776
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Use of Spectroscopic Methods and Their Clinical Applications in Drug Abuse: A Review

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 360-373 | Published online: 11 Aug 2021

References

  • Zou, Z.; Wang, H.; Uquillas, F. D.; Wang, X.; Ding, J.; Chen, H. Definition of Substance and Non-Substance Addiction. Adv. Exp. Med. Biol. 2017, 1010, 21–41. DOI: 10.1007/978-981-10-5562-1_2.
  • Muhammad, Z.; Razzaq, S.; Hassan, R.; Qureshi, J.; Ijaz, H.; Muhammad, H. Drug Abuse among the Students. Pak. J. Pharm. Res. 2015, 1, 41–47.
  • Sharma, L.; Sharma, A.; Dash, A. K.; Bisht, G. S.; Gupta, G. L. A Standardized Polyherbal Preparation POL-6 Diminishes Alcohol Withdrawal Anxiety by Regulating Gabra1, Gabra2, Gabra3, Gabra4, Gabra5 Gene Expression of GABAA Receptor Signaling Pathway in Rats. BMC Complement Med. Ther. 2021, 21, 13. DOI: 10.1186/s12906-020-03181-2.
  • Chen, C.-Y.; Lin, K.-M. Health Consequences of Illegal Drug Use. Curr. Opin. Psychiatry 2009, 22, 287–292. DOI: 10.1097/yco.0b013e32832a2349.
  • Kumari, R.; Nath, B. Study on the Use of Tobacco among Male Medical Students in Lucknow. Indian J. Community Med. 2008, 33, 100–103. DOI: 10.4103/0970-0218.40877.
  • Lander, L.; Howsare, J.; Byrne, M. The Impact of Substance Use Disorders on Families and Children: From Theory to Practice. Soc Work Public Health 2013, 28, 194–205. DOI: 10.1080/19371918.2013.759005.
  • Westover, A. N.; McBride, S.; Haley, R. W. Stroke in Young Adults Who Abuse Amphetamines or Cocaine: A Population-Based Study of Hospitalized Patients. Arch. Gen. Psychiatry 2007, 64, 495–502. DOI: 10.1001/archpsyc.64.4.495.
  • Ozasa, K.; Katanoda, K.; Tamakoshi, A.; Sato, H.; Tajima, K.; Suzuki, T.; Tsugane, S.; Sobue, T. Reduced Life Expectancy Due to Smoking in Large-Scale Cohort Studies in Japan. J. Epidemiol. 2008, 18, 111–118. DOI: 10.2188/jea.je2007416.
  • Valentino, R. J.; Volkow, N. D. Drugs, Sleep, and the Addicted Brain. Neuropsychopharmacology 2020, 45, 3–5. DOI: 10.1038/s41386-019-0465-x.
  • Olguín, H. J.; Guzmán, D. C.; García, E. H.; Mejía, G. B. The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress. Oxid Med. Cell Longev. 2016, 2016, 9730467.DOI:10.1155/2016/9730467.
  • King, S. Substance abuse disorders: neurocircuitry and neurobiology. Module SBM 302, https://www.student-central.brighton.ac.uk/ (accessed April 5, 2021).
  • Feltenstein, M. W.; See, R. E. The Neurocircuitry of Addiction: An Overview. Br. J. Pharmacol. 2008, 154, 261–274. DOI: 10.1038/bjp.2008.51.
  • Mali, N.; Karpe, M.; Kadam, V. A Review on Biological Matrices and Analytical Methods Used for Determination of Drug of Abuse. J. Appl. Pharm. Sci. 2011, 1, 58–65.
  • Khalsa, J. H.; Treisman, G.; Katz, E. M.; Tedaldi, E. Medical Consequences of Drug Abuse and Co-Occurring Infections Research at the National Institute on Drug Abuse. Subst. Abus. 2008, 29, 5–16. DOI: 10.1080/08897070802218661.
