1,264
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 537-593 | Published online: 03 Sep 2021

References

  • Forouzanfar, M. H.; Afshin, A.; Alexander, L. T.; Anderson, H. R.; Bhutta, Z. A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F. J.; et al. Global, Regional, and National Comparative Risk Assessment of 79 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks, 1990-2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. DOI: 10.1016/S0140-6736(16)31679-8.
  • Policardo, L.; Seghieri, G.; Anichini, R.; De Bellis, A.; Franconi, F.; Francesconi, P.; Del Prato, S.; Mannucci, E. Effect of Diabetes on Hospitalization for Ischemic Stroke and Related in-Hospital Mortality: A Study in Tuscany, Italy, over Years 2004–2011. Diabetes. Metab. Res. Rev. 2015, 31, 280–286. DOI: 10.1002/dmrr.2607.
  • Bragg, F.; Holmes, M. V.; Iona, A.; Guo, Y.; Du, H.; Chen, Y.; Bian, Z.; Yang, L.; Herrington, W.; Bennett, D.; for the China Kadoorie Biobank Collaborative Group.; et al. Association between Diabetes and Cause-Specific Mortality in Rural and Urban Areas of China. JAMA 2017, 317, 280–289., DOI: 10.1001/jama.2016.19720.
  • Yang, J. J.; Yu, D.; Wen, W.; Saito, E.; Rahman, S.; Shu, X.-O.; Chen, Y.; Gupta, P. C.; Gu, D.; Tsugane, S.; et al. Association of Diabetes with All-Cause and Cause-Specific Mortality in Asia: A Pooled Analysis of More than 1 Million Participants. JAMA Network Open 2019, 2, e192696–e192696. DOI: 10.1001/jamanetworkopen.2019.2696.
  • Largeaud, F.; Kokoh, K. B.; Beden, B.; Lamy, C. On the Electrochemical Reactivity of Anomers: Electrocatalytic Oxidation of α- and β-D-Glucose on Platinum Electrodes in Acid and Basic Media. J. Electroanal. Chem. 1995, 397, 261–269. DOI: 10.1016/0022-0728(95)04139-8.
  • Barc’H, N. L.; Grossel, J. M.; Looten, P.; Mathlouthi, M. Kinetic Study of the Mutarotation of D-Glucose in Concentrated Aqueous Solution by Gas-Liquid Chromatography. Food Chem. 2001, 74, 119–124.
  • Lewis, B. E.; Choytun, N.; Schramm, V. L.; Bennet, A. J. Transition States for Glucopyranose Interconversion. J. Am. Chem. Soc. 2006, 128, 5049–5058. DOI: 10.1021/ja0573054.
  • Clark, L. C.; Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N Y Acad. Sci. 1962, 102, 29–45. DOI: 10.1111/j.1749-6632.1962.tb13623.x.
  • Mulchandani, A.; Pan, S. Ferrocene-conjugated m-phenylenediamine conducting polymer-incorporated peroxidase biosensors . Anal. Biochem. 1999, 267, 141–147. DOI: 10.1006/abio.1998.2983.
  • Cass, A. E. G.; Davis, G.; Francis, G. D.; Hill, H. A. O.; Aston, W. J.; Higgins, I. J.; Plotkin, E. V.; Scott, L. D. L.; Turner, A. P. F. Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose. Anal. Chem. 1984, 56, 667–671. DOI: 10.1021/ac00268a018.
  • Tsujimura, S.; Kojima, S.; Kano, K.; Ikeda, T.; Sato, M.; Sanada, H.; Omura, H. Novel FAD-Dependent Glucose Dehydrogenase for a Dioxygen-Insensitive Glucose Biosensor. Biosci. Biotechnol. Biochem. 2006, 70, 654–659. DOI: 10.1271/bbb.70.654.
  • Loughran, M. G.; Hall, J. M.; Turner, A. P. F. Development of a Pyrroloquinoline Quinone (PQQ) Mediated Glucose Oxidase Enzyme Electrode for Detection of Glucose in Fruit Juice. Electroanalysis 1996, 8, 870–875. DOI: 10.1002/elan.1140081004.
  • Lau, K.-T.; de Fortescu, S. A. L.; Murphy, L. J.; Slater, J. M. Disposable Glucose Sensors for Flow Injection Analysis Using Substituted 1,4-Benzoquinone Mediators. Electroanalysis 2003, 15, 975–981. DOI: 10.1002/elan.200390118.
  • Wang, Y.; Caruso, F. Enzyme Encapsulation in Nanoporous Silica Spheres. Chem. Commun. 2004, 1528–1529. DOI: 10.1039/b403871a.
  • Bao, S.-J.; Li, C. M.; Zang, J.-F.; Cui, X.-Q.; Qiao, Y.; Guo, J. New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications. Adv. Funct. Mater. 2008, 18, 591–599. DOI: 10.1002/adfm.200700728.
  • Hu, Y.-S.; Adelhelm, P.; Smarsly, B. M.; Hore, S.; Antonietti, M.; Maier, J. Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High-Rate Capability. Adv. Funct. Mater. 2007, 17, 1873–1878. DOI: 10.1002/adfm.200601152.
  • Ferri, S.; Kojima, K.; Sode, K. Review of Glucose Oxidases and Glucose Dehydrogenases: A Bird’s Eye View of Glucose Sensing Enzymes. J. Diabetes Sci. Technol. 2011, 5, 1068–1076. DOI: 10.1177/193229681100500507.
  • Yoo, E.-H.; Lee, S.-Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors (Basel) 2010, 10, 4558–4576. DOI: 10.3390/s100504558.
  • Vashist, S. K.; Zheng, D.; Al-Rubeaan, K.; Luong, J. H. T.; Sheu, F.-S. Technology behind Commercial Devices for Blood Glucose Monitoring in Diabetes Management: A Review. Anal. Chim. Acta 2011, 703, 124–136. DOI: 10.1016/j.aca.2011.07.024.
  • Wilson, R.; Turner, A. P. F. Glucose Oxidase: An Ideal Enzyme. Biosens. Bioelectron. 1992, 7, 165–185. DOI: 10.1016/0956-5663(92)87013-F.
  • Li, J.; Lin, X. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Poly(o-Aminophenol) Film on Polypyrrole-Pt Nanocomposite Modified Glassy Carbon Electrode. Biosens. Bioelectron. 2007, 22, 2898–2905. DOI: 10.1016/j.bios.2006.12.004.
  • Ginsberg, B. H. Factors Affecting Blood Glucose Monitoring: Sources of Errors in Measurement. J. Diabetes Sci. Technol. 2009, 3, 903–913. [Database] DOI: 10.1177/193229680900300438.
  • Wu, B.; Zhang, G.; Shuang, S.; Choi, M. M. F. Biosensors for Determination of Glucose with Glucose Oxidase Immobilized on an Eggshell Membrane. Talanta 2004, 64, 546–553. DOI: 10.1016/j.talanta.2004.03.050.
  • Han, K.; Wu, Z.; Lee, J.; Ahn, I.-S.; Park, J. W.; Min, B. R.; Lee, K. Activity of Glucose Oxidase Entrapped in Mesoporous Gels. Biochem. Eng. J. 2005, 22, 161–166. DOI: 10.1016/j.bej.2004.09.011.
  • Heller, A.; Feldman, B. Electrochemistry in Diabetes Management, Acc. Acc. Chem. Res. 2010, 43, 963–973. DOI: 10.1021/ar9002015.
  • Toghill, K.; Compton, R. Electrochemical Non-Enzymatic Glucose Sensors: A Perspective and an Evaluation. Int. J. Electrochem. Sci. Int. J. 2010, 5, 1246–1301.
  • Park, S.; Chung, T. D.; Kim, H. C. Nonenzymatic Glucose Detection Using Mesoporous Platinum. Anal. Chem. 2003, 75, 3046–3049. DOI: 10.1021/ac0263465.
  • Kim, S. H.; Choi, J. B.; Nguyen, Q. N.; Lee, J. M.; Park, S.; Chung, T. D.; Byun, J. Y. Nanoporous Platinum Thin Films Synthesized by Electrochemical Dealloying for Nonenzymatic Glucose Detection. Phys. Chem. Chem. Phys. 2013, 15, 5782–5787. DOI: 10.1039/c2cp43097e.
  • Meng, L.; Jin, J.; Yang, G.; Lu, T.; Zhang, H.; Cai, C. Nonenzymatic Electrochemical Detection of Glucose Based on palladium-single-walled carbon nanotube hybrid nanostructures . Anal. Chem. 2009, 81, 7271–7280. DOI: 10.1021/ac901005p.
  • Cheng, T.-M.; Huang, T.-K.; Lin, H.-K.; Tung, S.-P.; Chen, Y.-L.; Lee, C.-Y.; Chiu, H.-T. (110)-Exposed Gold Nanocoral Electrode as Low Onset Potential Selective Glucose Sensor. ACS Appl. Mater. Interfaces 2010, 2, 2773–2780. DOI: 10.1021/am100432a.
  • Wang, J.; Gong, J.; Xiong, Y.; Yang, J.; Gao, Y.; Liu, Y.; Lu, X.; Tang, Z. Shape-Dependent Electrocatalytic Activity of Monodispersed Gold Nanocrystals toward Glucose Oxidation. Chem. Commun. (Camb) 2011, 47, 6894–6896. DOI: 10.1039/c1cc11784j.
  • Elouarzaki, K.; Goff, A. L.; Holzinger, M.; Agnès, C.; Duclairoir, F.; Putaux, J.-L.; Cosnier, S. From Gold Porphyrins to Gold Nanoparticles: Catalytic Nanomaterials for Glucose Oxidation. Nanoscale 2014, 6, 8556–8560. DOI: 10.1039/c4nr02015d.
  • Ci, S.; Huang, T.; Wen, Z.; Cui, S.; Mao, S.; Steeber, D. A.; Chen, J. Nickel Oxide Hollow Microsphere for Non-Enzyme Glucose Detection. Biosens. Bioelectron. 2014, 54, 251–257. DOI: 10.1016/j.bios.2013.11.006.
  • Wang, L.; Tang, Y.; Wang, L.; Zhu, H.; Meng, X.; Chen, Y.; Sun, Y.; Yang, X. J.; Wan, P. Fast Conversion of Redox Couple on Ni(OH)2/C Nanocomposite Electrode for High-Performance Nonenzymatic Glucose Sensor. J. Solid State Electrochem. 2015, 19, 851–860. DOI: 10.1007/s10008-014-2689-3.
  • Dong, C.; Zhong, H.; Kou, T.; Frenzel, J.; Eggeler, G.; Zhang, Z. Three-Dimensional Cu Foam-Supported Single Crystalline Mesoporous Cu2O Nanothorn Arrays for Ultra-Highly Sensitive and Efficient Nonenzymatic Detection of Glucose. ACS Appl. Mater. Interfaces 2015, 7, 20215–20223. DOI: 10.1021/acsami.5b05738.
  • Zhang, Y.; Liu, Y.; Su, L.; Zhang, Z.; Huo, D.; Hou, C.; Lei, Y. CuO Nanowires Based Sensitive and Selective Non-Enzymatic Glucose Detection. Sens. Actuators B Chem. 2014, 191, 86–93. DOI: 10.1016/j.snb.2013.08.096.
  • Mahmoudian, M. R.; Basirun, W. J.; Woi, P. M.; Sookhakian, M.; Yousefi, R.; Ghadimi, H.; Alias, Y. Synthesis and Characterization of Co3O4 Ultra-Nanosheets and Co3O4 Ultra-Nanosheet-Ni(OH)2 as Non-Enzymatic Electrochemical Sensors for Glucose Detection. Mater. Sci. Eng. C 2016, 59, 500–508. DOI: 10.1016/j.msec.2015.10.055.
  • J.-S, Y.; Wen, Y.; De Zhang, W.; Ming Gan, L.; Xu, G. Q.; Sheu, F.-S. Nonenzymatic Glucose Detection Using Multi-Walled Carbon Nanotube Electrodes. Electrochem. Commun. 2004, 6, 66–70.
  • Wang, Q.; Subramanian, P.; Li, M.; Yeap, W. S.; Haenen, K.; Coffinier, Y.; Boukherroub, R.; Szunerits, S. Non-Enzymatic Glucose Sensing on Long and Short Diamond Nanowire Electrodes. Electrochem. Commun. 2013, 34, 286–290. DOI: 10.1016/j.elecom.2013.07.014.
  • Luo, D.; Wu, L.; Zhi, J. Fabrication of Boron-Doped Diamond Nanorod Forest Electrodes and Their Application in Nonenzymatic Amperometric Glucose Biosensing. ACS Nano 2009, 3, 2121–2128. DOI: 10.1021/nn9003154.
  • Chen, H.; Fan, G.; Qiu, M.; Sun, P.; Cui, G.; Zhao, J.; Fu, Y.; Han, D.; Chen, H.; Fan, G.; et al. A Portable Micro Glucose Sensor Based on Copper-Based Nanocomposite Structure. New J. Chem. 2019, 43, 7806–7813. DOI: 10.1039/C9NJ00888H.
  • Amirzadeh, Z.; Javadpour, S.; Shariat, M. H.; Knibbe, R. Non-Enzymatic Glucose Sensor Based on Copper Oxide and Multi-Wall Carbon Nanotubes Using PEDOT: PSS Matrix. Synth. Metals 2018, 245, 160–166. DOI: 10.1016/j.synthmet.2018.08.021.
  • Cao, F.; Guo, S.; Ma, H.; Yang, G.; Yang, S.; Gong, J. Highly Sensitive Nonenzymatic Glucose Sensor Based on Electrospun Copper Oxide-Doped Nickel Oxide Composite Microfibers. Talanta 2011, 86, 214–220. DOI: 10.1016/j.talanta.2011.09.003.
  • Zhang, Y.; Li, N.; Xiang, Y.; Wang, D.; Zhang, P.; Wang, Y.; Lu, S.; Xu, R.; Zhao, J. A Flexible Non-Enzymatic Glucose Sensor Based on Copper Nanoparticles Anchored on Laser-Induced Graphene. Carbon N. Y 2020, 156, 506–513. DOI: 10.1016/j.carbon.2019.10.006.
  • Pletcher, D. Electrocatalysis: Present and Future. J. Appl. Electrochem. 1984, 14, 403–415. DOI: 10.1007/BF00610805.
  • Kokkindis, G.; Leger, J. M.; Lamy, C. Structural Effects in Electrocatalysis: Oxidation of D-Glucose on Pt (100), (110) and (111) Single Crystal Electrodes and the Effect of UPD Adlayers of Pb, Tl and Bi. J. Electroanal. Chem. Interfacial Electrochem. 1988, 242, 221–242. DOI: 10.1016/0022-0728(88)80253-5.
  • Hsiao, M. W.; Adžić, R. R.; Yeager, E. B. Electrochemical Oxidation of Glucose on Single Crystal and Polycrystalline Gold Surfaces in Phosphate Buffer. J. Electrochem. Soc. 1996, 143, 759–767. DOI: 10.1149/1.1836536.
  • Vassilyev, Y. B.; Khazova, O. A.; Nikolaeva, N. N. Kinetics and Mechanism of Glucose Electrooxidation on Different Electrode-Catalysts: Part II. Effect of the Nature of the Electrode and the Electrooxidation Mechanism. J. Electroanal. Chem. Interfacial Electrochem. 1985, 196, 127–144. DOI: 10.1016/0022-0728(85)85085-3.
  • Bagotzky, V. S.; Vassilyev, Y. B. Mechanism of Electro-Oxidation of Methanol on the Platinum Electrode. Electrochim. Acta 1967, 12, 1323–1343. DOI: 10.1016/0013-4686(67)80047-1.
  • Burke, L. D. Premonolayer Oxidation and Its Role in Electrocatalysis. Electrochim. Acta 1994, 39, 1841–1848. DOI: 10.1016/0013-4686(94)85173-5.
  • Yang, J.; Lin, Q.; Yin, W.; Jiang, T.; Zhao, D.; Jiang, L. A Novel Nonenzymatic Glucose Sensor Based on Functionalized PDDA-Graphene/CuO Nanocomposites. Sens. Actuators B Chem. 2017, 253, 1087–1095. DOI: 10.1016/j.snb.2017.07.008.
  • Ji, Y.; Liu, J.; Liu, X.; Yuen, M. M. F.; X.-Z, F.; Yang, Y.; Sun, R.; Wong, C.-P. 3D Porous Cu@Cu2O Films Supported Pd Nanoparticles for Glucose Electrocatalytic Oxidation. Electrochim. Acta 2017, 248, 299–306. DOI: 10.1016/j.electacta.2017.07.100.
  • Hou, L.; Zhao, H.; Bi, S.; Xu, Y.; Lu, Y. Ultrasensitive and Highly Selective Sandpaper-Supported Copper Framework for Non-Enzymatic Glucose Sensor. Electrochim. Acta 2017, 248, 281–291. DOI: 10.1016/j.electacta.2017.07.142.
  • Amani-Beni, Z.; Nezamzadeh-Ejhieh, A. A Novel Non-Enzymatic Glucose Sensor Based on the Modification of Carbon Paste Electrode with CuO Nanoflower: Designing the Experiments by Response Surface Methodology (RSM). J. Colloid Interface Sci. 2017, 504, 186–196. DOI: 10.1016/j.jcis.2017.05.049.
  • Zhou, C.; Xu, L.; Song, J.; Xing, R.; Xu, S.; Liu, D.; Song, H. Ultrasensitive Non-Enzymatic Glucose Sensor Based on Three-Dimensional Network of ZnO-CuO Hierarchical Nanocomposites by Electrospinning. Sci. Rep. 2014, 4, 7382. DOI: 10.1038/srep07382.
  • Song, J.; Xu, L.; Zhou, C.; Xing, R.; Dai, Q.; Liu, D.; Song, H. Synthesis of Graphene Oxide Based CuO Nanoparticles Composite Electrode for Highly Enhanced Nonenzymatic Glucose Detection. ACS Appl. Mater. Interfaces 2013, 5, 12928–12934. DOI: 10.1021/am403508f.
  • Kang, X.; Mai, Z.; Zou, X.; Cai, P.; Mo, J. A Sensitive Nonenzymatic Glucose Sensor in Alkaline Media with a Copper Nanocluster/Multiwall Carbon Nanotube-Modified Glassy Carbon Electrode. Anal. Biochem. 2007, 363, 143–150. DOI: 10.1016/j.ab.2007.01.003.
  • Wu, C.-H.; Onno, E.; Lin, C.-Y. CuO Nanoparticles Decorated Nano-Dendrite-Structured CuBi2O4 for Highly Sensitive and Selective Electrochemical Detection of Glucose. Electrochim. Acta 2017, 229, 129–140. DOI: 10.1016/j.electacta.2017.01.130.
  • Molazemhosseini, A.; Magagnin, L.; Vena, P.; Liu, C.-C. Single-Use Nonenzymatic Glucose Biosensor Based on CuO Nanoparticles Ink Printed on Thin Film Gold Electrode by Micro-Plotter Technology. J. Electroanal. Chem. 2017, 789, 50–57. DOI: 10.1016/j.jelechem.2017.01.041.
  • Maaoui, H.; Singh, S. K.; Teodorescu, F.; Coffinier, Y.; Barras, A.; Chtourou, R.; Kurungot, S.; Szunerits, S.; Boukherroub, R. Copper Oxide Supported on Three-Dimensional Ammonia-Doped Porous Reduced Graphene Oxide Prepared through Electrophoretic Deposition for Non-Enzymatic Glucose Sensing. Electrochim. Acta 2017, 224, 346–354. DOI: 10.1016/j.electacta.2016.12.078.
  • Lv, J.; Kong, C.; Xu, Y.; Yang, Z.; Zhang, X.; Yang, S.; Meng, G.; Bi, J.; Li, J.; Yang, S. Facile Synthesis of Novel CuO/Cu2O Nanosheets on Copper Foil for High Sensitive Nonenzymatic Glucose Biosensor. Sens. Actuators B Chem. 2017, 248, 630–638. DOI: 10.1016/j.snb.2017.04.052.
  • Liu, X.; Yang, Y.; Liu, R.; Shi, Z.; Ma, L.; Wei, M. Synthesis of Porous CuO Microspheres Assembled from (001) Facet-Exposed Nanocrystals with Excellent Glucose-Sensing Performance. J. Alloys Compd. 2017, 718, 304–310. DOI: 10.1016/j.jallcom.2017.05.201.
  • Xie, Y.; Huber, C. O. Electrocatalysis and Amperometric Detection Using an Electrode Made of Copper Oxide and Carbon Paste. Anal. Chem. 1991, 63, 1714–1719. DOI: 10.1021/ac00017a012.
  • Miller, B. Split-Ring Disk Study of the Anodic Processes at a Copper Electrode in Alkaline Solution. J. Electrochem. Soc. 1969, 116, 1675. DOI: 10.1149/1.2411657.
  • Kano, K.; Torimura, M.; Esaka, Y.; Goto, M.; Ueda, T. Electrocatalytic Oxidation of Carbohydrates at Copper(II) -Modified Electrodes and Its Application to Flow-Through Detection. J. Electroanal. Chem. 1994, 372, 137–143. DOI: 10.1016/0022-0728(93)03252-K.
  • Ghanem, M. A.; Compton, R. G.; Coles, B. A.; Canals, A.; Vuorema, A.; John, P.; Marken, F. Microwave Activation of the Electro-Oxidation of Glucose in Alkaline Media. Phys. Chem. Chem. Phys. 2005, 7, 3552–3559. DOI: 10.1039/b509784c.
  • Kano, K.; Takagi, K.; Inoue, K.; Ikeda, T.; Ueda, T. Copper Electrodes for Stable Subpicomole Detection of Carbohydrates in High-Performance Liquid Chromatography. J. Chromatogr. A 1996, 721, 53–57. DOI: 10.1016/0021-9673(95)00757-1.
  • Yeo, I.-H.; Johnson, D. C. Anodic Response of Glucose at Copper-Based Alloy Electrodes. J. Electroanal. Chem. 2000, 484, 157–163. DOI: 10.1016/S0022-0728(00)00072-3.
  • Dhara, K.; Mahapatra, D. R. Electrochemical Nonenzymatic Sensing of Glucose Using Advanced Nanomaterials. Microchim. Acta 2017, 185, 49.
  • Choudhry, N. A.; Kampouris, D. K.; Kadara, R. O.; Jenkinson, N.; Banks, C. E. Next Generation Screen Printed Electrochemical Platforms: Non-Enzymatic Sensing of Carbohydrates Using screen printed electrodes. Anal Methods 2009, 1, 183–187. DOI: 10.1039/b9ay00095j.
  • Fleischmann, M.; Korinek, K.; Pletcher, D. The Oxidation of Organic Compounds at a Nickel Anode in Alkaline Solution. J. Electroanal. Chem. Interfacial Electrochem. 1971, 31, 39–49. DOI: 10.1016/S0022-0728(71)80040-2.
  • Barragan, J. T. C.; Kogikoski, S.; Da Silva, E. T. S. G.; Kubota, L. T. Insight into the Electro-Oxidation Mechanism of Glucose and Other Carbohydrates by CuO-Based Electrodes. Anal. Chem. 2018, 90, 3357–3365. DOI: 10.1021/acs.analchem.7b04963.
  • Luo, L.; Cheng, X.; Zhang, J.; Chang, H.; Nie, F.; Feng, X. High Performance Cu/Cu2O Nanohybrid Electrocatalyst for Nonenzymatic Glucose Detection. J. Mater. Chem. B 2016, 4, 4652–4656. DOI: 10.1039/c6tb01158f.
  • Marioli, J. M.; Kuwana, T. Electrochemical Characterization of Carbohydrate Oxidation at Copper Electrodes. Electrochim. Acta 1992, 37, 1187–1197. DOI: 10.1016/0013-4686(92)85055-P.
  • Xia, L.-P.; Liu, L.; Deng, N.; Zhu, Y.-W.; He, J.-B. Cu(III)-Independent Oxidation and Sensing of Glucose on Multi-Layer Stacked Copper Nanoparticles. Microchim. Acta 2015, 182, 1289–1295. DOI: 10.1007/s00604-015-1447-2.
  • Deng, Y.; Handoko, A. D.; Du, Y.; Xi, S.; Yeo, B. S. In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction: Identification of CuIII Oxides as Catalytically Active Species. ACS Catal. 2016, 6, 2473–2481. DOI: 10.1021/acscatal.6b00205.
  • Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S. Recent Advances in Electrochemical Glucose Biosensors: A Review. RSC Adv. 2013, 3, 4473–4491. DOI: 10.1039/c2ra22351a.
  • Hwang, D.-W.; Lee, S.; Seo, M.; Chung, T. D. Recent Advances in Electrochemical Non-Enzymatic Glucose Sensors - A Review. Anal. Chim. Acta 2018, 1033, 1–34. DOI: 10.1016/j.aca.2018.05.051.
  • Abunahla, H.; Mohammad, B.; Alazzam, A.; Jaoude, M. A.; Al-Qutayri, M.; Hadi, S. A.; Al-Sarawi, S. F. MOMSense: Metal-Oxide-Metal Elementary Glucose Sensor. Sci. Rep. 2019, 9, N.PAG.
  • Ahmad, R.; Tripathy, N.; Ahn, M. S.; Bhat, K. S.; Mahmoudi, T.; Wang, Y.; Yoo, J. Y.; Kwon, D. W.; Yang, H. Y.; Hahn, Y. B. Highly Efficient Non-Enzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode. Sci. Rep. 2017, 7, 5715.
  • Ahmad, R.; Vaseem, M.; Tripathy, N.; Hahn, Y.-B.; Romeo, A.; Moya, A.; Leung, T. S.; Gabriel, G.; Villa, R.; Sánchez, S. Wide Linear-Range Detecting Nonenzymatic Glucose Biosensor Based on CuO Nanoparticles Inkjet-Printed on Electrodes. Anal. Chem. 2013, 85, 10448–10454. DOI: 10.1021/ac402925r.
  • Alizadeh, T.; Mirzagholipur, S. An Outstandingly Sensitive Enzyme-Free Glucose Sensor Prepared by Co-Deposition of Nano-Sized Cupric Oxide and Multi-Walled Carbon Nanotubes on Glassy Carbon Electrode. Biochem. Eng. J. 2015, 97, 81–91. DOI: 10.1016/j.bej.2015.02.011.
  • Alizadeh, T.; Mirzagholipur, S. A Nafion-Free Non-Enzymatic Amperometric Glucose Sensor Based on Copper Oxide Nanoparticles–Graphene Nanocomposite. Sens. Actuators B Chem. 2014, 198, 438–447. DOI: 10.1016/j.snb.2014.03.049.
