632
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Electrospray Ionization Ion Mobility Mass Spectrometry

ORCID Icon & ORCID Icon
Pages 483-497 | Published online: 22 Sep 2021

References

  • Dibner, B. Ten Founding Fathers of the Electrical Science: VIII. Electr. Eng. 1954, 73, 966–967. DOI: 10.1109/EE.1954.6439067.
  • Thomson, J. J.; Rutherford, E. On the Passage of Electricity through Gases Exposed to Röntgen Rays. Philos. Mag. 1896, 42, 392–407. DOI: 10.1080/14786449608620932.
  • Kovarik, A. F. The Effect of Changes in the Pressure and Temperature of Gases upon the Mobility of the Negative Ions Produced by Ultraviolet Light. Phys. Rev. 1910, 30, 415–445.
  • Dempster, A. J. On the Mobility of Ions in Air at High Pressures. Phys. Rev. 1912, 34, 53–57.
  • Erikson, H. A. The Mobility of the Positive and Negative Ion at Different Temperatures and at Constant Gas Density. Phys. Rev. 1915, 6, 345–353. DOI: 10.1103/PhysRev.6.345.
  • Loeb, L. B. On the Mobilities of Gas Ions in High Electric Fields. Phys. Rev. 1916, 8, 633–650. DOI: 10.1103/PhysRev.8.633.
  • Creaser, C. S.; Griffiths, J. R.; Bramwell, C. J.; Noreen, S.; Hill, C. A.; Thomas, C. L. T. Ion Mobility Spectrometry: A Review. Part 1. Structural Analysis by Mobility Measurement. Analyst. 2004, 129, 984–994. DOI: 10.1039/b404531a.
  • St. Louis, R. H.; Siems, W. F.; Hill, H. H. Jr. Evaluation of Direct Axial Sample Introduction for Ion Mobility Detection after Capillary Gas Chromatography. J. Chromatogr., A. 1989, 479, 221–231. DOI: 10.1016/S0021-9673(01)83338-0.
  • Hallen, R. W.; Shumate, C. B.; Siems, W. F.; Tsuda, T.; Hill, H. H. Jr. Preliminary Investigation of Ion Mobility Spectrometry after Capillary Electrophoretic introduction. J. Chromatogr. 1989, 480, 233–245. DOI: 10.1016/s0021-9673(01)84291-6.
  • Kotiaho, T.; Lauritsen, F. R.; Degn, H.; Paakkanen, H. Membrane Inlet Ion Mobility Spectrometry for on-Line Measurement of Ethanol in Beer and in Yeast Fermentation. Anal. Chim. Acta. 1995, 309, 317–325. DOI: 10.1016/0003-2670(95)00086-F.
  • Orzechowska, G. E.; Poziomek, E. J.; Tersol, V. Use of Solid Phase Microextraction (SPME) with Ion Mobility Spectrometry. Anal. Lett. 1997, 30, 1437–1444. DOI: 10.1080/00032719708007229.
  • Woods, A. S.; Ugarov, M.; Egan, T.; Koomen, J.; Gillig, K. J.; Fuhrer, K.; Gonin, M.; Schultz, J. Lipid/Peptide/Nucleotide Separation with MALDI-Ion Mobility-TOF MS. Anal. Chem. 2004, 76, 2187–2195. DOI: 10.1021/ac035376k.
  • Arce, L.; Menéndez, M.; Garrido-Delgado, R.; Valcárcel, M. Sample-Introduction Systems Coupled to Ion-Mobility Spectrometry Equipment for Determining Compounds Present in Gaseous, Liquid and Solid Samples. Trends Analyt. Chem. 2008, 27, 139–150. DOI: 10.1016/j.trac.2008.01.001.
  • Eiceman, G. A.; Leasure, C. S.; Vandiver, V. J.; Rico, G. Flow Characteristics in a Segmented Closed-Tube Design for Ion-Mobility Spectrometry. Anal. Chim. Acta. 1985, 175, 135–145. DOI: 10.1016/S0003-2670(00)82725-7.
  • Shvartsburg, A. A.; Smith, R. D. Fundamentals of Traveling Wave Ion Mobility Spectrometry. Anal. Chem. 2008, 80, 9689–9699. DOI: 10.1021/ac8016295.
  • Michelmann, K.; Silveira, J. A.; Ridgeway, M. E.; Park, M. A. Fundamentals of Trapped Ion Mobility Spectrometry. J. Am. Soc. Mass Spectrom. 2015, 26, 14–24. DOI: 10.1007/s13361-014-0999-4.
  • Guevremont, R. High-Field Asymmetric Waveform Ion Mobility Spectrometry: A New Tool for Mass Spectrometry. J. Chromatogr., A. 2004, 1058, 3–19. DOI: 10.1016/S0021-9673(04)01478-5.
  • Schneider, B. B.; Nazarov, E. G.; Londry, F.; Vouros, P.; Cove, T. R. Differential Mobility Spectrometry/Mass Spectrometry History, Theory, Design Optimization, Simulations, and Applications. Mass Spec. Rev. 2016, 35, 687–737. DOI: 10.1002/mas.21453.
  • Dodds, J. N.; Baker, E. S. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. J. Am. Soc. Mass Spectrom. 2019, 30, 2185–2195. DOI: 10.1007/s13361-019-02288-2.
  • Shvartsburg, A. A. Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS; CRC: Boca Raton, FL, 2009.
  • Merenbloom, S. I.; Koeniger, S. L.; Valentine, S. J.; Plasencia, M. D.; Clemmer, D. E. IMS-IMS and IMS-IMS-IMS/MS for Separating Peptide and Protein Fragment Ions. Anal. Chem. 2006, 78, 2802–2809. DOI: 10.1021/ac052208e.
