 176, 112804–112804. DOI: 10.1016/j.jpba.2019.112804.
  • Wang, H.; Ma, X.; Cheng, Q.; Xi, X.; Zhang, L. Deep Eutectic Solvent-Based Microwave-Assisted Extraction of Baicalin from Scutellaria baicalensis Georgi. J. Chem. 2018, 2018, 1–10. DOI: 10.1155/2018/9579872..
  • Wang, H.; Ma, X. D.; Cheng, Q.; Wang, L.; Zhang, L. Deep Eutectic Solvent-Based Ultrahigh Pressure Extraction of Baicalin from Scutellaria baicalensis Georgi. Molecules 2018, 32, 3233. DOI: 10.3390/molecules23123233.
  • Mulia, K.; Fauzia, F.; Krisanti, E. Polyalcohols as Hydrogen-Bonding Donors in Choline Chloride-Based Deep Eutectic Solvents for Extraction of Xanthones from the Pericarp of Garcinia mangostana L. Molecules 2019, 24, 636. DOI: 10.3390/molecules24030636.
  • Duan, L.; Zhang, W.-H.; Zhang, Z.-H.; Liu, E.-H.; Guo, L. Evaluation of Natural Ddeep Eutectic Solvents for the Extraction of Bioactive Flavone C-Glycosides from Flos Trollii. Microchem. J. 2019, 145, 180–186. DOI: 10.1016/j.microc.2018.10.031.
  • Zeng, J.; Shang, X. C.; Zhang, P.; Wang, H. W.; Gu, Y. L.; Tan, J. N. Combined Use of Deep Eutectic Solvents, Macroporous Resins, and Preparative Liquid Chromatography for the Isolation and Purification of Flavonoids and 20-Hydroxyecdysone from Chenopodium quinoa Willd. Biomolecules 2019, 12, 776. DOI: 10.3390/biom9120776.
  • Bajkacz, S.; Adamek, J. Evaluation of New Natural Deep Eutectic Solvents for the Extraction of Isoflavones from Soy Products. Talanta 2017, 168, 329–335. DOI: 10.1016/j.talanta.2017.02.065.
  • Zhuang, B.; Dou, L.-L.; Li, P.; Liu, E.-H. Deep Eutectic Solvents as Green Media for Extraction of Flavonoid Glycosides and Aglycones from Platycladi cacumen. J. Pharm. Biomed. Anal. 2017, 134, 214–219. DOI: 10.1016/j.jpba.2016.11.049.
  • Oktaviyanti, N. D.; Kartini.; Mun'Im, A. Application and Optimization of Ultrasound-Assisted Deep Eutectic Solvent for the Extraction of New Skin-Lightening Cosmetic Materials from Ixora javanica Flower. Heliyon 2019, 5, e02950. DOI: 10.1016/j.heliyon.2019.e02950.
  • Wang, G.; Cui, Q.; Yin, L.-J.; Zheng, X.; Gao, M.-Z.; Meng, Y.; Wang, W. Efficient Extraction of Flavonoids from Flos Sophorae Immaturus by Tailored and Sustainable Deep Eutectic Solvent as Green Extraction Media. J. Pharm. Biomed. Anal. 2019, 170, 285–294. DOI: 10.1016/j.jpba.2018.12.032.
  • Mansur, A. R.; Song, N.-E.; Jang, H. W.; Lim, T.-G.; Yoo, M.; Nam, T. G. Optimizing the Ultrasound-Assisted Deep Eutectic Solvent Extraction of Flavonoids in Common Buckwheat Sprouts. Food Chem. 2019, 293, 438–445. DOI: 10.1016/j.foodchem.2019.05.003.
  • Shang, X. C.; Tan, J. N.; Du, Y. M.; Liu, X. M.; Zhang, Z. F. Environmentally-Friendly Extraction of Flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja Leaves with Deep Eutectic Solvents and Evaluation of Their Antioxidant Activities. Molecules 2018, 23, 2110. DOI: 10.3390/molecules23092110.
  • Cui, Q.; Liu, J.-Z.; Wang, L.-T.; Kang, Y.-F.; Meng, Y.; Jiao, J.; Fu, Y.-J. Sustainable Deep Eutectic Solvents Preparation and Their Efficiency in Extraction and Enrichment of Main Bioactive Flavonoids from Sea Buckthorn Leaves. J. Clean. Prod. 2018, 184, ‏826–835. DOI: 10.1016/j.jclepro.2018.02.295.