  • Ammara, S.; Shamaila, S.; Sharif, R.; Ghani, S.; Zafar, N. Uniform and Homogeneous Growth of Copper Nanoparticles on Electrophoretically Deposited Carbon Nanotubes Electrode for Nonenzymatic Glucose Sensor. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 889–894. DOI: 10.1007/s40195-016-0476-0.
  • Ammara, S.; Shamaila, S.; Zafar, N.; Bokhari, A.; Sabah, A. Nonenzymatic Glucose Sensor with High Performance Electrodeposited Nickel/Copper/Carbon Nanotubes Nanocomposite Electrode. J. Phys. Chem. Solids 2018, 120, 12–19. DOI: 10.1016/j.jpcs.2018.04.015.
  • Anu Prathap, M. U.; Kaur, B.; Srivastava, R. Direct Synthesis of Metal Oxide Incorporated Mesoporous SBA-15, and Their Applications in Non-Enzymatic Sensing of Glucose. J. Colloid Interface Sci. 2012, 381, 143–151. DOI: 10.1016/j.jcis.2012.05.025.
  • Archana, V.; Xia, Y.; Fang, R.; Kumar, G. G. Hierarchical CuO/NiO-Carbon Nanocomposite Derived from Metal Organic Framework on Cello Tape for the Flexible and High Performance Nonenzymatic Electrochemical Glucose Sensors. ACS Sustainable Chem. Eng. 2019, 7, 6707–6719. DOI: 10.1021/acssuschemeng.8b05980.
  • Arunbalaji, S.; Vasudevan, R.; Arivanandhan, M.; Alsalme, A.; Alghamdi, A.; Jayavel, R. CuO/MoS2 Nanocomposites for Rapid and High Sensitive Non-Enzymatic Glucose Sensors. Ceram. Int. 2020, 46, 16879–16885 DOI: 10.1016/j.ceramint.2020.03.265.
  • Ashok, A.; Kumar, A.; Tarlochan, F. Highly Efficient Nonenzymatic Glucose Sensors Based on CuO Nanoparticles. Appl. Surf. Sci. 2019, 481, 712–722. DOI: 10.1016/j.apsusc.2019.03.157.
  • Aun, T. T.; Salleh, N. M.; Ali, U. F. M.; Manan, N. S. A. Optimization of a Cu-O-Based Sensor for the Detection of Glucose Using a Central Composite Design. IEEE Sens. J. 2020, 20, 12109–12116. DOI: 10.1109/JSEN.2020.3000346.
  • Ayaz, S.; Karakaya, S.; Emir, G.; Dilgin, D. G.; Dilgin, Y. A Novel Enzyme-Free FI-Amperometric Glucose Biosensor at Cu Nanoparticles Modified Graphite Pencil Electrode. Microchem. J. 2020, 154–104586.
  • Babu, R. S.; Prabhu, P.; Narayanan, S. S. Enzyme-Free Selective Determination of H2O2 and Glucose Using Functionalized CuNP-Modified Graphite Electrode in Room Temperature Ionic Liquid Medium. RSC Adv. 2014, 4, 47497–47504. DOI: 10.1039/C4RA04507F.
  • Babu, T. G. S.; Ramachandran, T. Development of Highly Sensitive Non-Enzymatic Sensor for the Selective Determination of Glucose and Fabrication of a Working Model. Electrochim. Acta 2010, 55, 1612–1618. DOI: 10.1016/j.electacta.2009.10.034.
  • Baghayeri, M.; Nodehi, M.; Amiri, A.; Amirzadeh, N.; Behazin, R.; Iqbal, M. Z. Electrode Designed with a Nanocomposite Film of CuO Honeycombs/Ag Nanoparticles Electrogenerated on a Magnetic Platform as an Amperometric Glucose Sensor. Anal. Chim. Acta 2020, 1111, 49–59. DOI: 10.1016/j.aca.2020.03.039.
  • Bai, J.; Bo, X.; Luhana, C.; Guo, L. A Novel Material Based on Cupric(II) Oxide/Macroporous Carbon and Its Enhanced Electrochemical Property. Electrochim. Acta 2011, 56, 7377–7384. DOI: 10.1016/j.electacta.2011.05.095.
  • Bai, X.; Chen, W.; Song, Y.; Zhang, J.; Ge, R.; Wei, W.; Jiao, Z.; Sun, Y. Nickel-Copper Oxide Nanowires for Highly Sensitive Sensing of Glucose. Appl. Surf. Sci. 2017, 420, 927–934. DOI: 10.1016/j.apsusc.2017.05.174.
  • Balamurugan, J.; Thanh, T. D.; Heo, S.-B.; Kim, N. H.; Lee, J. H. Novel Route to Synthesis of N-Doped Graphene/Cu–Ni Oxide Composite for High Electrochemical Performance. Carbon N. Y 2015, 94, 962–970. DOI: 10.1016/j.carbon.2015.07.087.
  • Balasubramanian, P.; Balamurugan, T. S. T.; Chen, S.-M.; Chen, T.-W. Facile Synthesis of Orthorhombic Strontium Copper Oxide Microflowers for Highly Sensitive Nonenzymatic Detection of Glucose in Human Blood. J. Taiwan Inst. Chem. Eng. 2017, 81, 182–189. DOI: 10.1016/j.jtice.2017.10.040.
  • Balasubramanian, P.; Velmurugan, M.; Chen, S.-M.; Hwa, K.-Y. Optimized Electrochemical Synthesis of Copper Nanoparticles Decorated Reduced Graphene Oxide: Application for Enzymeless Determination of Glucose in Human Blood. J. Electroanal. Chem. 2017, 807, 128–136. DOI: 10.1016/j.jelechem.2017.11.042.
  • Baloach, Q.-A.; Tahira, A.; Mallah, A. B.; Abro, M. I.; Uddin, S.; Willander, M.; Ibupoto, Z. H.; Robust, A. Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures. Sensors 2016, 16, 1878. DOI: 10.3390/s16111878.
  • Bao, J.; Hou, C.; Zhang, Y.; Li, Q.; Huo, D.; Yang, M.; Luo, X. A Non-Enzymatic Glucose Sensor Based on Copper Oxide Nanowires-Single Wall Carbon Nanotubes. J. Electrochem. Soc. 2015, 162, B47–B51. DOI: 10.1149/2.1111501jes.
  • Bao, J.; Qi, Y.; Huo, D.; Hou, J.; Geng, X.; Samalo, M.; Liu, Z.; Luo, H.; Yang, M.; Hou, C. A Sensitive and Selective Non-Enzymatic Glucose Sensor Based on AuNPs/CuO NWs-MoS2 Modified Electrode. J. Electrochem. Soc. 2019, 166, B1179–B1185. DOI: 10.1149/2.0241913jes.
  • Belgherbi, O.; Chouder, D.; Lakhdari, D.; Dehchar, C.; Laidoudi, S.; Lamiri, L.; Hamam, A.; Seid, L. Enzyme-Free Glucose Sensor Based on Star-Like Copper Particles-Polyaniline Composite Film. J. Inorg. Organomet. Polym. Mater. DOI: 10.1007/s10904-020-01554-1.
  • Bell, C.; Nammari, A.; Uttamchandani, P.; Rai, A.; Shah, P.; Moore, A. L. Flexible Electronics-Compatible Non-Enzymatic Glucose Sensing via Transparent CuO Nanowire Networks on PET Films. Nanotechnology 2017, 28, 245502 DOI: 10.1088/1361-6528/aa7164.
  • Bernasconi, R.; Mangogna, A.; Magagnin, L. Low Cost Inkjet Fabrication of Glucose Electrochemical Sensors Based on Copper Oxide. J. Electrochem. Soc. 2018, 165, B3176–B3183. DOI: 10.1149/2.0241808jes.
  • Bhat, K. S.; Ahmad, R.; Yoo, J.-Y.; Hahn, Y.-B. Fully nozzle-jet printed non-enzymatic electrode for biosensing application . J. Colloid Interface Sci. 2018, 512, 480–488. DOI: 10.1016/j.jcis.2017.10.088.
  • Bie, L.; Luo, X.; He, Q.; He, D.; Liu, Y.; Jiang, P. Hierarchical Cu/Cu(OH)2 Nanorod Arrays Grown on Cu Foam as a High-Performance 3D Self-Supported Electrode for Enzyme-Free Glucose Sensing. RSC Adv. 2016, 6, 95740–95746. DOI: 10.1039/C6RA19576H.
  • Bie, L.; Luo, X.; Kang, L.; He, D.; Jiang, P. Commercial Copper Foam as an Effective 3D Porous Electrode for Nonenzymatic Glucose Detection. Electroanalysis 2016, 28, 2070–2074. DOI: 10.1002/elan.201501167.
  • Bilal, S.; Ullah, W.; Shah, A.-H. A. Polyaniline@CuNi Nanocomposite: A Highly Selective, Stable and Efficient Electrode Material for Binder Free Non-Enzymatic Glucose Sensor. Electrochim. Acta 2018, 284, 382–391. DOI: 10.1016/j.electacta.2018.07.165.
  • Cai, B.; Zhou, Y.; Zhao, M.; Cai, H.; Ye, Z.; Wang, L.; Huang, J. Synthesis of ZnO–CuO Porous Core–Shell Spheres and Their Application for Non-Enzymatic Glucose Sensor. Appl. Phys. A 2015, 118, 989–996. DOI: 10.1007/s00339-014-8855-8.
  • Çakıroğlu, B.; Özacar, M. Photoelectrochemical and Non-Enzymatic Glucose Sensor Based on Modified Fehling’s Test by Using Ti/TiO2 NTS-RGO-Cu2O Electrode. J. Electrochem. Soc. 2019, 166, B728–B734. DOI: 10.1149/2.1201908jes.
  • Cao, F.; Gong, J. Nonenzymatic Glucose Sensor Based on CuO Microfibers Composed of CuO Nanoparticles. Anal. Chim. Acta 2012, 723, 39–44. DOI: 10.1016/j.aca.2012.02.036.
  • Cao, H.; Yang, A.; Li, H.; Wang, L.; Li, S.; Kong, J.; Bao, X.; Yang, R. A Non-Enzymatic Glucose Sensing Based on Hollow Cuprous Oxide Nanospheres in a Nafion Matrix. Sens. Actuators B Chem. 2015, 214, 169–173. DOI: 10.1016/j.snb.2015.03.026.
  • Cao, M.; Wang, H.; Ji, S.; Zhao, Q.; Pollet, B. G.; Wang, R. Hollow Core-Shell Structured [email protected] Spheres as Novel Electrode for Enzyme Free Glucose Sensing. Mater. Sci. Eng. C 2019, 95, 174–182. DOI: 10.1016/j.msec.2018.10.082.
  • Cao, M.; Wang, H.; Kannan, P.; Ji, S.; Wang, X.; Zhao, Q.; Linkov, V.; Wang, R. Highly Efficient Non-Enzymatic Glucose Sensor Based on CuxS Hollow Nanospheres. Appl. Surf. Sci. 2019, 492, 407–416. DOI: 10.1016/j.apsusc.2019.06.248.
  • Chakraborty, P.; Dhar, S.; Debnath, K.; Majumder, T.; Mondal, S. P. Non-Enzymatic and Non-Invasive Glucose Detection Using Au Nanoparticle Decorated CuO Nanorods. Sens. Actuators B Chem. 2019, 283, 776–785. DOI: 10.1016/j.snb.2018.12.086.
  • Chakraborty, P.; Dhar, S.; Deka, N.; Debnath, K.; Mondal, S. P. Non-Enzymatic Salivary Glucose Detection Using Porous CuO Nanostructures. Sens. Actuators B Chem. 2020, 302, 127134. DOI: 10.1016/j.snb.2019.127134.
  • Chawla, M.; Randhawa, J. K.; Siril, P. F. Calcination Temperature as a Probe to Tune the Non-Enzymatic Glucose Sensing Activity of Cu-Ni Bimetallic Nanocomposites. New J. Chem. 2017, 41, 4582–4591. DOI: 10.1039/C6NJ03920K.
  • Chawla, M.; Sharma, V.; Randhawa, J. K. Facile One Pot Synthesis of CuO Nanostructures and Their Effect on Nonenzymatic Glucose Biosensing. Electrocatalysis 2017, 8, 27–35. DOI: 10.1007/s12678-016-0337-7.
  • Chen, H.; Sun, P.; Cui, G.; Qiu, M.; Jiang, M.; Zhao, J.; Han, D.; Niu, L.; Chen, H.; Sun, P. Co-P Decorated Nanoporous Copper Framework for High Performance Flexible Non-Enzymatic Glucose Sensors. J. Electroanal. Chem. 2019, 841, 119–128. DOI: 10.1016/j.jelechem.2019.04.036.
  • Chen, A.; Ding, Y.; Yang, Z.; Yang, S. Constructing Heterostructure on Highly Roughened Caterpillar-Like Gold Nanotubes with Cuprous Oxide Grains for Ultrasensitive Fnd Stable Nonenzymatic Glucose Sensor. Biosens. Bioelectron. 2015, 74, 967–973. DOI: 10.1016/j.bios.2015.07.074.
  • Chen, J.; Xu, L.; Xing, R.; Song, J.; Song, H.; Liu, D.; Zhou, J. Electrospun Three-Dimensional Porous CuO/TiO2 Hierarchical Nanocomposites Electrode for Nonenzymatic Glucose Biosensing. Electrochem. Commun. 2012, 20, 75–78. DOI: 10.1016/j.elecom.2012.01.032.
  • Chen, S.-M.; Devasenathipathy, R.; Wang, S.-F.; Kohilarani, K. Highly Sensitive Amperometric Sensor for the Determination of Glucose at Histidine Stabilized Copper Nanospheres Decorated Multi-Walled Carbon Nanotubes. Int. J. Electrochem. Sci. 2016, 11, 5416–5426.
  • Chen, T.; Tian, L.; Chen, T.; Tian, L. Fabrication of Au Decorated CuO Nanosheets Electrode and Its Application in Nonenzymatic Glucose Sensor. Optoelectron. Adv. Mater. Rapid Commun. 2014, 8, 1234–1237.
  • Chen, Z.; Zhao, B.; Fu, X.-Z.; Sun, R.; Wong, C.-P. CuO Nanorods Supported Pd Nanoparticles as High Performance Electrocatalysts for Glucose Detection. J. Electroanal. Chem. 2017, 807, 220–227. DOI: 10.1016/j.jelechem.2017.11.041.
  • Cheng, D.; Wang, T.; Zhang, G.; Wu, H.; Mei, H. A Novel Nonenzymatic Electrochemical Sensor Based on Double-Shelled CuCo2O4 Hollow Microspheres for Glucose and H2O2. J. Alloys Compd. 2020, 819, 153014. DOI: 10.1016/j.jallcom.2019.153014.
  • Cheng, S.; Gao, X.; Delacruz, S.; Chen, C.; Tang, Z.; Shi, T.; Carraro, C.; Maboudian, R. In Situ Formation of Metal-Organic Framework Derived CuO Polyhedrons on Carbon Cloth for Highly Sensitive Non-Enzymatic Glucose Sensing. J. Mater. Chem. B 2019, 7, 4990–4996. DOI: 10.1039/c9tb01166h.
  • Cheng, S.; DelaCruz, S.; Chen, C.; Tang, Z.; Shi, T.; Carraro, C.; Maboudian, R. Hierarchical Co3O4/CuO Nanorod Array Supported on Carbon Cloth for Highly Sensitive Non-Enzymatic Glucose Biosensing. Sens. Actuators B Chem. 2019, 298, 126860. DOI: 10.1016/j.snb.2019.126860.
  • Cheng, X.; Zhao, H.; Huang, W.; Chen, J.; Wang, S.; Dong, J.; Deng, Y. Rational Design of Yolk-Shell CuO/Silicalite-1@mSiO2 Composites for a High-Performance Nonenzymatic Glucose Biosensor. Langmuir 2018, 34, 7663–7672. DOI: 10.1021/acs.langmuir.8b01051.
  • Cherevko, S.; Chung, C.-H. The Porous CuO Electrode Fabricated by Hydrogen Bubble Evolution and Its Application to Highly Sensitive Non-Enzymatic Glucose Detection. Talanta 2010, 80, 1371–1377. DOI: 10.1016/j.talanta.2009.09.038.
  • Cui, D.; Su, L.; Li, H.; Li, M.; Li, C.; Xu, S.; Qian, L.; Yang, B. Non-Enzymatic Glucose Sensor Based on Micro-/Nanostructured Cu/Ni Deposited on Graphene Sheets. J. Electroanal. Chem. 2019, 838, 154–162. DOI: 10.1016/j.jelechem.2019.03.005.
  • Dai, Y.; Molazemhosseini, A.; Abbasi, K.; Liu, C. C. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution. Biosensors-Basel DOI: 10.3390/bios8010004.
  • Dai, Z.; Yang, A.; Bao, X.; Yang, R. Facile Non-Enzymatic Electrochemical Sensing for Glucose Based on Cu2O–BSA Nanoparticles Modified GCE. Sensors (Switzerland) DOI: 10.3390/s19122824.
  • Das, G.; Tran, T. Q. N.; Yoon, H. H. Spherulitic Copper–Copper Oxide Nanostructure Based Highly Sensitive Nonenzymatic Glucose Sensor. Int. J. Nanomed. 2015, 10, 165. +.
  • Van Dat, P.; Viet, N. X. Facile Synthesis of Novel Areca Flower like Cu2O Nanowire on Copper Foil for a Highly Sensitive Enzyme-Free Glucose Sensor. Mater. Sci. Eng. C 2019, 103, 109758.
  • Dayakar, T.; Rao, K. V.; Bikshalu, K.; Malapati, V.; Sadasivuni, K. K. Non-Enzymatic Sensing of Glucose Using Screen-Printed Electrode Modified with Novel Synthesized CeO2@CuO Core Shell Nanostructure. Biosens. Bioelectron. 2018, 111, 166–173.
  • Dayakar, T.; Rao, K. V.; Bikshalu, K.; Rajendar, V.; Park, S.-H. Novel Synthesis and Characterization of Pristine Cu Nanoparticles for the Non-Enzymatic Glucose Biosensor. J. Mater. Sci. Mater. Med. 2017, 28, 109.
  • Dayakar, T.; Venkateswara Rao, K.; Park, J.; Krishna, P.; Swaroopa, P.; Ji, Y. Biosynthesis of Ag@CuO Core–Shell Nanostructures for Non-Enzymatic Glucose Sensing Using Screen-Printed Electrode. J. Mater. Sci: Mater. Electron. 2019, 30, 9725–9734. DOI: 10.1007/s10854-019-01307-y.
  • de Sá, A. C.; Cipri, A.; González-Calabuig, A.; Stradiotto, N. R.; del Valle, M. Resolution of Galactose, Glucose, Xylose and Mannose in Sugarcane Bagasse Employing a Voltammetric Electronic Tongue Formed by Metals Oxy-Hydroxide/MWCNT Modified Electrodes. Sens. Actuators B Chem. 2016, 222, 645–653. DOI: 10.1016/j.snb.2015.08.088.
  • Dhara, K.; Ramachandran, T.; Nair, B. G.; Satheesh Babu, T. G. Single Step Synthesis of Au–CuO Nanoparticles Decorated Reduced Graphene Oxide for High Performance Disposable Nonenzymatic Glucose Sensor. J. Electroanal. Chem. 2015, 743, 1–9. DOI: 10.1016/j.jelechem.2015.02.005.
  • Dhara, K.; Stanley, J.; Ramachandran, T.; Nair, B.; Satheesh Babu, T. G. Cupric Oxide Modified Screen Printed Electrode for the Nonenzymatic Glucose Sensing. J. Nanosci. Nanotechnol. 2016, 16, 8772–8778.
  • Dhara, K.; Stanley, J.; T, R.; Nair, B. G.; T.G, S. B. Pt-CuO Nanoparticles Decorated Reduced Graphene Oxide for the Fabrication of Highly Sensitive Non-Enzymatic Disposable Glucose Sensor. Sens. Actuators B Chem. 2014, 195, 197–205. DOI: 10.1016/j.snb.2014.01.044.
  • Dhara, K.; Thiagarajan, R.; Nair, B. G.; Thekkedath, G. S. B. Highly Sensitive and Wide-Range Nonenzymatic Disposable Glucose Sensor Based on a Screen Printed Carbon Electrode Modified with Reduced Graphene Oxide and Pd-CuO Nanoparticles. Microchim. Acta 2015, 182, 2183–2192. DOI: 10.1007/s00604-015-1549-x.
  • Ding, J.; Zhong, L.; Wang, X.; Chai, L.; Wang, Y.; Jiang, M.; Li, T.-T.; Hu, Y.; Qian, J.; Huang, S. General Approach to MOF-Derived Core-Shell Bimetallic Oxide Nanowires for Fast Response to Glucose Oxidation. Sens. Actuators, B Chem. DOI: 10.1016/j.snb.2019.127551.
  • Ding, R.; Jiang, J.; Wu, F.; Gong, M.; Zhu, J.; Huang, X. Cu@C Composite Nanotube Array and Its Application as an Enzyme-Free Glucose Sensor. Nanotechnology 2011, 22, 375303. DOI: 10.1088/0957-4484/22/37/375303.
  • Ding, R.; Liu, J.; Jiang, J.; Zhu, J.; Huang, X. Mixed Ni–Cu-Oxide Nanowire Array on Conductive Substrate and Its Application as Enzyme-Free Glucose Sensor. Anal. Methods 2012, 4, 4003–4008. DOI: 10.1039/c2ay25792k.
  • Dong, J.; Ren, L.; Zhang, Y.; Cui, X.; Hu, P.; Xu, J. Direct Electrodeposition of Cable-like CuO@Cu Nanowires Array for Non-Enzymatic Sensing. Talanta 2015, 132, 719–726. DOI: 10.1016/j.talanta.2014.10.027.
  • Dong, J.; Tian, T.; Ren, L.; Zhang, Y.; Xu, J.; Cheng, X. Cuo Nanoparticles Incorporated in Hierarchical MFI Zeolite as Highly Active Electrocatalyst for Non-Enzymatic Glucose Sensing. Colloids Surf. B Biointerfaces 2015, 125, 206–212. DOI: 10.1016/j.colsurfb.2014.11.027.
  • Quoc Dung, N.; Patil, D.; Jung, H.; Kim, D. A High-Performance Nonenzymatic Glucose Sensor Made of CuO-SWCNT nanocomposites. Biosens. Bioelectron. 2013, 42, 280–286. DOI: 10.1016/j.bios.2012.10.044.
  • Duran, G. M.; Benavidez, T. E.; Giuliani, J. G.; Rios, A.; Garcia, C. D. Synthesis of CuNP-Modified Carbon Electrodes Obtained by Pyrolysis of Paper. Sens. Actuators B Chem. 2016, 227, 626–633. DOI: 10.1016/j.snb.2015.12.093.]
  • El Khatib, K. M.; Abdel Hameed, R. M. Development of Cu2O/Carbon Vulcan XC-72 as Non-Enzymatic Sensor for Glucose Determination. Biosens. Bioelectron. 2011, 26, 3542–3548. DOI: 10.1016/j.bios.2011.01.042.
  • Ensafi, A. A.; Abarghoui, M. M.; Rezaei, B. A New Non-Enzymatic Glucose Sensor Based on Copper/Porous Silicon Nanocomposite. Electrochim. Acta 2014, 123, 219–226. DOI: 10.1016/j.electacta.2014.01.031.
  • Esmaeeli, A.; Ghaffarinejad, A.; Zahedi, A.; Vahidi, O. Copper Oxide-Polyaniline Nanofiber Modified Fluorine Doped Tin Oxide (FTO) Electrode as Non-Enzymatic Glucose Sensor. Sens. Actuators B Chem. 2018, 266, 294–301. DOI: 10.1016/j.snb.2018.03.132.
  • Fan, H.-H.; Weng, W.-L.; Lee, C.-Y.; Liao, C.-N. Electrochemical Cycling-Induced Spiky Cu2O/Cu Nanowire Array for Glucose Sensing. ACS Omega 2019, 4, 12222–12229. DOI: 10.1021/acsomega.9b01730.
  • Fan, Y.; Yang, X.; Cao, Z.; Chen, S.; Zhu, B. Synthesis of Mesoporous CuO Microspheres with Core-in-hollow-Shell Structure and Its Application for Non-Enzymatic Sensing of Glucose. J. Appl. Electrochem. 2015, 45, 131–138. DOI: 10.1007/s10800-014-0779-7.
  • Fan, Z.; Liu, B.; Li, Z.; Ma, L.; Wang, J.; Yang, S. One-Pot Hydrothermal Synthesis of CuO with Tunable Morphologies on Ni Foam as a Hybrid Electrode for Sensing Glucose. RSC Adv. 2014, 4, 23319–23326. DOI: 10.1039/c3ra47422d.
  • Fan, Z.; Liu, B.; Liu, X.; Li, Z.; Wang, H.; Yang, S.; Wang, J. A Flexible and Disposable Hybrid Electrode Based on Cu Nanowires Modified Graphene Transparent Electrode for Non-Enzymatic Glucose Sensor. Electrochim. Acta 2013, 109, 602–608. DOI: 10.1016/j.electacta.2013.07.153.
  • Fang, L.; Wang, F.; Chen, Z.; Qiu, Y.; Zhai, T.; Hu, M.; Zhang, C.; Huang, K. Flower-like MoS2 Decorated with Cu2O Nanoparticles for Non-Enzymatic Amperometric Sensing of Glucose. Talanta 2017, 167, 593–599. DOI: 10.1016/j.talanta.2017.03.008.
  • Fang, L.; Zhu, Q.; Cai, Y.; Liang, B.; Ye, X. 3D Porous Structured Polyaniline/Reduced Graphene Oxide/Copper Oxide Decorated Electrode for High Performance Nonenzymatic Glucose Detection. J. Electroanal. Chem. 2019, 841, 1–9. DOI: 10.1016/j.jelechem.2019.04.032.
  • Felix, S.; Kollu, P.; Grace, A. N. Electrochemical Performance of Ag–CuO Nanocomposites towards Glucose Sensing. Mater. Res. Innov. 2019, 23, 27–32.
  • Felix, S.; Chakkravarthy, B. P.; Jeong, S. K.; Grace, A. N. Synthesis of Pt Decorated Copper Oxide Nanoleaves and Its Electrochemical Detection of Glucose. J. Electrochem. Soc. 2015, 162, H392–H396. DOI: 10.1149/2.0881506jes.
  • Felix, S.; Grace, A. N.; Jayavel, R. Sensitive Electrochemical Detection of Glucose Based on Au-CuO Nanocomposites. J. Phys. Chem. Solids 2018, 122, 255–260. DOI: 10.1016/j.jpcs.2018.06.038.