  • Fucci, N.; Giovanni, N. D.; Giorgio, F. D.; Liddi, R.; Chiarotti, M. An Evaluation of the Cozart1 RapiScan System as an on-Site Screening Tool for Drugs of Abuse in a Non-Conventional Biological Matrix: vitreous Humor. Forensic Sci. Int. 2006, 156, 102–105. DOI: 10.1016/j.forsciint.2004.12.023.
  • Madej, K. A. Analysis of Meconium, Nails and Tears for Determination of Medicines and Drugs of Abuse. Trends Analyt. Chem. 2010, 29, 246–259. DOI: 10.1016/j.trac.2010.01.005.
  • Burnett, A.; Fan, W.; Upadhya, P.; Cunningham, J.; Edwards, H.; Munshi, T.; Hargreaves, M.; Linfield, E.; Davies, G. Complementary Spectroscopic Studies of Materials of Security Interest. Proc. SPIE 2006, 6402, 1–8.
  • Hans, K. M.-C.; Müller, S.; Sigrist, M. Infrared Attenuated Total Reflection (IR-ATR) Spectroscopy for Detecting Drugs in Human Saliva. Drug Test Anal. 2012, 4, 420–429. DOI: 10.1002/dta.346.
  • Favretto, D.; Tucci, M.; Monaldi, A.; Ferrar, S. D.; Miolo, G. A Study on Photodegradation of Methadone, EDDP, and Other Drugs of Abuse in Hair Exposed to Controlled UVB Radiation. Drug Test. Analysis 2014, 6, 78–84. DOI: 10.1002/dta.1607.
  • D'Elia, V.; Montalvo García, G.; García Ruiz, C. Spectroscopic Trends for the Determination of Illicit Drugs in Oral Fluid. Appl. Spectrosc. Rev. 2015, 50, 775–796. DOI: 10.1080/05704928.2015.1075206.
  • Berg, R. W.; Norbygaard, T.; White, P. C.; Abdali, S. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species. Appl. Spectrosc. Rev. 2011, 46, 107–131. DOI: 10.1080/05704928.2010.520180.
  • Busardò, F. P.; Jones, A. W. GHB Pharmacology and Toxicology: Acute Intoxication, Concentrations in Blood and Urine in Forensic Cases and Treatment of the Withdrawal Syndrome. Curr. Neuropharmacol. 2015, 13, 47–70. DOI: 10.2174/1570159X13666141210215423.
  • Tamrazi, B.; Almast, J. Your Brain on Drugs: imaging of Drug-Related Changes in the Central Nervous System. Radiographics 2012, 32, 701–719. DOI: 10.1148/rg.323115115.
  • Castro, A. L.; Tarelho, S.; Melo, P.; Franco, J. M. A Fast and Reliable Method for Quantitation of THC and Its 2 Main Metabolites in Whole Blood by GC-MS/MS (TQD). Forensic Sci. Int. 2018, 289, 344–351. DOI: 10.1016/j.forsciint.2018.06.003.
  • Choi, H.; Baeck, S.; Jang, M.; Lee, S.; Choi, H.; Chung, H. Simultaneous Analysis of Psychotropic Phenylalkylamines in Oral Fluid by GC-MS with automated SPE and its application to legal cases. Forensic Sci. Int. 2012, 215, 81–87. DOI: 10.1016/j.forsciint.2011.02.011.
  • Jasinska, A. J.; Zorick, T.; Brody, A. L.; Stein, A. E. Dual Role of Nicotine in Addiction and Cognition: A Review of Neuroimaging Studies in Humans. Neuropharmacology 2014, 84, 111–122.
  • Narendran, R.; Lopresti, B. J.; Martinez, D.; Mason, N. S.; Himes, M.; May, M. A. M. A.; Dennis, C.; Daley, D. C.; Julie, C.; Price, J. C.; Chester, A.; Mathis, C. A.; Frankle.; et al. In Vivo Evidence for Reduced Striatal Vesicular Monoamine Transporter (VMAT2) Availability in Cocaine Abusers. AJP 2012, 169, 55–63. DOI: 10.1176/appi.ajp.2011.11010126.