  • Wyttenbach, T.; Kemper, P. R.; Bowers, M. T. Design of a New Electrospray Ion Mobility Mass Spectrometer. Int. J. Mass Spectrom. 2001, 212, 13–23. DOI: 10.1016/S1387-3806(01)00517-6.
  • Kanu, A. B.; Hill, H. H. Jr. Ion Mobility Spectrometry Detection for Gas Chromatography. J. Chromatogr., A. 2008, 1177, 12–27. DOI: 10.1016/j.chroma.2007.10.110.
  • Sowell, R. A.; Koeniger, S. L.; Valentine, S. J.; Moon, M. H.; Clemmer, D. E. Nanoflow LC/IMS-MS and LC/IMS-CID/MS of Protein Mixtures. J. Am. Soc. Mass Spectrom. 2004, 15, 1341–1353. DOI: 10.1016/j.jasms.2004.06.014.
  • Cumeras, R.; Figueras, E.; Davis, C. E.; Baumbach, J. I.; Grácia, I. Review on Ion Mobility Spectrometry. Part 2: Hyphenated Methods and Effects of Experimental Parameters. Analyst. 2015, 140, 1391–1410. DOI: 10.1039/c4an01101e.
  • McDaniel, E. W.; Martin, D. W.; Barnes, W. S. Drift Tube-Mass Spectrometer for Studies of Low-Energy Ion-Molecule Reactions. Rev. Sci. Instrum. 1962, 33, 2–7. DOI: 10.1063/1.1717656.
  • McAfee, K. B. Jr.; Edelson, D. Identification and Mobility of Ions in a Townsend Discharge by Time-Resolved Mass Spectrometry. Proc. Phys. Soc. 1963, 81, 382–384. DOI: 10.1088/0370-1328/81/2/125.
  • Karasek, F. W.; Kane, D. M. Ionic Species of Organic Compounds Observed in Mobility Spectra by Plasma Chromatography. J. Chromatogr., A. 1974, 93, 129–139. DOI: 10.1016/S0021-9673(00)83024-1.
  • Spangler, G. E.; Carrico, J. P. Membrane Inlet for Ion Mobility Spectrometry (Plasma Chromatography). Int. J. Mass Spectrom. 1983, 52, 267–287.
  • Kim, S. H.; Spangler, G. E. Ion Mobility Spectrometry/Mass Spectrometry of Two Structurally Different Ions Having Identical Ion Mass. Anal. Chem. 1985, 57, 567–569. DOI: 10.1021/ac50001a056.
  • Wittmer, D.; Chen, Y. H.; Luckenbill, B. K.; Hill, H. H. Jr. Electrospray Ionization Ion Mobility Spectrometry. Anal. Chem. 1994, 66, 2348–2355. DOI: 10.1021/ac00086a021.
  • Guevremont, R.; Siu, K. W. M.; Wang, J.; Ding, L. Combined Ion Mobility/Time-of-Flight Mass Spectrometry Study of Electrospray-Generated Ions. Anal. Chem. 1997, 69, 3959–3965. DOI: 10.1021/ac970359e.
  • Liu, Y.; Clemmer, D. E. Characterizing Oligosaccharides Using Injected-Ion Mobility/Mass Spectrometry. Anal. Chem. 1997, 69, 2504–2509. DOI: 10.1021/ac9701344.
  • Hoaglund, C. S.; Valentine, S. J.; Clemmer, D. E. An Ion Trap Interface for ESI-Ion Mobility Experiments. Anal. Chem. 1997, 69, 4156–4161. DOI: 10.1021/ac970526a.
  • Wu, C.; Siems, W. F.; Asbury, G. R.; Hill, H. H. Jr. Electrospray Ionization High-Resolution Ion Mobility Spectrometry-Mass Spectrometry. Anal. Chem. 1998, 70, 4929–4938. DOI: 10.1021/ac980414z.
  • Hoaglund, C. S.; Valentine, S. J.; Sporleder, C. R.; Reilly, J. P.; Clemmer, D. E. Three-Dimensional Ion Mobility/TOFMS Analysis of Electrosprayed Biomolecules. Anal. Chem. 1998, 70, 2236–2242. DOI: 10.1021/ac980059c.
  • Henderson, S. C.; Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. ESI/Ion Trap/Ion Mobility/Time-of-Flight Mass Spectrometry for Rapid and Sensitive Analysis of Biomolecular Mixtures. Anal. Chem. 1999, 71, 291–301. DOI: 10.1021/ac9809175.
  • Purves, R. W.; Guevremont, R. Electrospray Ionization High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. Anal. Chem. 1999, 71, 2346–2357. DOI: 10.1021/ac981380y.
  • Ells, B.; Barnett, D. A.; Froes, K.; Purves, R. W.; Hrudey, S.; Guevremont, R. Detection of Chlorinated and Brominated Byproducts of Drinking Water Disinfection Using Electrospray Ionization-High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. Anal. Chem. 1999, 71, 4747–4752. DOI: 10.1021/ac990343j.
  • Barnett, D. A.; Ells, B.; Guevremont, R.; Purves, R. W. Separation of Leucine and Isoleucine by Electrospray Ionization-High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1999a, 10, 1279–1284. DOI: 10.1016/S1044-0305(99)00098-7.
  • Barnett, D. A.; Guevremont, R.; Purves, R. W. Determination of Parts-per-Trillion Levels of Chlorate, Bromate, and Iodate by Electrospray Ionization/High-Field Asymmetric Waveform Ion Mobility Spectrometry/Mass Spectrometry. Appl. Spectrosc. 1999b, 53, 1367–1374. DOI: 10.1366/0003702991945984.
  • Wu, C.; Klasmeier, J.; Hill, H. H. Jr. Atmospheric Pressure Ion Mobility Spectrometry of Protonated and Sodiated Peptides. Rapid Commun. Mass Spectrom. 1999, 13, 1138–1142. DOI: 10.1002/(SICI)1097-0231(19990630)13:12<1138::AID-RCM625>3.0.CO;2-8.