  • Wan, Y.; Wang, M.; Zhang, K.; Fu, Q.; Wang, L.; Gao, M.; Xia, Z.; Gao, D. Extraction and Determination of Bioactive Flavonoids from Abelmoschus manihot (Linn.) Medicus Flowers Using Deep Eutectic Solvents Coupled with High-Performance Liquid Chromatography. J. Sep. Sci. 2019, 42, 2044–2052. DOI: 10.1002/jssc.201900031.
  • Ma, Y.; Liu, M.; Tan, T.; Yan, A.; Guo, L.; Jiang, K.; Tan, C.; Wan, Y. Deep Eutectic Solvents Used as Extraction Solvent for the Determination of Flavonoids from Camellia oleifera Flowers by High-Performance Liquid Chromatography. Phytochem. Anal. 2018, 29, ‏639–648. DOI: 10.1002/pca.2777.
  • Jokic, S.; Safranko, S.; Jakovljevic, M.; Cikos, A. M.; Kajic, N.; Kolarevic, F.; Babic, J.; Molnar, M. Sustainable Green Procedure for Extraction of Hesperidin from Selected Croatian Mandarin Peels. Processes 2019, 7, 469. DOI: 10.3390/pr7070469.
  • Dai, Y.; Row, K. H. Application of Natural Deep Eutectic Solvents in the Extraction of Quercetin from Vegetables. Molecules 2019, 24, 2300. DOI: 10.3390/molecules24122300.
  • Wang, L.-T.; Yang, Q.; Cui, Q.; Fan, X.-H.; Dong, M.-Z.; Gao, M.-Z.; Lv, M.-J.; An, J.-Y.; Meng, D.; Zhao, X.-H.; et al. Recyclable Menthol-Based Deep Eutectic Solvent Micellar System for Extracting Phytochemicals from Ginkgo biloba Leaves. J. Clean. Prod. 2020, 244, 118648. DOI: 10.1016/j.jclepro.2019.118648.
  • Jakovljevic, M.; Vladic, J.; Vidovic, S.; Pastor, K.; Jokic, S.; Molnar, M.; Jerkovic, I. Application of Deep Eutectic Solvents for the Extraction of Rutin and Rosmarinic Acid from Satureja montana L. and Evaluation of the Extracts Antiradical Activity. Plants 2020, 9, 153. DOI: 10.3390/plants9020153.
  • Mulia, K.; Yoksandi, Y.; Kurniawan, N.; Pane, I. F.; Krisanti, E. A. 1,2-Propanediol - Betaine as Green Solvent for Extracting α-Mangostin from the Rind of Mangosteen Fruit: Solvent Recovery and Physical Characteristics. J. Phys. Con. Ser. 2019, 1198, 062003. DOI: 10.1088/1742-6596/1198/6/062003.
  • Peng, F.; Xu, P.; Zhao, B.-Y.; Zong, M.-H.; Lou, W.-Y. The Application of Deep Eutectic Solvent on the Extraction and in Vitro Antioxidant Activity of Rutin from Sophora japonica Bud. J. Food Sci. Technol. 2018, 55, ‏2326–2333. DOI: 10.1007/s13197-018-3151-9.
  • Wu, Y. C.; Wu, P.; Li, Y. B.; Liu, T. C.; Zhang, L.; Zhou, Y. H. Natural Deep Eutectic Solvents as New Green Solvents to Extract Anthraquinones from Rheum palmatum L. RSC Adv. 2018, 8, 15069–15077. DOI: 10.1039/C7RA13581E.
  • Stefou, I.; Grigorakis, S.; Loupassaki, S.; Makris, D. P. Development of Sodium Propionate‑Based Deep Eutectic Solvents for Polyphenol Extraction from Onion Solid Wastes. Clean Techn. Environ. Policy 2019, 21, 1563–1574. DOI: 10.1039/c7ra13581e.
  • Panic, M.; Stojkovic, M. R.; Kraljic, K.; Škevin, D.; Redovniković, I. R.; Srček, V. G.; Radošević, K.. Ready-to-Use Green Polyphenolic Extracts from Food by-Products. Food Chem. 2019, 283, 628–636. DOI: 10.1016/j.foodchem.2019.01.061.