  • Karila, L.; Gorelick, D.; Weinstein, A.; Noble, F.; Benyamina, A.; Coscas, S.; Blecha, L.; Lowenstein, W.; Martinot, J. L.; Reynaud, M.; Lépine, J. P. New Treatments for Cocaine Dependence: A Focused Review. Int. J. Neuropsychopharmacol. 2008, 11, 425–438. DOI: 10.1017/S1461145707008097.
  • Zerwinska, J.; Jang, M.; Costa, C.; Parkin, M. C.; George, C.; Kicman, A. T.; Bailey, M. J.; Paul, I.; Abbate, V. Detection of Mephedrone and Its Metabolites in Fingerprints from a controlled human administration study by liquid chromatography-tandem mass spectrometry and paper spray-mass spectrometry . Analyst 2020, 145, 3038–3048. DOI: 10.1039/c9an02477h.
  • Maurer, H. H. Current Role of Liquid chromatography-mass spectrometry in clinical and forensic toxicology. Anal. Bioanal. Chem. 2007, 388, 1315–1325. DOI: 10.1007/s00216-007-1248-5.
  • Singh, G.; Bumbrah, R.; Sharma, M. Raman Spectroscopy – Basic Principle, Instrumentation and Selected Applications for the Characterization of Drugs of Abuse. Egypt. J. Forensic Sci. 2016, 1, 209–215.
  • Horiba Scientific. The Non-Destructive and in-situ identification of controlled drug and narcotics. 2011 Available at: http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Raman/RA19.pdf. (accessed April 2021)
  • West, M. J.; Went, M. J. Detection of Drugs of Abuse by Raman Spectroscopy. Drug Test Anal. 2011, 3, 532–538. DOI: 10.1002/dta.217.
  • Keresztury, G. Raman Spectroscopy: Theory. Theory and Instrumentation Introduction to the Theory and Practice of Vibrational Spectroscopy. Vib. Spectrosc. 2006, 1, 71–87.
  • Smith, E.; Dent, G. Modern Raman Spectroscopy – A Practical Approach. J. Raman Spectrosc. 2005, 36, 835.
  • Macleod, N. A.; Matousek, P. Deep Noninvasive Raman Spectroscopy of Turbid Media. Appl. Spectrosc. 2008, 62, 291A–2304. DOI: 10.1366/000370208786401527.
  • Brewster, V. L.; Edwards, H. G. M.; Hargreaves, M. D.; Munshi, T. Detection of Drugs of Abuse by Raman Spectroscopy. Drug Test. Analysis 2009, 1, 25–31. DOI: 10.1002/dta.11.
  • Das, R. S.; Agrawal, Y. K. Raman Spectroscopy: Recent Advancements, Techniques and Applications. Vib. Spectrosc. 2011, 57, 163–176. DOI: 10.1016/j.vibspec.2011.08.003.
  • Ali, E. M. A.; Edwards, H. G. M.; Hargreaves, M. D.; Scowen, I. J. In-Situ Detection of Drugs-of-Abuse on Clothing Using Confocal Raman Microscopy. Anal. Chim. Acta 2008, 615, 63–72. DOI: 10.1016/j.aca.2008.03.051.
  • Wei, Q.; Zhang, M.; Ogorevc, B.; Zhang, X. Recent Advances in the Chemical Imaging of Human Fingermarks (A Review). Analyst 2016, 141, 6172–6189. DOI: 10.1039/c6an01121g.
  • Widjaja, E. Latent Fingerprints Analysis Using Tape-Lift, Raman Microscopy, and Multivariate Data Analysis Methods. Analyst 2009, 134, 769–775. DOI: 10.1039/b808259f.
  • West, M. J.; Went, M. J. The Spectroscopic Detection of Drugs of Abuse in Fingerprints after Development with Powders and Recovery with Adhesive Lifters. Spectrochim. Acta A Mol. Biomol Spectrosc. 2009, 71, 1984–1988. DOI: 10.1016/j.saa.2008.07.024.
  • Hadland, S. E.; Levy, S. Objective Testing: Urine and Other Drug Tests. Child Adolesc. Psychiatr. Clin N Am. 2016, 25, 549–565. DOI: 10.1016/j.chc.2016.02.005.