  • Felix, S.; Kollu, P.; Jeong, S. K.; Grace, A. N. A Novel CuO–N-Doped Graphene Nanocomposite-Based Hybrid Electrode for the Electrochemical Detection of Glucose. Appl. Phys. A 2017, 123, 620. DOI: 10.1007/s00339-017-1217-6.
  • Felix, S.; Kollu, P.; Raghupathy, B. P. C.; Jeong, S. K.; Grace, A. N. Electrocatalytic Oxidation of Carbohydrates and Dopamine in Alkaline and Neutral Medium Using CuO Nanoplatelets. J. Electroanal. Chem. 2015, 739, 1–9. DOI: 10.1016/j.jelechem.2014.12.006.
  • Felix, S.; Kollu, P.; Raghupathy, B. P. C.; Jeong, S. K.; Grace, A. N. Electrocatalytic Activity of Cu2O Nanocubes-Based Electrode for Glucose Oxidation. J. Chem. Sci. 2014, 126, 25–32. DOI: 10.1007/s12039-013-0564-x.
  • Figiela, M.; Wysokowski, M.; Galinski, M.; Jesionowski, T.; Stepniak, I. Synthesis and Characterization of Novel Copper Oxide-Chitosan Nanocomposites for Non-Enzymatic Glucose Sensing. Sens. Actuators B Chem. 2018, 272, 296–307. DOI: 10.1016/j.snb.2018.05.173.
  • Foroughi, F.; Rahsepar, M.; Hadianfard, M. J.; Kim, H. Microwave-Assisted Synthesis of Graphene Modified CuO Nanoparticles for Voltammetric Enzyme-Free Sensing of Glucose at Biological pH Values. Microchim. Acta 2017, 185, 57.
  • Fu, Y.; Jin, W. Facile Synthesis of Core-Shell CuS-Cu2S Based Nanocomposite for the High-Performance Glucose Detection. Mater. Sci. Eng. C 2019, 105, 110120. DOI: 10.1016/j.msec.2019.110120.
  • Gao, X.; Lu, Y.; Liu, M.; He, S.; Chen, W. Sub-Nanometer Sized Cu6(GSH)3 Clusters: One-Step Synthesis and Electrochemical Detection of Glucose. J. Mater. Chem. C 2015, 3, 4050–4056. DOI: 10.1039/C5TC00246J.
  • Gao, Y.; Yang, F.; Yu, Q.; Fan, R.; Yang, M.; Rao, S.; Lan, Q.; Yang, Z.; Yang, Z. Three-Dimensional Porous Cu@Cu2O Aerogels for Direct Voltammetric Sensing of Glucose. Mikrochim. Acta 2019, 186, 192 DOI: 10.1007/s00604-019-3263-6.
  • Gao, Z.; Liu, J.; Chang, J.; Wu, D.; He, J.; Wang, K.; Xu, F.; Jiang, K. Mesocrystalline Cu2O Hollow Nanocubes: Synthesis and Application in Non-Enzymatic Amperometric Detection of Hydrogen Peroxide and Glucose. CrystEngComm 2012, 14, 6639–6646. DOI: 10.1039/c2ce25498k.
  • Gong, Q.; Sun, L.-P.; Wu, Z.; Huo, L.-H.; Zhao, H. Enhanced Non-Enzymatic Glucose Sensing of Cu–BTC Derived Porous Copper@Carbon Agglomerate. J. Mater. Sci. 2018, 53, 7305–7315. DOI: 10.1007/s10853-018-2078-x.
  • Gong, Z.; Hu, N.; Ye, W.; Zheng, K.; Li, C.; Ma, L.; Wei, Q.; Yu, Z.; Zhou, K.; Huang, N.; et al. High-Performance Non-Enzymatic Glucose Sensor Based on Ni/Cu/Boron-Doped Diamond Electrode. J. Electroanal. Chem. 2019, 841, 135–141. DOI: 10.1016/j.jelechem.2019.03.043.
  • Gopalan, A. I.; Muthuchamy, N.; Komathi, S.; Lee, K.-P. A Novel Multicomponent Redox Polymer Nanobead Based High Performance Non-Enzymatic Glucose Sensor. Biosens. Bioelectron. 2016, 84, 53–63. DOI: 10.1016/j.bios.2015.10.079.
  • Gou, X.; Sun, S.; Yang, Q.; Li, P.; Liang, S.; Zhang, X.; Yang, Z. A Very Facile Strategy for the Synthesis of Ultrathin CuO Nanorods towards Non-Enzymatic Glucose Sensing. New J. Chem. 2018, 42, 6364–6369. DOI: 10.1039/C7NJ04717G.
  • Gowthaman, N. S. K.; Arul, P.; Lim, H. N.; John, S. A. Negative Potential-Induced Growth of Surfactant-Free CuO Nanostructures on an Al-C Substrate: A Dual in-Line Sensor for Biomarkers of Diabetes and Oxidative Stress. ACS Sustainable Chem. Eng. 2020, 8, 2640–2651. DOI: 10.1021/acssuschemeng.9b05648.
  • Gowthaman, N. S. K.; Raj, M. A.; John, S. A. Nitrogen-Doped Graphene as a Robust Scaffold for the Homogeneous Deposition of Copper Nanostructures: A Nonenzymatic Disposable Glucose Sensor. ACS Sustainable Chem. Eng. 2017, 5, 1648–1658. DOI: 10.1021/acssuschemeng.6b02390.
  • Guo, M.; Wang, P.; Zhou, C.; Xia, Y.; Huang, W.; Li, Z. An Ultrasensitive Non-Enzymatic Amperometric Glucose Sensor Based on a Cu-Coated Nanoporous Gold Film Involving Co-Mediating. Sens. Actuators B Chem. 2014, 203, 388–395. DOI: 10.1016/j.snb.2014.07.007.
  • Guo, M.; Xia, Y.; Huang, W.; Li, Z. Electrochemical Fabrication of Stalactite-Like Copper Micropillar Arrays via Surface Rebuilding for Ultrasensitive Nonenzymatic Sensing of Glucose. Electrochim. Acta 2015, 151, 340–346. DOI: 10.1016/j.electacta.2014.11.041.
  • Gupta, J.; Arya, S.; Verma, S.; Singh, A.; Sharma, A.; Prerna, B. S.; Sharma, R. Performance of Template-Assisted Electrodeposited Copper/Cobalt Bilayered Nanowires as an Efficient Glucose and Uric Acid Sensor. Mater. Chem. Phys. 2019, 238, 121969. DOI: 10.1016/j.matchemphys.2019.121969.
  • Gutierrez, F. A.; Rubianes, M. D.; Rivas, G. A. Electrochemical Sensor for Amino Acids and Glucose Based on Glassy Carbon Electrodes Modified with Multi-Walled Carbon Nanotubes and Copper Microparticles Dispersed in Polyethylenimine. J. Electroanal. Chem. 2016, 765, 16–21. DOI: 10.1016/j.jelechem.2015.10.029.
  • Haghparas, Z.; Kordrostami, Z.; Sorouri, M.; Rajabzadeh, M.; Khalifeh, R. Highly Sensitive Non-Enzymatic Electrochemical Glucose Sensor Based on Dumbbell-Shaped Double-Shelled Hollow Nanoporous CuO/ZnO Microstructures. Sci. Rep. 2021, 11, 344. DOI: 10.1038/s41598-020-79460-2.
  • Hao, X.; Jia, J.; Chang, Y.; Jia, M.; Wen, Z. Monodisperse Copper Selenide Nanoparticles for Ultrasensitive and Selective Non-Enzymatic Glucose Biosensor. Electrochim. Acta DOI: 10.1016/j.electacta.2019.135020.
  • Harry, M.; Chowdhury, M.; Cummings, F.; Arendse, C. J. Elemental Cu Doped Co3O4 Thin Film for Highly Sensitive Non-Enzymatic Glucose Detection. Sens. Bio-Sensing Res. 2019, 23, 100262. DOI: 10.1016/j.sbsr.2019.100262.
  • Hasanzadeh, M.; Hasanzadeh, Z.; Alizadeh, S.; Sayadi, M.; Nezhad, M. N.; Sabzi, R. E.; Ahmadi, S. Copper-Nickel Oxide Nanofilm Modified Electrode for Non-Enzymatic Determination of Glucose. J. Electrochem. Sci. Eng. 2020, 10, 245–255. DOI: 10.5599/jese.699.
  • He, G.; Wang, L. One-Step Preparation of Ultra-Thin Copper Oxide Nanowire Arrays/Copper Wire Electrode for Non-Enzymatic Glucose Sensor. Ionics (Kiel) 2018, 24, 3167–3175. DOI: 10.1007/s11581-018-2513-7.
  • He, J.; Jiang, Y.; Peng, J.; Li, C.; Yan, B.; Wang, X. Fast Synthesis of Hierarchical Cuprous Oxide for Nonenzymatic Glucose Biosensors with Enhanced Sensitivity. J. Mater. Sci. 2016, 51, 9696–9704. DOI: 10.1007/s10853-016-0202-3.
  • He, J.; Zhong, Y.; Xu, Q.; Sun, H.; Zhou, W.; Shao, Z. Nitrogen-Doped Graphic Carbon Protected Cu/Co/CoO Nanoparticles for Ultrasensitive and Stable Non-Enzymatic Determination of Glucose and Fructose in Wine. J. Electrochem. Soc. 2018, 165, B543–B550. DOI: 10.1149/2.0151813jes.
  • He, Y.; Zheng, J. One-Pot Ultrasonic-Electrodeposition of Copper–Graphene Nanoflowers in Ethaline for Glucose Sensing. Anal. Methods 2013, 5, 767–772. DOI: 10.1039/C2AY26213D.
  • Hernández-Saravia, L. P.; Martinez, T.; Llanos, J.; Bertotti, M. A Cu-NPG/SPE Sensor for Non-Enzymatic and Non-Invasive Electrochemical Glucose Detection. Microchem. J. 2021, 160, 105629. DOI: 10.1016/j.microc.2020.105629.
  • Hong, B.-D.; Lee, C.-L. Specific Activities of Rhombic Dodecahedral, Octahedral, and Cubic Cu2O Nanocrystals as Glucose Oxidation Catalysts. Chem. Eng. J. 2020, 382, 122994. DOI: 10.1016/j.cej.2019.122994.
  • Hou, L.; Zhao, H.; Bi, S.; Zhu, L.; Xu, Y.; Lu, Y. Ultrasensitive and Highly Flexible Nonenzymatic Glucose Biosensor Based on Laser-Scribed Carbon Paper Substrate. Appl. Surf. Sci. 2019, 465, 320–331. DOI: 10.1016/j.apsusc.2018.09.166.
  • Hsieh, C.-T.; Lin, W.-H.; Chen, Y.-F.; Tzou, D.-Y.; Chen, P.-Q.; Juang, R.-S. Microwave Synthesis of Copper Catalysts onto Reduced Graphene Oxide Sheets for Non-Enzymatic Glucose Oxidation. J. Taiwan Inst. Chem. Eng. 2017, 71, 77–83. DOI: 10.1016/j.jtice.2016.12.038.
  • Hsu, Y.-W.; Hsu, T.-K.; Sun, C.-L.; Nien, Y.-T.; Pu, N.-W.; Ger, M.-D. Synthesis of CuO/Graphene Nanocomposites for Nonenzymatic Electrochemical Glucose Biosensor Applications. Electrochim. Acta 2012, 82, 152–157. DOI: 10.1016/j.electacta.2012.03.094.
  • Hu, Y.; Niu, X.; Zhao, H.; Tang, J.; Lan, M. Enzyme-Free Amperometric Detection of Glucose on Platinum-Replaced Porous Copper Frameworks. Electrochim. Acta 2015, 165, 383–389. DOI: 10.1016/j.electacta.2015.03.036.
  • Huang, B.-R.; Wang, M.-J.; Kathiravan, D.; Kurniawan, A.; Zhang, H.-H.; Yang, W.-L. Interfacial Effect of Oxygen-Doped Nanodiamond on CuO and Micropyramidal Silicon Heterostructures for Efficient Nonenzymatic Glucose Sensor. ACS Appl. Bio Mater. 2018, 1, 1579–1586. DOI: 10.1021/acsabm.8b00454.
  • Huang, F.; Zhong, Y.; Chen, J.; Li, S.; Li, Y.; Wang, F.; Feng, S. Nonenzymatic Glucose Sensor Based on Three Different CuO Nanomaterials. Anal. Methods 2013, 5, 3050–3055. DOI: 10.1039/c3ay40342d.
  • Huang, J.; Zhu, Y.; Yang, X.; Chen, W.; Zhou, Y.; Li, C. Flexible 3D Porous CuO Nanowire Arrays for Enzymeless Glucose Sensing: In Situ Engineered versus Ex Situ Piled. Nanoscale 2015, 7, 559–569. DOI: 10.1039/c4nr05620e.
  • Huang, J.; Dong, Z.; Li, Y.; Li, J.; Wang, J.; Yang, H.; Li, S.; Guo, S.; Jin, J.; Li, R. High Performance Non-Enzymatic Glucose Biosensor Based on Copper Nanowires–Carbon Nanotubes Hybrid for Intracellular Glucose Study. Sens. Actuators B Chem. 2013, 182, 618–624. DOI: 10.1016/j.snb.2013.03.065.
  • Huang, Y.; Tan, Y.; Feng, C.; Wang, S.; Wu, H.; Zhang, G. Synthesis of Cuo/G-C3N4 Composites, and Their Application to Voltammetric Sensing of Glucose and Dopamine. Microchim. Acta 2018, 186, 1.
  • Hui, N.; Wang, W.; Xu, G.; Luo, X.; Hui, N.; Wang, W.; Xu, G.; Luo, X. Graphene Oxide Doped Poly(3,4-Ethylenedioxythiophene) Modified with Copper Nanoparticles for High Performance Nonenzymatic Sensing of Glucose. J. Mater. Chem. B 2015, 3, 556–561. DOI: 10.1039/c4tb01831a.
  • Huo, H.; Guo, C.; Li, G.; Han, X.; Xu, C. Reticular-Vein-like Cu@Cu2O/Reduced Graphene Oxide Nanocomposites for a Non-Enzymatic Glucose Sensor. RSC Adv. 2014, 4, 20459–20465. DOI: 10.1039/c4ra02390k.
  • Hussain, S.; Akbar, K.; Vikraman, D.; Choi, D.-C.; Kim, S. J.; K.-S, A.; Jung, S.; Jung, J. A Highly Sensitive Enzymeless Glucose Sensor Based on 3D Graphene–Cu Hybrid Electrodes. New J. Chem. 2015, 39, 7481–7487. DOI: 10.1039/C5NJ01512J.
  • Ibupoto, H. Z.; Khun, K.; Beni, V.; Liu, X.; Willander, M. Sensors 2013, 13, 7926–7938. DOI: 10.3390/s130607926.
  • Jagadeesan, M. S.; Movlaee, K.; Krishnakumar, T.; Leonardi, S. G.; Neri, G. One-Step Microwave-Assisted Synthesis and Characterization of Novel CuO Nanodisks for Non-Enzymatic Glucose Sensing. J. Electroanal. Chem. 2019, 835, 161–168. DOI: 10.1016/j.jelechem.2019.01.024.
  • Jain, S.; Mishra, S.; Sarma, T. K. Zn2. + Induced Self-Assembled Growth of Octapodal CuxO–ZnO Microcrystals: Multifunctional Applications in Reductive Degradation of Organic Pollutants and Nonenzymatic Electrochemical Sensing of Glucose. ACS Sustainable Chem. Eng. 2018, 6, 9771–9783. DOI: 10.1021/acssuschemeng.8b00838.
  • Jayasingha, J. L. K.; Kaumal, M. N.; Jayathilaka, K. M. D. C.; Gunewardene, M. S.; Dissanayake, D. P.; Jayanetti, J. K. D. S. Surfactant Free Template Assisted Electrodeposited N-Type Nano-Cubic Cu2O Thin Films for Nonenzymatic Glucose Sensing. Phys. Status Solidi A-Appl. Mater. Sci. DOI: 10.1002/pssa.201700135.
  • Jayasingha, L.; Jayathilaka, C.; Kumara, R.; Ohara, K.; Kaumal, M.; Gunewardene, S.; Dissanayake, D.; Jayanetti, S. Nanoporous Cu2O Nanotube/Nanorod Array Electrodes for Non-Enzymatic Glucose Sensing with High Sensitivity and Very Low Detection Limit. Electrochim. Acta 2020, 329, 135177. DOI: 10.1016/j.electacta.2019.135177.
  • Jeong, H.; Kwac, L. K.; Hong, C. G.; Kim, H. G. Direct Growth of Flower like-Structured CuFe Oxide on Graphene Supported Nickel Foam as an Effective Sensor for Glucose Determination. Mater. Sci. Eng. C 2021, 118, 111510. DOI: 10.1016/j.msec.2020.111510.
  • Ji, X.; Wang, A.; Zhao, Q. Direct Growth of Copper Oxide Films on Ti Substrate for Nonenzymatic Glucose Sensors. J. Nanomater DOI: 10.1155/2014/287303.
  • Jia, B.; Zhao, Y.; Zhang, Z.; Liu, L.; Qin, M.; Wu, H.; Liu, Y.; Qu, X.; Qi, G. Borax Promotes the Facile Formation of Hollow Structure in Cu Single Crystalline Nanoparticles for Multifunctional Electrocatalysis. Inorg. Chem. Front. 2019, 6, 893–902. DOI: 10.1039/C8QI01330F.
  • Jia, B.; Qin, M.; Zhang, Z.; Zhang, L.; Liu, Y.; Chu, A.; Qu, X. Hierarchical Cu4V2.15O9.38 Superstructures Assembled by Single-Crystalline Rods: Their Synthesis, Characteristics and Electrochemical Properties. RSC Adv. 2014, 4, 62237–62243.
  • Jian, T.-R.; Periasamy, A. P.; Hsu, N.-Y.; W.-P, W.; Harroun, S. G.; Chang, H.-T. Quantitation of Beta-Galactosidase and E. Coli through Electrochemical Oxidation of Glucose on CuO/Cu2O/Ppy Paper Electrode. Sens. Actuators B-Chem. 2017, 253, 1063–1070. DOI: 10.1016/j.snb.2017.07.042.
  • Jiang, D.; Liu, Z.; Wu, K.; Mou, L.; Ovalle-Robles, R.; Inoue, K.; Zhang, Y.; Yuan, N.; Ding, J.; Qiu, J.; et al. Fabrication of Stretchable Copper Coated Carbon Nanotube Conductor for Non-Enzymatic Glucose Detection Electrode with Low Detection Limit and Selectivity. Polymers (Basel) DOI: 10.3390/polym10040375.
  • Jiang, D.; Liu, Q.; Wang, K.; Qian, J.; Dong, X.; Yang, Z.; Du, X.; Qiu, B. Enhanced Non-Enzymatic Glucose Sensing Based on Copper Nanoparticles Decorated Nitrogen-Doped Graphene. Biosens. Bioelectron. 2014, 54, 273–278. DOI: 10.1016/j.bios.2013.11.005.
  • Jiang, L.-C.; Zhang, W.-D. A Highly Sensitive Nonenzymatic Glucose Sensor Based on Cuo Nanoparticles-Modified Carbon Nanotube Electrode. Biosens. Bioelectron. 2010, 25, 1402–1407. DOI: 10.1016/j.bios.2009.10.038.
  • Jiang, M.; Sun, P.; Zhao, J.; Huo, L.; Cui, G. A Flexible Portable Glucose Sensor Based on Hierarchical Arrays of Au@Cu(OH)2 Nanograss. Sensors DOI: 10.3390/s19225055.
  • Jiaojiao, J.; Yangyang, G.; Gangying, Z.; Yanping, C.; Wei, L.; Guohua, H. d-Glucose, d-Galactose, and d-Lactose Non-Enzyme Quantitative and Qualitative Analysis Method Based on Cu Foam Electrode. Food Chem. 2015, 175, 485–493. DOI: 10.1016/j.foodchem.2014.11.148.
  • Jin, J.; Zheng, G.; Ge, Y.; Deng, S.; Liu, W.; Hui, G. A Non-Enzyme Electrochemical Qualitative and Quantitative Analyzing Method for Glucose, d-Fructose, and Sucrose Utilizing Cu Foam Material. Electrochim. Acta 2015, 153, 594–601. DOI: 10.1016/j.electacta.2014.11.194.
  • Jin, Z.; Li, P.; Zheng, B.; Yuan, H.; Xiao, D. CuO–Ag2O Nanoparticles Grown on a AgCuZn Alloy Substrate in Situ for Use as a Highly Sensitive Non-Enzymatic Glucose Sensor, Anal. Methods 2014, 6, 2215–2220.
  • Ju, L.; Wu, G.; Lu, B.; Li, X.; Wu, H.; Liu, A. Non-Enzymatic Amperometric Glucose Sensor Based on Copper Nanowires Decorated Reduced Graphene Oxide. Electroanalysis 2016, 28, 2543–2551. DOI: 10.1002/elan.201600100.
  • Jung, H.; Lee, S. H.; Yang, J.; Cho, M.; Lee, Y. Ni(OH)2@Cu Dendrite Structure for Highly Sensitive Glucose Determination. RSC Adv. 2014, 4, 47714–47720. DOI: 10.1039/C4RA05521G.
  • Babu, K. J.; Sheet, S.; Lee, Y. S.; Kumar, G. G. Three-Dimensional Dendrite Cu-Co/Reduced Graphene Oxide Architectures on a Disposable Pencil Graphite Electrode as an Electrochemical Sensor for Nonenzymatic Glucose Detection. ACS Sustainable Chem. Eng. 2018, 6, 1909–1918. DOI: 10.1021/acssuschemeng.7b03314.
  • Kamyabi, M. A.; Hajari, N.; Babaei, N.; Moharramnezhad, M.; Yahiro, H. Silica Template Electrodeposition of Copper Oxide Nanostructures on Ni Foam as an Ultrasensitive Non-Enzymatic Glucose Sensor. J. Taiwan Inst. Chem. Eng. 2017, 81, 21–30. DOI: 10.1016/j.jtice.2017.10.022.
  • Karikalan, N.; Karthik, R.; Chen, S.-M.; Karuppiah, C.; Elangovan, A. Sonochemical Synthesis of Sulfur Doped Reduced Graphene Oxide Supported CuS Nanoparticles for the Non-Enzymatic Glucose Sensor Applications. Sci. Rep. 2017, 7, 2494. DOI: 10.1038/s41598-017-02479-5.
  • Karuppiah, C.; Velmurugan, M.; Chen, S.-M.; Tsai, S.-H.; Lou, B.-S.; Ajmal Ali, M.; Al-Hemaid, F. M. A. A Simple Hydrothermal Synthesis and Fabrication of Zinc Oxide–Copper Oxide Heterostructure for the Sensitive Determination of Nonenzymatic Glucose Biosensor. Sens. Actuators B Chem. 2015, 221, 1299–1306. DOI: 10.1016/j.snb.2015.07.075.
  • Kaur, B.; Anu Prathap, M. U.; Srivastava, R. Synthesis of Transition-Metal Exchanged Nanocrystalline ZSM-5 and Their Application in Electrochemical Oxidation of Glucose and Methanol. Chempluschem 2012, 77, 1119–1127. DOI: 10.1002/cplu.201200236.
  • Keerthi, M.; Mutharani, B.; Chen, S.-M.; Ranganathan, P. Carbon Fibers Coated with Urchin-Like Copper Sulfide for Nonenzymatic Voltammetric Sensing of Glucose. Mikrochim. Acta. 2019, 186, 807 DOI: 10.1007/s00604-019-3915-6.
  • Khan, R.; Ahmad, R.; Rai, P.; Jang, L.-W.; Yun, J.-H.; Yu, Y.-T.; Hahn, Y.-B.; Lee, I.-H. Glucose-Assisted Synthesis of Cu2O Shuriken-Like Nanostructures and Their Application as Nonenzymatic Glucose Biosensors. Sens. Actuators B Chem. 2014, 203, 471–476. DOI: 10.1016/j.snb.2014.06.128.
  • Khayyat, S. A.; Ansari, S. G.; Umar, A. Glucose Sensor Based on Copper Oxide Nanostructures. J. Nanosci. Nanotechnol. 2014, 14, 3569–3574. DOI: 10.1166/jnn.2014.7918.
  • Khoshroo, A.; Sadrjavadi, K.; Taran, M.; Fattahi, A. Electrochemical System Designed on a Copper Tape Platform as a Nonenzymatic Glucose Sensor. Sens. Actuators B Chem. 2020, 325, 128778. DOI: 10.1016/j.snb.2020.128778.
  • Khosroshahi, Z.; Karimzadeh, F.; Kharaziha, M.; Allafchian, A. A Non-Enzymatic Sensor Based on Three-Dimensional Graphene Foam Decorated with Cu-xCu2O Nanoparticles for Electrochemical Detection of Glucose and Its Application in Human Serum. Mater. Sci. Eng. C-Materials Biol. Appl. 2020, 108, 110216. DOI: 10.1016/j.msec.2019.110216.
  • Kim, G.-J.; Kim, T.; Pak, J. Development of Flexible Glucose Measurement Sensor Based on Copper Nanocubes Electroplated Laser Induced Graphene Electrode. Trans. Korean Inst. Electron. Eng. 2018, 67, 413–418.
  • Kim, K.; Kim, S.; Lee, H. N.; Park, Y. M.; Bae, Y.-S.; Kim, H.-J. Electrochemically Derived CuO Nanorod from Copper-Based Metal-Organic Framework for Non-Enzymatic Detection of Glucose. Appl. Surf. Sci. 2019, 479, 720–726. DOI: 10.1016/j.apsusc.2019.02.130.
  • Kim, S. H.; Umar, A.; Hwang, S.-W. Rose-Like CuO Nanostructures for Highly Sensitive Glucose Chemical Sensor Application. Ceram. Int. 2015, 41, 9468–9475. DOI: 10.1016/j.ceramint.2015.04.003.
  • Bin Kim, W.; Lee, S. H.; Cho, M.; Lee, Y. Facile and Cost-Effective CuD Dendrite Electrode for Non-Enzymatic Glucose Sensor. Sens. Actuators B Chem. 2017, 249, 161–167.
  • Kong, C.; Lv, J.; Hu, X.; Zhao, N.; Liu, K.; Zhang, X.; Meng, G.; Yang, Z.; Yang, S. Template-Synthesis of Hierarchical CuO Nanoflowers Constructed by Ultrathin Nanosheets and Their Application for Non-Enzymatic Glucose Detection. Mater. Lett. 2018, 219, 134–137. DOI: 10.1016/j.matlet.2018.02.067.