  • Wu, C.; Siems, W. F.; Klasmeier, J.; Hill, H. H. Jr. Separation of Isomeric Peptides Using Electrospray Ionization/High-Resolution Ion Mobility Spectrometry. Anal. Chem. 2000, 72, 391–395. DOI: 10.1021/ac990601c.
  • Kinnear, B. S.; Hartings, M. R.; Jarrold, M. F. Helix Unfolding in Unsolvated Peptides. J. Am. Chem. Soc. 2001, 123, 5660–5667. DOI: 10.1021/ja004196e.
  • Kaleta, D. T.; Jarrold, M. F. Peptide Pinwheels. J. Am. Chem. Soc. 2002, 124, 1154–1155. DOI: 10.1021/ja012399c.
  • Koeniger, S. L.; Valentine, S. J.; Myung, S.; Plasencia, M.; Lee, Y. J.; Clemmer, D. E. Development of Field Modulation in a Split-Field Drift Tube for High-Throughput Multidimensional Separations. J. Proteome Res. 2005, 4, 25–35. DOI: 10.1021/pr049877d.
  • Levin, D. S.; Miller, R. A.; Nazarov, E. G.; Vouros, P. Rapid Separation and Quantitative Analysis of Peptides Using a New Nanoelectrospray- Differential Mobility Spectrometer-Mass Spectrometer System. Anal. Chem. 2006, 78, 5443–5452. DOI: 10.1021/ac060003f.
  • Thalassinos, K.; Grabenauer, M.; Slade, S. E.; Hilton, G. R.; Bowers, M. T.; Scrivens, J. H. Characterization of Phosphorylated Peptides Using Traveling Wave-Based and Drift Cell Ion Mobility Mass Spectrometry. Anal. Chem. 2009, 81, 248–254. DOI: 10.1021/ac801916h.
  • Shvartsburg, A. A.; Singer, D.; Smith, R. D.; Hoffmann, R. Ion Mobility Separation of Isomeric Phosphopeptides from a Protein with Variant Modification of Adjacent Residues. Anal. Chem. 2011, 83, 5078–5085. DOI: 10.1021/ac200985s.
  • Silveira, J. A.; Servage, K. A.; Gamage, C. M.; Russell, D. H. Cryogenic Ion Mobility-Mass Spectrometry Captures Hydrated Ions Produced during Electrospray Ionization. J. Phys. Chem. A. 2013b, 117, 953–961. DOI: 10.1021/jp311278a.
  • Silveira, J. A.; Fort, K. L.; Kim, D.; Servage, K. A.; Pierson, N. A.; Clemmer, D. E.; Russell, D. H. From Solution to the Gas Phase: Stepwise Dehydration and Kinetic Trapping of Substance P Reveals the Origin of Peptide Conformations. J. Am. Chem. Soc. 2013a, 135, 19147–19153. DOI: 10.1021/ja4114193.
  • Patrick, J. W.; Gamez, R. C.; Russell, D. H. Elucidation of Conformer Preferences for a Hydrophobic Antimicrobial Peptide by Vesicle Capture-Freeze-Drying: A Preparatory Method Coupled to Ion Mobility-Mass Spectrometry. Anal. Chem. 2015, 87, 578–583. DOI: 10.1021/ac503163g.
  • Dit Fouque, J.; Afonso, K.; Zirah, C.; Hegemann, S.; Zimmermann, J. D.; Marahiel, M.; Rebuffat, M. A.; Lavanant, S. H. Ion Mobility-Mass Spectrometry of Lasso Peptides: Signature of a Rotaxane Topology. Anal. Chem. 2015, 87, 1166–1172. DOI: 10.1021/ac503772n.
  • Pujol-Pina, R.; Vilaprinyó-Pascual, S.; Mazzucato, R.; Arcella, A.; Vilaseca, M.; Orozco, M.; Carulla, N. SDS-PAGE Analysis of Aβ Oligomers Is Disserving Research into Alzheimer’s Disease: Appealing for ESI-IM-MS. Sci. Rep. 2015, 5, 14809. DOI: 10.1038/srep14809.
  • Vytla, Y.; Angel, L. A. Applying Ion Mobility-Mass Spectrometry Techniques for Explicitly Identifying the Products of Cu(II) Reactions of 2His-2Cys Motif Peptides. Anal. Chem. 2016, 88, 10925–10932. DOI: 10.1021/acs.analchem.6b02313.
  • Tower, M. W.; Karancsi, T.; Jones, E. A.; Pringle, S. D.; Claude, E. Optimised Desorption Electrospray Ionisation Mass Spectrometry Imaging (DESI-MSI) for the Analysis of Proteins/Peptides Directly from Tissue Sections on a Travelling Wave Ion Mobility Q-ToF. J. Am. Soc. Mass Spectrom. 2018, 29, 2456–2466. DOI: 10.1007/s13361-018-2049-0.
  • Sallam, S.; Dolog, I.; Paik, B. A.; Jia, X.; Kiick, K. L.; Wesdemiotis, C. Sequence and Conformational Analysis of Peptide-Polymer Bioconjugates by Multidimensional Mass Spectrometry. Biomacromolecules. 2018, 19, 1498–1507. DOI: 10.1021/acs.biomac.7b01694.
  • Purves, R. W.; Barnett, D. A.; Guevremont, R. Separation of Protein Conformers Using Electrospray-High Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. Int. J. Mass Spectrom. 2000, 197, 163–177. DOI: 10.1016/S1387-3806(99)00240-7.
