340
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Multiclass Pesticide Residues in Fruits and Vegetables from Brazil: A Systematic Review of Sample Preparation Until Post-Harvest

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1174-1196 | Published online: 15 Dec 2021

References

  • ANVISA – Agência Nacional de Vigilância Sanitária. Programa de Análise de Resíduos de Agrotóxicos Em Alimentos (PARA): Relatório Das Amostras Analisadas No Período de 2017-2018. Programa Análise Resíduos Agrotóxicos em Aliment. – PARA Plano Plurianual 2017-2020 – Ciclo 2017/2018, ABNT, 2019.
  • Jardim, A. N. O.; Caldas, E. D. Brazilian Monitoring Programs for Pesticide Residues in Food - Results from 2001 to 2010. Food Control 2012, 25, 607–616. DOI: 10.1016/j.foodcont.2011.11.001.
  • Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F. B. Fruit and Vegetable Consumption and Mortality from All Causes, Cardiovascular Disease, and Cancer: Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. BMJ 2014, 349, 1–14. DOI: 10.1136/bmj.g4490.
  • Al-Othman, A. A.; Abd-Alrahman, S. H.; Al-Daghri, N. M. DDT and Its Metabolites Are Linked to Increased Risk of Type 2 Diabetes among Saudi Adults: A Cross-Sectional Study. Environ. Sci. Pollut. Res. Int. 2015, 22, 379–386. DOI: 10.1007/s11356-014-3371-0.
  • Rachmawati, I.; Hernawati, S.; Sulistyaningsih, E. Risk Factors for Contamination of Pesticide Residues in Women’s Breast Milk Farmers in Agricultural Areas. Str. J. Ilm. Kesehat. 2021, 10, 596–604. DOI: 10.30994/sjik.v10i1.675.
  • Pirhadi, M.; Zeinaly, T.; Sadighara, P.; Manouchehri, A. Residues of Pesticide in Food and Environmental Risk Factors. An Overview of Food Exposure and Its Impact on Human Health. Turk. J. Physiother. Rehabil. 2021, 32, 4071–4076.
  • Richardson, J. R.; Shalat, S. L.; Buckley, B.; Winnik, B.; O'Suilleabhain, P.; Diaz-Arrastia, R.; Reisch, J.; German, D. C. Elevated Serum Pesticide Levels and Risk of Parkinson Disease. Arch. Neurol. 2009, 66, 870–875. DOI: 10.1001/archneurol.2009.89.
  • Lafon, P. A.; Wang, Y.; Arango-Lievano, M.; Torrent, J.; Salvador-Prince, L.; Mansuy, M.; Mestre-Francès, N.; Givalois, L.; Liu, J.; Mercader, J. V. Fungicide Residues Exposure and β-Amyloid Aggregation in a Mouse Model of Alzheimer’s Disease. Environ. Health Perspect. 2020, 128, 1–20. DOI: 10.1289/EHP5550.
  • Singh, N. K.; Chhillar, N.; Banerjee, B. D.; Bala, K.; Basu, M.; Mustafa, M. Organochlorine Pesticide Levels and Risk of Alzheimer's disease in north Indian population. Hum. Exp. Toxicol. 2013, 32, 24–30. DOI: 10.1177/0960327112456315.
  • Gauthier, E.; Fortier, I.; Courchesne, F.; Pepin, P.; Mortimer, J.; Gauvreau, D. Environmental Pesticide Exposure as a Risk Factor for Alzheimer's Disease: A Case-Control Study. Environ. Res. 2001, 86, 37–45. DOI: 10.1006/enrs.2001.4254.
  • Ongono, J. S.; Béranger, R.; Baghdadli, A.; Mortamais, M. Pesticides Used in Europe and Autism Spectrum Disorder Risk: Can Novel Exposure Hypotheses Be Formulated beyond Organophosphates, Organochlorines, Pyrethroids and Carbamates? - A Systematic Review. Environ. Res. 2020, 187, 109646. DOI: 10.1016/j.envres.2020.109646.
  • Beecham, J. E.; Seneff, S. Is There a Link between Autism and Glyphosate-Formulated Herbicides? J. Autism 2016, 3, 1. DOI: 10.7243/2054-992X-3-1.
  • Clementi, M.; Tiboni, G. M.; Causin, R.; La Rocca, C.; Maranghi, F.; Raffagnato, F.; Tenconi, R. Pesticides and Fertility: An Epidemiological Study in Northeast Italy and Review of the Literature. Reprod. Toxicol. 2008, 26, 13–18. DOI: 10.1016/j.reprotox.2008.05.062.
  • Chiu, Y. H.; Afeiche, M. C.; Gaskins, A. J.; Williams, P. L.; Petrozza, J. C.; Tanrikut, C.; Hauser, R.; Chavarro, J. E. Fruit and Vegetable Intake and Their Pesticide Residues in Relation to Semen Quality among Men from a Fertility Clinic. Hum. Reprod. 2015, 30, 1342–1351. DOI: 10.1093/humrep/dev064.
  • Saldana, T. M.; Basso, O.; Baírd, D. D.; Hoppin, J. A.; Weinberg, C. R.; Blair, A.; Alavanja, M. C. R.; Sandler, D. P. Pesticide Exposure and Hypertensive Disorders during Pregnancy. Environ. Health Perspect. 2009, 117, 1393–1396. DOI: 10.1289/ehp.0900672.
  • Chiu, Y. H.; Sandoval-Insausti, H.; Ley, S. H.; Bhupathiraju, S. N.; Hauser, R.; Rimm, E. B.; Manson, J. A. E.; Sun, Q.; Chavarro, J. E. Association between Intake of Fruits and Vegetables by Pesticide Residue Status and Coronary Heart Disease Risk. Environ. Int. 2019, 132, 105113. DOI: 10.1016/j.envint.2019.105113.