  • Kong, C.; Tang, L.; Zhang, X.; Sun, S.; Yang, S.; Song, X.; Yang, Z. Templating Synthesis of Hollow CuO Polyhedron and Its Application for Nonenzymatic Glucose Detection. J. Mater. Chem. A 2014, 2, 7306–7312. DOI: 10.1039/C4TA00703D.
  • Le, H. V.; Le, Q. T. Electrochemical Preparation of Polyaniline- Supported Cu-CuO Core-Shell on 316L Stainless Steel Electrodes for Nonenzymatic Glucose Sensor. Adv. Polym. Technol. 2020, 2020, Art. ID 6056919. DOI: 10.1155/2020/6056919.
  • Lee, C.; Lee, S. H.; Cho, M.; Lee, Y. Nonenzymatic Amperometric Glucose Sensor Based on a Composite Prepared from CuO, Reduced Graphene Oxide, and Carbon Nanotube. Microchim. Acta 2016, 183, 3285–3292. DOI: 10.1007/s00604-016-1984-3.
  • Lei, J.; Liu, Y.; Wang, X.; Hu, P.; Peng, X. Au/CuO Nanosheets Composite for Glucose Sensor and CO Oxidation. RSC Adv. 2015, 5, 9130–9137. DOI: 10.1039/C4RA12697A.
  • Leonardi, S. G.; Marini, S.; Espro, C.; Bonavita, A.; Galvagno, S.; Neri, G. In-Situ Grown Flower-Like Nanostructured CuO on Screen Printed Carbon Electrodes for Non-Enzymatic Amperometric Sensing of Glucose. Microchim. Acta 2017, 184, 2375–2385. DOI: 10.1007/s00604-017-2232-1.
  • Li, B.; Fan, Y.; Li, C.; Zhao, X.; Liu, K.; Lin, Y. Online Electrochemical Monitoring of Glucose in Rat Brain with Acanthosphere‐like CuOOH Nanospheres‐Based Electrochemical Sensor as Non‐Enzymatic and O2‐Independent Detector. Electroanalysis 2018, 30, 1033–1040. DOI: 10.1002/elan.201700574.
  • Li, C.; Yamahara, H.; Lee, Y.; Tabata, H.; Delaunay, J.-J. Nanoporous CuO Layer Modified Cu Electrode for High Performance Enzymatic and Non-Enzymatic Glucose Sensing. Nanotechnology 2015, 26, 305503. DOI: 10.1088/0957-4484/26/30/305503.
  • Li, C.; Yamahara, H.; Lee, Y.; Tabata, H.; Delaunay, J.-J. CuO Nanowire/Microflower/Nanowire Modified Cu Electrode with Enhanced Electrochemical Performance for Non-Enzymatic Glucose Sensing. Nanotechnology 2015, 26, 305503. DOI: 10.1088/0957-4484/26/30/305503.
  • Li, C.; Su, Y.; Zhang, S.; Lv, X.; Xia, H.; Wang, Y. An Improved Sensitivity Nonenzymatic Glucose Biosensor Based on a CuxO Modified Electrode. Biosens. Bioelectron. 2010, 26, 903–907. DOI: 10.1016/j.bios.2010.07.007.
  • Li, H.; Guo, C.-Y.; Xu, C.-L. A Highly Sensitive Non-Enzymatic Glucose Sensor Based on Bimetallic Cu–Ag Superstructures. Biosens. Bioelectron. 2015, 63, 339–346. DOI: 10.1016/j.bios.2014.07.061.
  • Li, K.; Fan, G.; Yang, L.; Li, F. Novel Ultrasensitive Non-Enzymatic Glucose Sensors Based on Controlled Flower-Like CuO Hierarchical Films. Sens. Actuators B Chem. 2014, 199, 175–182. DOI: 10.1016/j.snb.2014.03.095.
  • Li, L.; Liu, Y.; Ai, L.; Jiang, J. Synthesis of the Crystalline Porous Copper Oxide Architectures Derived from Metal-Organic Framework for Electrocatalytic Oxidation and Sensitive Detection of Glucose. J. Ind. Eng. Chem. 2019, 70, 330–337. DOI: 10.1016/j.jiec.2018.10.033.
  • Li, M.; Guo, Q.; Xie, J.; Li, Y.; Feng, Y. CuO Nanoparticles Supported on Nitrogen and Sulfur Co-Doped Graphene Nanocomposites for Non-Enzymatic Glucose Sensing. J. Nanoparticle Res. 2017, 19, 1–12.
  • Li, M.; Liu, L.; Xiong, Y.; Liu, X.; Nsabimana, A.; Bo, X.; Guo, L. Bimetallic MCo (M = Cu, Fe, Ni, and Mn) Nanoparticles Doped-Carbon Nanofibers Synthetized by Electrospinning for Nonenzymatic Glucose Detection. Sens. Actuators B Chem. 2015, 207, 614–622. DOI: 10.1016/j.snb.2014.10.092.
  • Li, M.; Zhao, Z.; Liu, X.; Xiong, Y.; Han, C.; Zhang, Y.; Bo, X.; Guo, L. Novel Bamboo Leaf Shaped CuO Nanorod@Hollow Carbon Fibers Derived from Plant Biomass for Efficient and Nonenzymatic Glucose Detection. Analyst 2015, 140, 6412–6420. DOI: 10.1039/c5an00675a.
  • Li, R.; Liu, X.; Wang, H.; Wu, Y.; Chan, K. C.; Lu, Z. Sandwich Nanoporous Framework Decorated with Vertical CuO Nanowire Arrays for Electrochemical Glucose Sensing. Electrochim. Acta 2019, 299, 470–478. DOI: 10.1016/j.electacta.2019.01.033.
  • Li, R.; Liu, X.; Wang, H.; Wu, Y.; Lu, Z. High-Performance Hybrid Electrode Decorated by Well-Aligned Nanograss Arrays for Glucose Sensing. Biosens. Bioelectron. 2018, 102, 288–295. DOI: 10.1016/j.bios.2017.11.007.
  • Li, S.; Zheng, Y.; Qin, G. W.; Ren, Y.; Pei, W.; Zuo, L. Enzyme-Free Amperometric Sensing of Hydrogen Peroxide and Glucose at a Hierarchical Cu2O Modified Electrode. Talanta 2011, 85, 1260–1264. DOI: 10.1016/j.talanta.2011.05.033.
  • Li, S.-J.; Hou, L.-L.; Yuan, B.-Q.; Chang, M.-Z.; Ma, Y.; Du, J.-M. Enzyme-Free Glucose Sensor Using a Glassy Carbon Electrode Modified with Reduced Graphene Oxide Decorated with Mixed Copper and Cobalt Oxides. Microchim. Acta 2016, 183, 1813–1821. DOI: 10.1007/s00604-016-1817-4.
  • Li, S.-J.; Xing, Y.; Hou, L.-L.; Feng, Z.-Q.; Tian, Y.; Du, J.-M. Facile Synthesis of NiO/CuO/Reduced Graphene Oxide Nanocomposites for Use in Enzyme-Free Glucose Sensing. Int. J. Electrochem. Sci. 2016, 11, 6747–6760.
  • Li, X.; Yao, J.; Liu, F.; He, H.; Zhou, M.; Mao, N.; Xiao, P.; Zhang, Y.; Xiao, P.; Li, X. Nickel/Copper Nanoparticles Modified TiO2 Nanotubes for Non-Enzymatic Glucose Biosensors. Sens. Actuators B Chem. 2013, 181, 501–508. DOI: 10.1016/j.snb.2013.02.035.
  • Li, Y.; Huang, F.; Chen, J.; Mo, T.; Li, S.; Wang, F.; Feng, S.; Li, Y. A High Performance Enzyme-Free Glucose Sensor Based on the Graphene-CuO Nanocomposites. Int. J. Electrochem. Sci. 2013, 8, 6332–6342.
  • Li, Y.; Zhong, Y.; Zhang, Y.; Weng, W.; Li, S. Carbon Quantum Dots/Octahedral Cu2O Nanocomposites for Non-Enzymatic Glucose and Hydrogen Peroxide Amperometric Sensor. Sens. Actuators B Chem. 2015, 206, 735–743. DOI: 10.1016/j.snb.2014.09.016.
  • Li, Y.; Fu, J.; Chen, R.; Huang, M.; Gao, B.; Huo, K.; Wang, L.; Chu, P. K. Core–Shell TiC/C Nanofiber Arrays Decorated with Copper Nanoparticles for High Performance Non-Enzymatic Glucose Sensing. Sens. Actuators B Chem. 2014, 192, 474–479. DOI: 10.1016/j.snb.2013.11.014.
  • Li, Y.-Y.; Kang, P.; Huang, H.-Q.; Liu, Z.-G.; Li, G.; Guo, Z.; Huang, X.-J. Porous CuO Nanobelts Assembly Film for Nonenzymatic Electrochemical Determination of Glucose with High Fabrication Repeatability and Sensing Stability. Sens. Actuators B Chem. 2020, 307, 127639. DOI: 10.1016/j.snb.2019.127639.
  • Li, Z.-H.; Zhao, X.-L.; Jiang, X.-C.; Wu, Y.-H.; Chen, C.; Zhu, Z.-G.; Marty, J.-L.; Chen, Q.-S. An Enhanced Nonenzymatic Electrochemical Glucose Sensor Based on Copper-Palladium Nanoparticles Modified Glassy Carbon Electrodes. Electroanalysis 2018, 30, 1811–1819. DOI: 10.1002/elan.201800017.
  • Li, Z.; Chen, Y.; Xin, Y.; Zhang, Z. Sensitive Electrochemical Nonenzymatic Glucose Sensing Based on Anodized CuO Nanowires on Three-Dimensional Porous Copper Foam. Sci. Rep. 2015, 5, 16115. DOI: 10.1038/srep16115.
  • Li, Z.; Xin, Y.; Zhang, Z.; Wu, H.; Wang, P. Rational Design of Binder-Free Noble Metal/Metal Oxide Arrays with Nanocauliflower Structure for Wide Linear Range Nonenzymatic Glucose Detection. Sci. Rep. 2015, 5, 10617 DOI: 10.1038/srep10617.
  • Lin, J.; Tao, F.; Wang, L.; Chen, L.; Ying, Y.; Zhang, L.; Liu, H.; Xia, M. Solvothermal Synthesis of Sphere-Like CuS Microcrystals and Improvement as Nonenzymatic Glucose Sensor. J. Mater. Sci. 2013, 48, 5509–5516.
  • Lin, K. C.; Hung, Y. T.; Chen, S. M. Facile Preparation of a Highly Sensitive Nonenzymatic Glucose Sensor Based on Multi-Walled Carbon Nanotubes Decorated with Electrodeposited Metals. RSC Adv. 2015, 5, 2806–2812. DOI: 10.1039/C4RA11465E.
  • Lin, K.-C.; Huang, L.-H.; Chen, S.-M. Electrochemical Synthesis of Mixed-Valence Manganese/Copper Hybrid Composite Using Graphene Oxide and Multi-Walled Carbon Nanotubes for Nonenzymatic Glucose Sensor. J. Electroanal. Chem. 2014, 735, 36–42. DOI: 10.1016/j.jelechem.2014.10.009.
  • Lin, K.-C.; Lin, Y.-C.; Chen, S.-M. A Highly Sensitive Nonenzymatic Glucose Sensor Based on Multi-Walled Carbon Nanotubes Decorated with Nickel and Copper Nanoparticles. Electrochim. Acta 2013, 96, 164–172. DOI: 10.1016/j.electacta.2013.02.098.
  • Lin, L.-Y.; Karakocak, B. B.; Kavadiya, S.; Soundappan, T.; Biswas, P. A Highly Sensitive Non-Enzymatic Glucose Sensor Based on Cu/Cu2O/CuO Ternary Composite Hollow Spheres Prepared in a Furnace Aerosol Reactor. Sens. Actuators B Chem. 2018, 259, 745–752. DOI: 10.1016/j.snb.2017.12.035.
  • Lin, S.; Feng, W.; Miao, X.; Zhang, X.; Chen, S.; Chen, Y.; Wang, W.; Zhang, Y. A Flexible and Highly Sensitive Nonenzymatic Glucose Sensor Based on DVD-Laser Scribed Graphene Substrate. Biosens. Bioelectron. 2018, 110, 89–96. DOI: 10.1016/j.bios.2018.03.019.
  • Lin, X.; Wang, Y.; He, W.; Ni, Y.; Kokot, S. Nano-Composite of Co3O4 and Cu with Enhanced Stability and Catalytic Performance for Non-Enzymatic Electrochemical Glucose Sensors. RSC Adv. 2017, 7, 54460–54467. DOI: 10.1039/C7RA11540G.
  • Liu, X.; Yang, W.; Chen, L.; Jia, J. Synthesis of Copper Nanorods for Non-Enzymatic Amperometric Sensing of Glucose. Microchim. Acta 2016, 183, 2369–2375. DOI: 10.1007/s00604-016-1878-4.
  • Liu, B.; Li, Z. Electrochemical Treating of a Smooth Cu-Ni-Zn Surface into Layered Micro-Chips of Rice Grain-Like Cu/Ni(OH)2 Nanocomposites as a Highly Sensitive Enzyme-Free Glucose Sensor. J. Electroanal. Chem. 2019, 855, 113493. DOI: 10.1016/j.jelechem.2019.113493.
  • Liu, D.; Luo, Q.; Zhou, F. Nonenzymatic Glucose Sensor Based on Gold–Copper Alloy Nanoparticles on Defect Sites of Carbon Nanotubes by Spontaneous Reduction. Synth. Met. 2010, 160, 1745–1748. DOI: 10.1016/j.synthmet.2010.06.011.
  • Liu, F.; Zhuang, Y.; Guo, M.; Chen, Y.; Tu, J.; Ding, L. 3D Copper Foam-Supported CuCo2O4 Nanosheet Arrays as Electrode for Enhanced Non-Enzymatic Glucose Sensing. Sensors (Basel) DOI: 10.3390/s18041131.
  • Liu, G.; Zhao, J.; Qin, L.; Liu, S.; Zhang, Q.; Li, J. Synthesis of an Ordered Nanoporous Cu/Ni/Au Film for Sensitive Non-Enzymatic Glucose Sensing. RSC Adv. 2020, 10, 12883–12890. DOI: 10.1039/D0RA01224F.
  • Liu, G.; Zheng, B.; Jiang, Y.; Cai, Y.; Du, J.; Yuan, H.; Xiao, D. Improvement of Sensitive CuO NFs-ITO nonenzymatic glucose sensor based on in situ electrospun fiber. Talanta 2012, 101, 24–31. DOI: 10.1016/j.talanta.2012.08.040.
  • Liu, H.; Lu, X.; Xiao, D.; Zhou, M.; Xu, D.; Sun, L.; Song, Y. Hierarchical Cu–Co–Ni Nanostructures Electrodeposited on Carbon Nanofiber Modified Glassy Carbon Electrode: Application to Glucose Detection. Anal. Methods 2013, 5, 6360–6367. DOI: 10.1039/c3ay41170b.
  • Liu, L.; Qi, W.; Gao, X.; Wang, C.; Wang, G. Synergistic Effect of Metal Ion Additives on Graphitic Carbon Nitride Nanosheet-Templated Electrodeposition of Cu@CuO for Enzyme-Free Glucose Detection. J. Alloys Compd. 2018, 745, 155–163. DOI: 10.1016/j.jallcom.2018.02.199.
  • Liu, M.; Wang, Y.; Lu, D. Sensitive and Selective Non-Enzymatic Glucose Detection Using Electrospun Porous CuO–CdO Composite Nanofibers. J. Mater. Sci. 2019, 54, 3354–3367. DOI: 10.1007/s10853-018-3034-5.
  • Liu, M.; Wang, Y.; Zhang, H.; Jiang, Z. A Non- Enzymatic Glucose Sensor Based on Electrospun 3-D Copper Oxide Micro- Nanofiber Network Films Using Carboxylic- Functionalized Poly( Arylene Ether Ketone)s as Templates. RSC Adv. 2019, 9, 6613–6619. DOI: 10.1039/C8RA09749F.
  • Liu, M.; Liu, R.; Chen, W. Graphene Wrapped Cu2O Nanocubes: Non-Enzymatic Electrochemical Sensors for the Detection of Glucose and Hydrogen Peroxide with Enhanced Stability. Biosens. Bioelectron. 2013, 45, 206–212. DOI: 10.1016/j.bios.2013.02.010.
  • Liu, P.; Zhang, M.; Xie, S.; Wang, S.; Cheng, W.; Cheng, F. Non-Enzymatic Glucose Biosensor Based on Palladium-Copper Oxide Nanocomposites Synthesized via Galvanic Replacement Reaction. Sens. Actuators B Chem. 2017, 253, 552–558. DOI: 10.1016/j.snb.2017.07.010.
  • Liu, Q.; Tang, Y.; Yang, X.; Wei, M.; Zhang, M. An Ultra-Low Detection Limit Glucose Sensor Based on Reduced Graphene Oxide-Concave Tetrahedral PD NCs@CuO Composite. J. Electrochem. Soc. 2019, 166, B381–B387. DOI: 10.1149/2.0441906jes.
  • Liu, Q.; Jiang, Z.; Tang, Y.; Yang, X.; Wei, M.; Zhang, M. A Facile Synthesis of a 3D High-Index Au NCs@Cuo Supported on Reduced Graphene Oxide for Glucose Sensing. Sens. Actuators B Chem. 2018, 255, 454–462. DOI: 10.1016/j.snb.2017.08.092.
  • Liu, S.; Tian, J.; Wang, L.; Qin, X.; Zhang, Y.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. A Simple Route for Preparation of Highly Stable CuO Nanoparticles for Nonenzymatic Glucose Detection. Catal. Sci. Technol. 2012, 2, 813–817. DOI: 10.1039/c2cy00453d.
  • Liu, S.; Hui, K. S.; Hui, K. N. Flower-like Copper Cobaltite Nanosheets on Graphite Paper as High-Performance Supercapacitor Electrodes and Enzymeless Glucose Sensors. ACS Appl. Mater. Interfaces 2016, 8, 3258–3267. DOI: 10.1021/acsami.5b11001.
  • Liu, S.; Ma, Y.; Zhang, R.; Luo, X. Three-Dimensional Nanoporous Conducting Polymer Poly(3,4-Ethylenedioxythiophene) (PEDOT) Decorated with Copper Nanoparticles: Electrochemical Preparation and Enhanced Nonenzymatic Glucose Sensing. ChemElectroChem 2016, 3, 1799–1804. DOI: 10.1002/celc.201600439.
  • Liu, S.; Zhao, J.; Qin, L.; Liu, G.; Zhang, Q.; Li, J. Fabrication of Ni/Cu Ordered Bowl-Like Array Film for the Highly Sensitive Nonenzymatic Detection of Glucose. J. Mater. Sci. 2020, 55, 337–346. DOI: 10.1007/s10853-019-04059-6.
  • Liu, X.; Long, L.; Yang, W.; Chen, L.; Jia, J. Facilely Electrodeposited Coral-Like Copper Micro-/Nano-Structure Arrays with Excellent Performance in Glucose Sensing. Sens. Actuators B Chem. 2018, 266, 853–860. DOI: 10.1016/j.snb.2018.04.007.
  • Liu, X.; Yang, W.; Chen, L.; Jia, J.; Liu, X.; Yang, W.; Chen, L.; Jia, J. Three-Dimensional Copper Foam Supported CuO Nanowire Arrays: An Efficient Non-Enzymatic Glucose Sensor. Electrochim. Acta 2017, 235, 519–526. DOI: 10.1016/j.electacta.2017.03.150.
  • Liu, X.; Ai, L.; Jiang, J. Interconnected Porous Hollow CuS Microspheres Derived from Metal-Organic Frameworks for Efficient Adsorption and Electrochemical Biosensing. Powder Technol. 2015, 283, 539–548. DOI: 10.1016/j.powtec.2015.06.016.
  • Liu, X.; Sui, Y.; Yang, X.; Jiang, L.; Wang, F.; Wei, Y.; Zou, B. A Feasible Approach to Synthesize Cu2O Microcrystals and Their Enhanced Non-Enzymatic Sensor Performance. RSC Adv. 2015, 5, 59099–59105. DOI: 10.1039/C5RA08586A.
  • Liu, X.-W.; Pan, P.; Zhang, Z.-M.; Guo, F.; Yang, Z.-C.; Wei, J.; Wei, Z. Ordered Self-Assembly of Screen-Printed Flower-Like CuO and CuO/MWCNTs Modified Graphite Electrodes and Applications in Non-Enzymatic Glucose Sensor. J. Electroanal. Chem. 2016, 763, 37–44. DOI: 10.1016/j.jelechem.2015.12.039.
  • Liu, Y.; Zhao, Q.; Ding, J.; Wang, H.; Ma, Y.; Lv, W.; Ji, S.; Li, S.; Wang, R. Synthesis of Hierarchical Three-Dimensional CuO Spindles for Highly Sensitive Glucose Determination. Micro Nano Lett. 2016, 11, 870–875. DOI: 10.1049/mnl.2016.0476.
  • Long, L.; Liu, X.; Chen, L.; Li, D.; Jia, J. A Hollow CuOx/NiOy Nanocomposite for Amperometric and Non-Enzymatic Sensing of Glucose and Hydrogen Peroxide. Microchim. Acta 2019, 186, 74.
  • Long, L.; Liu, X.; Chen, L.; Wang, S.; Liu, M.; Jia, J. MOF-Derived 3D Leaf-Like CuCo Oxide Arrays as an Efficient Catalyst for Highly Sensitive Glucose Detection. Electrochim. Acta 2019, 308, 243–252. DOI: 10.1016/j.electacta.2019.04.039.
  • Long, M.; Tan, L.; Liu, H.; He, Z.; Tang, A. Novel Helical TiO2 Nanotube Arrays Modified by Cu2O for Enzyme-Free Glucose Oxidation. Biosens. Bioelectron. 2014, 59, 243–250. DOI: 10.1016/j.bios.2014.03.032.
  • López-Fernández, E.; Gil-Rostra, J.; Espinós, J. P.; Gonzalez, R.; Yubero, F.; de Lucas-Consuegra, A.; González-Elipe, A. R. Robust Label-Free CuxCoyOz Electrochemical Sensors for Hexose Detection during Fermentation Process Monitoring. Sens. Actuators B Chem. 2020, 304, 127360. DOI: 10.1016/j.snb.2019.127360.
  • Lu, W.; Sun, Y.; Dai, H.; Ni, P.; Jiang, S.; Wang, Y.; Li, Z.; Li, Z. CuO Nanothorn Arrays on Three-Dimensional Copper Foam as an Ultra-Highly Sensitive and Efficient Nonenzymatic Glucose Sensor. RSC Adv. 2016, 6, 16474–16480. DOI: 10.1039/C5RA24579F.
  • Lu, C.; Li, Z.; Ren, L.; Su, N.; Lu, D.; Liu, Z. In Situ Oxidation of Cu2O Crystal for Electrochemical Detection of Glucose. Sensors 2019, 19, 2926. DOI: 10.3390/s19132926.
  • Lu, H.-T.; Cao, X.-H.; Yang, Z.-J.; Chen, S.; Fan, Y. Electrochemical Determination of Glucose in Human Serum Utilizing a Novel Nanocomposite Composed of Copper Nanoparticles in a Hollow Carbon Shell. Anal. Lett. 2015, 48, 137–146. DOI: 10.1080/00032719.2014.933434.
  • Lu, N.; Shao, C.; Li, X.; Shen, T.; Zhang, M.; Miao, F.; Zhang, P.; Zhang, X.; Wang, K.; Zhang, Y.; et al. CuO/Cu2O Nanofibers as Electrode Materials for Non-Enzymatic Glucose Sensors with Improved Sensitivity. RSC Adv. 2014, 4, 31056–31061. DOI: 10.1039/C4RA03258F.
  • Lu, W.; Jian, M.; Wang, Q.; Xia, K.; Zhang, M.; Wang, H.; He, W.; Lu, H.; Zhang, Y. Hollow Core-Sheath Nanocarbon Spheres Grown on Carbonized Silk Fabrics for Self-Supported and Nonenzymatic Glucose Sensing. Nanoscale 2019, 11, 11856–11863. DOI: 10.1039/c9nr01791g.
  • Lu, W.; Sun, Y.; Dai, H.; Ni, P.; Jiang, S.; Wang, Y.; Li, Z.; Li, Z. Fabrication of Cuprous Sulfide Nanorods Supported on Copper Foam for Nonenzymatic Amperometric Determination of Glucose and Hydrogen Peroxide. RSC Adv. 2016, 6, 90732–90738. DOI: 10.1039/C6RA18641F.
  • Lu, W.; Sun, Y.; Dai, H.; Ni, P.; Jiang, S.; Wang, Y.; Li, Z.; Li, Z. Direct Growth of Pod-Like Cu2O Nanowire Arrays on Copper Foam: Highly Sensitive and Efficient Nonenzymatic Glucose and H2O2 Biosensor. Sens. Actuators B Chem. 2016, 231, 860–866. DOI: 10.1016/j.snb.2016.03.058.
  • Lu, X.; Ye, Y.; Xie, Y.; Song, Y.; Chen, S.; Li, P.; Chen, L.; Wang, L. Copper Coralloid Granule/Polyaniline/Reduced Graphene Oxide Nanocomposites for Nonenzymatic Glucose Detection. Anal. Methods 2014, 6, 4643–4651. DOI: 10.1039/c4ay00421c.
  • Lu, Y.; Qiu, K.; Zhang, D.; Lin, J.; Xu, J.; Liu, X.; Tang, C.; Kim, J.-K.; Luo, Y. Cost-Effective CuO Nanotube Electrodes for Energy Storage and Non-Enzymatic Glucose Detection. RSC Adv. 2014, 4, 46814–46822. DOI: 10.1039/C4RA08230C.
  • Luo, L.; Zhu, L.; Wang, Z. Nonenzymatic Amperometric Determination of Glucose by CuO nanocubes-graphene nanocomposite modified electrode. Bioelectrochemistry 2012, 88, 156–163. DOI: 10.1016/j.bioelechem.2012.03.006.]
  • Luo, S.; Su, F.; Liu, C.; Li, J.; Liu, R.; Xiao, Y.; Li, Y.; Liu, X.; Cai, Q. A New Method for Fabricating a CuO/TiO2 Nanotube Arrays Electrode and Its Application as a Sensitive Nonenzymatic Glucose Sensor. Talanta 2011, 86, 157–163. DOI: 10.1016/j.talanta.2011.08.051.
  • Luo, X.; Huang, M.; Bie, L.; He, D.; Zhang, Y.; Jiang, P. CuCo2O4 Nanowire Arrays Supported on Carbon Cloth as an Efficient 3D Binder-Free Electrode for Non-Enzymatic Glucose Sensing. RSC Adv. 2017, 7, 23093–23101. DOI: 10.1039/C7RA01840A.