  • Kaltsa, O.; Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D. P. A Green Extraction Process for Polyphenols from Elderberry (Sambucus nigra) Flowers Using Deep Eutectic Solvent and Ultrasound-Assisted Pretreatment. Molecules 2020, 25, 921. DOI: 10.3390/molecules25040921.
  • Hsieh, Y. H.; Li, Y. B.; Pan, Z. H.; Chen, Z. J.; Lu, Z. H.; Yuan, Z. M.; Zhu, Z. Y.; Zhang, Z. H. Ultrasonication-Assisted Synthesis of Alcohol-Based Deep Eutectic Solvents for Extraction of Active Compounds from Ginger. Ultrason. Sonochem. 2020, 63, 104915. DOI: 10.1016/j.ultsonch.2019.104915.
  • Zhou, P.; Wang, X.; Liu, P.; Huang, J.; Wang, C.; Pan, M.; Kuang, Z. Enhanced Phenolic Compounds Extraction from Morus alba L. Leaves by Deep Eutectic Solvents Combined with Ultrasonic-Assisted Extraction. Ind. Crop. Prod. 2018, 120, 147–154. DOI: 10.1016/j.indcrop.2018.04.071.
  • Pavic, V.; Flacer, D.; Jakovljevic, M.; Molnar, M.; Jokic, S. Assessment of Total Phenolic Content, in Vitro Antioxidant and Antibacterial Activity of Ruta graveolens L. Extracts Obtained by Choline Chloride Based Natural Deep Eutectic Solvents. Plants 2019, 8, 69. 10.3390/plants8030069. DOI: doi:.
  • Liu, X.; Fu, N. J.; Zhang, Q. G.; Cai, S. F.; Wang, Q.; Han, D. D.; Tang, B. K. Green Tailoring with Water of Choline Chloride Deep Eutectic Solvents for the Extraction of Polyphenols from Palm Samples. J. Chromatogr. Sci. 2019, 57, 272–278. DOI: 10.1093/chromsci/bmy099.
  • Cao, Q.; Li, J.; Xia, Y.; Li, W.; Luo, S.; Ma, C.; Liu, S. Green Extraction of Six Phenolic Compounds from Rattan (Calamoideae faberii) with Deep Eutectic Solvent by Homogenate-Assisted Vacuum-Cavitation Method. Molecules 2018, 24, 113. DOI: 10.3390/molecules24010113.
  • Pal, C. B. T.; Jadeja, G. C. Deep Eutectic Solvent-Based Extraction of Polyphenolic Antioxidants from Onion (Allium cepa L.) peel. J. Sci. Food Agric. 2019, 99, 1969–1979. DOI: 10.1002/jsfa.9395.
  • Saha, S. K.; Dey, S.; Chakraborty, R. Effect of Choline Chloride-Oxalic Acid Based Deep Eutectic Solvent on the Ultrasonic Assisted Extraction of Polyphenols from Aegle marmelos. J. Mol. Liq. 2019, 287, 110956. DOI: 10.1016/j.molliq.2019.110956.
  • Rajha, H. N.; Mhanna, T.; El Kantar, S.; El Khoury, A Louka, N.; Maroun, R. G. Innovative Process of Polyphenol Recovery from Pomegranate Peels by Combining Green Deep Eutectic Solvents and a New Infrared Technology. LWT 2019, 111, 138–146. DOI: 10.1016/j.lwt.2019.05.004.
  • Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D. P. Saffron Processing Wastes as a Bioresource of High-Value Added Compounds: Development of a Green Extraction Process for Polyphenol Recovery Using a Natural Deep Eutectic Solvent. Antioxidants 2019, 12, 586. DOI: 10.3390/antiox8120586.
  • Ivanović, M.; Alañón, M. E.; Arráez-Román, D.; Segura-Carretero, A. Enhanced and Green Extraction of Bioactive Compounds from Lippia citriodora by Tailor-Made Natural Deep Eutectic Solvents. Food Res. Int. 2018, 111, 67–76. DOI: 10.1016/j.foodres.2018.05.014.
