620
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent Advancements in Colorimetric and Fluorescent pH Chemosensors: From Design Principles to Applications

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1313-1373 | Published online: 28 Jan 2022

References

  • Ma, J.; Li, W.; Li, J.; Shi, R.; Yin, G.; Wang, R. A Small Molecular pH-Dependent Fluorescent Probe for Cancer Cell Imaging in Living Cell. Talanta 2018, 182, 464–469. DOI: 10.1016/j.talanta.2018.01.088.
  • Lagadic-Gossmann, D.; Huc, L.; Lecureur, V. Alterations of Intracellular pH Homeostasis in Apoptosis: Origins and Roles. Cell Death Differ. 2004, 11, 953–961. DOI: 10.1038/sj.cdd.4401466.
  • Barott, K. L.; Barron, M. E.; Tresguerres, M. Identification of a Molecular pH Sensor in Coral. Proc. R Soc. B. 2017, 284, 20171769. DOI: 10.1098/rspb.2017.1769.
  • Nogueira, L.; Shiah, A. A.; Gandra, P. G.; Hogan, M. C. Ca2+-Pumping Impairment during Repetitive Fatiguing Contractions in Single Myofibers: Role of Cross-Bridge Cycling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R118–R125. DOI: 10.1152/ajpregu.00178.2013.
  • Ramírez, P.; Mafé, S.; Alcaraz, A.; Cervera, J. Modeling of pH-Switchable Ion Transport and Selectivity in Nanopore Membranes with Fixed Charges. J. Phys. Chem. B. 2003, 107, 13178–13187. DOI: 10.1021/jp035778w.
  • Yao, H.; Haddad, G. G. Calcium and pH Homeostasis in Neurons during Hypoxia and Ischemia. Cell Calcium. 2004, 36, 247–255. DOI: 10.1016/j.ceca.2004.02.013.
  • Shen, Y.; Rosendale, M.; Campbell, R. E.; Perrais, D. pHuji, a pH-Sensitive Red Fluorescent Protein for Imaging of Exo- and Endocytosis. J. Cell Biol. 2014, 207, 419–432. DOI: 10.1083/jcb.201404107.
  • Simon, S.; Roy, D.; Schindler, M. Intracellular pH and the Control of Multidrug Resistance. Proc. Natl. Acad. Sci. USA. 1994, 91, 1128–1132. DOI: 10.1073/pnas.91.3.1128.
  • Liang, J.; Wu, Y. L.; Chen, B. J.; Zhang, W.; Tanaka, Y.; Sugiyama, H. The C-Kit Receptor-Mediated Signal Transduction and Tumor-Related Diseases. Int. J. Biol. Sci. 2013, 9, 435–443. DOI: 10.7150/ijbs.6087.
  • Johnson, D. E.; Ostrowski, P.; Jaumouille, V.; Grinstein, S. The Position of Lysosomes within the Cell Determines Their Luminal pH. J. Cell Biol. 2016, 212, 677–692. DOI: 0.1083/jcb.201507112. DOI: 10.1083/jcb.201507112.
  • Rivinoja, A.; Pujol, F. M.; Hassinen, A.; Kellokumpu, S. Golgi pH, Its Regulation and Roles in Human Disease. Ann. Med. 2012, 44, 542–554. DOI: 10.3109/07853890.2011.579150.
  • Bao, Y. Y.; Keersmaecker, H.; De.; Corneillie, S.; Yu, F.; Mizuno, H.; Zhang, G. F.; Hofkens, J.; Mendrek, B.; Kowalczuk, A.; Smet, M. Tunableratiometric Fluorescence Sensing of Intracellular pH by Aggregation-Induced Emission-Active Hyperbranched Polymer Nanoparticles. Chem. Mater. 2015, 27, 3450–3455. DOI: 10.1021/acs.chemmater.5b00858.
  • Liu, X.; Wang, L.; Bing, T.; Zhang, N.; Shangguan, D. A Mitochondria-Targeted Ratiometric Fluorescent pH Probe. ACS Appl. Bio Mater. 2019, 2, 1368–1375. DOI: 10.1021/acsabm.9b00061.
  • Hou, J. T.; Ren, W. X.; Li, K.; Seo, J.; Sharma, A.; Yu, X. Q.; Kim, J. S. Fluorescent Bioimaging of pH: From Design to Applications. Chem. Soc. Rev. 2017, 46, 2076–2090. DOI: 10.1039/C6CS00719H.