  • Luo, Y.; Wang, Q.; Li, J.; Xu, F.; Sun, L.; Bu, Y.; Zou, Y.; Kraatz, H.-B.; Rosei, F. Tunable Hierarchical Surfaces of CuO Derived from Metal-Organic Frameworks for Non-Enzymatic Glucose Sensing. Inorg. Chem. Front. 2020, 7, 1512–1525. DOI: 10.1039/D0QI00104J.
  • Lv, J.; Kong, C.; Hu, X.; Zhang, X.; Liu, K.; Yang, S.; Bi, J.; Liu, X.; Meng, G.; Li, J.; et al. Zinc Ion Mediated Synthesis of Cuprous Oxide Crystals for Non-Enzymatic Glucose Detection. J. Mater. Chem. B 2017, 5, 8686–8694. DOI: 10.1039/c7tb01971h.
  • Ma, P.; Ma, X.; Suo, Q.; Chen, F.; Ma, P.; Ma, X.; Suo, Q.; Chen, F. Cu NPs@NiF Electrode Preparation by Rapid One-Step Electrodeposition and Its Sensing Performance for Glucose. Sens. Actuators B Chem. 2019, 292, 203–209. DOI: 10.1016/j.snb.2019.04.132.
  • Ma, J.; Wang, J.; Wang, M.; Zhang, G.; Peng, W.; Li, Y.; Fan, X.; Zhang, F. Preparation of Cuprous Oxide Mesoporous Spheres with Different Pore Sizes for Non-Enzymatic Glucose Detection. Nanomater 2018, 8, 73. DOI: 10.3390/nano8020073.
  • Ma, X. Controlled Synthesis of CuO from Needle to Flower-Like Particle Morphologies for Highly Sensitive Glucose Detection. Int. J. Electrochem. Sci. 2017, 12, 8217–8226.
  • Maaoui, H.; Teodoresu, F.; Wang, Q.; Szunerits, S.; Boukherroub, R.; Chtourou, R.; Pan, G.-H. G.-H.; Addad, A.; Maaoui, H.; Teodoresu, F.; et al. Non-Enzymatic Glucose Sensing Using Carbon Quantum Dots Decorated with Copper Oxide Nanoparticles. Sensors 2016, 16, 1720. DOI: 10.3390/s16101720.
  • Mahmoud, B. G.; Khairy, M.; Rashwan, F. A.; Foster, C. W.; Banks, C. E. Self-Assembly of Porous Copper Oxide Hierarchical Nanostructures for Selective Determinations of Glucose and Ascorbic Acid. RSC Adv. 2016, 6, 14474–14482. DOI: 10.1039/C5RA22940E.
  • Mai, L. N. T.; Tran, T. H.; Bui, Q. B.; Nhac-Vu, H.-T. A Novel Nanohybrid of Gold Nanoparticles Anchored Copper Sulfide Nanosheets as Sensitive Sensor for Nonenzymatic Glucose Detection. Colloids Surf. A Physicochem. Eng. Asp 2019, 582, 123936. DOI: 10.1016/j.colsurfa.2019.123936.
  • Malitesta, C.; Guascito, M. R.; Mazzotta, E.; Siciliano, T.; Tepore, A. Copper Nanoparticles/Poly-3-Methylthiophene Composite: Synthesis, Characterization and Catalytic Application to Enzyme-Less Glucose Detecting. Sens. Actuators B Chem. 2013, 184, 70–77. DOI: 10.1016/j.snb.2013.04.001.
  • Mamlayya, V. B.; Fulari, V. J. Polypyrrole/Copper Nanoparticles Composite Thin Films for High-Sensing Performance. Polym. Bull. 2018, 75, 4753–4767. DOI: 10.1007/s00289-018-2293-2.
  • Mani, V.; Devasenathipathy, R.; Chen, S.-M.; Wang, S.-F.; Devi, P.; Tai, Y. Electrodeposition of Copper Nanoparticles Using Pectin Scaffold at Graphene Nanosheets for Electrochemical Sensing of Glucose and Hydrogen Peroxide. Electrochim. Acta 2015, 176, 804–810. DOI: 10.1016/j.electacta.2015.07.098.
  • Martin-Yerga, D.; Carrasco-Rodriguez, J.; Fierro, J. L. G. J. L. G.; Garcia Alonso, F. J.; Costa-Garcia, A.; Martín-Yerga, D.; Carrasco-Rodríguez, J.; Fierro, J. L. G. J. L. G.; García Alonso, F. J.; Costa-García, A. Copper-Modified Titanium Phosphate Nanoparticles as Electrocatalyst for Glucose Detection. Electrochim. Acta 2017, 229, 102–111. DOI: 10.1016/j.electacta.2017.01.143.
  • Medeiros, N. G.; Ribas, V. C.; Lavayen, V.; Da Silva, J. A. Synthesis of Flower-Like CuO Hierarchical Nanostructures as an Electrochemical Platform for Glucose Sensing. J. Solid State Electrochem. 2016, 20, 2419–2426. DOI: 10.1007/s10008-016-3163-1.
  • Meher, S. K.; Rao, G. R. Archetypal Sandwich-Structured CuO for High Performance Non-Enzymatic Sensing of Glucose. Nanoscale 2013, 5, 2089–2099. DOI: 10.1039/c2nr33264g.
  • Mei, L.; Zhang, P.; Chen, J.; Chen, D.; Quan, Y.; Gu, N.; Zhang, G.; Cui, R. Non-Enzymatic Sensing of Glucose and Hydrogen Peroxide Using a Glassy Carbon Electrode Modified with a Nanocomposite Consisting of Nanoporous Copper. Carbon Black Nafion 2016, 183.
  • Mei, L.-P.; Song, P.; Feng, J.-J.; Shen, J.-H.; Wang, W.; Wang, A.-J.; Weng, X. Nonenzymatic Amperometric Sensing of Glucose Using a Glassy Carbon Electrode Modified with a Nanocomposite Consisting of Reduced Graphene Oxide Decorated with Cu2O Nanoclusters. Microchim. Acta 2015, 182, 1701–1708. DOI: 10.1007/s00604-015-1501-0.
  • Meng, F.; Shi, W.; Sun, Y.; Zhu, X.; Wu, G.; Ruan, C.; Liu, X.; Ge, D. Nonenzymatic Biosensor Based on CuxO Nanoparticles Deposited on Polypyrrole Nanowires for Improving Detection Range. Biosens. Bioelectron. 2013, 42, 141–147. DOI: 10.1016/j.bios.2012.10.051.
  • Meng, Z.; Sheng, Q.; Zheng, J.; Meng, Z.; Sheng, Q.; Zheng, J. A Sensitive Non-Enzymatic Glucose Sensor in Alkaline Media Based on Cu/MnO2-Modified Glassy Carbon Electrode. J. Iran. Chem. Soc. 2012, 9, 1007–1014. DOI: 10.1007/s13738-012-0119-y.
  • Miao, L.; Ye, Y.; Xu, L.; Peng, C.; Peng, B.; Li, P.; Chen, S. Leafy Copper-Cobalt Nanostructures/Three-Dimensional Porous Carbon for Glucose Sensing. Ionics (Kiel) 2018, 24, 3199–3207. DOI: 10.1007/s11581-018-2514-6.
  • Min, D.; Qi, J.; Zhi-Hong, D.; Qing-Qing, L.; Li, J.; Xiao-Ying, L. Rice-like CuO Chemically Modified Electrode: Preparation and Detection for Glucose. J. Inorg. Mater. 2019, 34, 152–158. DOI: 10.15541/jim20180200.
  • Ming-Rong, L.; Liang-Liang, W.; Ya-Jing, Z.; Shuang, Z. Chinese J. Anal. Chem. 2019, 44, 882–887.
  • Mirzaei, H.; Nasiri, A. A.; Mohamadee, R.; Yaghoobi, H.; Khatami, M.; Azizi, O.; Zaimy, M. A.; Azizi, H. Direct Growth of Ternary Copper Nickel Cobalt Oxide Nanowires as Binder-Free Electrode on Carbon Cloth for Nonenzymatic Glucose Sensing. Microchem. J. 2018, 142, 343–351. DOI: 10.1016/j.microc.2018.07.014.
  • Mishra, A. K.; Mukherjee, B.; Kumar, A.; Jarwal, D. K.; Ratan, S.; Kumar, C.; Jit, S. Superficial Fabrication of Gold Nanoparticles Modified CuO Nanowires Electrode for Non-Enzymatic Glucose Detection. RSC Adv. 2019, 9, 1772–1781. DOI: 10.1039/C8RA07516F.
  • Motoc, S.; Cretu, C.; Costisor, O.; Baciu, A.; Manea, F.; Szerb, E. I. Cu(I) Coordination Complex Precursor for Randomized CuOx Microarray Loaded on Carbon Nanofiber with Excellent Electrocatalytic Performance for Electrochemical Glucose Detection. Sensors 2019, 19, 5353. DOI: 10.3390/s19245353.
  • Mujtaba, A.; Janjua, N. K. Fabrication and Electrocatalytic Application of CuO@Al2O3 Hybrids. J. Electrochem. Soc. 2015, 162, H328–H337. DOI: 10.1149/2.0351506jes.
  • Mujtaba, A.; Janjua, N. K. Electrochemical Sensing Platform Based on CuO@CeO2 Hybrid Oxides. J. Electroanal. Chem. 2016, 763, 125–133. DOI: 10.1016/j.jelechem.2015.12.050.
  • Muthumariappan, A.; Sakthivel, K.; Chen, S.-M.; Chen, T.-W.; Mani, G.; Lou, B.-S. Effects of Annealing Temperature on Crystal Structure and Glucose Sensing Properties of Cuprous Oxide. Sens. Actuators B Chem. 2018, 266, 655–663. DOI: 10.1016/j.snb.2018.03.146.
  • Muthurasu, A.; Kim, H. Y. Fabrication of Hierarchically Structured MOF-Co3O4 on Well-Aligned CuO Nanowire with an Enhanced Electrocatalytic Property. Electroanalysis 2019, 31, 966–974. DOI: 10.1002/elan.201800823.
  • Nacef, M.; Chelaghmia, M. L.; Affoune, A. M.; Pontié, M. Electrochemical Investigation of Glucose on a Highly Sensitive Nickel-Copper Modified Pencil Graphite Electrode. Electroanalysis 2019, 31, 113–120. DOI: 10.1002/elan.201800622.
  • Naik, K. K.; Sahoo, S.; Rout, C. S. Facile Electrochemical Growth of Spinel Copper Cobaltite Nanosheets for Non-Enzymatic Glucose Sensing and Supercapacitor Applications. Microporous Mesoporous Mater. 2017, 244, 226–234. DOI: 10.1016/j.micromeso.2016.10.036.
  • Neetzel, C.; Muench, F.; Matsutani, T.; Jaud, J. C.; Broetz, J.; Ohgai, T.; Ensinger, W. Facile Wet-Chemical Synthesis of Differently Shaped Cuprous Oxide Particles and a Thin Film: Effect of Catalyst Morphology on the Glucose Sensing Performance. Sens. Actuators B Chem. 2015, 214, 189–196. DOI: 10.1016/j.snb.2015.03.011.
  • Ngamaroonchote, A.; Sanguansap, Y.; Wutikhun, T.; Karn-Orachai, K. Highly Branched Gold–Copper Nanostructures for Non-Enzymatic Specific Detection of Glucose and Hydrogen Peroxide. Microchim. Acta 2020, 187, 559.
  • Nguyen, T. H. V.; Wu, C.-H.; Lin, S.-Y.; Lin, C.-Y. CoOx Nanoparticles Modified CuBi2O4 Submicron-Sized Square Columns as a Sensitive and Selective Sensing Material for Amperometric Detection of Glucose. J. Taiwan Inst. Chem. Eng. 2019, 95, 241–251.
  • Nguyen, T.-T.; Huy, B. T.; Hwang, S.-Y.; Vuong, N. M.; Pham, Q.-T.; Nghia, N. N.; Kirtland, A.; Lee, Y.-I. Preparing Cuprous Oxide Nanomaterials by Electrochemical Method for Non-Enzymatic Glucose Biosensor. Nanotechnology 2018, 29, 205501 DOI: 10.1088/1361-6528/aab229.
  • Ni, P.; Sun, Y.; Shi, Y.; Dai, H.; Hu, J.; Wang, Y.; Li, Z. Facile Fabrication of CuO Nanowire Modified Cu Electrode for Non-Enzymatic Glucose Detection with Enhanced Sensitivity. RSC Adv. 2014, 4, 28842–28847. DOI: 10.1039/C4RA03437F.
  • Ni, Y.; Sun, Z.; Zeng, Z.; Liu, F.; Qin, J. Hydrothermal Fabrication of Hierarchical CuO Nanoflowers for Dual-Function Amperometric Sensing of Hydrogen Peroxide and Glucose. New J. Chem. 2019, 43, 18629–18636. DOI: 10.1039/C9NJ04236A.
  • Niu, X.; Pan, J.; Qiu, F.; Li, X.; Yan, Y.; Shi, L.; Zhao, H.; Lan, M. Anneal-Shrinked Cu2O Dendrites Grown on Porous Cu Foam as a Robust Interface for High-Performance Nonenzymatic Glucose Sensing. Talanta 2016, 161, 615–622. DOI: 10.1016/j.talanta.2016.09.024.
  • Pak, M.; Moshaii, A.; Siampour, H.; Abbasian, S.; Nikkhah, M. Cobalt-Copper Bimetallic Nanostructures Prepared by Glancing Angle Deposition for Non-Enzymatic Voltammetric Determination of Glucose. Mikrochim. Acta 2020, 187, 276 DOI: 10.1007/s00604-020-04246-2.
  • Palmer, M.; Masikini, M.; Jiang, L.-W.; Wang, J.-J.; Cummings, F.; Chamier, J.; Inyang, O.; Chowdhury, M. Enhanced Electrochemical Glucose Sensing Performance of CuO:NiO Mixed Oxides Thin Film by Plasma Assisted Nitrogen Doping. J. Alloys Compd. 2021, 853, 156900. DOI: 10.1016/j.jallcom.2020.156900.
  • Palve, Y. P.; Jha, N, eds. S. M.S., B. S. and S. B., American Institute of Physics Inc., Department of Physics, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India, 2018, vol. 1953.
  • Palve, Y. P.; Jha, N. A Novel Bilayer of Copper Nanowire and Carbon Nanotube Electrode for Highly Sensitive Enzyme Free Glucose Detection. Mater. Chem. Phys. 2020, 240, 122086. DOI: 10.1016/j.matchemphys.2019.122086.
  • Park, M.-S.; Bae, T.-S.; Lee, Y.-S. Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites. Appl. Chem. Eng. 2016, 27, 145–152. DOI: 10.14478/ace.2015.1117.
  • Periasamy, A. P.; Roy, P.; Wu, W.-P.; Huang, Y.-H.; Chang, H.-T. Glucose Oxidase and Horseradish Peroxidase like Activities of Cuprous Oxide/Polypyrrole Composites. Electrochim. Acta 2016, 215, 253–260. DOI: 10.1016/j.electacta.2016.08.071.
  • Pötzelberger, I.; Mardare, C. C.; Uiberlacker, L. M.; Hild, S.; Hassel, A. W. Optimum Copper-Palladium Catalyst from a Combinatorial Library for Sensitive Non-Enzymatic Glucose Sensors. Electrocatalysis 2018, 9, 359–369. DOI: 10.1007/s12678-017-0433-3.
  • Pötzelberger, I.; Grill, C. D.; Uiberlacker, L. M.; Mardare, A. I.; Hild, S.; Hassel, A. W.; Poetzelberger, I.; Grill, C. D.; Uiberlacker, L. M.; Mardare, A. I. Electrocatalytic Glucose Oxidation on a Combinatorially Electrodeposited Cobalt-Copper-Nickel Thin Film Material Library. Electrochim. Acta 2020, 341, 135744. DOI: 10.1016/j.electacta.2020.135744.
  • Pourbeyram, S.; Abdollahpour, J.; Soltanpour, M. Green Synthesis of Copper Oxide Nanoparticles Decorated Reduced Graphene Oxide for High Sensitive Detection of Glucose. Mater. Sci. Eng. C 2019, 94, 850–857. DOI: 10.1016/j.msec.2018.10.034.
  • Poyraz, S.; Liu, Z.; Liu, Y.; Lu, N.; Kim, M. J.; Zhang, X. One-Step Synthesis and Characterization of Poly(o-Toluidine) Nanofiber/Metal Nanoparticle Composite Networks as Non-Enzymatic Glucose Sensors. Sens. Actuators B Chem. 2014, 201, 65–74. DOI: 10.1016/j.snb.2014.04.071.
  • Prabhakaran, A.; Nayak, P. Surface Engineering of Laser-Scribed Graphene Sensor Enables Non-Enzymatic Glucose Detection in Human Body Fluids. ACS Appl. Nano Mater. 2020, 3, 391–398. DOI: 10.1021/acsanm.9b02025.
  • Prakash, S.; Shahi, V. K. Enzyme Free Glucose Sensor Exploiting a Poly (Dimethylaniline) Grafted Sulfonated Ionomer-Copper Nanocomposite. Anal. Methods 2011, 3, 1331–1337. DOI: 10.1039/c1ay05112a.
  • Prasad, M. S.; Chen, R.; Li, Y.; Li, D.; Ni, H.; Rekha, D.; Sreedhar, N. Y. Polypyrrole Supported with Copper Nanoparticles Modified Alkali Anodized Steel Electrode for Probing of Glucose in Real Samples. IEEE Sensors J. 2018, 18, 5203–5212. DOI: 10.1109/JSEN.2018.2829982.
  • Prathap, M. U. A.; Pandiyan, T.; Srivastava, R. Cu Nanoparticles Supported Mesoporous Polyaniline and Its Applications towards Non-Enzymatic Sensing of Glucose and Electrocatalytic Oxidation of Methanol. J. Polym. Res. 2013, 20, 83.
  • Praveen, R.; Ramaraj, R. Facile Synthesis of Hetero-Nanostructured Cuprous Oxide-Gold Composite Material for Sensitive Enzymeless Glucose Detection. J. Electroanal. Chem. 2019, 851, 113454. DOI: 10.1016/j.jelechem.2019.113454..
  • Qi, B.; Yang, H.; Zhao, K.; Bah, M. M.; Bo, X.; Guo, L. Three-Dimensional Macroporous Cu Electrode: Preparation and Electrocatalytic Activity for Nonenzymatic Glucose Detection. J. Electroanal. Chem. 2013, 700, 24–29. DOI: 10.1016/j.jelechem.2013.04.002.
  • Qian, L.; Mao, J.; Tian, X.; Yuan, H.; Xiao, D. In Situ Synthesis of CuS Nanotubes on Cu Electrode for Sensitive Nonenzymatic Glucose Sensor. Sens. Actuators B Chem. 2013, 176, 952–959. DOI: 10.1016/j.snb.2012.09.076.
  • Radhakrishnan, S.; Kim, H.-Y.; Kim, B.-S.; Kim, H.-Y.; Kim, B.-S.; Radhakrishnan, S. A Novel CuS Microflower Superstructure Based Sensitive and Selective Nonenzymatic Glucose Detection. Sens. Actuators B Chem. 2016, 233, 93–99. DOI: 10.1016/j.snb.2016.04.056.
  • Rahim, A.; Rehman, Z. U.; Mir, S.; Muhammad, N.; Rehman, F.; Nawaz, M. H.; Yaqub, M.; Siddiqi, S. A.; Chaudhry, A. A. A Non-Enzymatic Glucose Sensor Based on CuO-Nanostructure Modified Carbon Ceramic Electrode. J. Mol. Liq. 2017, 248, 425–431. DOI: 10.1016/j.molliq.2017.10.087.
  • Raj Kumar, T.; Babu, K. J.; Yoo, D. J.; Kim, A. R.; Gnana Kumar, G. Binder Free and Free-Standing Electrospun Membrane Architecture for Sensitive and Selective Non-Enzymatic Glucose Sensors. RSC Adv. 2015, 5, 41457–41467. DOI: 10.1039/C5RA03305E.
  • Razmi, H.; Shirdel, H.; Mohammad-Rezaei, R. NiO Nanoparticles Electrodeposited on Reduced GO-CuO Nanocomposite Bulk Modified CCE as a Sensitive Glucose Sensor. Micro Nano Lett. 2017, 12, 217–222. DOI: 10.1049/mnl.2016.0566.
  • Ren, H.; Zhang, X.; Zhang, X.; Cui, J.; Yang, Q.; Kong, C.; Yang, Z.; Sun, S. An Mn2+-Mediated Construction of Rhombicuboctahedral Cu2O Nanocrystals Enclosed by Jagged Surfaces for Enhanced Enzyme-Free Glucose Sensing. CrystEngComm 2020, 22, 2042–2048. DOI: 10.1039/C9CE01834D.
  • Riman, D.; Spyrou, K.; Karantzalis, A. E.; Hrbac, J.; Prodromidis, M. I. Glucose Sensing on Graphite Screen-Printed Electrode Modified by Sparking of Copper Nickel Alloys. Talanta 2017, 165, 466–473. DOI: 10.1016/j.talanta.2016.12.064.
  • Romeo, A.; Leung, T. S.; Sánchez, S.; Moya, A.; Gabriel, G.; Villa, R. Inkjet Printed Flexible Non-Enzymatic Glucose Sensor for Tear Fluid Analysis. Appl. Mater. Today 2018, 10, 133–141. DOI: 10.1016/j.apmt.2017.12.016.
  • Rozsypal, J.; Riman, D.; Halouzka, V.; Opletal, T.; Jirovsky, D.; Prodromidis, M.; Hrbac, J. Use of Interelectrode Material Transfer of Nickel and Copper-Nickel Alloy to Carbon Fibers to Assemble Miniature Glucose Sensors. J. Electroanal. Chem. 2018, 816, 45–53.
  • Sahoo, R. K.; Das, A.; Samantaray, K.; Singh, S. K.; Mane, R. S.; Shin, H.-C.; Yun, J. M.; Kim, K. H. Electrochemical Glucose Sensing Characteristics of Two-Dimensional Faceted and Non-Faceted CuO Nanoribbons. CrystEngComm 2019, 21, 1607–1616. DOI: 10.1039/C8CE02033G.
  • Sajadpour, M.; Siampour, H.; Abbasian, S.; Amiri, M.; Rameshan, R.; Rameshan, C.; Hajian, A.; Bagheri, H.; Moshaii, A. A Non-Enzymatic Glucose Sensor Based on the Hybrid Thin Films of Cu on Acetanilide/ITO. J. Electrochem. Soc. 2019, 166, B1116–B1125. DOI: 10.1149/2.0231913jes.
  • Salazar, P.; Rico, V.; González-Elipe, A. R. Nickel–Copper Bilayer Nanoporous Electrode Prepared by Physical Vapor Deposition at Oblique Angles for the Non-Enzymatic Determination of Glucose. Sens. Actuators B Chem. 2016, 226, 436–443. DOI: 10.1016/j.snb.2015.12.003.
  • Salazar, P.; Rico, V.; Gonzalez-Elipe, A. R. Nickel/Copper Bilayer-Modified Screen Printed Electrode for Glucose Determination in Flow Injection Analysis. Electroanalysis 2018, 30, 187–193. DOI: 10.1002/elan.201700592.
  • Salazar, P.; Rico, V.; Rodríguez-Amaro, R.; Espinós, J. P.; González-Elipe, A. R. New Copper Wide Range Nanosensor Electrode Prepared by Physical Vapor Deposition at Oblique Angles for the Non-Enzimatic Determination of Glucose. Electrochim. Acta 2015, 169, 195–201. DOI: 10.1016/j.electacta.2015.04.092.
  • Saraf, M.; Natarajan, K.; Mobin, S. M. Non-Enzymatic Amperometric Sensing of Glucose by Employing Sucrose Templated Microspheres of Copper Oxide (CuO). Dalton Trans. 2016, 45, 5833–5840. DOI: 10.1039/C6DT00670A.
  • Satheesh Babu, T. G.; Ramachandran, T.; Nair, B. Single Step Modification of Copper Electrode for the Highly Sensitive and Selective Non-Enzymatic Determination of Glucose. Microchim. Acta 2010, 169, 49–55.
  • Sedighi, A.; Montazer, M.; Mazinani, S. Synthesis of Wearable and Flexible NiP0.1-SnOx/PANI/CuO/Cotton towards a Non-Enzymatic Glucose Sensor. Biosens. Bioelectron. 2019, 135, 192–199. DOI: 10.1016/j.bios.2019.04.010.
  • Shabnam, L.; Faisal, S. N.; Roy, A. K.; Haque, E.; Minett, A. I.; Gomes, V. G. Doped Graphene/Cu Nanocomposite: A High Sensitivity Non-Enzymatic Glucose Sensor for Food. Food Chem. 2017, 221, 751–759. DOI: 10.1016/j.foodchem.2016.11.107.
  • Shabnam, L.; Faisal, S. N.; Roy, A. K.; Minett, A. I.; Gomes, V. G. Nonenzymatic Multispecies Sensor Based on Cu-Ni Nanoparticle Dispersion on Doped Grapheme. Electrochim. Acta 2017, 224, 295–305. DOI: 10.1016/j.electacta.2016.12.056.
  • Shackery, I.; Patil, U.; Pezeshki, A.; Shinde, N. M.; Kang, S.; Im, S.; Jun, S. C. Copper Hydroxide Nanorods Decorated Porous Graphene Foam Electrodes for Non-Enzymatic Glucose Sensing. Electrochim. Acta 2016, 191, 954–961. DOI: 10.1016/j.electacta.2016.01.047.
  • Shahnavaz, Z.; Lorestani, F.; Meng, W.; Alias, Y. Core-Shell-CuFeO/Ppy Nanocomposite Enzyme-Free Sensor for Detection of Glucose. J. Solid State Electrochem. 2015, 19, 1223–1233. DOI: 10.1007/s10008-015-2738-6.
  • Shahnavaz, Z.; Woi, P. M.; Alias, Y. A Hydrothermally Prepared Reduced Graphene Oxide-Supported Copper Ferrite Hybrid for Glucose Sensing. Ceram. Int. 2015, 41, 12710–12716. DOI: 10.1016/j.ceramint.2015.06.103.
  • Shahrokhian, S.; Khaki Sanati, E.; Hosseini, H. Advanced on-Site Glucose Sensing Platform Based on a New Architecture of Free-Standing Hollow Cu(OH)2 Nanotubes Decorated with CoNi-LDH Nanosheets on Graphite Screen-Printed Electrode. Nanoscale 2019, 11, 12655–12671. DOI: 10.1039/c9nr02720c.