  • Xie, Y.; Liu, H.; Lin, L.; Zhao, M.; Zhang, L.; Zhang, Y.; Wu, Y. Application of Natural Deep Eutectic Solvents to Extract Ferulic Acid from Ligusticum chuanxiong Hort with Microwave Assistance. RSC Adv. 2019, 9, 22677–22684. DOI: 10.1039/C9RA02665G.
  • Chen, J.; Jiang, X.; Yang, G.; Bi, Y.; Liu, W. Green and Efficient Extraction of Resveratrol from Peanut Roots Using Deep Eutectic Solvents. J. Chem. 2018, 2018, 1–9. DOI: 10.1155/2018/4091930.
  • Chen, J. N.; Jiang, X. X.; Yang, G. L.; Bi, Y. L.; Liu, W. Optimization of Urea-Glycerin Based NADES-UAE for Oxyresveratrol Extraction from Morus alba Roots for Preparation of Skin Whitening Lotion. J. Young Pharm. 2019, 11, 155. DOI: 10.5530/jyp.2019.11.33.
  • Cai, C. Y.; Yu, W.; Wang, C.; Liu, L.; Li, F.; Tan, Z. Green Extraction of Cannabidiol from Industrial Hemp (Cannabis sativa L.) Using Deep Eutectic Solvents Coupled with Further Enrichment and Recovery by Macroporous Resin. J. Mol. Liq. 2019, 287, 110957. DOI: 10.1016/j.molliq.2019.110957.
  • C.; Bhushan, T. P.; Girirajsinh, C. J. Microwave-Assisted Extraction for Recovery of Polyphenolic Antioxidants from Ripe Mango (Mangifera indica L.) Peel Using Lactic Acid/Sodium Acetate Deep Eutectic Mixtures. Food. Sci. Technol. Int. 2020, 26, 78–92. DOI: 10.1177/1082013219870010.
  • Kurtulbaş, E.; Pekel, A. G.; Bilgin, M.; Makris, D. P.; Sahin, S. Citric Acid-Based Deep Eutectic Solvent for the Anthocyanin Recovery from Hibiscus sabdariffa through Microwave-Assisted Extraction. Biomass. Convers. Bior. 2020. DOI: 10.1007/s13399-020-00606-3.
  • Júlia, B.; Barbieri, G. C.; Flávia, B. C.; Toci, A. T.; Igarashi-Mafra, L.; Mafra, M. R. Deep Eutectic Solvents Applied in the Extraction and Stabilization of Rosemary (Rosmarinus officinalis L.) Phenolic Compounds. Ind. Crop. Prod. 2020, 144, 112049. DOI: 10.1016/j.indcrop.2020.112722.
  • Cao, J.; Wang, H.; Zhang, W.; Cao, F.; Ma, G.; Su, E. Tailor-Made Deep Eutectic Solvents for Simultaneous Extraction of Five Aromatic Acids from Ginkgo biloba Leaves. Molecules 2018, 23, 3214. DOI: 10.3390/molecules23123214.
  • Espino, M.; Fernandez, M. D.; Gomez, F. J. V.; Boiteux, J.; Silva, M. F. Green Analytical Chemistry Metrics: Towards a Sustainable Phenolics Extraction from Medicinal Plants. Microchem. J. 2018, 141, 438–443. DOI: 10.1016/j.microc.2018.06.007.
  • Cai, C.; Li, F.; Liu, L.; Tan, Z. Deep Eutectic Solvents Used as the Green Media for the Efficient Extraction of Caffeine from Chinese Dark Tea. Sep. Purif. Technol. 2019, 227, 115723. DOI: 10.1016/j.seppur.2019.115723.
  • Takla, S. S.; Shawky, E.; Hammoda, H. M.; Darwish, F. A. Green Techniques in Comparison to Conventional Ones in the Extraction of Amaryllidaceae Alkaloids: Best Solvents Selection and Parameters Optimization. J. Chromatogr. A 2018, 1567, 99–110. DOI: 10.1016/j.chroma.2018.07.009.
  • Si, Y. Y.; Sun, S. W.; Liu, K.; Liu, Y.; Shi, H. L.; Zhao, K.; Wang, J.; Wang, W. Novel Deep Eutectic Solvent Based on Levulinic Acid and 1,4-Butanediol as an Extraction Media for Bioactive Alkaloid Rutaecarpine. Processes 2019, 7, 171. DOI: 10.3390/pr7030171.