  • Soldin, O. P.; Nsouly-Maktabi, H.; Genkinger, J. M.; Loffredo, C. A.; Ortega-Garcia, J. A.; Colantino, D.; Barr, D. B.; Luban, N. L.; Shad, A. T.; Nelson, D. Pediatric Acute Lymphoblastic Leukemia and Exposure to Pesticides. Ther. Drug Monit. 2009, 31, 495–501. DOI: 10.1097/FTD.0b013e3181aae982.
  • Zhang, L.; Rana, I.; Shaffer, R. M.; Taioli, E.; Sheppard, L. Exposure to Glyphosate-Based Herbicides and Risk for Non-Hodgkin Lymphoma: A Meta-Analysis and Supporting Evidence. Mutat. Res. Rev. Mutat. Res. 2019, 781, 186–206. DOI: 10.1016/j.mrrev.2019.02.001.
  • Donato, F.; Pira, E.; Ciocan, C.; Boffetta, P. Exposure to Glyphosate and Risk of Non-Hodgkin Lymphoma and Multiple Myeloma: An Updated Meta-Analysis. Med. del Lav. 2020, 111, 63–73. DOI: 10.23749/mdl.v111i1.8967.
  • Sandoval-Insausti, H.; Chiu, Y.; Hoon, D.; Wang, S.; Hart, J. E.; Laden, F.; Ardisson, A.; V; Birmann, B.; Mínguez-Alarc, L.; Eliassen, A. H.; et al. Intake of Fruits and Vegetables by Pesticide Residue Status in Relation to Cancer Risk. Environ. Int. 2021, 156, 106744. DOI: 10.1016/j.envint.2021.106744.
  • Sharma, T.; Banerjee, B. D.; Mazumdar, D.; Tyagi, V.; Thakur, G.; Guleria, K.; Ahmed, R. S.; Tripathi, A. K. Association of Organochlorine Pesticides and Risk of Epithelial Ovarian Cancer: A Case Control Study. J. Reprod. Heal. Med. 2015, 1, 76–82. DOI: 10.1016/j.jrhm.2015.01.006.
  • Pi, N.; Chia, S. E.; Ong, C. N.; Kelly, B. C. Associations of Serum Organohalogen Levels and Prostate Cancer Risk: Results from a Case-Control Study in Singapore. Chemosphere 2016, 144, 1505–1512. DOI: 10.1016/j.chemosphere.2015.10.020.
  • Gangemi, S.; Miozzi, E.; Teodoro, M.; Briguglio, G.; De Luca, A.; Alibrando, C.; Polito, I.; Libra, M. Occupational Exposure to Pesticides as a Possible Risk Factor for the Development of Chronic Diseases in Humans (Review). Mol. Med. Rep. 2016, 14, 4475–4488. DOI: 10.3892/mmr.2016.5817.
  • WHO/FAO. Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th Session. Report of the Thirty Eight Session of the Codex Committee on Food Hygiene. 2007, 1–104.
  • Osano, O.; Admiraal, W.; Klamer, H. J. C.; Pastor, D.; Bleeker, E. A. J. Comparative Toxic and Genotoxic Effects of Chloroacetanilides, Formamidines and Their Degradation Products on Vibrio Fischeri and Chironomus Riparius. Environ. Pollut. 2002, 119, 195–202. DOI: 10.1016/s0269-7491(01)00334-7.
  • Parrilla Vázquez, P.; Ferrer, C.; Martínez Bueno, M. J.; Fernández-Alba, A. R. Pesticide Residues in Spices and Herbs: Sample Preparation Methods and Determination by Chromatographic Techniques. TrAC - Trends Anal. Chem. 2019, 115, 13–22. DOI: 10.1016/j.trac.2019.03.022.
  • Ribeiro, F. W. P.; Sousa, C. P.; Morais, S.; de Lima-Neto, P.; Correia, A. N. Sensing of Formetanate Pesticide in Fruits with a Boron-Doped Diamond Electrode. Microchem. J. 2018, 142, 24–29. DOI: 10.1016/j.microc.2018.06.012.
  • Guedes, J. A. C.; Silva, R. D. O.; Lima, C. G.; Milhome, M. A. L.; Do Nascimento, R. F. Matrix Effect in Guava Multiresidue Analysis by QuEChERS Method and Gas Chromatography Coupled to Quadrupole Mass Spectrometry. Food Chem. 2016, 199, 380–386. DOI: 10.1016/j.foodchem.2015.12.007.
  • Scheel, G. L.; Teixeira Tarley, C. R. Simultaneous Microextraction of Carbendazim, Fipronil and Picoxystrobin in Naturally and Artificial Occurring Water Bodies by Water-Induced Supramolecular Solvent and Determination by HPLC-DAD. J. Mol. Liq. 2020, 297, 111897. DOI: 10.1016/j.molliq.2019.111897.
  • Lovelock, J. E.; Lipsky, S. R. Electron Affinity Spectroscopy—A New Method for the Identification of Functional Groups in Chemical Compounds Separated by Gas Chromatography. J. Am. Chem. Soc. 1960, 82, 431–433. DOI: 10.1021/ja01487a045.
  • Zhang, K.; Kurita, K. L.; Venkatramani, C.; Russell, D. Seeking Universal Detectors for Analytical Characterizations. J. Pharm. Biomed. Anal. 2019, 162, 192–204. DOI: 10.1016/j.jpba.2018.09.029.
  • Patel, H. Detectors for the Analysis of Pesticides Residues. In Sustainable Agriculture Reviews; Inamuddin, Mohd Imran Ahamed, Eric Lichtfouse, Eds.; Springer: Cham, 2021; pp 228. https://doi.org/10.1007/978-3-030-54719-6_4.
  • Andreu, V.; Picó, Y. Determination of Pesticides and Their Degradation Products in Soil: Critical Review and Comparison of Methods. TrAC - Trends Anal. Chem. 2004, 23, 772–789. DOI: 10.1016/j.trac.2004.07.008.
  • Gosetti, F.; Mazzucco, E.; Zampieri, D.; Gennaro, M. C. Signal Suppression/Enhancement in High-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A. 2010, 1217, 3929–3937. DOI: 10.1016/j.chroma.2009.11.060.