  • Chen, J. H.; Xu, W.; Sheppard, D. N. Altering Intracellular pH Reveals the Kinetic Basis of Intraburst Gating in the CFTR Cl-Channel. J. Physiol. 2017, 595, 1059–1076. DOI: 10.1113/JP273205.
  • Fang, B.; Wang, D.; Huang, M.; Yu, G.; Li, H. Hypothesis on the Relationship between the Change in Intracellular PH and Incidence of Sporadic Alzheimer's Disease or Vascular Dementia. Int. J. Neurosci. 2010, 120, 591–595. DOI: 10.3109/00207454.2010.505353.
  • Swietach, P.; Wigfield, S.; Cobden, P.; Supuran, C. T.; Harris, A. L.; Vaughan-Jones, R. D. Tumor-Associated Carbonic Anhydrase 9 Spatially Coordinates Intracellular PH in Three-Dimensional Multicellular Growths. J. Biol. Chem. 2008, 283, 20473–20483. DOI: 10.1074/jbc.M801330200.
  • Fukuda, T.; Ewan, L.; Bauer, M.; Mattaliano, R. J.; Zaal, K.; Ralston, E.; Plotz, P. H.; Raben, N. Dysfunction of Endocytic and Autophagic Pathways in a Lysosomal Storage Disease. Ann. Neurol. 2006, 59, 700–708. DOI: 10.1002/ana.20807.
  • He, X.; Xu, W.; Xu, C.; Ding, F.; Chen, H.; Shen, J. Reversible Spiropyran-Based Chemosensor with pH-Switches and Application for Bioimaging in Living Cells Pseudomonas aeruginosa and Zebrafish. Dyes Pigm. 2020, 180, 108497. DOI: 10.1016/j.dyepig.2020.108497.
  • Wang, C.; Telpoukhovskaia, M. A.; Bahr, B.; Chen, X.; Gan, L. Endo-Lysosomal Dysfunction: A Converging Mechanism in Neurodegenerative Diseases. Curr. Opin. Neurobiol. 2018, 48, 52–58. DOI: 10.1016/j.conb.2017.09.005.
  • Deutsch, C.; Taylor, J. S.; Wilson, D. F. Regulation of Intracellular pH by Human Peripheral Blood Lymphocytes as Measured by 19F NMR. Proc. Natl. Acad. Sci. USA. 1982, 79, 7944–7948. DOI: 10.1073/pnas.79.24.7944.
  • Anemone, A.; Consolino, L.; Arena, F.; Capozza, M.; Longo, D. L. Imaging Tumor Acidosis: A Survey of the Available Techniques for Mapping in Vivo Tumor pH. Cancer Metastasis Rev. 2019, 38, 25–49. DOI: 10.1007/s10555-019-09782-9.
  • Kiani, M. J.; Razak, M. A. A.; Harun, F. K. C.; Ahmadi, M. T.; Rahmani, M. SWCNT-Based Biosensor Modelling for pH Detection. J. Nanomater. 2015, 16, 721251–721257. DOI: 10.1155/2015/721251.
  • He, S.; Mason, R. P.; Hunjan, S.; Mehta, V. D.; Arora, V.; Katipally, R.; Kulkarni, P. V.; Antich, P. P. Development of Novel 19F NMR pH Indicators: Synthesis and Evaluation of a Series of Fluorinated Vitamin B6 Analogues. Bioorg. Med. Chem. 1998, 6, 1631–1639. DOI: 10.1016/S0968-0896(98)00104-7.
  • Zhang, R. G.; Kelsen, S. G.; Lamanna, J. C. Measurement of Intracellular pH in Hamster Diaphragm by Absorption Spectrophotometry. J. Appl. Physiol. 1990, 68, 1101–1106. DOI: 10.1152/jappl.1990.68.3.1101.
  • Balazs, N.; Sipos, P. Limitations of pH-Potentiometric Titration for the Determination of the Degree of Deacetylation of Chitosan. Carbohydr. Res. 2007, 342, 124–130. DOI: 10.1016/j.carres.2006.11.016.
  • Kim, T. H.; Kim, S. H.; Tan, L. V.; Dong, Y.; Kim, H.; Kim, J. S. Diazo-Coupled Calix[4]Arenes for Qualitative Analytical Screening of Metal Ions. Talanta 2008, 74, 1654–1658. DOI: 10.1016/j.talanta.2007.10.033.