  • Shamsipur, M.; Karimi, Z.; Amouzadeh Tabrizi, M.; Rostamnia, S. Highly Sensitive Non-Enzymatic Electrochemical Glucose Sensor by Nafion/SBA-15-Cu (II) Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2017, 799, 406–412. DOI: 10.1016/j.jelechem.2017.06.029.
  • Sharma, V.; Chawla, M.; Randhawa, J. K. Enhanced Sensitivity of Nanostructured Copper Oxide for Non-Enzymatic Glucose Biosensing. J. Electrochem. Soc. 2016, 163, B594–B600. DOI: 10.1149/2.0301613jes.
  • Shekarchizadeh, H.; Kadivar, M.; Ensafi, A. A. Rapid Nonenzymatic Monitoring of Glucose and Fructose Using a CuO/Multiwalled Carbon Nanotube Nanocomposite-Modified Glassy Carbon Electrode. Chin. J. Catal. 2013, 34, 1208–1215. DOI: 10.1016/S1872-2067(12)60586-5.
  • Sheng, J.; Chen, J.; Kang, J.; Yu, Y.; Yan, N.; Fu, X.-Z.; Sun, R.; Wong, C.-P. Octahedral Cu2O@Co(OH)2 Nanocages with Hierarchical Flake-Like Walls and Yolk-Shell Structures for Enhanced Electrocatalytic Activity. ChemCatChem 2019, 11, 2520–2525. DOI: 10.1002/cctc.201900036.
  • Shervedani, R. K.; Karevan, M.; Amini, A. Prickly Nickel Nanowires Grown on Cu Substrate as a Supersensitive Enzyme-Free Electrochemical Glucose Sensor. Sens. Actuators B Chem. 2014, 204, 783–790. DOI: 10.1016/j.snb.2014.08.033.
  • Shi, H.; Wu, Y.; Wang, W.; Song, W.; Liu, T.; Hong-Yan, S.; Ying, W.; Wen, W.; Wen-Bo, S.; Tie-Mei, L. Dopant-Stimulated CuO Nanofibers for Electro-Oxidation and Determination of Glucose. Chem. Res. Chin. Univ. 2013, 29, 861–867.
  • Shi, H.; Zhang, Z.; Wang, Y.; Zhu, Q.; Song, W. Bimetallic Nano-Structured Glucose Sensing Electrode Composed of Copper Atoms Deposited on Gold Nanoparticles. Microchim. Acta 2011, 173, 85–94. DOI: 10.1007/s00604-010-0543-6.
  • Shi, H.; Zhou, S.; Feng, X.; Huang, H.; Guo, Y.; Song, W. Titanate Nanotube Forest/CuxO Nanocube Hybrid for Glucose Electro-Oxidation and Determination. Sens. Actuators B Chem. 2014, 190, 389–397. DOI: 10.1016/j.snb.2013.08.099.
  • Shi, L.; Niu, X.; Zhao, H.; Lan, M. Significantly Improved Electrocatalytic Activity of Copper-Based Structures That Evolve from a Metal-Organic Framework Induced by Cathodization Treatment. ChemElectroChem 2017, 4, 246–251. DOI: 10.1002/celc.201600625.
  • Shi, L.; Zhu, X.; Liu, T.; Zhao, H.; Lan, M. Encapsulating Cu Nanoparticles into Metal-Organic Frameworks for Nonenzymatic Glucose Sensing. Sens. Actuators B Chem. 2016, 227, 583–590. DOI: 10.1016/j.snb.2015.12.092.
  • Show, B.; Ahmed, S. F.; Mondal, A.; Mukherjee, N. Hierarchical Copper Oxide as Efficient Enzymeless Amperometric Biosensor and Promising Photocatalyst. J. Environ. Chem. Eng. 2020, 104748.
  • Siampour, H.; Abbasian, S.; Moshaii, A. Copper Columnar Nanostructures Fabricated by Glancing Angle Deposition as a Robust and Scalable Method for High Sensitive Non-Enzymatic Glucose Detection. Appl. Surf. Sci. 2020, 518, 146182. DOI: 10.1016/j.apsusc.2020.146182.
  • Sim, H.; Kim, J.-H.; Lee, S.-K.; Song, M.-J.; Yoon, D.-H.; Lim, D.-S.; Hong, S.-I. High-Sensitivity Non-Enzymatic Glucose Biosensor Based on CU(OH)2 Nanoflower Electrode Covered with Boron-Doped Nanocrystalline Diamond Layer. Thin Solid Films 2012, 520, 7219–7223. DOI: 10.1016/j.tsf.2012.08.011.
  • Simon, I. A.; Medeiros, N. G.; Garcia, K. C.; Soares, R. M. D.; Rosa, A. T.; Silva, J. A. CuO Nanofibers Immobilized on Paraffin-Impregnated Graphite Electrode and Its Application in the Amperometric Detection of Glucose. J. Braz. Chem. Soc. 2015, 26, 1710–1717.
  • Sivasankar, K.; Rani, K. K.; Wang, S.-F.; Devasenathipathy, R.; Lin, C.-H. Copper Nanoparticle and Nitrogen Doped Graphite Oxide Based Biosensor for the Sensitive Determination of Glucose. Nanomaterials 2018, 8, 429. DOI: 10.3390/nano8060429.
  • Smikhovskaia, A. V.; Novomlinsky, M. O.; Fogel, A. A.; Kochemirovskaia, S. V.; Lebedev, D. V.; Kochemirovsky, V. A. Laser Method of Microscopic Sensor Synthesis for Liquid and Gas Analysis Using Glucose and H2S as an Example. J. Solid State Electrochem. 2019, 23, 3173–3185. DOI: 10.1007/s10008-019-04389-0.
  • Smikhovskaia, A. V.; Andrianov, V. S.; Khairullina, E. M.; Lebedev, D. V.; Ryazantsev, M. N.; Panov, M. S.; Tumkin, I. I. In Situ Laser-Induced Synthesis of Copper-Silver Microcomposite for Enzyme-Free d-Glucose and l-Alanine Sensing. Appl. Surf. Sci. 2019, 488, 531–536.
  • Smikhovskaia, A. V.; Panov, M. S.; Tumkin, I. I.; Khairullina, E. M.; Ermakov, S. S.; Balova, I. A.; Ryazantsev, M. N.; Kochemirovsky, V. A. In Situ Laser-Induced Codeposition of Copper and Different Metals for Fabrication of Microcomposite Sensor-Active Materials. Anal. Chim. Acta 2018, 1044, 138–146. DOI: 10.1016/j.aca.2018.07.042.
  • Soganci, T.; Ayranci, R.; Harputlu, E.; Ocakoglu, K.; Acet, M.; Farle, M.; Unlu, C. G.; Ak, M. An Effective Non-Enzymatic Biosensor Platform Based on Copper Nanoparticles Decorated by Sputtering on CVD Graphene. Sens. Actuators B Chem. 2018, 273, 1501–1507. DOI: 10.1016/j.snb.2018.07.064.
  • Song, M.-J. Non-Enzymatic Glucose Sensor Based on a Copper Oxide Nanoflowers Electrode Decorated with Pt Nanoparticles. Korean Chem. Eng. Res. 2018, 56, 705–710.
  • Song, M.-J.; Lee, S.-K.; Kim, J.-H.; Lim, D.-S. Non-Enzymatic Glucose Sensor Based on Cu Electrode Modified with CuO Nanoflowers. J. Electrochem. Soc. 2013, 160, B43–B46. DOI: 10.1149/2.037304jes.
  • Song, Y.; Yang, Z.; Liao, Z.; Pan, P.; Fan, M.; Bao, Q.; Liu, J.; Wei, J.; Li, G.; Lin, L. One-Step Rapid Preparation of CuO Nanosheets by High Frequency Induction Heating and the Application as Excellent Electrochemical Sensor Based on CuO/MWCNTs for the Detection of Glucose. Mater. Res. Express 2019, 6, 1050b3. DOI: 10.1088/2053-1591/ab3ff2.
  • Song, Y.; Li, X.; Wei, C.; Fu, J.; Xu, F.; Tan, H.; Tang, J.; Wang, L. A Green Strategy to Prepare Metal Oxide Superstructure from Metal-Organic Frameworks. Sci. Rep. 2015, 5, 1–8.
  • SoYoon, S.; Ramadoss, A.; Balasubramaniam, S.; Kim, S. J. Novel Cu/CuO/ZnO Hybrid Hierarchical Nanostructures for Non-Enzymatic Glucose Sensor Application. J. Electroanal. Chem. 2014, 717, 90–95.
  • Sreekumar, A.; Navaneeth, P.; Suneesh, P. V.; Nair, B. G.; Babu, T. G. S. A Graphite Pencil Electrode with Electrodeposited Pt-CuO for Nonenzymatic Amperometric Sensing of Glucose over a Wide Linear Response Range. Mikrochim. Acta. 2020, 187, 113 DOI: 10.1007/s00604-019-4077-2.
  • Sridara, T.; Upan, J.; Jakmunee, J.; Saianand, G.; Tuantranont, A.; Karuwan, C.; Sridara, T.; Upan, J.; Saianand, G.; Tuantranont, A.; et al. Non-Enzymatic Amperometric Glucose Sensor Based on Carbon Nanodots and Copper Oxide Nanocomposites Electrode. Sensors 2020, 20, 808. DOI: 10.3390/s20030808.
  • Stanley, J.; Sree, R. J.; Ramachandran, T.; Babu, T. G. S.; Nair, B. G. Vertically Aligned TiO2 Nanotube Arrays Decorated with CuO Mesoclusters for the Nonenzymatic Sensing of Glucose. j. Nanosci. Nanotechnol. 2017, 17, 2732–2739. DOI: 10.1166/jnn.2017.12693.
  • Su, Y.; Guo, H.; Wang, Z.; Long, Y.; Li, W.; Tu, Y. Au@Cu2O Core-Shell Structure for High Sensitive Non-Enzymatic Glucose Sensor. Sens. Actuators B Chem. 2018, 255, 2510–2519. DOI: 10.1016/j.snb.2017.09.056.
  • Sukhrobov, P.; Numonov, S.; Liu, J.; Luo, J.; Mamat, X.; Li, Y.; Wagberg, T.; Hu, G. Rapid Microwave-Assisted Synthesis of Copper Decorated Carbon Black Nanocomposite for Non-Enzyme Glucose Sensing in Human Blood. J. Electrochem. Soc. 2019, 166, B1238–B1244. DOI: 10.1149/2.0011914jes.
  • Sun, F.; Li, L.; Lian, Y.; Liu, P. Nonenzymatic Electrochemical Glucose Sensor Based on Novel Copper Film. Electroanalysis 2011, 23, 395–401. DOI: 10.1002/elan.201000391.
  • Sun, C.-L.; Cheng, W.-L.; Hsu, T.-K.; Chang, C.-W.; Chang, J.-L.; Zen, J.-M. Ultrasensitive and Highly Stable Nonenzymatic Glucose Sensor by a CuO/Graphene-Modified Screen-Printed Carbon Electrode Integrated with Flow-Injection Analysis. Electrochem. Commun. 2013, 30, 91–94. DOI: 10.1016/j.elecom.2013.02.015.
  • Sun, F.; Wang, S.; Wang, Y.; Zhang, J.; Yu, X.; Zhou, Y.; Zhang, J. Synthesis of Ni-Co Hydroxide Nanosheets Constructed Hollow Cubes for Electrochemical Glucose Determination. Sensors (Switzerland) 2019, 19, 2938. DOI: 10.3390/s19132938.
  • Sun, F.; Xing, L.; Yang, X.; Huang, H.; Ning, L. Cuprous Oxide Films with Hollow Cubic Cage Structure for Nonenzymatic Glucose Detection. Nano 2019, 14, 1950045. DOI: 10.1142/S1793292019500450.
  • Sun, F.; Zhu, R.; Jiang, H.; Huang, H.; Liu, P.; Zheng, Y. Synthesis of Novel CuO Nanosheets with Porous Structure and Their Non-Enzymatic Glucose Sensing Applications. Electroanalysis 2015, 27, 1238–1244. DOI: 10.1002/elan.201400623.
  • Sun, S.; Sun, Y.; Chen, A.; Zhang, X.; Yang, Z. Nanoporous Copper Oxide Ribbon Assembly of Free-Standing Nanoneedles as Biosensors for Glucose. Analyst 2015, 140, 5205–5215. DOI: 10.1039/c5an00609k.
  • Sun, S.; Zhang, X.; Sun, Y.; Yang, S.; Song, X.; Yang, Z. Facile Water-Assisted Synthesis of Cupric Oxide Nanourchins and Their Application as Nonenzymatic Glucose Biosensor. ACS Appl. Mater. Interfaces 2013, 5, 4429–4437. DOI: 10.1021/am400858j.
  • Sun, S.; Zhang, X.; Sun, Y.; Yang, S.; Song, X.; Yang, Z. Hierarchical CuO Nanoflowers: Water-Required Synthesis and Their Application in a Nonenzymatic Glucose Biosensor. Phys. Chem. Chem. Phys. 2013, 15, 10904–10913. DOI: 10.1039/c3cp50922b.
  • Sun, S.; Zhang, X.; Sun, Y.; Zhang, J.; Yang, S.; Song, X.; Yang, Z. A Facile Strategy for the Synthesis of Hierarchical CuO Nanourchins and Their Application as Non-Enzymatic Glucose Sensors. RSC Adv. 2013, 3, 13712–13719. DOI: 10.1039/C3RA41098F.
  • Sun, Y.; Li, Y.; Wang, N.; Xu, Q. Q.; Xu, L.; Lin, M. Copper-Based Metal-Organic Framework for Non-Enzymatic Electrochemical Detection of Glucose. Electroanalysis 2018, 30, 474–478. DOI: 10.1002/elan.201700629.
  • Suneesh, P. V.; Chandhini, K.; Ramachandran, T.; Nair, B. G.; Satheesh Babu, T. G. Tantalum Oxide Honeycomb Architectures for the Development of a Non-Enzymatic Glucose Sensor with Wide Detection Range. Biosens. Bioelectron. 2013, 50, 472–477. DOI: 10.1016/j.bios.2013.07.007.
  • Suneesh, P. V.; Vargis, V. S.; Ramachandran, T.; Nair, B. G.; Babu, T. G. S. Co–Cu Alloy Nanoparticles Decorated TiO2 Nanotube Arrays for Highly Sensitive and Selective Nonenzymatic Sensing of Glucose. Sens. Actuators B Chem. 2015, 215, 337–344. DOI: 10.1016/j.snb.2015.03.073.
  • Taji, Z.; Ensafi, A. A.; Heydari-Soureshjani, E.; Rezaei, B. A Novel Non-Enzymatic Selective and Sensitive Glucose Sensor Based on Nickel-Copper Oxide@3D-rGO/MWCNTs. Electroanalysis DOI: 10.1002/elan.202060151.
  • Tang, L.; Huan, K.; Deng, D.; Han, L.; Zeng, Z.; Luo, L. Glucose Sensor Based on Pd Nanosheets Deposited on Cu/Cu2O Nanocomposites by Galvanic Replacement. Colloids Surf. B Biointerfaces 2020, 188, 110797. DOI: 10.1016/j.colsurfb.2020.110797.
  • Tang, L.; Lv, J.; Kong, C.; Yang, Z.; Li, J. Facet-Dependent Nonenzymatic Glucose Sensing Properties of Cu2O Cubes and Octahedra. New J. Chem. 2016, 40, 6573–6576. DOI: 10.1039/C6NJ00450D.
  • Tang, Y.; Liu, Q.; Jiang, Z.; Yang, X.; Wei, M.; Zhang, M. Nonenzymatic Glucose Sensor Based on Icosahedron AuPd@CuO Core Shell Nanoparticles and MWCNT. Sens. Actuators B Chem. 2017, 251, 1096–1103. DOI: 10.1016/j.snb.2017.05.090.
  • Tang, Y.; Liu, Q.; Yang, X.; Wei, M.; Zhang, M. Copper Oxide Coated Gold Nanorods like a Film: A Facile Route to Nanocomposites for Electrochemical Application. J. Electroanal. Chem 2017, 806, 8–14. DOI: 10.1016/j.jelechem.2017.10.032.
  • Tee, S. Y.; Ye, E.; Pan, P. H.; Lee, C. J. J.; Hui, H. K.; Zhang, S.-Y.; Koh, L. D.; Dong, Z.; Han, M.-Y. Fabrication of Bimetallic Cu/Au Nanotubes and Their Sensitive, Selective, Reproducible and Reusable Electrochemical Sensing of Glucose. Nanoscale 2015, 7, 11190–11198. DOI: 10.1039/c5nr02399h.
  • Tehrani, F.; Bavarian, B. Facile and Scalable Disposable Sensor Based on Laser Engraved Graphene for Electrochemical Detection of Glucose. Sci. Rep. 2016, 6, 27975. DOI: 10.1038/srep27975.
  • Tehrani, F.; Reiner, L.; Bavarian, B. Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip. PLoS One 2015, 10, e0145036–e0145036. DOI: 10.1371/journal.pone.0145036.
  • Thota, R.; Ganesh, V. Chemically Modified Flexible Strips as Electrochemical Biosensors. Analyst 2014, 139, 4661–4672. DOI: 10.1039/c4an00646a.
  • Tian, K.; Baskaran, K.; Tiwari, A. Nonenzymatic Glucose Sensing Using Metal Oxides – Comparison of CuO, Co3O4, and NiO. Vacuum 2018, 155, 696–701. DOI: 10.1016/j.vacuum.2018.06.060.
  • Tian, L.; Liu, B. Fabrication of CuO Nanosheets Modified Cu Electrode and Its Excellent Electrocatalytic Performance towards Glucose. Appl. Surf. Sci. 2013, 283, 947–953. DOI: 10.1016/j.apsusc.2013.07.048.
  • Tian, L.; Su, Y.; Liao, W. Fabrication and Applications of Amperometric Glucose Biosensor Based on CuO Nanowires/Graphene Modified Electrode. Asian J. Chem. 2013, 25, 10071–10075. DOI: 10.14233/ajchem.2013.15149.
  • Tong, S.; Xu, Y.; Zhang, Z.; Song, W. Dendritic Bimetallic Nanostructures Supported on Self-Assembled Titanate Films for Sensor Application. J. Phys. Chem. C 2010, 114, 20925–20931. DOI: 10.1021/jp1035772.
  • Tong, Y.; Xu, J.; Jiang, H.; Gao, F.; Lu, Q. One-Step Synthesis of Novel Cu@Polymer Nanocomposites through a Self-Activated Route and Their Application as Nonenzymatic Glucose Sensors. Dalton Trans. 2017, 46, 9918–9924. DOI: 10.1039/C7DT01931A.
  • Unterman Santos, F. C.; Paim, L. L.; da Silva, J. L.; Stradiottoa, N. R.; Santos, F. C. U.; Paim, L. L.; Luiz da Silva, J.; Stradiotto, N. R. Electrochemical Determination of Total Reducing Sugars from Bioethanol Production Using Glassy Carbon Electrode Modified with Graphene Oxide Containing Copper Nanoparticles. Fuel 2016, 163, 112–121. DOI: 10.1016/j.fuel.2015.09.046.
  • Vasuki, K.; Siva, G.; Balasubramani, A.; Pannipara, M.; Al-Sehemi, A. G.; Xia, Y.; Fang, R.; Yoo, D. J.; Kumar, T. R.; Ramachandran, R.; et al. Surfactant and Binder Free Hierarchical NCNPs@CuO Nanostructures on ITO for the Cost Effective Enzyme-Free Glucose Sensor Applications. Appl. Phys. A Mater. Sci. Process. 2019, 125, 384. DOI: 10.1007/s00339-019-2652-3.
  • Velmurgan, S.; Devasenathipathy, R.; Chen, S.-M.; Wang, S.-F. A Facile Chemical Synthesis of Cu2O Nanocubes Covered with Co3O24 Nanohexagons for the Sensitive Detection of Glucose. Electroanalysis 2016, 28, 1547–1552. DOI: 10.1002/elan.201501145.
  • Velmurugan, M.; Karikalan, N.; Chen, S.-M. Synthesis and Characterizations of Biscuit-Like Copper Oxide for the Non-Enzymatic Glucose Sensor Applications. J. Colloid Interface Sci. 2017, 493, 349–355. DOI: 10.1016/j.jcis.2017.01.044.
  • Venkadesh, A.; Radhakrishnan, S.; Mathiyarasu, J. Eco-Friendly Synthesis and Morphology-Dependent Superior Electrocatalytic Properties of CuS Nanostructures. Electrochim. Acta 2017, 246, 544–552. DOI: 10.1016/j.electacta.2017.06.077.
  • Vinoth, V.; Shergilin, T. D.; Asiri, A. M.; Wu, J. J.; Anandan, S. Facile Synthesis of Copper Oxide Microflowers for Nonenzymatic Glucose Sensor Applications. Mater. Sci. Semicond. Process. 2018, 82, 31–38. DOI: 10.1016/j.mssp.2018.03.032.
  • Viswanathan, P.; Park, J.; Kang, D.-K.; Hong, J.-D. Polydopamine-Wrapped Cu/Cu(II) Nano-Heterostructures: An Efficient Electrocatalyst for Non-Enzymatic Glucose Detection. Colloids Surf. A Physicochem. Eng. Asp 2019, 580, 123689. DOI: 10.1016/j.colsurfa.2019.123689.
  • Viswanathan, P.; Wang, K.; Li, J.; Hong, J.-D. Multicore–Shell Ag–CuO Networked with CuO Nanorods for Enhanced Non-Enzymatic Glucose Detection. Colloids Surf. A Physicochem. Eng. Asp 2020, 598, 124816. DOI: 10.1016/j.colsurfa.2020.124816.
  • Wang, A.-J.; Feng, J.-J.; Z.-H, L.; Liao, Q.-C.; Wang, Z.-Z.; Chen, J.-R. Solvothermal Synthesis of Cu/Cu2O Hollow Microspheres for Non-Enzymatic Amperometric Glucose Sensing. CrystEngComm 2012, 14, 1289–1295. DOI: 10.1039/C1CE05869J.
  • Wang, B.; Wu, Y.; Chen, Y.; Weng, B.; Li, C. Flexible Paper Sensor Fabricated via in Situ Growth of Cu Nanoflower on RGO Sheets towards Amperometrically Non-Enzymatic Detection of Glucose. Sens. Actuators B Chem. 2017, 238, 802–808. DOI: 10.1016/j.snb.2016.07.137.
  • Wang, F.; Zhang, Y.; Liang, W.; Chen, L.; Li, Y.; He, X. Non-Enzymatic Glucose Sensor with High Sensitivity Based on Cu-Al Layered Double Hydroxides. Sens. Actuators B Chem. 2018, 273, 41–47. DOI: 10.1016/j.snb.2018.06.038.
  • Wang, G.; Jin, Z.; Zhang, M.; Wang, Z.-S. Self-Supporting AuCu@Cu Elongated Pentagonal Bipyramids toward Neutral Glucose Sensing. Part. Part. Syst. Charact. 2016, 33, 771–778. DOI: 10.1002/ppsc.201600077.
  • Wang, G.; Sun, H.; Ding, L.; Zhou, G.; Wang, Z.-S. Growth of Cu Particles on a Cu2O Truncated Octahedron: Tuning of the Cu Content for Efficient Glucose Sensing. Phys. Chem. Chem. Phys. 2015, 17, 24361–24369. DOI: 10.1039/c5cp03748d.
  • Wang, J.; Shi, Z.; Jin, J.; Tan, Y.; Zhang, S. Highly-Sensitive Electrochemical Sensor for Glucose Based on the Ordered Macroporous Polycysteine/Cu Film. J. Electrochem. Soc. 2015, 162, B36–B40. DOI: 10.1149/2.1091501jes.
  • Wang, J.; Zhang, W.-D. Fabrication of CuO Nanoplatelets for Highly Sensitive Enzyme-Free Determination of Glucose. Electrochim. Acta 2011, 56, 7510–7516. DOI: 10.1016/j.electacta.2011.06.102.
  • Wang, L.; Xu, L.; Zhang, Y.; Yang, H.; Miao, L.; Peng, C.; Song, Y. Copper Oxide-Cobalt Nanostructures/Reduced Graphene Oxide/Biomass-Derived Macroporous Carbon for Glucose Sensing. ChemElectroChem 2018, 5, 501–506. DOI: 10.1002/celc.201701062.
  • Wang, L.; Zheng, Y.; Lu, X.; Li, Z.; Sun, L.; Song, Y. Dendritic Copper-Cobalt Nanostructures/Reduced Graphene Oxide-Chitosan Modified Glassy Carbon Electrode for Glucose Sensing. Sens. Actuators B Chem. 2014, 195, 1–7. DOI: 10.1016/j.snb.2014.01.007.
  • Wang, L.; Zhuang, S.; Wang, L.; Wang, N.; Mo, H.; Tang, Y.; Chen, Y.; Sun, Y.; Wan, P. One Step Synthesis of Hierarchical Cu Nanoparticles-Co(OH)2 Nanoflakes/Nifoam Electrode for Ultrasensitive Detection of Glucose. Appl. Surf. Sci. 2019, 467–468, 773–781.
  • Wang, L.; Gong, C.; Shen, Y.; Xu, M.; He, G.; Wang, L.; Song, Y. Conjugated Schiff Base Polymer Foam/Macroporous Carbon Integrated Electrode for Electrochemical Sensing. Sens. Actuators B Chem. 2018, 265, 227–233. DOI: 10.1016/j.snb.2018.03.041.
  • Wang, M.; Song, X.; Song, B.; Liu, J.; Hu, C.; Wei, D.; Wong, C.-P. Precisely Quantified Catalyst Based on in Situ Growth of Cu2O Nanoparticles on a Graphene 3D Network for Highly Sensitive Glucose Sensor. Sens. Actuators B Chem. 2017, 250, 333–341. DOI: 10.1016/j.snb.2017.04.125.
  • Wang, Q.; Wang, Q.; Li, M.; Szunerits, S.; Boukherroub, R. Preparation of Reduced Graphene Oxide/Cu Nanoparticle Composites through Electrophoretic Deposition: Application for Nonenzymatic Glucose Sensing. RSC Adv. 2015, 5, 15861–15869. DOI: 10.1039/C4RA14132F.
  • Wang, S.; Zhao, L.; Xu, R.; Ma, Y.; Ma, L. Facile Fabrication of Biosensors Based on Cu Nanoparticles Modified as-Grown CVD Graphene for Non-Enzymatic Glucose Sensing. J. Electroanal. Chem. 2019, 853, 113527. DOI: 10.1016/j.jelechem.2019.113527.
  • Wang, T.; Su, W.; Fu, Y.; Hu, J. Controllably Annealed CuO-Nanoparticle Modified ITO Electrodes: Characterisation and Electrochemical Studies. Appl. Surf. Sci. 2016, 390, 795–803.