  • Navickiene, S.; Aquino, A.; Bezerra, D. S. S. A Matrix Solid-Phase Dispersion Method for the Extraction of Seven Pesticides from Mango and Papaya. J. Chromatogr. Sci. 2010, 48, 750–754. DOI: 10.1093/chromsci/48.9.750.
  • Souza, M. R.; dos, R.; Moreira, C. O.; De Lima, T. G.; Aquino, A.; Dórea, H. S. Validation of a Matrix Solid Phase Dispersion (MSPD) Technique for Determination of Pesticides in Lyophilized Eggs of the Chicken Gallus Gallus Domesticus. Microchem. J. 2013, 110, 395–401. DOI: 10.1016/j.microc.2013.05.001.
  • Aquino, A.; Wanderley, K. A.; Paiva-Santos, C. D. O.; De Sá, G. F.; Alexandre, M. D. R.; Júnior, S. A.; Navickiene, S. Coordination Polymer Adsorbent for Matrix Solid-Phase Dispersion Extraction of Pesticides during Analysis of Dehydrated Hyptis Pectinata Medicinal Plant by GC/MS. Talanta 2010, 83, 631–636. DOI: 10.1016/j.talanta.2010.10.014.
  • Aquino, A.; Alves Ferreira, J.; Navickiene, S.; Wanderley, K. A.; De Sá, G. F.; Júnior, S. A. Investigating the Potential of Metal-Organic Framework Material as an Adsorbent for Matrix Solid-Phase Dispersion Extraction of Pesticides during Analysis of Dehydrated Hyptis Pectinata Medicinal Plant by GC/MS. J. AOAC Int. 2012, 95, 1338–1342. DOI: 10.5740/jaoacint.sge_aquino.
  • Aquino, A.; Souza, M. R. R.; Maciel, S. T. A.; Da Rosa Alexandre, M.; Navickiene, S. Multiclass MSPD Method for Pesticide Determination in Dehydrated Hyptis Pectinata (Sambacaitá) Medicinal Plant by GC-MS. J. Braz. Chem. Soc. 2011, 22, 1525–1530. DOI: 10.1590/S0103-50532011000800017.
  • Aquino, A.; Navickiene, S. Procedure for Determination of Carbofuran, Pyrimethanil and Tetraconazole Residues in Banana by GC-MS. Chromatographia. 2009, 70, 1265–1269. DOI: 10.1365/s10337-009-1324-4.
  • Amvrazi, E. G.; Papadi-Psyllou, A. T.; Tsiropoulos, N. G. Pesticide Enrichment Factors and Matrix Effects on the Determination of Multiclass Pesticides in Tomato Samples by Single-Drop Microextraction (SDME) Coupled with Gas Chromatography and Comparison Study between SDME and Acetone-Partition Extraction Proced. Int. J. Environ. Anal. Chem. 2010, 90, 245–259. DOI: 10.1080/03067310903166699.
  • Pereira, I.; Rodrigues, M. F.; Chaves, A. R.; Vaz, B. G. Molecularly Imprinted Polymer (MIP) Membrane Assisted Direct Spray Ionization Mass Spectrometry for Agrochemicals Screening in Foodstuffs. Talanta 2018, 178, 507–514. DOI: 10.1016/j.talanta.2017.09.080.
  • Bayat, M.; Hassanzadeh-Khayyat, M.; Mohajeri, S. A. Determination of Diazinon Pesticide Residue in Tomato Fruit and Tomato Paste by Molecularly Imprinted Solid-Phase Extraction Coupled with Liquid Chromatography Analysis. Food Anal. Methods 2015, 8, 1034–1041. DOI: 10.1007/s12161-014-9984-6.
  • Lambropoulou, D. A.; Albanis, T. A. Liquid-Phase Micro-Extraction Techniques in Pesticide Residue Analysis. J. Biochem. Biophys. Methods. 2007, 70, 195–228. DOI: 10.1016/j.jbbm.2006.10.004.
  • Stringhini, F. M.; Ribeiro, L. C.; Rocha, G. I.; Juliana, J. D.; Zanella, R.; Prestes, O. D.; Adaime, M. B. Dilution of QuEChERS Extracts without Cleanup Improves Results in the UHPLC-MS/MS Multiresidue Analysis of Pesticides in Tomato. Food Anal. Methods 2021, 14, 1511–1523. DOI: 10.1007/s12161-020-01921-1.
  • Gomes, H.; de, O.; Cardoso, R.; da, S.; da Costa, J. G. M.; Andrade da Silva, V. P.; Nobre, C.; de A.; Pereira Teixeira, R. N.; do Nascimento, R. F. Statistical Evaluation of Analytical Curves for Quantification of Pesticides in Bananas. Food Chem. 2021, 345, 128768. DOI: 10.1016/j.foodchem.2020.128768.
  • Kurz, M. H. S.; Juliana, J. L.; de Oliveira, L. G.; Hoff, R.; Martins, M. L.; Gonçalves, F. F. Clean-up Procedure Development and Method Validation for Pesticide Residues Analysis in Carrots. Food Anal. Methods 2019, 12, 282–292. DOI: 10.1007/s12161-018-1359-y.
  • De, O.; Silva, R.; De Menezes, M. G. G.; De Castro, R. C.; De, A.; Nobre, C.; Milhome, M. A. L.; Do Nascimento, R. F. Efficiency of ESI and APCI Ionization Sources in LC-MS/MS Systems for Analysis of 22 Pesticide Residues in Food Matrix. Food Chem. 2019, 297, 124934. DOI: 10.1016/j.foodchem.2019.06.001.
  • Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S. Effervescence-Assisted Microextraction—One Decade of Developments. Molecules 2020, 25, 6053. DOI: 10.3390/molecules25246053.