  • Myung, S.; Wiseman, J. M.; Valentine, S. J.; Takáts, Z.; Cooks, R. G.; Clemmer, D. E. Coupling Desorption Electrospray Ionization with Ion Mobility/Mass Spectrometry for Analysis of Protein Structure: Evidence for Desorption of Folded and Denatured States. J. Phys. Chem. B. 2006, 110, 5045–5051. DOI: 10.1021/jp052663e.
  • Ruotolo, B. T.; Hyung, S.-J.; Robinson, P. M.; Giles, K.; Bateman, R. H.; Robinson, C. V. Ion Mobility-Mass Spectrometry Reveals Long-Lived, Unfolded Intermediates in the Dissociation of Protein Complexes. Angew. Chem. Int. Ed. Engl. 2007, 46, 8001–8004. DOI: 10.1002/anie.200702161.
  • Hopper, J. T. S.; Oldham, N. J. Collision Induced Unfolding of Protein Ions in the Gas Phase Studied by Ion Mobility-Mass Spectrometry: The Effect of Ligand Binding on Conformational Stability. J. Am. Soc. Mass Spectrom. 2009, 20, 1851–1858. DOI: 10.1016/j.jasms.2009.06.010.
  • Smith, D. P.; Radford, S. E.; Ashcroft, A. E. Elongated Oligomers in β2-Microglobulin Amyloid Assembly Revealed by Ion Mobility Spectrometry-Mass Spectrometry. P. Natl. Acad. Sci. USA. 2010, 107, 6794–6798. DOI: 10.1073/pnas.0913046107.
  • Hilton, G. R.; Thalassinos, K.; Grabenauer, M.; Sanghera, N.; Slade, S. E.; Wyttenbach, T.; Robinson, P. J.; Pinheiro, T. J. T.; Bowers, M. T.; Scrivens, J. H. Structural Analysis of Prion Proteins by Means of Drift Cell and Traveling Wave Ion Mobility Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2010, 21, 845–854. DOI: 10.1016/j.jasms.2010.01.017.
  • Jenner, M.; Ellis, J.; Huang, W.-C.; Raven, E. L.; Roberts, G. C. K.; Oldham, N. J. Detection of a Protein Conformational Equilibrium by Electrospray Ionisation-Ion Mobility-Mass Spectrometry. Angew. Chem. Int. Ed. Engl. 2011, 50, 8291–8294. DOI: 10.1002/anie.201101077.
  • Bornschein, R. E.; Hyung, S.-J.; Ruotolo, B. T. Ion Mobility-Mass Spectrometry Reveals Conformational Changes in Charge Reduced Multiprotein Complexes. J Am Soc Mass Spectrom. 2011, 22, 1690–1698. DOI: 10.1007/s13361-011-0204-y.
  • Vlad, C.; Lindner, K.; Karreman, C.; Schildknecht, S.; Leist, M.; Tomczyk, N.; Rontree, J.; Langridge, J.; Danzer, K.; Ciossek, T.; et al. Autoproteolytic Fragments Are Intermediates in the Oligomerization/Aggregation of the Parkinson's Disease Protein Alpha-Synuclein as Revealed by Ion Mobility Mass Spectrometry. Chembiochem. 2011, 12, 2740–2744. DOI: 10.1002/cbic.201100569.
  • Jurneczko, E.; Kalapothakis, J.; Campuzano, I. D. G.; Morris, M.; Barran, P. E. Effects of Drift Gas on Collision Cross Sections of a Protein Standard in Linear Drift Tube and Traveling Wave Ion Mobility Mass Spectrometry. Anal. Chem. 2012, 84, 8524–8531. DOI: 10.1021/ac301260d.
  • Saikusa, K.; Kuwabara, N.; Kokabu, Y.; Inoue, Y.; Sato, M.; Iwasaki, H.; Shimizu, T.; Ikeguchi, M.; Akashi, S. Characterisation of an Intrinsically Disordered Protein Complex of Swi5-Sfr1 by Ion Mobility Mass Spectrometry and Small-Angle X-Ray Scattering. Analyst. 2013, 138, 1441–1449.
  • Scarff, C. A.; Sicorello, A.; Tomé, R. J. L.; Macedo-Ribeiro, S.; Ashcroft, A. E.; Radford, S. E. A Tale of a Tail: Structural Insights into the Conformational Properties of the Polyglutamine Protein Ataxin-3. Int. J. Mass Spectrom. 2013, 345–347, 63–70. DOI: 10.1016/j.ijms.2012.08.032.
  • Shepherd, D. A.; Holmes, K.; Rowlands, D. J.; Stonehouse, N. J.; Ashcroft, A. E. Using Ion Mobility Spectrometry-Mass Spectrometry to Decipher the Conformational and Assembly Characteristics of the Hepatitis B Capsid Protein. Biophys. J. 2013, 105, 1258–1267.
  • D’Urzo, A.; Konijnenberg, A.; Rossetti, G.; Habchi, J.; Li, J.; Carloni, P.; Sobott, F.; Longhi, S.; Grandori, R. Molecular Basis for Structural Heterogeneity of an Intrinsically Disordered Protein Bound to a Partner by Combined ESI-IM-MS and Modeling. J. Am. Soc. Mass Spectrom. 2015, 26, 472–481. DOI: 10.1007/s13361-014-1048-z.
  • Young, L. M.; Saunders, J. C.; Mahood, R. A.; Revill, C. H.; Foster, R. J.; Ashcroft, A. E.; Radford, S. E. ESI-IMS-MS: A Method for Rapid Analysis of Protein Aggregation and Its Inhibition by Small Molecules. Methods. 2016, 95, 62–69. DOI: 10.1016/j.ymeth.2015.05.017.
  • Pont, L.; Sanz-Nebot, V.; Vilaseca, M.; Jaumot, J.; Tauler, R.; Benavente, F. A Chemometric Approach for Characterization of Serum Transthyretin in Familial Amyloidotic Polyneuropathy Type I (FAP-I) by Electrospray Ionization-Ion Mobility Mass Spectrometry. Talanta. 2018, 181, 87–94. DOI: 10.1016/j.talanta.2017.12.072.