  • Ruesgas-Ramon, M.; Suarez-Quiroz, M. L.; Gonzalez-Rios, O.; Barea, B.; Cazals, G.; Figueroa-Espinoza, M. C.; Durand, E. Biomolecules Extraction from Coffee and Cocoa by- and Co-Products Using Deep Eutectic Solvents. J. Sci. Food Agric. 2020, 100, 81–91. doi:10.1002/jsfa.9996.
  • Guo, N.; Ping, C. K.; Jiang, Y. W.; Wang, L.-T.; Niu, L.-J.; Liu, Z.-M.; Fu, Y.-J. Natural Deep Eutectic Solvents Couple with Integrative Extraction Technique as an Effective Approach for Mulberry Anthocyanin Extraction. Food Chem. 2019, 296, 78–85. DOI: 10.1016/j.foodchem.2019.05.196.
  • Sang, J.; Li, B.; Huang, Y-y.; Ma, Q.; Liu, K.; Li, C.-Q. Deep Eutectic Solvent-Based Extraction Coupled with Green Two-Dimensional HPLC-DAD-ESI-MS/MS for the Determination of Anthocyanins from Lycium Ruthenicum Murr. Anal. Methods 2018, 10, 1247–1257. DOI: 10.1039/C8AY00101D.
  • Jun, C.; Luyao, C.; Mohan, L.; Li, M.; Cao, F.; Zhao, L.; Su, E. Efficient Extraction of Proanthocyanidin from Ginkgo biloba Leaves Employing Rationally Designed Deep Eutectic Solvent-Water Mixture and Evaluation of the Antioxidant Activity. J. Pharmaceut. Biomed. 2018, 158, 317–326. DOI: 10.1016/j.jpba.2018.06.007.
  • Sang, J.; Liu, K.; Ma, Q.; Li, B.; Li, C.-Q. Combination of a Deep Eutectic Solvent and Macroporous Resin for Green Recovery of Anthocyanins from Nitraria tangutorun Bobr. Fruit. J. Sep. Sci. 2019, 54, 3082–3090. DOI: 10.1080/01496395.2018.1559190.
  • Panic, M.; Gunjevic, V.; Cravotto, G.; Redovnikovic, I. R. Enabling Technologies for the Extraction of Grape-Pomace Anthocyanins Using Natural Deep Eutectic Solvents in up-to-Half-Litre Batches Extraction of Grape-Pomace Anthocyanins Using NADES. Food Chem. 2019, 300, 125185–125185. DOI: 10.1016/j.foodchem.2019.125185.
  • Liu, Y.; Li, J.; Fu, R.; Zhang, L.; Wang, D.; Wang, S. Enhanced Extraction of Natural Pigments from Curcuma longa L. Using Natural Deep Eutectic Solvents. Ind. Crop. Prod. 2019, 140, 111620. DOI: 10.1016/j.indcrop.2019.111620.
  • Francisco, M.; Van Den Bruinhorst, A.; Kroon, M. C. Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents. Angew. Chem. Int. Ed. Engl. 2013, 52, 3074–3085. DOI: 10.1002/anie.201207548.
  • Qin, H.; Hu, X. T.; Wang, J.; W.; Cheng, H. Y.; Chen, L. F.; Qi, Z. W. Overview of Acidic Deep Eutectic Solvents on Synthesis, Properties and Applications. Green Energy Environ. 2020, 5, 8–21. DOI: 10.1016/j.gee.2019.03.002.
  • Du, C.; Zhao, B.; Chen, X.-B.; Birbilis, N.; Yang, H. Effect of Water Presence on Choline Chloride-2urea Ionic Liquid and Coating Platings from the Hydrated Ionic Liquid. Sci. Rep. 2016, 6, 29225. DOI: 10.1038/srep29225.
  • Rente, D.; Paiva, A.; Duarte, A. R. The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules 2021, 26, 2336. DOI: 10.3390/molecules26082336.
  • Vieira, V.; Prieto, M. A.; Barros, L.; Coutinho, J. A. P.; Ferreira, I. C. F. R.; Ferreira, O. Enhanced Extraction of Phenolic Compounds Using Choline Chloride Based Deep Eutectic Solvents from Juglans regia L. Ind. Crop. Prod. 2018, 115, 261–271. 10.1016/j.indcrop.2018.02.029. DOI: doi:.