  • Shende, C.; Inscore, F.; Sengupta, A.; Stuart, J.; Farquharson, S. Rapid Extraction and Detection of Trace Chlorpyrifos-Methyl in Orange Juice by Surface-Enhanced Raman Spectroscopy. Sens. Instrumen. Food Qual. 2010, 4, 101–107. DOI: 10.1007/s11694-010-9100-6.
  • Jahn, I. J.; Žukovskaja, O.; Zheng, X.-S.; Weber, K.; Bocklitz, T. W.; Cialla-May, D.; Popp, J. Surface-Enhanced Raman Spectroscopy and Microfluidic Platforms: challenges, Solutions and Potential Applications. Analyst 2017, 142, 1022–1047. DOI: 10.1039/c7an00118e.
  • Andreou, C.; Hoonejani, M. R.; Barmi, M. R.; Moskovits, M.; Meinhart, C. D. Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics. ACS Nano. 2013, 7, 7157–7164. DOI: 10.1021/nn402563f.
  • Matthew, J.; West, M. J. Detection of Drugs of Abuse by Raman Spectroscopy. J Raman Spectrosc. 2010, 3, 532–538.
  • Yang, T.; Guo, X.; Wang, H.; Fu, S.; Wen, Y.; Yang, H. Magnetically Optimized SERS Assay for Rapid Detection of Trace Drug-Related Biomarkers in Saliva and Fingerprints. Biosens. Bioelectron. 2015, 68, 350–357. DOI: 10.1016/j.bios.2015.01.021.
  • Ma, L.; Zhang, Z.; Li, X. Non-Invasive Disease Diagnosis Using Surface-Enhanced Raman Spectroscopy of Urine and Saliva. Appl. Spectrosc. Rev. 2020, 55, 197–219. DOI: 10.1080/05704928.2018.1562938.
  • Richardson, J. C.; Bowtell, R. W.; Mäder, K.; Melia, C. D. Pharmaceutical Applications of Magnetic Resonance Imaging (MRI). Adv Drug Deliv Rev. 2005, 57, 1191–1209. DOI: 10.1016/j.addr.2005.01.024.
  • Dumez, J. N. Spatial Encoding and Spatial Selection Methods in High-Resolution NMR Spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 101–134. DOI: 10.1016/j.pnmrs.2018.08.001.
  • Grover, V. P. B.; Tognarelli, J. M.; Crossey, M. M. E.; Cox, I. J.; Robinson, S. D. T.; McPhail, M. J. W. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J. Clin. Exp. Hepatol. 2015, 5, 246–255. DOI: 10.1016/j.jceh.2015.08.001.
  • Geibprasert, S.; Gallucci, M.; Krings, T. Addictive Illegal Drugs: Structural Neuroimaging. AJNR. Am. J. Neuroradiol. 2010, 31, 803–808. DOI: 10.3174/ajnr.A1811.
  • Zahr, N. M.; Pfefferbaum, A. Alcohol’s Effects on the Brain: Neuroimaging Results in Humans and Animal Models. Alcohol Res. 2017, 38, 183–206.
  • Narayana, A. P.; Datta, S.; Tao, G.; Joel, L.; Moeller, G. Effect of Cocaine on Structural Changes in Brain: MRI Volumetry Using Tensor-Based Morphometry. Drug Alcohol Depend. 2010, 111, 191–199. DOI: 10.1016/j.drugalcdep.2010.04.012.
  • Sindhwani, G.; Arora, M.; Thakker, V. D.; Jain, A. MRI in Chemotherapy Induced Leukoencephalopathy: Report of Two Cases and Radiologist’s Perspective. J. Clin. Diagn. Res. 2017, 11, TD08–TD09.
  • Schiffmann, R.; van der Knaap, M. S. An MRI-Based Approach to the Diagnosis of White Matter Disorders. Neurology 2009, 72, 750–759. DOI: 10.1212/01.wnl.0000343049.00540.c8.
  • Bartlett, E.; Mikulis, D. J. FRCPC Chasing ‘‘Chasing the Dragon’’ with MRI: leukoencephalopathy in Drug Abuse. BJR 2005, 78, 997–1004. DOI: 10.1259/bjr/61535842.