  • Lintonen, T. P. I.; Baker, P. R. S.; Suoniemi, M.; Ubhi, B. K.; Koistinen, K. M.; Duchoslav, E.; Campbell, J. L.; Ekroos, K. Differential Mobility Spectrometry-Driven Shotgun Lipidomics. Anal. Chem. 2014, 86, 9662–9669. DOI: 10.1021/ac5021744.
  • Griffiths, R. L.; Dexter, A.; Creese, A. J.; Cooper, H. J. Liquid Extraction Surface Analysis Field Asymmetric Waveform Ion Mobility Spectrometry Mass Spectrometry for the Analysis of Dried Blood Spots. Analyst. 2015, 140, 6879–6885. DOI: 10.1039/c5an00933b.
  • Clowers, B. H.; Dwivedi, P.; Steiner, W. E.; Hill, H. H.; Bendiak, B. Jr. Separation of Sodiated Isobaric Disaccharides and Trisaccharides Using Electrospray Ionization-Atmospheric Pressure Ion Mobility-Time of Flight Mass Spectrometry. J Am Soc Mass Spectrom. 2005, 16, 660–669. DOI: 10.1016/j.jasms.2005.01.010.
  • Jin, L.; Barran, P. E.; Deakin, J. A.; Lyon, M.; Uhrín, D. Conformation of Glycosaminoglycans by Ion Mobility Mass Spectrometry and Molecular Modelling. Phys. Chem. Chem. Phys. 2005, 7, 3464–3471. DOI: 10.1039/b508644b.
  • Clowers, B. H.; Hill, H. H. Jr. Mass Analysis of Mobility-Selected Ion Populations Using Dual Gate, Ion Mobility, Quadrupole Ion Trap Mass Spectrometry. Anal. Chem. 2005, 77, 5877–5885. DOI: 10.1021/ac050700s.
  • Dwivedi, P.; Bendiak, B.; Clowers, B. H.; Hill, H. H. Jr. Rapid Resolution of Carbohydrate Isomers by Electrospray Ionization Ambient Pressure Ion Mobility Spectrometry-Time-of-Flight Mass Spectrometry (ESI-APIMS-TOFMS). J. Am. Soc. Mass Spectrom. 2007, 18, 1163–1175. DOI: 10.1016/j.jasms.2007.04.007.
  • Olivova, P.; Chen, W.; Chakraborty, A. B.; Gebler, J. C. Determination of N-Glycosylation Sites and Site Heterogeneity in a Monoclonal Antibody by Electrospray Quadrupole Ion-Mobility Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 29–40. DOI: 10.1002/rcm.3330.
  • Fenn, L. S.; McLean, J. A. Structural Resolution of Carbohydrate Positional and Structural Isomers Based on Gas-Phase Ion Mobility-Mass Spectrometry. Phys. Chem. Chem. Phys. 2011, 13, 2196–2205. DOI: 10.1039/c0cp01414a.
  • Rashid, A. M.; Saalbach, G.; Bornemann, S. Discrimination of Large Maltooligosaccharides from Isobaric Dextran and Pullulan Using Ion Mobility Mass Spectrometry. Rapid Commun. Mass Spectrom. 2014, 28, 191–199. DOI: 10.1002/rcm.6771.
  • Bagal, D.; Zhang, H.; Schnier, P. D. Gas-Phase Proton-Transfer Chemistry Coupled with TOF Mass Spectrometry and Ion Mobility-MS for the Facile Analysis of Poly(Ethylene Glycols) and PEGylated Polypeptide Conjugates. Anal. Chem. 2008, 80, 2408–2418. DOI: 10.1021/ac7020163.
  • Kim, K.; Lee, J. W.; Chang, T.; Kim, H. I. Characterization of Polylactides with Different Stereoregularity Using Electrospray Ionization Ion Mobility Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2014, 25, 1771–1779. DOI: 10.1007/s13361-014-0949-1.
  • Morsa, D.; Defize, T.; Dehareng, D.; Jérome, C.; De Pauw, E. Polymer Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Anal. Chem. 2014, 86, 9693–9700. DOI: 10.1021/ac502246g.
  • Kokubo, S.; Vana, P. Obtaining the Dielectric Constant of Polymers from Doubly Charged Species in Ion-Mobility Mass Spectrometry. Macromol. Chem. Phys. 2017, 218, 1700126. DOI: 10.1002/macp.201700126.
  • Dwivedi, P.; Wu, P.; Klopsch, S. J.; Puzon, G. J.; Xun, L.; Hill, H. H. Jr. Metabolic Profiling by Ion Mobility Mass Spectrometry (IMMS). Metabolomics. 2008, 4, 63–80. DOI: 10.1007/s11306-007-0093-z.
  • McCooeye, M.; Kolakowski, B.; Boison, J.; Mester, Z. Evaluation of High-Field Asymmetric Waveform Ion Mobility Spectrometry Mass Spectrometry for the Analysis of the Mycotoxin Zearalenone. Anal. Chim. Acta. 2008, 627, 112–116. DOI: 10.1016/j.aca.2008.05.045.
  • Kaplan, K.; Dwivedi, P.; Davidson, S.; Yang, Q.; Tso, P.; Siems, W.; Hill, H. H. Jr. Monitoring Dynamic Changes in Lymph Metabolome of Fasting and Fed Rats by Electrospray Ionization-Ion Mobility Mass Spectrometry (ESI-IMMS). Anal. Chem. 2009, 81, 7944–7953. DOI: 10.1021/ac901030k.
