566
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent Advances in Carbon Nanostructure-Based Electrochemical Biosensors for Environmental Monitoring

ORCID Icon, ORCID Icon & ORCID Icon
Pages 520-536 | Published online: 25 Sep 2021

References

  • Jurado-Sánchez, B. Nanoscale Biosensors Based on Self-Propelled Objects. Biosensors. 2018, 8, 59. DOI: 10.3390/bios8030059.
  • Clark, L. C. Monitor and Control of Blood and Tissue oxygen Tensions. Trans. Am. Soc. Artif. Intern. Organs.1956, 2, 41–48.
  • Clark, L. C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. DOI: 10.1111/j.1749-6632.1962.tb13623.x.
  • Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors (Basel). 2008, 8, 1400–1458. DOI: 10.3390/s8031400.
  • Kour, R.; Arya, S.; Young, S.-J.; Gupta, V.; Bandhoria, P.; Khosla, A. Review—Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. J. Electrochem. Soc. 2020, 167, 037555. DOI: 10.1149/1945-7111/ab6bc4.
  • Mollarasouli, F.; Kurbanoglu, S.; Ozkan, S. A. The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors. 2019, 9, 86. DOI: 10.3390/bios9030086.
  • Sheng, J.-W.; He, M.; Shi, H.-C.; Qian, Y. A Comprehensive Immunoassay for the Detection of Microcystins in Waters Based on Polyclonal Antibodies. Anal. Chim. Acta. 2006, 572, 309–315. DOI: 10.1016/j.aca.2006.05.040.
  • Long, F.; Zhu, A.; Gu, C.; Shi, H. Recent Progress in Optical Biosensors for Environmental Applications. In State of the Art in Biosensors - Environmental and Medical Applications; InTech: London, 2013; pp 4–28. DOI: 10.5772/52252.
  • Ronkainen, N. J.; Halsall, H. B.; Heineman, W. R. Electrochemical Biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. DOI: 10.1039/b714449k.
  • Ronkainen, N.; Okon, S. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers. Materials (Basel). 2014, 7, 4669–4709. DOI: 10.3390/ma7064669.
  • Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors. Chem. Rev. 2008, 108, 329–351. DOI: 10.1021/cr068100w.
  • Dzyadevych, S.; Jaffrezic-Renault, N. Conductometric Biosensors. In Biological Identification; Schaudies RP, Ed.; Elsevier, 2014; pp 153–193. DOI: 10.1533/9780857099167.2.153.
  • Zamfir, L.-G.; Puiu, M.; Bala, C. Advances in Electrochemical Impedance Spectroscopy Detection of Endocrine Disruptors. Sensors. 2020, 20, 6443. DOI: 10.3390/s20226443.
  • Kivirand, K.; Min, M.; Rinken, T. Challenges and Applications of Impedance-Based Biosensors in Water Analysis. In Biosensors for Environmental Monitoring; IntechOpen: London, 2019. DOI: 10.5772/intechopen.89334.
  • Bogomolova, A.; Komarova, E.; Reber, K.; Gerasimov, T.; Yavuz, O.; Bhatt, S.; Aldissi, M. Challenges of Electrochemical Impedance Spectroscopy in Protein Biosensing. Anal. Chem. 2009, 81, 3944–3949. DOI: 10.1021/ac9002358.
  • Gross, E. M.; Maddipati, S. S.; Snyder, S. M. A Review of Electrogenerated Chemiluminescent Biosensors for Assays in Biological Matrices. Bioanalysis. 2016, 8, 2071–2089. DOI: 10.4155/bio-2016-0178.
  • Dashtian, K.; Ghaedi, M.; Hajati, S. Photo-Sensitive Pb5S2I6 Crystal Incorporated Polydopamine Biointerface Coated on Nanoporous TiO2 as an Efficient Signal-on Photoelectrochemical Bioassay for Ultrasensitive Detection of Cr(VI) Ions. Biosens. Bioelectron. 2019, 132, 105–114. DOI: 10.1016/j.bios.2019.02.042.