  • Mohamed, A. H.; Noorhisham, N. A.; Yahaya, N.; Mohamad, S.; Kamaruzzaman, S.; Osman, H.; Aboul-Enein, H. Y. Sampling and Sample Preparation Techniques for the Analysis of Organophosphorus Pesticides in Soil Matrices. Crit. Rev. Anal. Chem. 2021, 0, 1–22. DOI: 10.1080/10408347.2021.1992262.
  • Pareja, L.; Fernández-Alba, A. R.; Cesio, V.; Heinzen, H. Analytical Methods for Pesticide Residues in Rice. TrAC - Trends Anal. Chem. 2011, 30, 270–291. DOI: 10.1016/j.trac.2010.12.001.
  • Barker, S. A. Matrix Solid Phase Dispersion (MSPD). J. Biochem. Biophys. Methods 2007, 70, 151–162. DOI: 10.1016/j.jbbm.2006.06.005.
  • David, M.; Larissa, S.; Mike, C.; Davina, G.; Alessandro, L.; Mark, P.; Paul, S.; Lesley, A. S. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (Prisma-p) 2015 Statement. Syst. Rev. 2015, 4, 1–9.
  • FAO (Food and Agriculture Organization). Guidelines on Performance Criteria for Methods of Analysis for the Determination of Pesticide Residues in Food and Feed. Codex Aliment. 2017,  8, 3136–3163.
  • Galvan, D.; Effting, L.; Neto, L. T.; Conte-Junior, C. A. An Overview of Research of Essential Oils by Self-Organizing Maps: A Novel Approach for Meta-Analysis Study. Comprehensives Rev. Food Sci. Food Res. 2021, 20, 1–28. DOI: 10.1111/1541-4337.12773.
  • Galvan, D.; Aquino, A.; Effting, L.; Mantovani, A. C. G.; Bona, E.; Conte-Junior, C. A. E-Sensing and Nanoscale-Sensing Devices Associated with Data Processing Algorithms Applied to Food Quality Control: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2021. DOI: 10.1080/10408398.2021.1903384.
  • Alcântara, D. B.; Paz, M. S. O.; Rodrigues, T. H. S.; Fernandes, T. S. M.; Barbosa, P. G. A.; Loiola, A. R.; Grinberg, P.; Zocolo, G. J.; De Brito, E. S.; Do Nascimento, R. F. Organophosphorus Pesticide in Sapodilla (Manilkara zapota) Fruit. J. Braz. Chem. Soc. 2018, 29, 2180–2188. DOI: 10.21577/0103-5053.20180094.
  • Muñoz, N. C.; Floriano, L.; de Souza, M. P.; Bandeira, N. M. G.; Prestes, O. D.; Zanella, R. Determination of Pesticide Residues in Golden Berry (Physalis peruviana L.) by Modified QuEChERS Method and Ultra-High Performance Liquid Chromatography-Tandem Quadrupole Mass Spectrometry. Food Anal. Methods 2017, 10, 320–329. DOI: 10.1007/s12161-016-0582-7.
  • Morais, E. H.; da, C.; Collins, C. H.; Jardim, I. C. S. F. Pesticide Determination in Sweet Peppers Using QuEChERS and LC-MS/MS. Food Chem. 2018, 249, 77–83. DOI: 10.1016/j.foodchem.2017.12.092.
  • Ferreira, J. A.; Ferreira, J. M. S.; Talamini, V.; Facco, J.; de, F.; Rizzetti, T. M.; Prestes, O. D.; Adaime, M. B.; Zanella, R.; Bottoli, C. B. G. Determination of Pesticides in Coconut (Cocos nucifera Linn.) Water and Pulp Using Modified QuEChERS and LC-MS/MS. Food Chem. 2016, 213, 616–624. DOI: 10.1016/j.foodchem.2016.06.114.
  • Costa, F. P.; Caldas, S. S.; Primel, E. G. Comparison of QuEChERS Sample Preparation Methods for the Analysis of Pesticide Residues in Canned and Fresh Peach. Food Chem. 2014, 165, 587–593. DOI: 10.1016/j.foodchem.2014.05.099.
  • Dos Santos, G. M. A. D. A.; Teixeira, L. J. Q.; Pereira, O. S.; Dos Santos, A. R.; Fronza, M.; Da Silva, A. G.; Scherer, R. Pesticide Residues in Conventionally and Organically Grown Tomatoes in Espírito Santo (Brazil). Quim. Nova 2015, 38, 848–851. DOI: 10.5935/0100-4042.20150051.
  • Sousa, E. S.; Pinto, L.; de Araujo, M. C. U. A Chemometric Cleanup Using Multivariate Curve Resolution in Liquid Chromatography: Quantification of Pesticide Residues in Vegetables. Microchem. J. 2017, 134, 131–139. DOI: 10.1016/j.microc.2017.05.017.
  • Martins, F. I. C. C.; Barbosa, P. G. A.; Zocolo, G. J.; do Nascimento, R. F. Method Validation Using Normal and Weighted Linear Regression Models for Quantification of Pesticides in Mango (Mangifera indica L.) Samples. Chromatographia 2018, 81, 677–688. DOI: 10.1007/s10337-018-3483-7.
  • Sousa, J. D. S.; De Castro, R. C.; De Albuquerque Andrade, G.; Lima, C. G.; Lima, L. K.; Milhome, M. A. L.; Do Nascimento, R. F. Evaluation of an Analytical Methodology Using QuEChERS and GC-SQ/MS for the Investigation of the Level of Pesticide Residues in Brazilian Melons. Food Chem. 2013, 141, 2675–2681. DOI: 10.1016/j.foodchem.2013.05.027.
  • Andrade, G. C. R. M.; Monteiro, S. H.; Francisco, J. G.; Figueiredo, L. A.; Botelho, R. G.; Tornisielo, V. L. Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry and Dynamic Multiple Reaction Monitoring Method for Determining Multiple Pesticide Residues in Tomato. Food Chem. 2015, 175, 57–65. DOI: 10.1016/j.foodchem.2014.11.105.