  • Fortier, C. B.; Leritz, E. C.; Salat, D. H.; Venne, J. R.; Maksimovskiy, A. L.; Williams, V.; Milberg, W. P.; McGlinchey, R. E. Reduced Cortical Thickness in Abstinent Alcoholics and Association with Alcoholic behavior. Alcohol. Clin. Exp. Res. 2011, 35, 2193–2201. DOI: 10.1111/j.1530-0277.2011.01576.x.
  • Harper, L.; Powell, J.; Pij, E. M. An Overview of Forensic Drug Testing Methods and Their Suitability for Harm Reduction Point-of-Care Services. Harm. Reduct. J. 2017, 14, 52. DOI: 10.1186/s12954-017-0179-5.
  • Dulay, M. T.; Zaman, N.; Jaramillo, D.; Mody, A. C.; Zare, R. N. Gas Chromatography‐Mass Spectrometry‐Basic Principles, Instrumentation and Selected Applications for Detection of Organic Compounds. C (Basel) 2018, 4, 29–1012.
  • Patel, K. N.; Patel, J. K.; Patel, M. P.; Rajput, G. C.; Patel, H. A. Introduction to Hyphenated Techniques and Their Applications in Pharmacy. Pharm. Methods 2010, 1, 2–13. DOI: 10.4103/2229-4708.72222.
  • Maurer, H. H. Hyphenated high-resolution mass spectrometry-the "all-in-one" device in analytical toxicology? Anal. Bioanal. Chem. 2021, 413, 2303–2309. DOI: 10.1007/s00216-020-03064-y.
  • Chiang, C.-H.; Lee, H.-H.; Chen, B.-H.; Lin, Y.-C.; Chao, Y.-Y.; Huang, Y.-L. Using Ambient Mass Spectrometry and LC–MS/MS for the Rapid Detection and Identification of Multiple Illicit Street Drugs. J. Food Drug Anal. 2019, 27, 439–450. DOI: 10.1016/j.jfda.2018.11.003.
  • Fiorentina, T. R.; Barry, K.; Martinc, D. M.; Browned, T.; Rieders, E. F. Assessment of a Portable Quadrupole-Based Gas Chromatography Mass Spectrometry for Seized Drug Analysis. Forensic Sci. Int. 2020, 313, 379–738.
  • Shokry, E.; Marques, J. G.; Ragazzo, P. C.; Pereira, N. Z.; Filho, N. R. A. Earwax as an Alternative Specimen for Forensic Analysis. Forensic Toxicol. 2017, 35, 348–358. DOI: 10.1007/s11419-017-0363-z.
  • Nicolas, M.; Villate, A.; Gallastegi, M.; Olaizola, O. A.; Etxebarria, N.; Usobiaga, A. Analysis of Cannabinoids in Plants, Marijuana Products and Biological Tissues. Compr. Anal. Chem. 2020, 90, 65–102.
  • Jinlei, L.; Wurita, A.; Xuejun, W.; Hongkun, Y.; Jie, G.; Liqin, C. Supramolecular Solvent (SUPRASs) Extraction Method for Detecting Benzodiazepines and Zolpidem in Human Urine and Blood Using Gas Chromatography Tandem Mass Spectrometry. Legal Med. 2020, 48, 101.
  • Vaquero, J. J.; Kinahan, P. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems. Annu. Rev. Biomed. Eng. 2015, 17, 385–414. DOI: 10.1146/annurev-bioeng-071114-040723.
  • Thiruchselvam, T.; Malik, S.; Foll, B. L. A Review of Positron Emission Tomography Studies Exploring the Dopaminergic System in Substance Use with a Focus on Tobacco as a co-Variate. Am. J. Drug Alcohol Abuse 2016, 47, 1–18.
  • Sun, X.; Cai, W.; Chen, X. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials. Acc. Chem. Res. 2015, 48, 286–294. DOI: 10.1021/ar500362y.