  • Wang, J.; Liu, H.; Wu, M.; Liu, X. L.; Sun, H. Y.; Zheng, A. X. Water-Soluble Organic Probe for pH Sensing and Imaging. Talanta 2019, 205, 120095. DOI: 10.1016/j.talanta.2019.06.095.
  • Yang, Y. M.; Zhao, Q.; Feng, W.; Li, F. Y. Luminescent Chemodosimeters for Bioimaging. Chem. Rev. 2013, 113, 192–270. DOI: 10.1021/cr2004103.
  • Banik, D.; Manna, S. K.; Mahapatra, A. K. Recent Development of Chromogenic and Fluorogenic Chemosensors for the Detection of Arsenic Species: Environmental and Biological Applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 119047. DOI: 10.1016/j.saa.2020.119047.
  • Mondal, S.; Manna, S. K.; Pathak, S.; Masum, A. A.; Mukhopadhyay, S. A Colorimetric and “Off–On” Fluorescent Pd2+ Chemosensor Based on a Rhodamine-Ampyrone Conjugate: Synthesis, Experimental and Theoretical Studies along with in Vitro Applications. New J. Chem. 2019, 43, 3513–3519. DOI: 10.1039/C8NJ05194A.
  • Mondal, S.; Manna, S. K.; Pathak, S.; Ghosh, A.; Datta, P.; Mandal, D.; Mukhopadhyay, S. A. “Turn-On” Fluorescent and Colorimetric Chemodosimeter for Selective Detection of Au3+ Ions in Solution and in Live Cells via Au3+-Induced Hydrolysis of a Rhodamine-Derived Schiff Base. New J. Chem. 2020, 44, 7954–7961. DOI: 10.1039/D0NJ01273D.
  • Yin, J.; Huang, L.; Wu, L.; Li, J.; James, T. D.; Lin, W. Small Molecule Based Fluorescent Chemosensors for Imaging the Microenvironment within Specific Cellular Regions. Chem. Soc. Rev. 2021, 50, 12098–12150. DOI: 10.1039/D1CS00645B.
  • Han, H.-H.; Tian, H.; Jr., Zang, Y.; Sedgwick, A. C.; Li, J.; Sessler, J. L.; He, X.-P.; James, T. D. Small-Molecule Fluorescence-Based Probes for Interrogating Major Organ Diseases. Chem. Soc. Rev. 2021, 50, 9391–9429. DOI: 10.1039/D0CS01183E.
  • Benčina, M. Illumination of the Spatial Order of Intracellular pH by Genetically Encoded pH-Sensitive Sensors. Sensors 2013, 13, 16736–16758. DOI: 10.3390/s131216736.
  • Shi, W.; Li, X.; Ma, H. Fluorescent Probes and Nanoparticles for Intracellular Sensing of pH Values. Methods Appl. Fluoresc. 2014, 2, 042001–042014. DOI: 10.1088/2050-6120/2/4/042001.
  • Schäferling, M. Nanoparticle-Based Luminescent Probes for Intracellular Sensing and Imaging of pH. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 378–413. DOI: 10.1002/wnan.1366.
  • Yue, Y.; Huo, F.; Lee, S.; Yin, C.; Yoon, J. A Review: The Trend of Progress about pH Probes in Cell Application in Recent Years. Analyst 2016, 142, 30–41. DOI: 10.1039/C6AN01942K.
  • Hou, J. T.; Ren, W. X.; Li, K.; Seo, J.; Sharma, A.; Yu, X. Q.; Kim, J. S. Fluorescent Bioimaging of pH: From Design to Applications. Chem. Soc. Rev. 2017, 46, 2076–2090. DOI: 10.1039/C6CS00719H.
  • Chen, W.; Ma, X.; Chen, H.; Liu, S. H.; Yin, J. Fluorescent Probes for pH and Alkali Metal Ions. Coord. Chem. Rev. 2021, 427, 213584. DOI: 10.1016/j.ccr.2020.213584.
  • Ma, J.; Li, W.; Li, J.; Shi, R.; Yin, G.; Wang, R. A Small Molecular pH-Dependent Fluorescent Probe for Cancer Cell Imaging in Living Cell. Talanta 2018, 182, 464–469. DOI: 10.1016/j.talanta.2018.01.088.