  • Lima, V. G.; Campos, V. P.; Santana, T. C.; Santana, F. O.; Costa, T. A. C. Determination of Agrochemical Multi-Residues in Grapes. Identification and Confirmation by Gas Chromatography-Mass Spectrometry. Anal. Methods 2017, 9, 5880–5889. DOI: 10.1039/C7AY01448A.
  • Madureira, F. D.; da Silva Oliveira, F. A.; de Souza, W. R.; Pontelo, A. P.; de Oliveira, M. L. G.; Silva, G. A Multi-Residue Method for the Determination of 90 Pesticides in Matrices with a High Water Content by LC-MS/MS without Clean-Up. Food Addit. Contam. A. 2012, 29, 665–678. DOI: 10.1080/19440049.2011.623837.
  • Paz, M.; Correia-Sá, L.; Vidal, C. B.; Becker, H.; Longhinotti, E.; Domingues, V. F.; Delerue-Matos, C. Application of the QuEChERS Method for the Determination of Organochlorine Pesticide Residues in Brazilian Fruit Pulps by GC-ECD. J. Environ. Sci. Health. B. 2017, 52, 48–58. DOI: 10.1080/03601234.2016.1229450.
  • Lorenz, J. G.; Costa, L. L. F.; Suchara, E. A.; Sant’Anna, E. S. Multivariate Optimization of the QuEChERS-GC-ECD Method and Pesticide Investigation Residues in Apples, Strawberries, and Tomatoes Produced in Brazilian South. J. Braz. Chem. Soc. 2014, 25, 1583–1591. DOI: 10.5935/0103-5053.20140143.
  • de Oliveira Silva, R.; de Castro, R. C.; Milhome, M. A. L.; Do Nascimento, R. F. Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry Method for Determination of Twenty Multi-Class Pesticide Residues in Cashew. LWT - Food Sci. Technol. 2014, 59, 21–25. DOI: 10.1016/j.lwt.2014.05.035.
  • Barbosa, P. G. A.; Martins, F. I. C. C.; Lima, L. K.; Milhome, M. A. L.; Cavalcante, R. M.; do Nascimento, R. F. Statistical Analysis for Quality Adjustment of the Analytical Curve for Determination of Pesticide Multiresidue in Pineapple Samples. Food Anal. Methods 2018, 11, 466–478. DOI: 10.1007/s12161-017-1017-9.
  • Milhome, M. A. L.; Sousa, J. S.; Andrade, G. A.; De Castro, R. C.; Lima, L. K.; Lima, C. G.; Nascimento, R. F. Validation and Uncertainty of the Method for Multiresidue Analysis of 35 Pesticides in Melon Using Gas Chromatography Coupled to Quadrupole Mass Spectrometry (GC-QP/MS). J. Phys. Conf. Ser. 2015, 575, 012032–012036. DOI: 10.1088/1742-6596/575/1/012032.
  • Munaretto, J. S.; Viera, M. D. S.; Martins, M. L.; Adaime, M. B.; Zanella, R. Quantitative Multiclass Pesticide Residue Analysis in Apple, Pear, and Grape by Modifed QuEChERS and Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. J. AOAC Int. 2016, 99, 1426–1435. DOI: 10.5740/jaoacint.16-0276.
  • Carneiro, R. P.; Oliveira, F. A. S.; Madureira, F. D.; Silva, G.; de Souza, W. R.; Lopes, R. P. Development and Method Validation for Determination of 128 Pesticides in Bananas by Modified QuEChERS and UHPLC-MS/MS Analysis. Food Control 2013, 33, 413–423. DOI: 10.1016/j.foodcont.2013.02.027.
  • Jardim, A. N. O.; Mello, D. C.; Goes, F. C. S.; Frota, E. F.; Caldas, E. D. Pesticide Residues in Cashew Apple, Guava, Kaki and Peach: GC-ΜECD, GC-FPD and LC-MS/MS Multiresidue Method Validation, Analysis and Cumulative Acute Risk Assessment. Food Chem. 2014, 164, 195–204. DOI: 10.1016/j.foodchem.2014.05.030.
  • Castricini, A.; de Oliveira, A. L. S.; de Pinho, G. P.; Rodrigues, M. G. V.; Silvério, F. O. Pyrethroid Insecticide Residue in ‘Grande Naine’ Banana Peel and Pulp during Maturation. Food Sci. Technol. 2019, 39, 68–73. DOI: 10.1590/fst.37117.
  • Guedes, T. D. J.; Heleno, F. F.; Amaral, M. D. O.; Pinto, N. A. V. D.; De Queiroz, M. E. L. R.; Da Silva, D. F.; Da Silva, A. A. A. Simple and Efficient Method Employing Solid-Liquid Extraction with Low-Temperature Partitioning for the Determination/Monitoring of Pesticide Residues in Strawberries by GC/ECD. J. Braz. Chem. Soc. 2014, 25, 1520–1527. DOI: 10.5935/0103-5053.20140135.
  • Oliveira, M. L. G.; Madureira, F. D.; Aurélio, F.; Pontelo, A. P.; Silva, G.; Oliveira, R.; Paes, C. A Multi-Residue Method for the Determination of Pesticides in High Water Content Matrices by Gas Chromatography-Single Quadrupole Mass Spectrometry with Electron Ionisation (EI-GC/MS). Food Addit. Contam. A. 2012, 29, 657–664. DOI: 10.1080/19440049.2011.642102.
  • Kemmerich, M.; Bernardi, G.; Prestes, O. D.; Adaime, M. B.; Zanella, R. Comprehensive Method Validation for the Determination of 170 Pesticide Residues in Pear Employing Modified QuEChERS without Clean-Up and Ultra-High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. Food Anal. Methods 2018, 11, 556–577. DOI: 10.1007/s12161-017-1026-8.
  • Fleury Filho, N.; Nascimento, C. A.; Faria, E. O.; Cruvinel, A. R.; Oliveira, J. M. Within-Laboratory Validation of a Multiresidue Method for the Analysis of 98 Pesticides in Mango by Liquid Chromatography-Tandem Mass Spectrometry. Food Addit. Contam. A. 2012, 29, 641–656. DOI: 10.1080/19440049.2011.606230.