  • Lu, F. M.; Yuan, Z. PET/SPECT Molecular Imaging in Clinical Neuroscience: recent Advances in the Investigation of CNS Diseases. Quant. Imaging Med. Surg. 2015, 5, 433–447. DOI: 10.3978/j.issn.2223-4292.2015.03.16.
  • Alauddin, M. M. Positron Emission Tomography (PET) Imaging with 18F-Based Radiotracers. Am. J. Nucl. Med. Mol. Imaging 2012, 2, 55–76.
  • Ding, H.; Wu, F. Image Guided Biodistribution and Pharmacokinetic Studies of Theranostics. Theranostics 2012, 2, 1040–1053. DOI: 10.7150/thno.4652.
  • Gorelick, D. A. Pharmacokinetic Strategies for Treatment of Drug Overdose and Addiction. Future Med. Chem. 2012, 4, 227–243. DOI: 10.4155/fmc.11.190.
  • Lynch, W. J.; Nicholson, K. L.; Dance, M. E.; Morgan, R. W.; Foley, P. L. Animal Models of Substance Abuse and Addiction: Implications for Science, Animal Welfare, and Society. Comp. Med. 2010, 60, 177–188.
  • Volkow, N. D.; Wang, G. J.; Kojori, E. S.; Fowler, J. S.; Benveniste, H.; Tomasi, D. Alcohol Decreases Baseline Brain Glucose Metabolism More in Heavy Drinkers than Controls but Has No Effect on Stimulation-Induced Metabolic Increases. J. Neurosci. 2015, 35, 3248–3255. DOI: 10.1523/JNEUROSCI.4877-14.2015.
  • Leroy, C.; Bragulat, V.; Berlin, I.; Grégoire, M.-C.; Bottlaender, M.; Roumenov, D.; Dollé, F.; Bourgeois, S.; Penttilä, J.; Artiges, E.; et al. Cerebral Monoamine Oxidase a Inhibition in Tobacco Smokers Confirmed with PET and [11C] Befloxatone. J. Clin. Psychopharmacol. 2009, 29, 86–88. DOI: 10.1097/JCP.0b013e31819e98f.
  • Dalley, J. W.; Fryer, T. D.; Brichard, L.; Robinson, E. S.; Theobald, D. E.; Laane, K.; Pena, Y.; Murphy, E. R.; Shah, Y.; Probst, K.; et al. Nucleus Accumbens D2/3 Receptors Predict Trait Impulsivity and Cocaine Reinforcement. Science 2007, 315, 1267–1270. DOI: 10.1126/science.1137073.
  • Sinha, R. Chronic Stress, Drug Use, and Vulnerability to Addiction. Ann. N Y Acad. Sci. 2008, 1141, 105–130.
  • Vincenti, M.; Salomone, A.; Gerace, E.; Pirro, V. Role of LC-MS/MS in hair testing for the determination of common drugs of abuse and other psychoactive drugs . Bioanalysis 2013, 5, 1919–1938. DOI: 10.4155/bio.13.132.
  • Cheze, M.; Deveaux, M.; Martin, C.; Lhermitte, M.; Pepin, G. Simultaneous Analysis of Six Amphetamines and Analogues in Hair, Blood and Urine by LC–ESI–MS/MS. Application to the Determination of MDMA after Low Ecstasy Intake. Forensic Sci. Int. 2007, 170, 100–104. DOI: 10.1016/j.forsciint.2007.02.033.
  • Korfmacher, W. A. Foundation Review: Principles and Applications of LC-MS in New Drug Discovery. Drug Discov. Today 2005, 10, 1357–1367. DOI: 10.1016/S1359-6446(05)03620-2.
  • Thevis, M.; Thomas, A.; Schänzer, W. Current Role of LC-MS(/MS) in doping control . Anal. Bioanal. Chem. 2011, 401, 405–420. DOI: 10.1007/s00216-011-4859-9.
  • Thevis, M.; Sigmund, G.; Geyer, H.; Schänzer, W. Stimulants and Doping in Sport. Endocrinol. Metab. Clin. North Am. 2010, 39, 89–105. DOI: 10.1016/j.ecl.2009.10.011.