  • Dashtian, K.; Hajati, S.; Ghaedi, M. L-Phenylalanine-Imprinted Polydopamine-Coated CdS/CdSe n-n Type II Heterojunction as an Ultrasensitive Photoelectrochemical Biosensor for the PKU Monitoring. Biosens. Bioelectron. 2020, 165, 112346. DOI: 10.1016/j.bios.2020.112346.
  • Dashtian, K.; Hajati, S.; Ghaedi, M. Ti-Based Solid-State Imprinted-Cu2O/CuInSe2 Heterojunction Photoelectrochemical Platform for Highly Selective Dopamine Monitoring. Sens. Actuators B Chem. 2021, 326, 128824. DOI: 10.1016/j.snb.2020.128824.
  • Devadoss, A.; Sudhagar, P.; Terashima, C.; Nakata, K.; Fujishima, A. Photoelectrochemical Biosensors: New Insights into Promising Photoelectrodes and Signal Amplification Strategies. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 43–63. DOI: 10.1016/j.jphotochemrev.2015.06.002.
  • Chun, C. N. W.; Tajarudin, H. A.; Ismail, N.; Azahari, B.; Makhtar, M. M. Z.; Yan, L. K. Bacterial Flagellum versus Carbon Nanotube: A Review Article on the Potential of Bacterial Flagellum as a Sustainable and Green Substance for the Synthesis of Nanotubes. Sustainability. 2020, 13, 21. DOI: 10.3390/su13010021.
  • Naseri, A.; Barati, R.; Farzaneh, R.; Bahram, M. Studies on Adsorption of Some Organic Dyes from Aqueous Solution onto Graphene Nanosheets. Iran. J. Chem. Chem. Eng. 2015, 34, 51–60. DOI: 10.30492/IJCCE.2015.14096..
  • Al Jahdaly, B. A.; Elsadek, M. F.; Ahmed, B. M.; Farahat, M. F.; Taher, M. M.; Khalil, A. M. Outstanding Graphene Quantum Dots from Carbon Source for Biomedical and Corrosion Inhibition Applications: A Review. Sustainability. 2021, 13, 2127. DOI: 10.3390/su13042127.
  • Bounegru, A. V.; Apetrei, C. Voltamperometric Sensors and Biosensors Based on Carbon Nanomaterials Used for Detecting Caffeic Acid—A Review. Int. J. Mol. Sci. 2020, 21, 9275. DOI: 10.3390/ijms21239275.
  • Dang, X.; Hu, C.; Wei, Y.; Chen, W.; Hu, S. Sensitivity Improvement of the Oxidation of Tetracycline at Acetylene Black Electrode in the Presence of Sodium Dodecyl Sulfate. Electroanalysis. 2004, 16, 1949–1955. DOI: 10.1002/elan.200403049.
  • Liang, C.; Li, Z.; Dai, S. Mesoporous Carbon Materials: Synthesis and Modification. Angew. Chem. Int. Ed. Engl. 2008, 47, 3696–3717. DOI: 10.1002/anie.200702046.
  • Nagl, A.; Hemelaar, S. R.; Schirhagl, R. Improving Surface and Defect Center Chemistry of Fluorescent Nanodiamonds for Imaging Purposes - A Review. Anal. Bioanal. Chem. 2015, 407, 7521–7536. DOI: 10.1007/s00216-015-8849-1.
  • Speltini, A.; Merli, D.; Profumo, A. Analytical Application of Carbon Nanotubes, Fullerenes and Nanodiamonds in Nanomaterials-Based Chromatographic Stationary Phases: A Review. Anal. Chim. Acta. 2013, 783, 1–16. DOI: 10.1016/j.aca.2013.03.041.
  • Mchedlov-Petrossyan, N. O. Fullerenes in Aqueous Media: A Review. Theor. Exp. Chem. 2020, 55, 361–391. DOI: 10.1007/s11237-020-09630-w.