  • Wang, X.; Ge, C.; Chen, K.; Zhang, Y. X. An Ultrasensitive Non-Enzymatic Glucose Sensors Based on Controlled Petal-Like Cuo Nanostructure. Electrochim. Acta 2018, 259, 225–232. DOI: 10.1016/j.electacta.2017.10.182.
  • Wang, X.; Liu, E.; Zhang, X. Non-Enzymatic Glucose Biosensor Based on Copper Oxide-Reduced Graphene Oxide Nanocomposites Synthesized from Water-Isopropanol Solution. Electrochim. Acta 2014, 130, 253–260. DOI: 10.1016/j.electacta.2014.03.030.
  • Wang, X.; Hu, C.; Liu, H.; Du, G.; He, X.; Xi, Y. Synthesis of CuO Nanostructures and Their Application for Nonenzymatic Glucose Sensing. Sens. Actuators B Chem. 2010, 144, 220–225. DOI: 10.1016/j.snb.2009.09.067.
  • Wang, Y.; Zhang, S.; Bai, W.; Zheng, J. Layer-by-Layer Assembly of Copper Nanoparticles and Manganese Dioxide-Multiwalled Carbon Nanotubes Film: A New Nonenzymatic Electrochemical Sensor for Glucose. Talanta 2016, 149, 211–216. DOI: 10.1016/j.talanta.2015.11.040.
  • Wang, Y.; Liu, M.; Lu, D.; Zhang, H. Electrospun Porous Hybrid CuO/CdO Nanofibers Using Carboxylic-Functionalized Poly(Arylene Ether Ketone)s as a Template for Glucose Determination. High Perform. Polym. 2019, 31, 570–579. DOI: 10.1177/0954008318811471.
  • Wang, Y.; Liu, S.; Lai, Y.; Zhu, Y.; Guo, R.; Xia, Y.; Huang, W.; Li, Z. Rapid Electrochemical Conversion of Smooth Cu Surfaces to Urchin-Like Cu Nanowire Arrays via Flower-Like Cu2Se Nanosheets as an Advanced Nonenzymatic Glucose Sensor. Sens. Actuators B Chem. 2018, 262, 801–809. DOI: 10.1016/j.snb.2018.02.064.
  • Wang, Y.; Ji, Z.; Shen, X.; Zhu, G.; Wang, J.; Yue, X. Facile Growth of Cu2O Hollow Cubes on Reduced Graphene Oxide with Remarkable Electrocatalytic Performance for Non-Enzymatic Glucose Detection. New J. Chem. 2017, 41, 9223–9229. DOI: 10.1039/C7NJ01952A.
  • Wang, Z.; Cao, X.; Liu, D.; Hao, S.; Kong, R.; Du, G.; Asiri, A. M.; Sun, X. Copper-Nitride Nanowires Array: An Efficient Dual-Functional Catalyst Electrode for Sensitive and Selective Non-Enzymatic Glucose and Hydrogen Peroxide Sensing. Chemistry 2017, 23, 4986–4989. DOI: 10.1002/chem.201700366.
  • Wei, C.; Liu, Y.; Li, X.; Zhao, J.; Ren, Z.; Pang, H. Nitrogen-Doped Carbon-Copper Nanohybrids as Electrocatalysts in H2O2 and Glucose Sensing. Chemelectrochem. 2014, 1, 799–807. DOI: 10.1002/celc.201300211.
  • Wei, C.; Kang, C.; Liu, Q. Ag Nanosheets Grown on Cu Nanowire-Based Flexible Films for Sensitive non-enzymatic glucose sensors. Nanotechnology 2020, 31, 115501 DOI: 10.1088/1361-6528/ab59ea.
  • Wei, C.; Liu, Y.; Liu, Q.; Xiang, W. Uniform and Dense Copper Nanoparticles Directly Modified Indium Tin Oxide Electrode for Non-Enzymatic Glucose Sensing. J. Electroanal. Chem. 2019, 835, 273–280. DOI: 10.1016/j.jelechem.2019.01.045.
  • Wei, C.; Zou, X.; Liu, Q.; Li, S.; Kang, C.; Xiang, W. A Highly Sensitive Non-Enzymatic Glucose Sensor Based on CuS Nanosheets Modified Cu2O/CuO Nanowire Arrays. Electrochim. Acta DOI: 10.1016/j.electacta.2020.135630.
  • Weng, S.; Zheng, Y.; Zhao, C.; Zhou, J.; Lin, L.; Zheng, Z.; Lin, X. CuO Nanoleaf Electrode: Facile Preparation and Nonenzymatic Sensor Applications. Microchim. Acta. 2013, 180, 371–378.
  • H.-X, W.; Cao, W.-M.; Li, Y.; Liu, G.; Wen, Y.; Yang, H.-F.; Yang, S.-P. In Situ Growth of Copper Nanoparticles on Multiwalled Carbon Nanotubes and Their Application as Non-Enzymatic Glucose Sensor Materials. Electrochim. Acta 2010, 55, 3734–3740.
  • Wu, J.; Yin, F. Easy Fabrication of a Sensitive Non-Enzymatic Glucose Sensor Based on Electrospinning CuO-ZnO Nanocomposites. Integr. Ferroelectron. 2013, 147, 47–58. DOI: 10.1080/10584587.2013.790695.
  • K.-L, W.; Cai, Y.-M.; Jiang, B.-B.; Cheong, W.-C.; Wei, X.-W.; Wang, W.; Yu, N. CU@Ni Core-Shell Nanoparticles/Reduced Graphene Oxide Nanocomposites for Nonenzymatic Glucose Sensor. RSC Adv. 2017, 7, 21128–21135.
  • K.-L, W.; Jiang, B.-B.; Cai, Y.-M.; Wei, X.-W.; Li, X.-Z.; Cheong, W.-C. Efficient Electrocatalyst for Glucose and Ethanol Based on Cu/Ni/N-Doped Graphene Hybrids. ChemElectroChem 2017, 4, 1419–1428.
  • Wu, L.; Lu, Z.; Ye, J. Enzyme-Free Glucose Sensor Based on Layer-by-Layer Electrodeposition of Multilayer Films of Multi-Walled Carbon Nanotubes and Cu-Based Metal Framework Modified Glassy Carbon Electrode. Biosens. Bioelectron. 2019, 135, 45–49. DOI: 10.1016/j.bios.2019.03.064.
  • Wu, L.-N.; Zhong, J.-P.; Waqas, M.; Jiang, Z.; Fan, Y.-J.; Sun, Y.; Li, J.; Chen, W. Controllable Synthesis of Six Corner Star-Like Cu2O/PEDOT-MWCMT Composites and Their Performance toward Electrochemical Glucose Sensing. Electrochim. Acta 2019, 318, 837–846. DOI: 10.1016/j.electacta.2019.06.124.
  • Wu, Q.; He, L.; Jiang, Z. W.; Li, Y.; Cao, Z. M.; Huang, C. Z.; Li, Y. F. CuO Nanoparticles Derived from Metal-Organic Gel with Excellent Electrocatalytic and Peroxidase-Mimicking Activities for Glucose and Cholesterol Detection. Biosens. Bioelectron. 2019, 145, 111704. DOI: 10.1016/j.bios.2019.111704.
  • Wu, W.-P.; Periasamy, A. P.; Lin, G.-L.; Shih, Z.-Y.; Chang, H.-T. Palladium Copper Nanosponges for Electrocatalytic Reduction of Oxygen and Glucose Detection. J. Mater. Chem. A 2015, 3, 9675–9681. DOI: 10.1039/C5TA00382B.
  • Wu, X.; Li, F.; Zhao, C.; Qian, X. One-Step Construction of Hierarchical Ni(OH)2/RGO/Cu2O on Cu Foil for Ultra-Sensitive Non-Enzymatic Glucose and Hydrogen Peroxide Detection. Sens. Actuators B Chem. 2018, 274, 163–171. DOI: 10.1016/j.snb.2018.07.141.
  • Wu, X.; Lu, W. High-Performance Electrochemical Glucose Sensing Enabled By Cu(T CNQ) Nanorod Array. Nanotechnology 2018, 29, 135502. DOI: 10.1088/1361-6528/aaaa2c.
  • Xia, L.; Xu, L.; Song, J.; Xu, R.; Liu, D.; Dong, B.; Song, H. CdS Quantum Dots Modified CuO Inverse Opal Electrodes for Ultrasensitive Electrochemical and Photoelectrochemical Biosensor. Sci. Rep. 2015, 5, 1–12. DOI: 10.1038/srep10838.
  • Xiao, X.; Wang, M.; Li, H.; Pan, Y.; Si, P. Non-Enzymatic Glucose Sensors Based on Controllable Nanoporous Gold/Copper Oxide Nanohybrids. Talanta 2014, 125, 366–371. [Database] DOI: 10.1016/j.talanta.2014.03.030.
  • Xie, H.; Ke, Q.; Xiong, X. Preparation of a Cu2O/RGO Porous Composite through a Double-Sacrificial-Template Method for Non-Enzymatic Glucose Detection. J. Mater. Sci. 2017, 52, 5652–5660. DOI: 10.1007/s10853-017-0800-8.
  • Xie, L.; Sun, X.; Asiri, A. M. Monolithically Integrated Copper Phosphide Nanowire: An Efficient Electrocatalyst for Sensitive and Selective Nonenzymatic Glucose Detection. Sensors Actuators, B Chem. 2017, 244, 11–16. DOI: 10.1016/j.snb.2016.12.093.
  • Xie, Y.; Song, Y.; Zhang, Y.; Xu, L.; Miao, L.; Peng, C.; Wang, L. Cu Metal-Organic Framework-Derived Cu Nanospheres@Porous Carbon/Macroporous Carbon for Electrochemical Sensing Glucose. J. Alloys Compd. 2018, 757, 105–111. DOI: 10.1016/j.jallcom.2018.05.064.
  • Xu, D.; Zhu, C.; Meng, X.; Chen, Z.; Li, Y.; Zhang, D.; Zhu, S. Design and Fabrication of Ag-CuO Nanoparticles on Reduced Graphene Oxide for Nonenzymatic Detection of Glucose. Sensors Actuators, B Chem. 2018, 265, 435–442. DOI: 10.1016/j.snb.2018.03.086.
  • Xu, F.; Wu, M.; Ma, G.; Xu, H.; Shang, W. Copper-Molybdenum Sulfide/Reduced Graphene Oxide Hybrid with Three-Dimensional Wrinkles and Pores for Enhanced Amperometric Detection of Glucose. Microchem. J. 2020, 159, 105432. DOI: 10.1016/j.microc.2020.105432.
  • Xu, G.-R.; Ge, C.; Liu, D.; Jin, L.; Li, Y.-C.; Zhang, T.-H.; Rahman, M. M.; Li, X.-B.; Kim, W. In-Situ Electrochemical Deposition of Dendritic Cu-Cu2S Nanocomposites onto Glassy Carbon Electrode for Sensitive and Non-Enzymatic Detection of Glucose. J. Electroanal. Chem. 2019, 847, 113177. DOI: 10.1016/j.jelechem.2019.05.059.
  • Xu, H.; Han, F.; Xia, C.; Wang, S.; Zhuiykov, S.; Zheng, G. Spinel Sub-Stoichiometric CuxCoyO4 Nano-Wire Framework Thin-Film Electrode for Enhanced Electrochemical Non-Enzymatic Sensing of Glucose. Electrochim. Acta 2020, 331, 135295. DOI: 10.1016/j.electacta.2019.135295.
  • Xu, J.; Xiao, X.; Zhang, J.; Liu, J.; Ni, J.; Xue, H.; Pang, H. Oxygen Vacancies Enhancing Electrocatalysis Performance of Porous Copper Oxide. Part. Part. Syst. Charact. 2017, 34, 1600420. DOI: 10.1002/ppsc.201600420.
  • Xu, L.; Yang, Q.; Liu, X.; Liu, J.; Sun, X. One-Dimensional Copper Oxide Nanotube Arrays: Biosensors for Glucose Detection. RSC Adv. 2014, 4, 1449–1455. DOI: 10.1039/C3RA45598J.
  • Xu, W.; Lu, J.; Huo, W.; Li, J.; Wang, X.; Zhang, C.; Gu, X.; Hu, C. Direct Growth of CuCo2S4 Nanosheets on Carbon Fiber Textile with Enhanced Electrochemical Pseudocapacitive Properties and Electrocatalytic Properties towards Glucose Oxidation. Nanoscale 2018, 10, 14304–14313. DOI: 10.1039/c8nr04519d.
  • Xu, W.; Dai, S.; Wang, X.; He, X.; Wang, M.; Xi, Y.; Hu, C. Nanorod-Aggregated Flower-like CuO Grown on a Carbon Fiber Fabric for a Super High Sensitive Non-Enzymatic Glucose Sensor. J. Mater. Chem. B 2015, 3, 5777–5785. DOI: 10.1039/c5tb00592b.
  • Xu, X.; Jin, H.; Ren, Q.; Liu, A.; Li, J.; Yin, D.; Feng, X.; Dong, X.; Wang, J.; Wang, S. Int. J. Electrochem. Sci. 2019, 14, 5637–5645.
  • Yadav, H. M.; Lee, J.-J. One-Pot Synthesis of Copper Nanoparticles on Glass: Applications for Non-Enzymatic Glucose Detection and Catalytic Reduction of 4-Nitrophenol. J. Solid State Electrochem. 2019, 23, 503–512. DOI: 10.1007/s10008-018-4137-2.
  • Yan, X.; Gu, Y.; Li, C.; Zheng, B.; Li, Y.; Zhang, T.; Zhang, Z.; Yang, M. A Non-Enzymatic Glucose Sensor Based on the CuS Nanoflakes-Reduced Graphene Oxide Nanocomposite. Anal. Methods 2018, 10, 381–388. DOI: 10.1039/C7AY02290E.
  • Yang, T.; Xu, J.; Zhu, X.; Gao, Y.; Xing, H.; Ding, W.; Liu, Z.; Lu, L.; Yu, Y. Copper Nanoparticle/Graphene Oxide/Single Wall Carbon Nanotube Hybrid Materials as Electrochemical Sensing Platform for Nonenzymatic Glucose Detection. J. Electroanal. Chem. 2016, 761, 118–124. DOI: 10.1016/j.jelechem.2015.12.015.
  • Yang, H.; Wang, Z.; Zhou, Q.; Xu, C.; Hou, J. Nanoporous Platinum-Copper Flowers for Non-Enzymatic Sensitive Detection of Hydrogen Peroxide and Glucose at near-Neutral PH Values. Mikrochim. Acta 2019, 186, 631 DOI: 10.1007/s00604-019-3728-7.
  • Yang, H.; Wang, Z.; Li, C.; Xu, C. Nanoporous Pdcu Alloy as an Excellent Electrochemical Sensor for H2O2 and Glucose Detection. J. Colloid Interface Sci. 2017, 491, 321–328. DOI: 10.1016/j.jcis.2016.12.041.
  • Yang, J.; Jiang, L.-C.; Zhang, W.-D.; Gunasekaran, S. A Highly Sensitive Non-Enzymatic Glucose Sensor Based on a Simple Two-Step Electrodeposition of Cupric Oxide (CuO) Nanoparticles onto Multi-Walled Carbon Nanotube Arrays. Talanta 2010, 82, 25–33. DOI: 10.1016/j.talanta.2010.03.047.
  • Yang, J.; Zhang, W.-D.; Gunasekaran, S. An Amperometric Non-Enzymatic Glucose Sensor by Electrodepositing Copper Nanocubes onto Vertically Well-Aligned Multi-Walled Carbon Nanotube Arrays. Biosens. Bioelectron. 2010, 26, 279–284. DOI: 10.1016/j.bios.2010.06.014.
  • Yang, J.; Tan, W.; Chen, C.; Tao, Y.; Qin, Y.; Kong, Y. Nonenzymatic Glucose Sensing by CuO Nanoparticles Decorated Nitrogen-Doped Graphene Aerogel. Mater. Sci. Eng. C 2017, 78, 210–217. DOI: 10.1016/j.msec.2017.04.097.
  • Yang, J.; Ye, H.; Zhang, Z.; Zhao, F.; Zeng, B. Metal–Organic Framework Derived Hollow Polyhedron CuCo2O4 Functionalized Porous Graphene for Sensitive Glucose Sensing. Sens. Actuators B Chem. 2017, 242, 728–735. DOI: 10.1016/j.snb.2016.11.122.
  • Yang, L.; Wang, H.; Lu, H.; Hui, N. Phytic Acid Doped Poly(3,4-Ethylenedioxythiophene) Modified with Copper Nanoparticles for Enzymeless Amperometric Sensing of Glucose. Microchim. Acta 2020, 187, 49. DOI: 10.1007/s00604-019-3988-2.
  • Yang, N.; Guo, K.; Zhang, Y.; Xu, C. Engineering the Valence State of ZIF-67 by Cu2O for Efficient Nonenzymatic Glucose Detection. J. Mater. Chem. B 2020, 8, 2856–2861. DOI: 10.1039/d0tb00094a.
  • Yang, P.; Wang, X.; Ge, C.; Fu, X.; Liu, X. Y.; Chai, H.; Guo, X.; Yao, H.-C.; Zhang, Y. X.; Chen, K. Fabrication of CuO Nanosheets-Built Microtubes via Kirkendall Effect for Non-Enzymatic Glucose Sensor. Appl. Surf. Sci. 2019, 494, 484–491. DOI: 10.1016/j.apsusc.2019.07.197.
  • Yang, Q.; Long, M.; Tan, L.; Zhang, Y.; Ouyang, J.; Liu, P.; Tang, A. Helical TiO2 Nanotube Arrays Modified by Cu-Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-oxidation of Glucose . ACS Appl. Mater. Interfaces 2015, 7, 12719–12730. DOI: 10.1021/acsami.5b03401.
  • Yang, S.; Li, G.; Wang, D.; Qiao, Z.; Qu, L. Synthesis of Nanoneedle-Like Copper Oxide on N-Doped Reduced Graphene Oxide: A Three-Dimensional Hybrid for Nonenzymatic Glucose Sensor. Sens. Actuators B Chem. 2017, 238, 588–595. DOI: 10.1016/j.snb.2016.07.105.
  • Yang, X.; Tang, Y.; Wei, M.; Chen, L.; Liu, Q.; Wang, P.; Wu, Q.; Wang, C.; Zhang, M. A Facile Design of Nucleocapsid-Like Au@NiO@CuO Nanocomposites with MWCNT for Glucose Sensing. J. Electroanal. Chem. 2019, 841, 36–44. DOI: 10.1016/j.jelechem.2019.03.078.
  • Yang, Y. J.; Li, W.; Chen, X. Highly Enhanced Electrocatalytic Oxidation of Glucose on Cu(OH)2/CuO Nanotube Arrays Modified Copper Electrode. J. Solid State Electrochem. 2012, 16, 2877–2881. DOI: 10.1007/s10008-012-1718-3.
  • Yang, Y.; Shen, Y.; Wang, L.; Song, Y.; Wang, L. Three-Dimensional Porous Carbon/Covalent-Organic Framework Films Integrated Electrode for Electrochemical Sensors. J. Electroanal. Chem. DOI: 10.1016/j.jelechem.2019.113590.
  • Yang, Z.; Fan, M.; Liu, J.; Pan, P.; Song, Y.; Bao, Q.; Wei, J.; Liao, Z.; Li, G.; Lin, L. Intelligent Sensor of Glucose Based on CuO Nanomaterials. Int. J. Electrochem. Sci. 2019, 14, 11531–11540.
  • Yang, Z.; Feng, J.; Qiao, J.; Yan, Y.; Yu, Q.; Sun, K. Copper Oxide Nanoleaves Decorated Multi-Walled Carbon Nanotube as Platform for Glucose Sensing. Anal. Methods 2012, 4, 1924–1926. DOI: 10.1039/c2ay25283j.
  • Yang, Z.; Yan, X.; Li, Z.; Zheng, X.; Zheng, J. Synthesis of Cu2O on AlOOH/Reduced Graphene Oxide for Non-Enzymatic Amperometric Glucose Sensing. Anal. Methods 2016, 8, 1527–1531. DOI: 10.1039/C5AY03258J.
  • Yazid, S. N. A. M.; Isa, I. M.; Hashim, N. Novel Alkaline-Reduced Cuprous Oxide/Graphene Nanocomposites for Non-Enzymatic Amperometric Glucose Sensor Application. Mater. Sci. Eng. C 2016, 68, 465–473. DOI: 10.1016/j.msec.2016.06.006.
  • Ye, D.; Liang, G.; Li, H.; Luo, J.; Zhang, S.; Chen, H.; Kong, J. A Novel Nonenzymatic Sensor Based on CuO Nanoneedle/Graphene/Carbon Nanofiber Modified Electrode for Probing Glucose in Saliva. Talanta 2013, 116, 223–230. DOI: 10.1016/j.talanta.2013.04.008.
  • Ye, J.; Deng, D.; Wang, Y.; Luo, L.; Qian, K.; Cao, S.; Feng, X. Well-Aligned Cu@C Nanocubes for Highly Efficient Nonenzymatic Glucose Detection in Human Serum. Sens. Actuators B Chem. 2020, 305, 127473. DOI: 10.1016/j.snb.2019.127473.
  • Yi, W.; Liu, J.; Chen, H.; Gao, Y.; Li, H. Copper/Nickel Nanoparticle Decorated Carbon Nanotubes for Nonenzymatic Glucose Biosensor. J. Solid State Electrochem. 2015, 19, 1511–1521. DOI: 10.1007/s10008-015-2766-2.
  • Yin, H.; Zhu, J.; Chen, J.; Gong, J.; Nie, Q. Hierarchical CuCo2O4/C Microspheres Assembled with Nanoparticle-Stacked Nanosheets for Sensitive Non-Enzymatic Glucose Detection. J. Mater. Sci. 2018, 53, 11951–11961. DOI: 10.1007/s10853-018-2522-y.
  • Yin, H.; Cui, Z.; Wang, L.; Nie, Q. In Situ Reduction of the Cu/Cu2O/Carbon Spheres Composite for Enzymaticless Glucose Sensors. Sens. Actuators B Chem. 2016, 222, 1018–1023. DOI: 10.1016/j.snb.2015.09.047.
  • Yongpeng, W.; Zibo, X.; Mengzhu, L.; Haibo, Z.; Zhenhua, J. Non-Enzymatic Glucose Sensor Based on the Electrospun Porous Foamy Copper Oxides Micro-Nanofibers. Chem. J. Chinese Univ. 2019, 40, 1310–1316.
  • Yu, C.; Cui, J.; Wang, Y.; Zheng, H.; Zhang, J.; Shu, X.; Liu, J.; Zhang, Y.; Wu, Y. Porous HKUST-1 Derived CuO/Cu2O Shell Wrapped Cu(OH)2 Derived CuO/Cu2O Core Nanowire Arrays for Electrochemical Nonenzymatic Glucose Sensors with Ultrahigh Sensitivity. Appl. Surf. Sci. 2018, 439, 11–17. DOI: 10.1016/j.apsusc.2018.01.067.
  • Yu, H.; Jian, X.; Jin, J.; Zheng, X.; Liu, R.; Qi, G. Nonenzymatic Sensing of Glucose Using a Carbon Ceramic Electrode Modified with a Composite Film Made from Copper Oxide, Overoxidized Polypyrrole Multi-Walled Carbon Nanotubes. Microchim. Acta 2014, 182, 157–165.
  • Yu, X.; Zhang, J.; Tang, X.; Wei, Y.; Kou, S.; Niu, J.; Yao, B. Preparation and Performance of Non-Enzymatic Glucose Sensor Electrode Based on Nanometer Cuprous Oxide. Nanomater. Nanotechnol. 2018, 8, 1847980418793526. DOI: 10.1177/1847980418793526.
  • Yu, Z.; Kong, C.; Lv, J.; Ma, B.; Zhang, X.; Yang, Z. Ultrathin CuxO Nanoflakes Anchored Cu2P Nanoarray for High-Performance Non-Enzymatic Glucose Sensor. J. Solid State Electrochem. 2020, 24, 583–590. DOI: 10.1007/s10008-019-04472-6.
  • Yuan, B.; Xu, C.; Liu, L.; Zhang, Q.; Ji, S.; Pi, L.; Zhang, D.; Huo, Q. Cu2O/NiOx/Graphene Oxide Modified Glassy Carbon Electrode for the Enhanced Electrochemical Oxidation of Reduced Glutathione and Nonenzyme Glucose Sensor. Electrochim. Acta 2013, 104, 78–83. DOI: 10.1016/j.electacta.2013.04.073.
  • Yuan, R.; Li, H.; Yin, X.; Lu, J.; Zhang, L. 3D CuO Nanosheet Wrapped Nanofilm Grown on Cu Foil for High-Performance Non-Enzymatic Glucose Biosensor Electrode. Talanta 2017, 174, 514–520. DOI: 10.1016/j.talanta.2017.06.030.
  • Yuan, R.; Li, H.; Yin, X.; Wang, H.; Lu, J.; Zhang, L. Coral-Like Cu-Co-Mixed Oxide for Stable Electro-Properties of Glucose Determination. Electrochim. Acta 2018, 273, 502–510. DOI: 10.1016/j.electacta.2018.04.003.
  • Zang, G.; Hao, W.; Li, X.; Huang, S.; Gan, J.; Luo, Z.; Zhang, Y. Copper Nanowires-MOFs-Graphene Oxide Hybrid Nanocomposite Targeting Glucose Electro-Oxidation in Neutral Medium. Electrochim. Acta 2018, 277, 176–184. DOI: 10.1016/j.electacta.2018.05.016.
  • Zhang, C.; Li, F.; Huang, S.; Li, M.; Guo, T.; Mo, C.; Pang, X.; Chen, L.; Li, X. In-Situ Facile Preparation of Highly Efficient Copper/Nickel Bimetallic Nanocatalyst on Chemically Grafted Carbon Nanotubes for Nonenzymatic Sensing of Glucose. J. Colloid Interface Sci. 2019, 557, 829–840.
  • Zhang, D.; Wei, Y.; Zhao, M.; Wang, H.; Xia, Q.; Fang, Y. Facile Two-Step Electrodeposition Synthesis of CuO Nanowires for Ultrasensitive Non-Enzymatic Sensing of Glucose. Int. J. Electrochem. Sci. 2019, 14, 10835–10847.
  • Zhang, F.; Xiao, X.; Wang, J.; Huang, S.; Zhang, H.; Zhang, W.; Guo, X.; Zhang, D.; Wang, M. Facile Synthesis of Uniform CuO/Cu2O Composite Hollow Microspheres for a Non-Enzymatic Glucose Sensor. Mater. Res. Express DOI: 10.1088/2053-1591/ab4695.