  • Dwivedi, P.; Schultz, A. J.; Hill, H. H. Jr. Metabolic Profiling of Human Blood by High Resolution Ion Mobility Mass Spectrometry (IM-MS) ). Int J Mass Spectrom. 2010, 298, 78–90. DOI: 10.1016/j.ijms.2010.02.007.
  • Reynolds, J. C.; Blackburn, G. J.; Guallar-Hoyas, C.; Moll, V. H.; Bocos-Bintintan, V.; Kaur-Atwal, G.; Howdle, M. D.; Harry, E. L.; Brown, L. J.; Creaser, C. S.; Thomas, C. L. P. Detection of Volatile Organic Compounds in Breath Using Thermal Desorption Electrospray Ionization-Ion Mobility-Mass Spectrometry. Anal. Chem. 2010, 82, 2139–2144. DOI: 10.1021/ac9027593.
  • Zhang, L.; Foreman, D. P.; Grant, P. A.; Shrestha, B.; Moody, S. A.; Villiers, F.; Kwak, J. M.; Vertes, A. In Situ Metabolic Analysis of Single Plant Cells by Capillary Microsampling and Electrospray Ionization Mass Spectrometry with Ion Mobility Separation. Analyst. 2014, 139, 5079–5085. DOI: 10.1039/c4an01018c.
  • Beach, D. G.; Gabryelski, W. Linear and Nonlinear Regimes of Electrospray Signal Response in Analysis of Urine by Electrospray Ionization-High Field Asymmetric Waveform Ion Mobility Spectrometry-MS and Implications for Nontarget Quantification. Anal. Chem. 2013, 85, 2127–2134. DOI: 10.1021/ac3027542.
  • Stark, T. D.; Angelov, A.; Hofmann, M.; Liebl, W.; Hofmann, T. Comparative Direct Infusion Ion Mobility Mass Spectrometry Profiling of Thermus thermophilus Wild-Type and Mutant ΔcruC Carotenoid Extracts. Anal. Bioanal. Chem. 2013, 405, 9843–9848. DOI: 10.1007/s00216-013-7426-8.
  • Stopka, S. A.; Shrestha, B.; Maréchal, E.; Falconet, D.; Vertes, A. Metabolic Transformation of Microalgae Due to Light Acclimation and Genetic Modifications Followed by Laser Ablation Electrospray Ionization Mass Spectrometry with Ion Mobility Separation. Analyst. 2014, 139, 5945–5953. DOI: 10.1039/c4an01368a.
  • Zhang, X.; Chiu, V. M.; Stoica, G.; Lungu, G.; Schenk, J. O.; Hill, H. H. Jr. Metabolic Analysis of Striatal Tissues from Parkinson’s Disease-Like Rats by Electrospray Ionization Ion Mobility Mass Spectrometry. Anal. Chem. 2014, 86, 3075–3083. DOI: 10.1021/ac4040967.
  • Zhang, L.; Vertes, A. Energy Charge, Redox State, and Metabolite Turnover in Single Human Hepatocytes Revealed by Capillary Microsampling Mass Spectrometry. Anal. Chem. 2015, 87, 10397–10405. DOI: 10.1021/acs.analchem.5b02502.
  • Sarbu, M.; Robu, A. C.; Ghiulai, R. M.; Vukelić, Z.; Clemmer, D. E.; Zamfir, A. D. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides. Anal. Chem. 2016, 88, 5166–5178. DOI: 10.1021/acs.analchem.6b00155.
  • Fasciotti, M.; Souza, G. H. M. F.; Astarita, G.; Costa, I. C. R.; Monteiro, T. V. C.; Teixeira, C. M. L. L.; Eberlin, M. N.; Sarpal, A. S. Investigating the Potential of Ion Mobility-Mass Spectrometry for Microalgae Biomass Characterization. Anal. Chem. 2019, 91, 9266–9276. DOI: 10.1021/acs.analchem.9b02172.
  • Steiner, W. E.; Clowers, B. H.; Fuhrer, K.; Gonin, M.; Matz, L. M.; Siems, W. F.; Schultz, A. J.; Hill, H. H. Jr. Electrospray Ionization with Ambient Pressure Ion Mobility Separation and Mass Analysis by Orthogonal Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 2221–2226. DOI: 10.1002/rcm.495.
  • Matz, L. M.; Hill, H. H. Jr. Evaluation of Opiate Separation by High-Resolution Electrospray Ionization-Ion Mobility Spectrometry/Mass Spectrometry. Anal. Chem. 2001, 73, 1664–1669. DOI: 10.1021/ac001147b.
  • Matz, L. M.; Hill, H. H. Jr. Separation of Benzodiazepines by Electrospray Ionization Ion Mobility Spectrometry-Mass Spectrometry. Anal. Chim. Acta. 2002, 457, 235–245. DOI: 10.1016/S0003-2670(02)00021-1.
  • Cui, M.; Ding, L.; Mester, Z. Separation of Cisplatin and Its Hydrolysis Products Using Electrospray Ionization High-Field Asymmetric Waveform Ion Mobility Spectrometry Coupled with Ion Trap Mass Spectrometry. Anal. Chem. 2003, 75, 5847–5853. DOI: 10.1021/ac0344182.
  • McCooeye, M.; Ding, L.; Gardner, G. J.; Fraser, C. A.; Lam, J.; Sturgeon, R. E.; Mester, Z. Separation and Quantitation of the Stereoisomers of Ephedra Alkaloids in Natural Health Products Using Flow Injection-Electrospray Ionization-High Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. Anal. Chem. 2003, 75, 2538–2542. DOI: 10.1021/ac0342020.
  • Weston, D. J.; Bateman, R.; Wilson, I. D.; Wood, T. R.; Creaser, C. S. Direct Analysis of Pharmaceutical Drug Formulations Using Ion Mobility Spectrometry/Quadrupole-Time-of-Flight Mass Spectrometry Combined with Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 7572–7580. DOI: 10.1021/ac051277q.