  • Lee, S. K.; Kim, S.-H.; Kim, H. J.; Yoo, H. H.; Kwon, O. S.; In, M. K.; Jin, C.; Kim, D. H.; Lee, J. Simultaneous Qualitative and Quantitative Method Using Liquid Chromatography Selected Reaction Monitoring-Triggered Quantitation-Enhanced Data-Dependent Tandem Mass Spectrometry for the Identification and Classification of Amphetamine-Type Stimulant Abusers in Human Urine. Rapid Commun. Mass Spectrom. 2010, 24, 3139–3145. DOI: 10.1002/rcm.4747.
  • Kim, J.; Ji, D.; Kang, S.; Park, M.; Yang, W.; Kim, E.; Choi, H.; Lee, S. Simultaneous Determination of 18 Abused Opioids and Metabolites in Human Hair Using LC-MS/MS and illegal opioids abuse proven by hair analysis . J. Pharm. Biomed. Anal. 2014, 89, 99–105. DOI: 10.1016/j.jpba.2013.10.041.
  • Lee, S.; Han, E.; Park, Y.; Choi, H.; Chung, H. Distribution of Methamphetamine and Amphetamine in Drug Abuser’s Head Hair. Forensic Sci. Int. 2009, 190, 16–18. DOI: 10.1016/j.forsciint.2009.05.004.
  • Framil, M. M.; Neiro, A. M.; Barrera, P. B.; Cocho, J. A.; Tabernero, M. J.; Bermejo, A. M. Electrospray Ionization Tandem Mass Spectrometry for the Simultaneous Determination of Opiates and Cocaine in Human Hair. Anal. Chim. Acta 2011, 704, 123–132. DOI: 10.1016/j.aca.2011.08.013.
  • Wang, X.; Cui, J.; Zhuo, Y.; Shen, B.; Zhang, S.; Liu, W.; Shen, M.; Xiang, P. A Retrospective of Prevalence of Drugs of Abuse by Hair Analysis in Shanghai Using LC-MS-MS. J. Anal. Toxicol. 2020, 44, 482–489. DOI: 10.1093/jat/bkaa007.
  • Wu, A. H.; Gerona, R.; Armenian, P.; French, D.; Petrie, M.; Lynch, K. L. Role of Liquid chromatography-high-resolution mass spectrometry (LC-HR/MS) in clinical toxicology . Clin Toxicol (Phila) 2012, 50, 733–742. DOI: 10.3109/15563650.2012.713108.
  • Pitt, J. J. Principles and Applications of Liquid Chromatography-Mass Spectrometry in Clinical Biochemistry. Clin. Biochem. Rev. 2009, 30, 19–34.
  • Koçak, A.; Lucania, J. P.; Berets, S. L. Some Advances in Fourier Transform Infrared Transflection Analysis and Potential Applications in Forensic Chemistry. Appl. Spectrosc. 2009, 63, 507–511. DOI: 10.1366/000370209788346887.
  • Silva, A. F.; Grobério, T. S.; Zacca, J. J.; Maldaner, A. O.; Braga, J. W. B. Cocaine and Adulterants Analysis in Seized Drug Samples by Infrared Spectroscopy and MCR-ALS. Forensic Sci. Int. 2018, 290, 169–177. DOI: 10.1016/j.forsciint.2018.07.006.
  • Moraes, L. G. P.; Rocha, R. S. F.; Menegazzo, L. M.; de Araújo, E. B.; Yukimito, K.; Moraes, J. C. S. Infrared Spectroscopy: A Tool for Determination of the Degree of Conversion in Dental Composites. J. Appl. Oral Sci. 2008, 16, 145–149. DOI: 10.1590/s1678-77572008000200012.
  • NIST National Institute of Standards and Technology. Available at: http://webbook.nist.gov/chemistry/2009. (accessed on May 2021).