  • Paz, M.; Correia-Sá, L.; Becker, H.; Longhinotti, E.; Domingues, V. F.; Delerue-Matos, C. Validation of QuEChERS Method for Organochlorine Pesticides Analysis in Tamarind (Tamarindus indica) Products: Peel, Fruit and Commercial Pulp. Food Control 2015, 54, 374–382. DOI: 10.1016/j.foodcont.2015.02.005.
  • Ribeiro, B. K. F.; Breitkreitz, M. C.; Sales Fontes Jardim, I. C. Revisiting Quick, Easy, Cheap, Effective, Rugged, and Safe Parameters for Sample Preparation in Pesticide Residue Analysis of Lettuce by Liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2017, 1482, 11–22. DOI: 10.1016/j.chroma.2016.12.061.
  • Kemmerich, M.; Rizzetti, T. M.; Martins, M. L.; Prestes, O. D.; Adaime, M. B.; Zanella, R. Optimization by Central Composite Design of a Modified QuEChERS Method for Extraction of Pesticide Multiresidue in Sweet Pepper and Analysis by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Food Anal. Methods 2015, 8, 728–739. DOI: 10.1007/s12161-014-9951-2.
  • Freitas, S. S.; Serafim, F. A. T.; Lanças, F. M. Determination of Target Pesticide Residues in Tropical Fruits Employing Matrix Solid-Phase Dispersion (MSPD) Extraction Followed by High Resolution Gas Chromatography. J. Braz. Chem. Soc. 2018, 29, 1140–1148. DOI: 10.21577/0103-5053.20180041.
  • dos Santos, E. O.; Gonzales, J. O.; Ores, J. C.; Marube, L. C.; Caldas, S. S.; Furlong, E. B.; Primel, E. G. Sand as a Solid Support in Ultrasound-Assisted MSPD: A Simple, Green and Low-Cost Method for Multiresidue Pesticide Determination in Fruits and Vegetables. Food Chem. 2019, 297, 124926. DOI: 10.1016/j.foodchem.2019.05.200.
  • Barreto, A. S.; de Cássia da Silva Andrade, P.; Meira Farias, J.; Menezes Filho, A.; Fernandes de Sá, G.; Alves Júnior, S. Characterization and Application of a Lanthanide-Based Metal-Organic Framework in the Development and Validation of a Matrix Solid-Phase Dispersion Procedure for Pesticide Extraction on Peppers (Capsicum annuum L.) with Gas Chromatography-Mass Spectrometry. J. Sep. Sci. 2018, 41, 1593–1599. DOI: 10.1002/jssc.201700812.
  • Santos, L. F. S.; de Jesus, R. A.; Costa, J. A. S.; Gouveia, L. G. T.; de Mesquita, M. E.; Navickiene, S. Evaluation of MCM-41 and MCM-48 Mesoporous Materials as Sorbents in Matrix Solid Phase Dispersion Method for the Determination of Pesticides in Soursop Fruit (Annona muricata). Inorg. Chem. Commun. 2019, 101, 45–51. DOI: 10.1016/j.inoche.2019.01.013.
  • Lachter, D. R.; Nudi, A. H.; Porto, G. F.; Ribeiro, R. A. L.; Wagener, A. L. R.; Masone, C. G. Multiresidue Method for Triazines and Pyrethroids Determination by Solid-Phase Extraction and Gas Chromatography-Tandem Mass Spectrometry. J. Environ. Sci. Health. B 2020, 0, 1–11. DOI: 10.1080/03601234.2020.1790266.
  • Fróes, M. B. R.; Santos, L. F. S.; Navickiene, S. Multi-Residue Determination of Pesticides in Açai Tropical Fruit (Euterpe oleracea) by Matrix Solid-Phase Dispersion Combined with Liquid Chromatography. Food Anal. Methods 2013, 6, 328–333. DOI: 10.1007/s12161-012-9444-0.
  • De Sousa, F. A.; Guido Costa, A. I.; De Queiroz, M. E. L. R.; Teófilo, R. F.; Neves, A. A.; De Pinho, G. P. Evaluation of Matrix Effect on the GC Response of Eleven Pesticides by PCA. Food Chem. 2012, 135, 179–185. DOI: 10.1016/j.foodchem.2012.04.063.
  • Santana, E. T. D.; Soares, D. F.; Faria, A. M. Development of a Methodology for the Determination of Pesticide Residues in Cajá-Manga Pulp (Spondias dulcis L.) Using Solid-Liquid Extraction with Low-Temperature Partitioning. J. Chem. 2018, 2018, 1–10. DOI: 10.1155/2018/6012503.
  • Mozzaquatro, J. O.; Mello, D. C.; Oliveira, R. C. S.; Rosa, R. C. C.; Costa, A. M.; Caldas, E. D. Dithiocarbamate Residues in Fruits and Leaves of Passion Fruit (Passiflora edulis) from Different Brazilian Regions. J. Braz. Chem. Soc. 2019, 30, 1834–1840. DOI: 10.21577/0103-5053.20190091.
  • Cesarino, I.; Moraes, F. C.; Lanza, M. R. V.; MacHado, S. A. S. Electrochemical Detection of Carbamate Pesticides in Fruit and Vegetables with a Biosensor Based on Acetylcholinesterase Immobilised on a Composite of Polyaniline-Carbon Nanotubes. Food Chem. 2012, 135, 873–879. DOI: 10.1016/j.foodchem.2012.04.147.
  • Silva, H. C. M. P.; da Bedor, D. C. G.; Cunha, A. N.; Rodrigues, H. O.; dos, S.; Telles, D. L.; Araújo, A. C. P.; Santana, D. P. de, Ethephon and Fosetyl Residues in Fruits from São Francisco Valley, Brazil. Food Addit. Contam. B. 2020, 13, 16–24. DOI: 10.1080/19393210.2019.1675779.