  • Dwivedi, P.; Hill, H. H. Jr. A Rapid Analytical Method for Hair Analysis Using Ambient Pressure Ion Mobility Mass Spectrometry with Electrospray Ionization (ESI-IMMS). Int. J. Ion Mobil. Spec. 2008, 11, 61–69. DOI: 10.1007/s12127-008-0006-5.
  • Howdle, M. D.; Eckers, C.; Laures, A. M.-F.; Creaser, C. S. The Use of Shift Reagents in Ion Mobility-Mass Spectrometry: Studies on the Complexation of an Active Pharmaceutical Ingredient with Polyethylene Glycol Excipients. J. Am. Soc. Mass Spectrom. 2009, 20, 1–9. DOI: 10.1016/j.jasms.2008.10.002.
  • Campuzano, I.; Bush, M. F.; Robinson, C. V.; Beaumont, C.; Richardson, K.; Kim, H.; Kim, H. I. Structural Characterization of Drug-like Compounds by Ion Mobility Mass Spectrometry: Comparison of Theoretical and Experimentally Derived Nitrogen Collision Cross Sections. Anal. Chem. 2012, 84, 1026–1033. DOI: 10.1021/ac202625t.
  • Roscioli, K. M.; Zhang, X.; Li, S. X.; Goetz, G. H.; Cheng, G.; Zhang, Z.; Siems, W. F.; Hill, H. H. Jr. Real Time Pharmaceutical Reaction Monitoring by Electrospray Ion Mobility-Mass Spectrometry. Int. J. Mass Spectrom. 2013, 336, 27–36. DOI: 10.1016/j.ijms.2012.12.004.
  • Kanu, A. B.; Brandt, S. D.; Williams, M. D.; Zhang, N.; Hill, H. H. Jr. Analysis of Psychoactive Cathinones and Tryptamines by Electrospray Ionization Atmospheric Pressure Ion Mobility Time-of-Flight Mass Spectrometry. Anal. Chem. 2013, 85, 8535–8542. DOI: 10.1021/ac401951a.
  • Roscioli, K. M.; Tufariello, J. A.; Zhang, X.; Li, S. X.; Goetz, G. H.; Cheng, G.; Siems, W. F.; Hill, H. H. Jr. Desorption Electrospray Ionization (DESI) with Atmospheric Pressure Ion Mobility Spectrometry for Drug Detection. Analyst. 2014, 139, 1740–1750. DOI: 10.1039/c3an02113k.
  • Fernández-Maestre, R. Reduced Ion Mobilities of Aspartame, Cortisone, Betamethasone, Butylparaben, Propylparaben and Vanillin. Int. J. Ion Mobil. Spec. 2017, 20, 11–13. DOI: 10.1007/s12127-017-0216-9.
  • Fasciotti, M.; Lalli, P. M.; Klitzke, C. F.; Corilo, Y. E.; Pudenzi, M. A.; Pereira, R. C.; Bastos, W.; Daroda, R. J.; Eberlin, M. N. Petroleomics by Traveling Wave Ion Mobility-Mass Spectrometry Using CO2 as a Drift Gas. Energy Fuels. 2013, 27, 7277–7286. DOI: 10.1021/ef401630b.
  • Lalli, P. M.; Corilo, Y. E.; Rowland, S. M.; Marshall, A. G.; Rodgers, R. P. Isomeric Separation and Structural Characterization of Acids in Petroleum by Ion Mobility Mass Spectrometry. Energy Fuels. 2015, 29, 3626–3633. DOI: 10.1021/acs.energyfuels.5b00503.
  • Farenc, M.; Corilo, Y. E.; Lalli, P. M.; Riches, E.; Rodgers, R. P.; Afonso, C.; Giusti, P. Comparison of Atmospheric Pressure Ionization for the Analysis of Heavy Petroleum Fractions with Ion Mobility-Mass Spectrometry. Energy Fuels. 2016, 30, 8896–8903. DOI: 10.1021/acs.energyfuels.6b01191.
  • Maleki, H.; Kondalaji, S. G.; Khakinejad, M.; Valentine, S. J. Structural Assignments of Sulfur-Containing Compounds in Crude Oil Using Ion Mobility Spectrometry-Mass Spectrometry. Energy Fuels. 2016, 30, 9150–9161. DOI: 10.1021/acs.energyfuels.6b01798.
  • Szykuła, K. M.; Wicking, C.; Whitmarsh, S.; Creaser, C. S.; Reynolds, J. C. Characterization of Crude Oil and Its Saturate, Aromatic, and Resin Fractions by High-Field Asymmetric Waveform Ion Mobility Spectrometry-High-Resolution Mass Spectrometry. Energy Fuels. 2018, 32, 11310–11316. DOI: 10.1021/acs.energyfuels.8b02718.
  • Clowers, B. H.; Hill, H. H. Jr. Influence of Cation Adduction on the Separation Characteristics of Flavonoid Diglycoside Isomers Using Dual Gate-Ion Mobility-Quadrupole Ion Trap Mass Spectrometry. J. Mass Spectrom. 2006, 41, 339–351. DOI: 10.1002/jms.994.
  • Faull, P. A.; Korkeila, K. E.; Kalapothakis, J. M.; Gray, A.; McCullough, B. J.; Barran, P. E. Gas-Phase Metalloprotein Complexes Interrogated by Ion Mobility-Mass Spectrometry. Int. J. Mass Spectrom. 2009, 283, 140–148. DOI: 10.1016/j.ijms.2009.02.024.
  • Chan, Y.-T.; Li, X.; Soler, M.; Wang, J.-L.; Wesdemiotis, C.; Newkome, G. R. Self-Assembly and Traveling Wave Ion Mobility Mass Spectrometry Analysis of Hexacadmium Macrocycles. J. Am. Chem. Soc. 2009, 131, 16395–16397. DOI: 10.1021/ja907262c.