  • Adekoya, D.; Qian, S.; Gu, X.; Wen, W.; Li, D.; Ma, J.; Zhang, S. DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review. Nanomicro. Lett. 2020, 13, 13. DOI: 10.1007/s40820-020-00522-1.
  • Kheirabadi, S. J.; Ghayour, R.; Sanaee, M.; Jooj, B. Selective Gas Sensor Based on Bilayer Armchair Graphene Nanoribbon. Phys. E Low Dimens. Syst. Nanostruct. 2021, 129, 114635. DOI: 10.1016/j.physe.2021.114635.
  • Yu, H.; Zhou, Y.; Liang, Z. Adsorption of CO2 and CH4 Molecules on the Pd-Decorated C3N Based Sensors: A First-Principles Study. Phys. E Low Dimens. Syst. Nanostruct. 2021, 129, 114622. DOI: 10.1016/j.physe.2021.114622.
  • Chu, J.; Wang, X.; Wang, D.; Yang, A.; Lv, P.; Wu, Y.; Rong, M.; Gao, L. Highly Selective Detection of Sulfur Hexafluoride Decomposition Components H2S and SOF2 Employing Sensors Based on Tin Oxide Modified Reduced Graphene Oxide. Carbon N. Y. 2018, 135, 95–103. DOI: 10.1016/j.carbon.2018.04.037.
  • Ding, W.; Wu, M.; Liang, M.; Ni, H.; Li, Y. Sensitive Hydrazine Electrochemical Biosensor Based on a Porous Chitosan–Carbon Nanofiber Nanocomposite Modified Electrode. Anal. Lett. 2015, 48, 1551–1569. DOI: 10.1080/00032719.2014.991965.
  • Colozza, N.; Kehe, K.; Popp, T.; Steinritz, D.; Moscone, D.; Arduini, F. Paper-Based Electrochemical Sensor for on-Site Detection of the Sulphur Mustard. Environ. Sci. Pollut. Res. 2018, 28, 25069–25080. DOI: 10.1007/s11356-018-2545-6..
  • Colozza, N.; Kehe, K.; Dionisi, G.; Popp, T.; Tsoutsoulopoulos, A.; Steinritz, D.; Moscone, D.; Arduini, F. A Wearable Origami-Like Paper-Based Electrochemical Biosensor for Sulfur Mustard Detection. Biosens. Bioelectron. 2019, 129, 15–23. DOI: 10.1016/j.bios.2019.01.002.
  • Colozza, N.; Mazzaracchio, V.; Kehe, K.; Tsoutsoulopoulos, A.; Schioppa, S.; Fabiani, L.; Steinritz, D.; Moscone, D.; Arduini, F. Development of Novel Carbon Black-Based Heterogeneous Oligonucleotide-Antibody Assay for Sulfur Mustard Detection. Sens. Actuators B Chem. 2021, 328, 129054. DOI: 10.1016/j.snb.2020.129054.
  • Mollarasouli, F.; Asadpour-Zeynali, K.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J. M. Non-Enzymatic Hydrogen Peroxide Sensor Based on Graphene Quantum Dots-Chitosan/Methylene Blue Hybrid Nanostructures. Electrochim. Acta. 2017, 246, 303–314. DOI: 10.1016/j.electacta.2017.06.003.
  • Mollarasouli, F.; Kurbanoglu, S.; Asadpour-Zeynali, K.; Ozkan, S. A. Non-Enzymatic Monitoring of Hydrogen Peroxide Using Novel Nanosensor Based on CoFe2O4@CdSeQD Magnetic Nanocomposite and Rifampicin Mediator. Anal. Bioanal. Chem. 2020, 412, 5053–5065. DOI: 10.1007/s00216-019-02306-y.