  • Nakano, V. E.; Kussumi, T. A.; Lemes, V. R. R.; Kimura, I.; de, A.; Rocha, S. B.; Alaburda, J.; de Oliveira, M. C. C.; Ribeiro, R. A.; Faria, A. L. R.; Waldhelm, K. C. Evaluation of Pesticide Residues in Oranges from São Paulo. Food Sci. Technol. 2016, 36, 40–48. DOI: 10.1590/1678-457X.6837.
  • Kemmerich, M.; Demarco, M.; Bernardi, G.; Prestes, O. D.; Adaime, M. B.; Zanella, R. Balls-in-Tube Matrix Solid Phase Dispersion (BiT-MSPD): An Innovative and Simplified Technique for Multiresidue Determination of Pesticides in Fruit Samples. J. Chromatogr. A. 2020, 1612, 460640. DOI: 10.1016/j.chroma.2019.460640.
  • Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J. A. M.; Silva, C.; Medina, S.; Câmara, J. S. QuEChERS - Fundamentals, Relevant Improvements, Applications and Future Trends. Anal. Chim. Acta. 2019, 1070, 1–28. DOI: 10.1016/j.aca.2019.02.036.
  • Díez, C.; Traag, W. A.; Zommer, P.; Marinero, P.; Atienza, J. Comparison of an Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” Method with Classical Multi-Residue Methods for the Extraction of Herbicide Residues in Barley Samples. J. Chromatogr. A. 2006, 1131, 11–23. DOI: 10.1016/j.chroma.2006.07.046.
  • Boti, V.; Kobothekra, V.; Albanis, T. Konstantinou, I. Quechers-Based Methodology for the Screening of Alkylphenols and Bisphenol A in Dairy Products Using LC-LTQ/Orbitrap MS. Appl. Sci. 2021, 20, 11. DOI: 10.3390/app11209358.
  • Barker, A.; Long, R.; Short, R.; Rouge, B. Isolation of Drug Residues from Tissues by Solid Phase Dispersion. J. Chromatogr. A 1989, 475, 353–361. DOI: 10.1016/S0021-9673(01)89689-8.
  • Barker, S. A. A. o. Applications of Matrix Solid-Phase Dispersion in Food Analysis. J. Chromatogr. A. 2000, 880, 63–68. DOI: 10.1016/s0021-9673(99)01290-x.
  • Zhang, L.; Liu, S.; Cui, X.; Pan, C.; Zhang, A.; Chen, F. A Review of Sample Preparation Methods for the Pesticide Residue Analysis in Foods. Cent. Eur. J. Chem. 2012, 10, 900–925. DOI: 10.2478/s11532-012-0034-1.
  • Vidal, M.; Plaza-Bolaños, J. L.; Romero-González, P.; Garrido Frenich, R. A. Determination of Pesticide Transformation Products: A Review of Extraction and Detection Methods. J. Chromatogr. A. 2009, 1216, 6767–6788. DOI: 10.1016/j.chroma.2009.08.013.
  • Samsidar, A.; Siddiquee, S.; Shaarani, S. M. A Review of Extraction, Analytical and Advanced Methods for Determination of Pesticides in Environment and Foodstuffs. Trends Food Sci. Technol. 2018, 71, 188–201. DOI: 10.1016/j.tifs.2017.11.011.
  • Pereira, I.; Banstola, B.; Wang, K.; Donnarumma, F.; Vaz, B. G.; Murray, K. K. Matrix-Assisted Laser Desorption Ionization Imaging and Laser Ablation Sampling for Analysis of Fungicide Distribution in Apples. Anal. Chem. 2019, 91, 6051–6056. DOI: 10.1021/acs.analchem.9b00566.
  • Pap, T.; Horváth, V.; Tolokán, A.; Horvai, G.; Sellergren, B. Effect of Solvents on the Selectivity of Terbutylazine Imprinted Polymer Sorbents Used in Solid-Phase Extraction. J. Chromatogr. A. 2002, 973, 1–12. DOI: 10.1016/s0021-9673(02)01084-1.
  • Moura, A. C. M.; Lago, I. N.; Cardoso, C. F.; dos Reis Nascimento, A.; Pereira, I.; Vaz, B. G. Rapid Monitoring of Pesticides in Tomatoes (Solanum lycopersicum L.) during Pre-Harvest Intervals by Paper Spray Ionization Mass Spectrometry. Food Chem. 2020, 310, 125938. DOI: 10.1016/j.foodchem.2019.125938.
  • Long, A. R.; Hsieh, L. C.; Malbrough, M. S.; Short, C. R.; Barker, S. A. Matrix Solid Phase Dispersion (MSPD) Extraction and Liquid Chromatographic Determination of Five Benzimidazole Anthelmintics in Pork Muscle Tissue. J. Food Compos. Anal. 1990, 3, 20–26. DOI: 10.1016/0889-1575(90)90005-7.
  • Picó, Y.; Fernández, M.; Ruiz, M. J.; Font, G. Current Trends in Solid-Phase-Based Extraction Techniques for the Determination of Pesticides in Food and Environment. J. Biochem. Biophys. Methods. 2007, 70, 117–131. DOI: 10.1016/j.jbbm.2006.10.010.
  • Feng, G.; Sun, J.; Wang, M.; Wang, M.; Li, Z.; Wang, S.; Zheng, L.; Wang, J.; She, Y.; Abd El-Aty, A. M. Preparation of Molecularly Imprinted Polymer with Class-Specific Recognition for Determination of 29 Sulfonylurea Herbicides in Agro-Products. J. Chromatogr. A. 2021, 1647, 462143. DOI: 10.1016/j.chroma.2021.462143.
  • Boontongto, T.; Burakham, R. Eco-Friendly Fabrication of a Magnetic Dual-Template Molecularly Imprinted Polymer for the Selective Enrichment of Organophosphorus Pesticides for Fruits and Vegetables. Anal. Chim. Acta. 2021, 1186, 339128. DOI: 10.1016/j.aca.2021.339128.