  • Tsujikawa, K.; Kuwayama, K.; Miyaguchi, H.; Kanamori, T.; Iwata, Y. T.; Yoshida, T.; Inoue, H. Development of an on-Site Screening System for Amphetamine-Type Stimulant Tablets with a Portable Attenuated Total Reflection Fourier Transform Infrared Spectrometer. Anal. Chim. Acta 2008, 608, 95–103. DOI: 10.1016/j.aca.2007.12.002.
  • Scientific working group for the analysis of seized drugs (SWGDRUG), SWGDRUG recommendations, second ed., http://www.swgdrug.org/approved.htm. 2006 (accessed on May 2021).
  • Augusto, c.; Penido, F. D. O.; Silveira, L.; Pacheco, M. T. T. Quantification of Binary Mixtures of Cocaine and Adulterants Using Dispersive Raman and FT-IR Spectroscopy and Principal Component Regression. Instrum Sci. Technol. 2012, 40, 441–456.
  • Chen, Y.; Liu, S.; Yang, Y.; Qian, Z.; Wang, B.; An, C.; Liu, C.; Min, S. On-Site Determination of Heroin by Portable near-Infrared Spectrometer. Aust. J. Forensic Sci. 2021, 53, 40–49. DOI: 10.1080/00450618.2019.1653370.
  • Risoluti, R.; Gullifa, G.; Materazi, S. Assessing the Quality of Milk Using a Multicomponent Analytical Platform MicroNIR/Chemometric. Front. Chem. 2020, 8, 614718. DOI: 10.3389/fchem.2020.614718.
  • Guleken, Z.; Ünübol, B.; Bilici, R.; Sarıbal, D.; Toraman, S.; Gündüz, O.; Kuruca, S. E. Investigation of the Discrimination and Characterization of Blood Serum Structure in Patients with Opioid Use Disorder Using IR Spectroscopy and PCA-LDA Analysis. J. Pharm. Biomed. Anal. 2020, 190, 113553. DOI: 10.1016/j.jpba.2020.113553.
  • Miolo, G.; Tucci, M.; Mazzoli, A.; Ferrara, S. D.; Favretto, D. Photostability of 6-MAM and Morphine Exposed to Controlled UVirradiation in Water and Methanol Solution: HRMS for the Characterization of Transformation Products and Comparison with the Dry State. J. Pharm. Biomed. Anal. 2016, 126, 48–59. DOI: 10.1016/j.jpba.2016.04.007.
  • Brunelle, E. K.; Thibodeau, B.; Shoemaker, A.; Halamek, J. Step toward Roadside Sensing: Noninvasive Detection of a THC Metabolite from the Sweat Content of Fingerprints . ACS Sens. 2019, 4, 3318–3324. DOI: 10.1021/acssensors.9b02020.
  • Jouibari, T. A.; Fattahi, N.; Shamsipur, M.; Pirsaheb, M. Dispersive Liquid–Liquid Microextraction Followed by High-Performance Liquid Chromatography–Ultraviolet Detection to Determination of Opium Alkaloids in Human Plasma. J. Pharm. Biomed. Anal. 2013, 85, 14–20. DOI: 10.1016/j.jpba.2013.06.030.
  • Ciolino, L. A. Quantitation of Synthetic Cannabinoids in Plant Materials Using High Performance Liquid Chromatography with UV Detection (Validated Method). J Forensic Sci . 2015, 60, 1171–1181. DOI: 10.1111/1556-4029.12795.
  • Huang, L.; Tongtong, L.; Zhang, Y.; Sun, X.; Wang, Y.; Nie, Z. Discrimination of Narcotic Drugs in Human Urine Based on nanoplasmonics combined with chemometric method. J. Pharm. Biomed. Anal. 2020, 186, 113174. DOI: 10.1016/j.jpba.2020.113174.
  • Kumar, A. P.; Kumar, D. Determination of Pharmaceuticals by UV-Visible Spectrophotometry. Curr. Pharm. Anal. 2021, 17, 1156– 1170.
  • Roberson, Z. R.; Goodpaster, J. V. Optimization of the Qualitative and Quantitative Analysis of Cocaine and Other Drugs of Abuse via Gas Chromatography – Vacuum Ultraviolet Spectrophotometry (GC – VUV). Talanta 2021, 232, 121461.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.