  • Zhang, H.; Yu, Y.; Shen, X.; Hu, X. A Cu2O/Cu/Carbon Cloth as a Binder-Free Electrode for Non-Enzymatic Glucose Sensors with High Performance. New J. Chem. 2020, 44, 1993–2000. DOI: 10.1039/C9NJ05256A.
  • Zhang, J.; Chen, L.; Yang, K. In Situ Synthesis of CuO Nanoparticles Decorated Hierarchical Ce-Metal-Organic Framework Nanocomposite for an Ultrasensitive Non-Enzymatic Glucose Sensor. Ionics (Kiel) 2019, 25, 4447–4457. DOI: 10.1007/s11581-019-02996-5.
  • Zhang, J.; Ding, N.; Cao, J.; Wang, W.; Chen, Z. In Situ Attachment of Cupric Oxide Nanoparticles to Mesoporous Carbons for Sensitive Amperometric Non-Enzymatic Sensing of Glucose. Sens. Actuators B Chem. 2013, 178, 125–131. DOI: 10.1016/j.snb.2012.12.070.
  • Zhang, J.; Ma, J.; Zhang, S.; Wang, W.; Chen, Z. A Highly Sensitive Nonenzymatic Glucose Sensor Based on CuO Nanoparticles Decorated Carbon Spheres. Sens. Actuators B Chem. 2015, 211, 385–391. DOI: 10.1016/j.snb.2015.01.100.
  • Zhang, J.; Zhu, X.; Dong, H.; Zhang, X.; Wang, W.; Chen, Z. In Situ Growth Cupric Oxide Nanoparticles on Carbon Nanofibers for Sensitive Nonenzymatic Sensing of Glucose. Electrochim. Acta 2013, 105, 433–438. DOI: 10.1016/j.electacta.2013.04.169.
  • Zhang, L.; Ding, Y.; Li, R.; Ye, C.; Zhao, G.; Wang, Y. Electrodeposition of Ultra-Long Copper Nanowires on a Titanium Foil Electrode for Nonenzymatic Voltammetric Sensing of Glucose. Microchim. Acta 2017, 184, 2837–2843. DOI: 10.1007/s00604-017-2279-z.
  • Zhang, L.; Ni, Y.; Li, H. Addition of Porous Cuprous Oxide to a Nafion Film Strongly Improves the Performance of a Nonenzymatic Glucose Sensor. Microchim. Acta 2010, 171, 103–108. DOI: 10.1007/s00604-010-0415-0.
  • Zhang, L.; Ye, C.; Li, X.; Ding, Y.; Liang, H.; Zhao, G.; Wang, Y. A CuNi/C Nanosheet Array Based on a Metal-Organic Framework Derivate as a Supersensitive Non-Enzymatic Glucose Sensor. Nano-Micro Lett. 2018, 10, 1. DOI: 10.1007/s40820-017-0178-9.
  • Zhang, L.; Zhang, J.; Yang, C.; Zhao, G.; Mu, J.; Wang, Y. Freestanding Cu Nanowire Arrays on Ti/Cr/Si Substrate as Tough Nonenzymatic Glucose Sensors. RSC Adv. 2015, 5, 82998–83003. DOI: 10.1039/C5RA10058E.
  • Zhang, M.; Zhang, W.; Chen, F.; Hou, C.; Halder, A.; Chi, Q. Nanoporous Hybrid CuO/ZnO/Carbon Papers Used as Ultrasensitive Non-Enzymatic Electrochemical Sensors. RSC Adv. 2019, 9, 41886–41892. DOI: 10.1039/C9RA08223A.
  • Zhang, P.; Zhang, L.; Zhao, G. G.-C.; Feng, F. A Highly Sensitive Nonenzymatic Glucose Sensor Based on CuO Nanowires. Microchim. Acta 2011, 176, 411–417.
  • Zhang, Q.; Luo, Q.; Qin, Z.; Liu, L.; Wu, Z.; Shen, B.; Hu, W. Self-Assembly of Graphene-Encapsulated Cu Composites for Nonenzymatic Glucose Sensing. ACS Omega 2018, 3, 3420–3428. DOI: 10.1021/acsomega.7b01197.
  • Zhang, Q.; Li, M.; Wang, Z.; Qin, C.; Zhang, M.; Li, Y. Porous CuxO/Ag2O (x = 1, 2) Nanowires Anodized on Nanoporous Cu-Ag Bimetal Network as a Self-Supported Flexible Electrode for Glucose Sensing. Appl. Surf. Sci. 2020, 515, 146062. DOI: 10.1016/j.apsusc.2020.146062.
  • Zhang, S.; Zhang, Z.; Zhang, X.; Zhang, J. Novel Bimetallic Cu/Ni Core-Shell NPs and Nitrogen Doped GQDs Composites Applied in Glucose in Vitro Detection. PLoS One 2019, 14, 1–14.
  • Zhang, W.; Li, R.; Xing, L.; Wang, X.; Gou, X. Carnation-like CuO Hierarchical Nanostructures Assembled by Porous Nanosheets for Nonenzymatic Glucose Sensing. Electroanalysis 2016, 28, 2214–2221. DOI: 10.1002/elan.201600132.
  • Zhang, X.; Liao, Q.; Liu, S.; Xu, W.; Liu, Y.; Zhang, Y. CuNiO Nanoparticles Assembled on Graphene as an Effective Platform for Enzyme-Free Glucose Sensing. Anal. Chim. Acta 2015, 858, 49–54. DOI: 10.1016/j.aca.2014.12.007.
  • Zhang, X.; Sun, S.; Lv, J.; Tang, L.; Kong, C.; Song, X.; Yang, Z. Nanoparticle-Aggregated CuO Nanoellipsoids for High-Performance Non-Enzymatic Glucose Detection. J. Mater. Chem. A 2014, 2, 10073–10080. DOI: 10.1039/c4ta01005a.
  • Zhang, X.; Luo, J.; Tang, P.; Morante, J. R.; Arbiol, J.; Xu, C.; Li, Q.; Fransaer, J. Ultrasensitive Binder-Free Glucose Sensors Based on the Pyrolysis of in Situ Grown Cu MOF. Sens. Actuators B Chem. 2018, 254, 272–281. DOI: 10.1016/j.snb.2017.07.024.
  • Zhang, Y.; Su, L.; Manuzzi, D.; Monteros, H. V. E. d l.; Jia, W.; Huo, D.; Hou, C.; Lei, Y. Ultrasensitive and Selective Non-Enzymatic Glucose Detection Using Copper Nanowires. Biosens. Bioelectron. 2012, 31, 426–432. DOI: 10.1016/j.bios.2011.11.006.
  • Zhang, Z.; Gu, S.; Ding, Y.; Zhang, F.; Jin, J. Determination of Hydrogen Peroxide and Glucose Using a Novel Sensor Platform Based on CoFeLaO Nanoparticles. Microchim. Acta 2013, 180, 1043–1049.
  • Zhang, Z.; Pan, P.; Liu, X.; Yang, Z.; Wei, J.; Wei, Z.; Zhang, Z.; Pan, P.; Liu, X.; Wei, Z.; et al. 3D-Copper Oxide and Copper Oxide/Few-Layer Graphene with Screen Printed Nanosheet Assembly for Ultrasensitive Non-Enzymatic Glucose Sensing. Mater. Chem. Phys. 2017, 187, 28–38. DOI: 10.1016/j.matchemphys.2016.11.032.
  • Zhao, C.; Wu, X.; Li, P.; Zhao, C.; Qian, X. Hydrothermal Deposition of CuO/RGO/Cu2O Nanocomposite on Copper Foil for Sensitive Nonenzymatic Voltammetric Determination of Glucose and Hydrogen Peroxide. Microchim. Acta 2017, 184, 2341–2348. DOI: 10.1007/s00604-017-2229-9.
  • Zhao, C.; Wu, X.; Zhang, X.; Li, P.; Qian, X. Facile Synthesis of Layered CuS/RGO/CuS Nanocomposite on Cu Foam for Ultrasensitive Nonenzymatic Detection of Glucose. J. Electroanal. Chem. 2017, 785, 172–179. DOI: 10.1016/j.jelechem.2016.12.039.
  • Zhao, J.; Wei, L.; Peng, C.; Su, Y.; Yang, Z.; Zhang, L.; Wei, H.; Zhang, Y. A Non-Enzymatic Glucose Sensor Based on the Composite of Cubic Cu Nanoparticles and Arc-Synthesized Multi-Walled Carbon Nanotubes. Biosens. Bioelectron. 2013, 47, 86–91. DOI: 10.1016/j.bios.2013.02.032.
  • Zhao, Y.; Zhao, J.; Li, Y.; Ma, D.; Hou, S.; Li, L.; Hao, X.; Wang, Z. Room Temperature Synthesis of 2D CuO Nanoleaves in Aqueous Solution. Nanotechnology 2011, 22, 115604 DOI: 10.1088/0957-4484/22/11/115604.
  • Zhao, Y.; Zhao, J.; Ma, D.; Li, Y.; Hao, X.; Li, L.; Yu, C.; Zhang, L.; Lu, Y.; Wang, Z. Synthesis, Growth Mechanism of Different Cu Nanostructures and Their Application for Non-Enzymatic Glucose Sensing. Colloids Surf. A Physicochem. Eng. Asp 2012, 409, 105–111. DOI: 10.1016/j.colsurfa.2012.05.045.
  • Zhao, Y.; Zhao, J.; Su, Z.; Hao, X.; Li, Y.; Li, N.; Li, Y. SiO2 Capsulized Cu Active Nanoparticles: Synthesis and Activity Study. J. Mater. Chem. A 2013, 1, 8029–8036. DOI: 10.1039/c3ta11281k.
  • Zhao, Y.; Zhao, J.; Su, Z.; Hao, X.; Ma, D.; Lu, Y.; Guo, J. Effect of Surfactants on Fabricating CuO Nanoleaves and Cu Nanocages at Room Temperature. Colloids Surf. A Physicochem. Eng. Asp 2013, 436, 34–40. DOI: 10.1016/j.colsurfa.2013.05.079.
  • Zhao, Y.; Zhao, J.; Su, Z.; Ma, D.; Hao, X.; Lu, Y.; Guo, J. Room Temperature Synthesis of Cu Nanocages through Ni-Induced Electroless Process. Colloids Surf. A Physicochem. Eng. Asp 2013, 431, 60–65. DOI: 10.1016/j.colsurfa.2013.04.019.
  • Zhao, Y.; Bo, X.; Guo, L. Highly Exposed Copper Oxide Supported on Three-Dimensional Porous Reduced Graphene Oxide for Non-Enzymatic Detection of Glucose. Electrochim. Acta 2015, 176, 1272–1279. DOI: 10.1016/j.electacta.2015.07.143.
  • Zhao, Y.; Fan, L.; Zhang, Y.; Zhao, H.; Li, X.; Li, Y.; Wen, L.; Yan, Z.; Huo, Z. Hyper-Branched Cu@Cu2O Coaxial Nanowires Mesh Electrode for Ultra-Sensitive Glucose Detection. ACS Appl. Mater. Interfaces 2015, 7, 16802–16812. DOI: 10.1021/acsami.5b04614.
  • Zhao, Y.; He, Z.; Yan, Z.; Zhao, Y.; Yan, Z.; He, Z. Copper@Carbon Coaxial Nanowires Synthesized by Hydrothermal Carbonization Process from Electroplating Wastewater and Their Use as an Enzyme-Free Glucose Sensor. Analyst 2013, 138, 559–568. DOI: 10.1039/c2an36446h.
  • Zhao, Y.; Li, Y.; He, Z.; Yan, Z. Facile Preparation of Cu–Cu2O Nanoporous Nanoparticles as a Potential Catalyst for Non-Enzymatic Glucose Sensing. RSC Adv. 2013, 3, 2178–2181. DOI: 10.1039/c2ra22654e.
  • Zhao, Z.; Sun, Y.; Huang, Y.; Jin, J.; Wei, X.; Gong, W.; Hu, J.; Chen, Y. In Situ Construction of Zeolitic Imidazolate Framework-67 Derived Co3O4 on CCCH NWs/CF Hierarchical Nanowires for High-Performance Enzymeless Glucose Detection. Microchem. J. 2021, 160, 105623. DOI: 10.1016/j.microc.2020.105623.
  • Zhao, Z.; Sun, Y.; Song, J.; Li, Y.; Xie, Y.; Cui, H.; Gong, W.; Hu, J.; Chen, Y. Highly Sensitive Nonenzymetic Glucose Sensing Based on Multicomponent Hierarchical NiCo-LDH/CCCH/CuF Nanostructures. Sens. Actuators B Chem. 2021, 326, 128811. DOI: 10.1016/j.snb.2020.128811.
  • Zhe, T.; Sun, X.; Liu, Y.; Wang, Q.; Li, F.; Bu, T.; Jia, P.; Lu, Q.; Wang, J.; Wang, L. An Integrated Anode Based on Porous Ni/Cu(OH)2 Nanospheres for Non-Enzymatic Glucose Sensing. Microchem. J. 2019, 151, 104197. DOI: 10.1016/j.microc.2019.104197.
  • Zheng, B.; Liu, G.; Yao, A.; Xiao, Y.; Du, J.; Guo, Y.; Xiao, D.; Hu, Q.; Choi, M. M. F. A Sensitive AgNPs/CuO Nanofibers Non-Enzymatic Glucose Sensor Based on Electrospinning Technology. Sens. Actuators B Chem. 2014, 195, 431–438. DOI: 10.1016/j.snb.2014.01.046.
  • Zheng, J.; Zhang, W.; Lin, Z.; Wei, C.; Yang, W.; Dong, P.; Yan, Y.; Hu, S. Microwave Synthesis of 3D Rambutan-Like CuO and CuO/Reduced Graphene Oxide Modified Electrodes for Non-Enzymatic Glucose Detection. J. Mater. Chem. B 2016, 4, 1247–1253. DOI: 10.1039/c5tb02624e.
  • Zheng, W.; Liu, Y.; Yang, P.; Chen, Y.; Tao, J.; Hu, J.; Zhao, P. Carbon Nanohorns Enhanced Electrochemical Properties of Cu-Based Metal Organic Framework for Ultrasensitive Serum Glucose Sensing. J. Electroanal. Chem. 2020, 862, 114018. DOI: 10.1016/j.jelechem.2020.114018.
  • Zheng, W.; Hu, L.; Lee, L. Y. S.; Wong, K.-Y. Copper Nanoparticles/Polyaniline/Graphene Composite as a Highly Sensitive Electrochemical Glucose Sensor. J. Electroanal. Chem. 2016, 781, 155–160. DOI: 10.1016/j.jelechem.2016.08.004.
  • Zheng, W.; Li, Y.; Hu, L.; Lee, L. Y. S. Use of Carbon Supports with Copper Ion as a Highly Sensitive Non-Enzymatic Glucose Sensor. Sens. Actuators B Chem. 2019, 282, 187–196. DOI: 10.1016/j.snb.2018.10.164.
  • Zheng, W.; Li, Y.; Liu, M.; Tsang, C.-S.; Lee, L. Y. S.; Wong, K.-Y. Cu2+-Doped Carbon Nitride/MWCNT as an Electrochemical Glucose Sensor. Electroanalysis 2018, 30, 1446–1454. DOI: 10.1002/elan.201800076.
  • Zheng, W.; Li, Y.; Tsang, C.-S.; Hu, L.; Liu, M.; Huang, B.; Lee, L. Y. S.; Wong, K.-Y. CuII-Mediated Ultra-Efficient Electrooxidation of Glucose. ChemElectroChem 2017, 4, 2788–2792. DOI: 10.1002/celc.201700712.
  • Zhong, A.; Luo, X.; Chen, L.; Wei, S.; Liang, Y.; Li, X. Enzyme-Free Sensing of Glucose on a Copper Electrode Modified with Nickel Nanoparticles and Multiwalled Carbon Nanotubes. Microchim. Acta 2014, 182, 1197–1204.
  • Zhong, Y.; Shi, T.; Liu, Z.; Cheng, S.; Huang, Y.; Tao, X.; Liao, G.; Tang, Z. Ultrasensitive Non-Enzymatic Glucose Sensors Based on Different Copper Oxide Nanostructures by in-Situ Growth. Sens. Actuators B Chem. 2016, 236, 326–333. DOI: 10.1016/j.snb.2016.06.020.
  • Zhou, D.-L.; Feng, J.-J.; Cai, L.-Y.; Fang, Q.-X.; Chen, J.-R.; Wang, A.-J. Facile Synthesis of Monodisperse Porous Cu2O Nanospheres on Reduced Graphene Oxide for Non-Enzymatic Amperometric Glucose Sensing. Electrochim. Acta 2014, 115, 103–108.
  • Zhou, Q.-Q.; Zhuo, M.-P.; Chen, R.; Wang, S.-Z.; Wang, Z.-S.; Zheng, M.; Liao, L.-S. Controllable Synthesis of Barnyardgrass-Like CuO/Cu2O Heterostructure Nanowires for Highly Sensitive Non-Enzymatic Glucose Sensors. J. Mater. Chem. C 2019, 7, 14874–14880. DOI: 10.1039/C9TC04231H.
  • Zhou, X.; Nie, H.; Yao, Z.; Dong, Y.; Yang, Z.; Huang, S. Facile Synthesis of Nanospindle-Like Cu2O/Straight Multi-Walled Carbon Nanotube Hybrid Nanostructures and Their Application in Enzyme-Free Glucose Sensing. Sens. Actuators B Chem. 2012, 168, 1–7. DOI: 10.1016/j.snb.2011.12.012.
  • Zhou, X.; Gu, X.; Chen, Z.; Wu, Y.; Xu, W.; Bao, J. A Novel and Sensitive Cu2ZnSnS4 Quantum Dot–Based Non–Enzymatic Glucose Sensor. Sens. Actuators B Chem. 2021, 329, 129117. DOI: 10.1016/j.snb.2020.129117.
  • Zhou, Z.; Zhu, Z.; Cui, F.; Shao, J.; Zhou, H. S. CuO/Cu Composite Nanospheres on a TiO2 Nanotube Array for Amperometric Sensing of Glucose. Microchim. Acta 2020, 187, 123.
  • Zhu, Q.; Hu, S.; Zhang, L.; Li, Y.; Carraro, C.; Maboudian, R.; Wei, W.; Liu, A.; Zhang, Y.; Liu, S. Reconstructing Hydrophobic ZIF-8 Crystal into Hydrophilic Hierarchically-Porous Nanoflowers as Catalyst Carrier for Nonenzymatic Glucose Sensing. Sens. Actuators B Chem. 2020, 313, 128031. DOI: 10.1016/j.snb.2020.128031.
  • Zhu, W.; Wang, J.; Zhang, W.; Hu, N.; Wang, J.; Huang, L.; Wang, R.; Suo, Y.; Wang, J. Monolithic Copper Selenide Submicron Particulate Film/Copper Foam Anode Catalyst for Ultrasensitive Electrochemical Glucose Sensing in Human Blood Serum. J. Mater. Chem. B 2018, 6, 718–724. DOI: 10.1039/c7tb02996a.
  • Kangkamano, T.; Numnuam, A.; Limbut, W.; Kanatharana, P.; Thavarungkul, P. Chitosan Cryogel with Embedded Gold Nanoparticles Decorated Multiwalled Carbon Nanotubes Modified Electrode for Highly Sensitive Flow Based Non-Enzymatic Glucose Sensor. Sens. Actuators B Chem. 2017, 246, 854–863. DOI: 10.1016/j.snb.2017.02.105.
  • Jafarian, M.; Forouzandeh, F.; Danaee, I.; Gobal, F.; Mahjani, M. G. Electrocatalytic Oxidation of Glucose on Ni and NiCu Alloy Modified Glassy Carbon Electrode. J. Solid State Electrochem. 2009, 13, 1171–1179. DOI: 10.1007/s10008-008-0632-1.
  • Wang, G.; Wei, Y.; Zhang, W.; Zhang, X.; Fang, B.; Wang, L. Enzyme-Free Amperometric Sensing of Glucose Using Cu-CuO Nanowire Composites. Microchim. Acta 2010, 168, 87–92. DOI: 10.1007/s00604-009-0260-1.
  • Qian, Y.; Ye, F.; Xu, J.; Le, Z.-G. Synthesis of Cuprous Oxide (Cu2O) Nanoparticles/Graphene Composite with an Excellent Electrocatalytic Activity towards Glucose. Int. J. Electrochem. Sci. 2012, 7, 10063–10073.
  • Yang, J.; J.-H, Y.; Rudi Strickler, J.; Chang, W.-J.; Gunasekaran, S. Nickel nanoparticle-chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices . Biosens. Bioelectron. 2013, 47, 530–538. DOI: 10.1016/j.bios.2013.03.051.
  • S.-H, T.; H.-C, W.; C.-J, W.; Cheng, S.-L.; Sheng, Y.-J.; Tsao, H.-K. Growing Hydrophobicity on a Smooth Copper Oxide Thin Film at Room Temperature and Reversible Wettability Transition. Appl. Surf. Sci. 2014, 316, 88–92.
  • Chaudhary, A.; Barshilia, H. C. Nanometric Multiscale Rough CuO/Cu(OH)2 Superhydrophobic Surfaces Prepared by a Facile One-Step Solution-Immersion Process: Transition to Superhydrophilicity with Oxygen Plasma Treatment. J. Phys. Chem. C 2011, 115, 18213–18220. DOI: 10.1021/jp204439c.
  • Zhu, X.; Zhang, Z.; Men, X.; Yang, J.; Xu, X. Rapid Formation of Superhydrophobic Surfaces with Fast Response Wettability Transition. ACS Appl. Mater. Interfaces 2010, 2, 3636–3641. DOI: 10.1021/am100808v.
  • Chang, F.-M.; Cheng, S.-L.; Hong, S.-J.; Sheng, Y.-J.; Tsao, H.-K. Superhydrophilicity to Superhydrophobicity Transition of CuO Nanowire Films. Appl. Phys. Lett. 2010, 96, 114101. DOI: 10.1063/1.3360847.
  • Jin, X.; Alam, M. A. Generalized Modeling Framework of Metal Oxide-Based Non-Enzymatic Glucose Sensors: Concepts, Methods, and Challenges. IEEE Trans. Biomed. Eng. 2020, 67, 679–687. DOI: 10.1109/TBME.2019.2919462.
  • Khairy, M.; Ismael, M. Remarkable Facets for Selective Monitoring of Biomolecules by Morphologically Tailored CuO Nanostructures. J. Solid State Electrochem. 2020, 24, 237–243. DOI: 10.1007/s10008-019-04456-6.
  • Yeo, B.-E.; Cho, Y.-S.; Huh, Y.-D. Evolution of the Morphology of Cu2O Microcrystals: Cube to 50-Facet Polyhedron through Beveled Cube and Rhombicuboctahedron. CrystEngComm 2017, 19, 1627–1632. DOI: 10.1039/C7CE00139H.
  • Pastrián, F. A. C.; Da Silva, A. G. M.; Dourado, A. H. B.; De Lima Batista, A. P.; De Oliveira-Filho, A. G. S.; Quiroz, J.; Oliveira, D. C. D.; Camargo, P. H. C.; Torresi, S. I. C. D. Why Could the Nature of Surface Facets Lead to Differences in the Activity and Stability of Cu2O-Based Electrocatalytic Sensors? ACS Catal. 2018, 8, 6265–6272. DOI: 10.1021/acscatal.8b00726.
  • Dourado, A. H. B.; Silva, A. G. M. d.; Pastrián, F. A. C.; Munhos, R. L.; Lima Batista, A. P. d.; Oliveira-Filho, A. G. S. d.; Quiroz, J.; de Oliveira, D. C.; Camargo, P. H. C.; Córdoba de Torresi, S. I. In Situ FTIR Insights into the Electrooxidation Mechanism of Glucose as a Function of the Surface Facets of Cu2O-Based Electrocatalytic Sensors. J. Catal. 2019, 375, 95–103. DOI: 10.1016/j.jcat.2019.05.032.
  • McCafferty, E. Introduction to Corrosion Science; Springer Science & Business Media: New York, 2010.
  • You, T.; Niwa, O.; Tomita, M.; Ando, H.; Suzuki, M.; Hirono, S. Characterization and Electrochemical Properties of Highly Dispersed Copper Oxide/Hydroxide Nanoparticles in Graphite-Like Carbon Films Prepared by RF Sputtering Method. Electrochem. Commun. 2002, 4, 468–471. DOI: 10.1016/S1388-2481(02)00340-5.
  • Stradiotto, N. R.; Toghill, K. E.; Xiao, L.; Moshar, A.; Compton, R. G. The Fabrication and Characterization of a Nickel Nanoparticle Modified Boron Doped Diamond Electrode for Electrocatalysis of Primary Alcohol Oxidation. Electroanalysis 2009, 21, 2627–2633. DOI: 10.1002/elan.200900325.
  • Toghill, K. E.; Xiao, L.; Stradiotto, N. R.; Compton, R. G. The Determination of Methanol Using an Electrolytically Fabricated Nickel Microparticle Modified Boron Doped Diamond Electrode. Electroanalysis 2010, 22, 491–500. DOI: 10.1002/elan.200900523.
  • Jin, G. P.; Baron, R.; Xiao, L.; Compton, R. G. Ultrasonic Synthesis of Nickel Nanostructures on Glassy Carbon Microspheres and Their Application for Ethanol Electrooxidation. J. Nanosci. Nanotechnol. 2009, 9, 2719–2725. DOI: 10.1166/jnn.2009.462.
  • Lee, Y. G.; Chou, T.-C. Nickel-Based Thick Film Ethanol Sensor. Electroanalysis 2003, 15, 1589–1597. DOI: 10.1002/elan.200302717.
  • Ballarin, B.; Seeber, R.; Tonelli, D.; Vaccari, A. Electrocatalytic Properties of Nickel(II) Hydrotalcite-Type Anionic Clay: Application to Methanol and Ethanol Oxidation. J. Electroanal. Chem. 1999, 463, 123–127. DOI: 10.1016/S0022-0728(98)00436-7.
  • Park, S.; Boo, H.; Chung, T. D. Electrochemical Non-Enzymatic Glucose Sensors. Anal. Chim. Acta 2006, 556, 46–57. DOI: 10.1016/j.aca.2005.05.080.
  • Shin, D. H.; Kim, W.; Jun, J.; Lee, J. S.; Kim, J. H.; Jang, J. Highly Selective FET-Type Glucose Sensor Based on Shape-Controlled Palladium Nanoflower-Decorated Graphene. Sens. Actuators B Chem. 2018, 264, 216–223. DOI: 10.1016/j.snb.2018.02.139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.