  • Liu, L.; Yang, M.; He, M.; Liu, T.; Chen, F.; Li, Y.; Feng, X.; Zhang, Y.; Zhang, F. Magnetic Solid Phase Extraction Sorbents Using Methyl-Parathion and Quinalphos Dual-Template Imprinted Polymers Coupled with GC-MS for Class-Selective Extraction of Twelve Organophosphorus Pesticides. Microchim. Acta. 2020, 187, 503. DOI: 10.1007/s00604-020-04465-7.
  • Mahmoudpour, M.; Torbati, M.; Mousavi, M. M.; de la Guardia, M.; Ezzati Nazhad Dolatabadi, J. Nanomaterial-Based Molecularly Imprinted Polymers for Pesticides Detection: Recent Trends and Future Prospects. TrAC - Trends Anal. Chem. 2020, 129, 115943. DOI: 10.1016/j.trac.2020.115943.
  • Musarurwa, H.; Chimuka, L.; Tavengwa, N. T. Z-Sep + Based QuEChERS Technique for the Pre-Concentration of Malathion Pesticide in Fruits Followed by Analysis Using UV-Vis Spectroscopy. Food Addit. Contam. A. 2020, 37, 2093–2108. DOI: 10.1080/19440049.2020.1794054.
  • European Commission. Analytical Quality Control and Method Validation for Pesticide Residues Analysis in Food and Feed (SANTE/12682/2019). Sante/12682/2019. 2019, 1–48.
  • Páleníková, A.; Martínez-Domínguez, G.; Arrebola, F. J.; Romero-González, R.; Hrouzková, S.; Frenich, A. G. Multifamily Determination of Pesticide Residues in Soya-Based Nutraceutical Products by GC/MS-MS. Food Chem. 2015, 173, 796–807. DOI: 10.1016/j.foodchem.2014.10.100.
  • Zainudin, B. H.; Salleh, S.; Mohamed, R.; Yap, K. C.; Muhamad, H. Development, Validation and Determination of Multiclass Pesticide Residues in Cocoa Beans Using Gas Chromatography and Liquid Chromatography Tandem Mass Spectrometry. Food Chem. 2015, 172, 585–595. DOI: 10.1016/j.foodchem.2014.09.123.
  • Pang, N.; Wang, T.; Hu, J. Method Validation and Dissipation Kinetics of Four Herbicides in Maize and Soil Using QuEChERS Sample Preparation and Liquid Chromatography Tandem Mass Spectrometry. Food Chem. 2016, 190, 793–800. DOI: 10.1016/j.foodchem.2015.05.081.
  • Pereira, I.; Rodrigues, S. R. M.; De Carvalho, T. C.; Carvalho, V. V.; Lobón, G. S.; Bassane, J. F. P.; Domingos, E.; Romão, W.; Augusti, R.; Vaz, B. G. Rapid Screening of Agrochemicals by Paper Spray Ionization and Leaf Spray Mass Spectrometry: Which Technique is More Appropriate? Anal. Methods 2016, 8, 6023–6029. DOI: 10.1039/C6AY01154C.
  • Musarurwa, H.; Tavengwa, N. T. Supramolecular Solvent-Based Micro-Extraction of Pesticides in Food and Environmental Samples. Talanta 2021, 223, 121515. DOI: 10.1016/j.talanta.2020.121515.
  • ALOthman, Z. A.; Yilmaz, E.; Habila, M. A.; Alhenaki, B.; Soylak, M.; Ahmed, A. Y. B. H.; Alabdullkarem, E. A. Development of Combined-Supramolecular Microextraction with Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Procedures for Ultra-Trace Analysis of Carbaryl in Water, Fruits and Vegetables. Int. J. Environ. Anal. Chem. 2020, 00, 1–11. DOI: 10.1080/03067319.2020.1738419.
  • Deng, H.; Wang, H.; Liang, M.; Su, X. A Novel Approach Based on Supramolecular Solvent Microextraction and UPLC-Q-Orbitrap HRMS for Simultaneous Analysis of Perfluorinated Compounds and Fluorine-Containing Pesticides in Drinking and Environmental Water. Microchem. J. 2019, 151, 104250. DOI: 10.1016/j.microc.2019.104250.
  • Gorji, S.; Biparva, P.; Bahram, M.; Nematzadeh, G. Rapid and Direct Microextraction of Pesticide Residues from Rice and Vegetable Samples by Supramolecular Solvent in Combination with Chemometrical Data Processing. Food Anal. Methods 2019, 12, 394–408. DOI: 10.1007/s12161-018-1371-2.
  • Tankiewicz, M.; Biziuk, M. Fast, Sensitive and Reliable Multi-Residue Method for Routine Determination of 34 Pesticides from Various Chemical Groups in Water Samples by Using Dispersive Liquid – Liquid Microextraction Coupled with Gas Chromatography – Mass Spectrometry. Anal. Bioanal. Chem. 2018, 410, 1533–1550. DOI: 10.1007/s00216-017-0798-4
  • Marques, I. D.; Carriço, M. R. S.; Gayer, M. C.; de Jesus Soares, J.; Roehrs, R.; Denardin, E. L. G.; Paim, C. S. Multiresidue Analytical Method for Pesticides in Soybean Extract. J. Chromatogr. Sci. 2021, 59, 305–311. DOI: 10.1093/chromsci/bmaa123.
  • ANVISA – Agência Nacional de Vigilância Sanitária. Monografia de Agrotóxicos https://www.gov.br/anvisa/pt-br/acessoainformacao/dadosabertos/informacoes-analiticas/monografias-de-agrotoxicos (accessed Jul 3, 2021).
  • Jesus, R. d. A. d.; Santos, L. F. S.; Navickiene, S.; de Mesquita, M. E. Evaluation of Metal-Organic Framework as Low-Cost Adsorbent Material in the Determination of Pesticide Residues in Soursop Exotic Fruit (Annona muricata) by Liquid Chromatography. Food Anal. Methods 2015, 8, 446–451. DOI: 10.1007/s12161-014-9910-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.