  • Şahin, S. A Simple and Sensitive Hydrogen Peroxide Detection with Horseradish Peroxidase Immobilized on Pyrene Modified Acid‐Treated Single‐Walled Carbon Nanotubes. J. Chem. Technol. Biotechnol. 2019, 95, 1093–1099. DOI:10.1002/jctb.6293.
  • Chen, X.; Wang, J.; Liu, Z.; Li, Y.; Huang, J.; Tao, C.-A. One Pot Fabrication of Graphene-Bimetallic Nanoparticles-Based Acetylcholinesterase Electrochemical Biosensor with Ultralow Detection Limit toward Methyl Parathion. Mater. Res. Express. 2019, 6, 105093. DOI: 10.1088/2053-1591/ab3e84.
  • Zhu, C.; Liu, D.; Chen, Z.; Li, L.; You, T. An Ultra-Sensitive Aptasensor Based on Carbon Nanohorns/Gold Nanoparticles Composites for Impedimetric Detection of Carbendazim at Picogram Levels. J. Colloid Interface Sci. 2019, 546, 92–100. DOI: 10.1016/j.jcis.2019.03.035.
  • Cesarino, I.; Moraes, F. C.; Lanza, M. R. V.; Machado, S. A. S. Electrochemical Detection of Carbamate Pesticides in Fruit and Vegetables with a Biosensor Based on Acetylcholinesterase Immobilised on a Composite of Polyaniline-Carbon Nanotubes. Food Chem. 2012, 135, 873–879. DOI: 10.1016/j.foodchem.2012.04.147.
  • Mollarasouli, F.; Majidi, M. R.; Asadpour-Zeynali, K. Amperometric Sensor Based on Carbon Dots Decorated Self-Assembled 3D Flower-like β-Ni(OH)2 Nanosheet Arrays for the Determination of Nitrite. Electrochim. Acta. 2018, 291, 132–141. DOI: 10.1016/j.electacta.2018.08.132.
  • Liu, H.; Guo, K.; Lv, J.; Gao, Y.; Duan, C.; Deng, L.; Zhu, Z. A Novel Nitrite Biosensor Based on the Direct Electrochemistry of Horseradish Peroxidase Immobilized on Porous Co3O4 Nanosheets and Reduced Graphene Oxide Composite Modified Electrode. Sens. Actuators B Chem. 2017, 238, 249–256. DOI: 10.1016/j.snb.2016.07.073.
  • Riahifar, V.; Haghnazari, N.; Keshavarzi, F.; Nasri, F. Design a High Sensitive Electrochemical Sensor Based on Immobilized Cysteine on Fe3O4@Au Core-Shell Nanoparticles and Reduced Graphene Oxide Nanocomposite for Nitrite Monitoring. Microchem. J. 2021, 166, 106217. DOI: 10.1016/j.microc.2021.106217.
  • Arlyapov, V. A.; Kharkova, A. S.; Kurbanaliyeva, S. K.; Kuznetsova, L. S.; Machulin, A. V.; Tarasov, S. E.; Melnikov, P. V.; Ponamoreva, O. N.; Alferov, V. A.; Reshetilov, A. N. Use of Biocompatible Redox-Active Polymers Based on Carbon Nanotubes and Modified Organic Matrices for Development of a Highly Sensitive BOD Biosensor. Enzyme Microb. Technol. 2021, 143, 109706. DOI: 10.1016/j.enzmictec.2020.109706.
  • Ding, J.; Zhang, D.; Liu, Y.; Zhan, X.; Lu, Y.; Zhou, P.; Zhang, D. An Electrochemical Aptasensor for Pb2+ Detection Based on Metal–Organic-Framework-Derived Hybrid Carbon. Biosensors. 2020, 11, 1–10. DOI: 10.3390/bios11010001.
  • da Silva, W.; Ghica, M. E.; Brett, C. M. A. Biotoxic Trace Metal Ion Detection by Enzymatic Inhibition of a Glucose Biosensor Based on a Poly(Brilliant Green)-Deep Eutectic Solvent/Carbon Nanotube Modified Electrode. Talanta. 2020, 208, 120427. DOI: 10.1016/j.talanta.2019.120427.