  • Achkar, T. E.; Fourmentin, S.; Greige-Gerges, H. Deep Eutectic Solvents: An Overview on Their Interactions with Water and Biochemical Compounds. J. Mol. Liq. 2019, 288, 111028. DOI: 10.1016/j.molliq.2019.111028.
  • Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y. H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–19. DOI: 10.1016/j.foodchem.2015.03.123.
  • Xu, K.; Wang, Y.; Huang, Y.; Li, N.; Wen, Q. A Green Deep Eutectic Solvent-Based Aqueous Two-Phase System for Protein Extracting. Anal. Chim. Acta 2015, 864, 9–20. DOI: 10.1016/j.aca.2015.01.026.
  • Souza, M. A.; Guzatti, J. G. G.; Martello, R. H.; Schindler, M. S. Z.; Calisto, J. F. F.; Morgan, L. V.; Aguiar, G. P. S.; Locateli, G.; Scapinello, J.; Müller, L. G.; et al. Supercritical CO2 Extraction of Aloysia gratissima Leaves and Evaluation of anti-Inflammatory Activity. J. Supercrit. Fluid 2020, 159, 104753. DOI: 10.1016/j.supflu.2020.104753.
  • Gao, M. Z.; Cui, Q.; Wang, L. T.; Meng, Y.; Yu, L.; Li, Y. Y.; Fu, Y. J. A Green and Integrated Strategy for Enhanced Phenolic Compounds Extraction from Mulberry (Morus alba L.) Leaves by Deep Eutectic Solvent. Microchem. J. 2020, 154, 104598. DOI: 10.1016/j.microc.2020.104598.
  • Chen, Y.; Mu, T. C. Application of Deep Eutectic Solvents in Biomass Pretreatment and Conversion. Green Energy Environ. 2019, 4, 95–115. DOI: 10.1016/j.gee.2019.01.012.
  • Li, G. Z.; Row, K. H. Ternary Deep Eutectic Solvent Magnetic Molecularly Imprinted Polymers for the Dispersive Magnetic Solid‐Phase Microextraction of Green Tea. J. Sep. Sci. 2018, 41, 3424–3431. DOI: 10.1002/jssc.201800222.
  • Rozaini, M. N. H.; Semail, N.-F.; Saad, B.; Kamaruzaman, S.; Abdullah, W. N.; Rahim, N. A.; Miskam, M.; Loh, S. H.; Yahaya, N. Molecularly Imprinted Silica Gel Incorporated with Agarose Polymer Matrix as Mixed Matrix Membrane for Separation and Preconcentration of Sulfonamide Antibiotics in Water Samples. Talanta 2019, 199, 522–531. DOI: 10.1016/j.talanta.2019.02.096.
  • Dil, E. A.; Ghaedi, M.; Asfaram, A.; Mehrabi, F.; Shokrollahi, A.; Matin, A. A.; Tayebi, L. Magnetic Dual-Template Molecularly Imprinted Polymer Based on Syringe-To-Syringe Magnetic Solid-Phase Microextraction for Selective Enrichment of P-Coumaric Acid and Ferulic Acid from Pomegranate, Grape, and Orange Samples. Food Chem. 2020, 325, 126902. DOI: 10.1016/j.foodchem.2020.126902.
  • Li, X.; Dai, Y.; Row, K. H. Preparation of Two-Dimensional Magnetic Molecularly Imprinted Polymers Based on Boron Nitride and a Deep Eutectic Solvent for the Selective Recognition of Flavonoids. Analyst 2019, 144, 1777–1788. DOI: 10.1039/c8an02258e.
  • Mao, Z. K.; Qin, X. N.; Chen, Z. L. Monolithic Column Functionalized with Quinine Derivative for Anion-Exchange Capillary Electrochromatography. Electrophoresis 2018, 39, 3006–3012. DOI: 10.1002/elps.201800253.
  • Wang, X.; Li, G.; Ho Row, K. Extraction and Determination of Quercetin from Ginkgo biloba by DESs-Based Polymer Monolithic Cartridge. J. Chromatogr. Sci. 2017, 55,866–871. DOI: 10.1093/chromsci/bmx037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.