  • Chan, Y.-T.; Li, X.; Yu, J.; Carri, G. A.; Moorefield, C. N.; Newkome, G. R.; Wesdemiotis, C. Design, synthesis, and traveling wave ion mobility mass spectrometry characterization of iron(II)- and ruthenium(II)-terpyridine metallomacrocycles. J. Am. Chem. Soc. 2011, 133, 11967–11976. DOI: 10.1021/ja107307u.
  • Li, X.; Chan, Y.-T.; Casiano-Maldonado, M.; Yu, J.; Carri, G. A.; Newkome, G. R.; Wesdemiotis, C. Separation and Characterization of Metallosupramolecular Libraries by Ion Mobility Mass Spectrometry. Anal. Chem. 2011, 83, 6667–6674. DOI: 10.1021/ac201161u.
  • Domalain, V.; Tognetti, V.; Hubert-Roux, M.; Lange, C. M.; Joubert, L.; Baudoux, J.; Rouden, J.; Afonso, C. Role of Cationization and Multimers Formation for Diastereomers Differentiation by Ion Mobility-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 1437–1445. DOI: 10.1007/s13361-013-0690-1.
  • Tsybizova, A.; Rulíšek, L.; Schröder, D.; Rokob, T. A. Coordination and Bond Activation in Complexes of Regioisomeric Phenylpyridines with the Nickel(II) Chloride Cation in the Gas Phase. J. Phys. Chem. A. 2013, 117, 1171–1180. DOI: 10.1021/jp3052455.
  • Chen, S.-H.; Russell, W. K.; Russell, D. H. Combining Chemical Labeling, Bottom-Up and Top-Down Ion-Mobility Mass Spectrometry to Identify Metal-Binding Sites of Partially Metalated Metallothionein. Anal. Chem. 2013, 85, 3229–3237. DOI: 10.1021/ac303522h.
  • Wright, V. E.; Castro-Gómez, F.; Jurneczko, E.; Reynolds, J. C.; Poulton, A.; Christie, S. D. R.; Barran, P.; Bo, C.; Creaser, C. S. Structural Studies of Metal Ligand Complexes by Ion Mobility-Mass Spectrometry. Int. J. Ion Mobil. Spec. 2013, 16, 61–67. DOI: 10.1007/s12127-013-0122-8.
  • Li, H.; Ha, E.; Donaldson, R. P.; Jeremic, A. M.; Vertes, A. Rapid Assessment of Human Amylin Aggregation and Its Inhibition by Copper(II) Ions by Laser Ablation Electrospray Ionization Mass Spectrometry with Ion Mobility Separation. Anal. Chem. 2015, 87, 9829–9837. DOI: 10.1021/acs.analchem.5b02217.
  • Baksi, A.; Ghosh, A.; Mudedla, S. K.; Chakraborty, P.; Bhat, S.; Mondal, B.; Krishnadas, K. R.; Subramanian, V.; Pradeep, T. Isomerism in Monolayer Protected Silver Cluster Ions: An Ion Mobility-Mass Spectrometry Approach. J. Phys. Chem. 2017, 121, 13421–13427.
  • Chakraborty, P.; Nag, A.; Paramasivam, G.; Natarajan, G.; Pradeep, T. Fullerene-Functionalized Monolayer-Protected Silver Clusters: [Ag29(BDT)12(C60) n]3- ( n = 1-9). ACS Nano. 2018, 12, 2415–2425. DOI: 10.1021/acsnano.7b07759.
  • Davis, A. L.; Clowers, B. H. Stabilization of Gas-Phase Uranyl Complexes Enables Rapid Speciation Using Electrospray Ionization and Ion Mobility-Mass Spectrometry. Talanta. 2018, 176, 140–150. DOI: 10.1016/j.talanta.2017.07.090.
  • Huang, K.-H.; Tu, T.-H.; Wang, S.-C.; Chan, Y.-T.; Hsu, C.-C. Micelles Protect Intact Metallo-Supramolecular Block Copolymer Complexes from Solution to Gas Phase during Electrospray Ionization. Anal. Chem. 2018, 90, 7691–7699. DOI: 10.1021/acs.analchem.8b01576.
  • Endres, K. J.; Barthelmes, K.; Winter, A.; Antolovich, R.; Schubert, U. S.; Wesdemiotis, C. Collision Cross-Section Analysis of Self-Assembled Metallomacrocycle Isomers and Isobars via Ion Mobility Mass Spectrometry. Rapid Commun. Mass Spectrom. 2020, e8717.
  • Guan, S.; Yu, H.; Zhang, Z.; Jiang, X.; Shi, J.; Lu, T.; Wang, C.; Wang, P.; Wang, M. From Dimeric to Octameric Metallo-Supramolecular Macrocycles Based on Sterically Congested Ligand-Assisted Self-Assembly with Zn(II), Cd(II), and Fe(II). Macromol. Rapid Commun. 2020, 41, e2000095. DOI: 10.1002/marc.202000095.
  • Asbury, G. R.; Wu, C.; Siems, W. F.; Hill, H. H. Jr. Separation and Identification of Some Chemical Warfare Degradation Products Using Electrospray High Resolution Ion Mobility Spectrometry with Mass Selected Detection. Anal. Chim. Acta. 2000, 404, 273–283. DOI: 10.1016/S0003-2670(99)00726-6.
  • Steiner, W. E.; Clowers, B. H.; Matz, L. M.; Siems, W. F.; Hill, H. H. Jr. Rapid Screening of Aqueous Chemical Warfare Agent Degradation Products: Ambient Pressure Ion Mobility Mass Spectrometry. Anal. Chem. 2002, 74, 4343–4352. DOI: 10.1021/ac025687f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.