  • Yang, Y.; Liu, Y.; Chen, Y.; Wang, Y.; Shao, P.; Liu, R.; Gao, G.; Zhi, J. A Portable Instrument for Monitoring Acute Water Toxicity Based on Mediated Electrochemical Biosensor: Design, Testing and Evaluation. Chemosphere. 2020, 255, 126964. DOI: 10.1016/j.chemosphere.2020.126964.
  • Mollarasouli, F.; Kurbanoglu, S.; Asadpour-Zeynali, K.; Ozkan, S. A. Preparation of Porous Cu Metal Organic Framework/ZnTe Nanorods/Au Nanoparticles Hybrid Platform for Nonenzymatic Determination of Catechol. J. Electroanal. Chem. 2020, 856, 113672. DOI: 10.1016/j.jelechem.2019.113672.
  • Yasa, M.; Deniz, A.; Forough, M.; Yildirim, E.; Persil Cetinkol, O.; Udum, Y. A.; Toppare, L. Construction of Amperometric Biosensor Modified with Conducting Polymer/Carbon Dots for the Analysis of Catechol. J. Polym. Sci. 2020, 58, 3336–3348. DOI: 10.1002/pol.20200647.
  • Beiranvand, Z. S.; Abbasi, A. R.; Dehdashtian, S.; Karimi, Z.; Azadbakht, A. Aptamer-Based Electrochemical Biosensor by Using Au-Pt Nanoparticles, Carbon Nanotubes and Acriflavine Platform. Anal. Biochem. 2017, 518, 35–45. DOI: 10.1016/j.ab.2016.10.001.
  • Mercante, L. A.; Facure, M. H. M.; Sanfelice, R. C.; Migliorini, F. L.; Mattoso, L. H. C.; Correa, D. S. One-Pot Preparation of PEDOT:PSS-Reduced Graphene Decorated with Au Nanoparticles for Enzymatic Electrochemical Sensing of H2O2. Appl. Surf. Sci. 2017, 407, 162–170. DOI: 10.1016/j.apsusc.2017.02.156.
  • Xu, G.; Huo, D.; Hou, C.; Zhao, Y.; Bao, J.; Yang, M.; Fa, H. A Regenerative and Selective Electrochemical Aptasensor Based on Copper Oxide Nanoflowers-Single Walled Carbon Nanotubes Nanocomposite for Chlorpyrifos Detection. Talanta. 2018, 178, 1046–1052. DOI: 10.1016/j.talanta.2017.08.086.
  • Jiang, D.; Du, X.; Liu, Q.; Zhou, L.; Dai, L.; Qian, J.; Wang, K. Silver Nanoparticles Anchored on Nitrogen-Doped Graphene as a Novel Electrochemical Biosensing Platform with Enhanced Sensitivity for Aptamer-Based Pesticide Assay. Analyst. 2015, 140, 6404–6411. DOI: 10.1039/c5an01084e.
  • Fu, J.; Yao, Y.; An, X.; Wang, G.; Guo, Y.; Sun, X.; Li, F. Voltammetric Determination of Organophosphorus Pesticides Using a Hairpin Aptamer Immobilized in a Graphene Oxide-Chitosan Composite. Microchim. Acta. 2020, 187, 36. DOI: 10.1007/s00604-019-4022-4..
  • Fan, L.; Wang, G.; Liang, W.; Yan, W.; Guo, Y.; Shuang, S.; Dong, C.; Bi, Y. Label-Free and Highly Selective Electrochemical Aptasensor for Detection of PCBs Based on Nickel Hexacyanoferrate Nanoparticles/Reduced Graphene Oxides Hybrids. Biosens. Bioelectron. 2019, 145, 111728. DOI: 10.1016/j.bios.2019.111728.
  • Khosropour, H.; Rezaei, B.; Rezaei, P.; Ensafi, A. A. Ultrasensitive Voltammetric and Impedimetric Aptasensor for Diazinon Pesticide Detection by VS2 Quantum Dots-Graphene Nanoplatelets/Carboxylated Multiwalled Carbon Nanotubes as a New Group Nanocomposite for Signal Enrichment. Anal. Chim. Acta. 2020, 1111, 92–102. DOI: 10.1016/j.aca.2020.03.047.
  • Niyomdecha, S.; Limbut, W.; Numnuam, A.; Asawatreratanakul, P.; Kanatharana, P.; Thavarungkul, P. A Novel BOD Biosensor Based on Entrapped Activated Sludge in a Porous Chitosan-Albumin Cryogel Incorporated with Graphene and Methylene Blue. Sens. Actuators B Chem. 2017, 241, 473–481. DOI: 10.1016/j.snb.2016.10.102.
  • Gao, G.; Fang, D.; Yu, Y.; Wu, L.; Wang, Y.; Zhi, J. A Double-Mediator Based Whole Cell Electrochemical Biosensor for Acute Biotoxicity Assessment of Wastewater. Talanta. 2017, 167, 208–216. DOI: 10.1016/j.talanta.2017.01.081.
  • Bao, J.; Huang, T.; Wang, Z.; Yang, H.; Geng, X.; Xu, G.; Samalo, M.; Sakinati, M.; Huo, D.; Hou, C. 3D Graphene/Copper Oxide Nano-Flowers Based Acetylcholinesterase Biosensor for Sensitive Detection of Organophosphate Pesticides. Sens. Actuators B Chem. 2019, 279, 95–101. DOI: 10.1016/j.snb.2018.09.118.
  • Shi, L.; Wang, Y.; Chu, Z.; Yin, Y.; Jiang, D.; Luo, J.; Ding, S.; Jin, W. A Highly Sensitive and Reusable Electrochemical Mercury Biosensor Based on Tunable Vertical Single-Walled Carbon Nanotubes and a Target Recycling Strategy. J. Mater. Chem. B. 2017, 5, 1073–1080. DOI: 10.1039/c6tb02658c.
  • Umar, M. F.; Nasar, A. Reduced Graphene Oxide/Polypyrrole/Nitrate Reductase Deposited Glassy Carbon Electrode (GCE/RGO/PPy/NR): Biosensor for the Detection of Nitrate in Wastewater. Appl. Water Sci. 2018, 8, 211. DOI: 10.1007/s13201-018-0860-1..
  • Zou, B.; Chu, Y.; Xia, J. Monocrotophos Detection with a Bienzyme Biosensor Based on Ionic-Liquid-Modified Carbon Nanotubes. Anal. Bioanal. Chem. 2019, 411, 2905–2914. DOI: 10.1007/s00216-019-01743-z.
  • Othman, A. M.; Wollenberger, U. Amperometric Biosensor Based on Coupling Aminated Laccase to Functionalized Carbon Nanotubes for Phenolics Detection. Int. J. Biol. Macromol. 2020, 153, 855–864. DOI: 10.1016/j.ijbiomac.2020.03.049.
  • Zheng, H.; Yan, Z.; Wang, M.; Chen, J.; Zhang, X. Biosensor Based on Polyaniline-Polyacrylonitrile-Graphene Hybrid Assemblies for the Determination of Phenolic Compounds in Water Samples. J. Hazard. Mater. 2019, 378, 120714. DOI: 10.1016/j.jhazmat.2019.05.107.
  • Zhang, P.; Sun, T.; Rong, S.; Zeng, D.; Yu, H.; Zhang, Z.; Chang, D.; Pan, H. A Sensitive Amperometric AChE-Biosensor for Organophosphate Pesticides Detection Based on Conjugated Polymer and Ag-RGO-NH2 Nanocomposite. Bioelectrochemistry. 2019, 127, 163–170. DOI: 10.1016/j.bioelechem.2019.02.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.