  • Liu, M.; Lv, Y.; Jie, X.; Meng, Z.; Wang, X.; Huang, J.; Peng, A.; Tian, Z. A Super-Sensitive Ratiometric Fluorescent Probe for Monitoring Intracellular Subtle pH Fluctuation. Sens. Actuators B 2018, 273, 167–175. DOI: 10.1016/j.snb.2018.06.048.
  • Mandal, J.; Ghorai, P.; Brandão, P.; Pal, K.; Karmakar, P.; Saha, A. An Aminoquinoline Based Biocompatible Fluorescent and Colourimetric pH Sensor Designed for Cancer Cell Discrimination. New J. Chem. 2018, 42, 19818–19826. DOI: 10.1039/C8NJ04753G.
  • She, Z. P.; Tian, Y.; Xia, Y. S.; Jie, J.; Li, Y.; Li, C. Y. A Facile pH near-Infrared Fluorescence Probe for the Diagnosis of Cancer in Vivo. Dyes Pigm. 2020, 179, 108402. DOI: 10.1016/j.dyepig.2020.108402.
  • Dhawa, T.; Hazra, A.; Barma, A.; Pal, K.; Karmakar, P.; Roy, P. 4-Methyl-2, 6-Diformylphenol Based Biocompatible Chemosensors for pH: Discrimination between Normal Cells and Cancer Cells. RSC Adv. 2020, 10, 15501–15513. DOI: 10.1039/D0RA00754D.
  • Ohkuma, S.; Poole, B. Fluorescence Probe Measurement of the Intralysosomal pH in Living Cells and the Perturbation of pH by Various Agents. Proc. Natl. Acad. Sci. USA. 1978, 75, 3327–3331. DOI: 10.1073/pnas.75.7.3327.
  • Nishi, T.; Forgac, M. The Vacuolar (H+)-ATPases-Nature's Most Versatile Proton Pumps. Nat. Rev. Mol. Cell. Biol. 2002, 3, 94–103. DOI: 10.1038/nrm729.
  • Settembre, C.; Fraldi, A.; Medina, D. L.; Ballabio, A. Signals from the Lysosome: A Control Centre for Cellular Clearance and Energy Metabolism. Nat. Rev. Mol. Cell. Biol. 2013, 14, 283–296. DOI: 10.1038/nrm3565.
  • Xu, H.; Ren, D. Lysosomal Physiology. Annu. Rev. Physiol. 2015, 77, 57–80. DOI: 10.1146/annurev-physiol-021014-071649.
  • Maxfield, F. R.; Willard, J. M.; Lu, S. Lysosomes: Biology, Diseases, and Therapeutics. John Wiley & Sons: New York, 2016.
  • Kroemer, G.; Jäättelä, M. Lysosomes and Autophagy in Cell Death Control. Nat. Rev. Cancer. 2005, 5, 886–897. DOI: 10.1038/nrc1738.
  • Futerman, A. H.; Meer, G. V. The Cell Biology of Lysosomal Storage Disorders. Nat. Rev. Mol. Cell Biol. 2004, 5, 554–565. DOI: 10.1038/nrm1423.
  • Fehrenbacher, N.; Jäättelä, M. Lysosomes as Targets for Cancer Therapy. Cancer Res. 2005, 65, 2993–2995. DOI: 10.1158/0008-5472.can-05-0476.
  • Saftig, P.; Sandhoff, K. Cancer: Killing from the inside. Nature 2013, 502, 312–313. DOI: 10.1038/nature12692.
  • Li, S. S.; Zhang, M.; Wang, J. H.; Yang, F.; Kang, B.; Xu, J. J.; Chen, H. Y. Monitoring the Changes of pH in Lysosomes during Autophagy and Apoptosis by Plasmon Enhanced Raman Imaging. Anal. Chem. 2019, 91, 8398–8405. DOI: 10.1021/acs.analchem.9b01250.
  • Nylandsted, J.; Hansen, M. G.; Danielewicz, A.; Fehrenbacher, N.; Lademann, U.; Høyer-Hansen, M.; Weber, E.; Multhoff, G.; Rohde, M.; Jäättelä, M. Heat Shock Protein 70 Promotes Cell Survival by Inhibiting Lysosomal Membrane Permeabilization. J. Exp. Med. 2004, 200, 425–435. DOI: 10.1084/jem.20040531.
  • Ge, J.; Fan, L.; Zhang, K.; Ou, T.; Li, Y.; Zhang, C.; Dong, C.; Shuang, S.; Wong, M. S. A Two-Photon Ratiometric Fluorescent Probe for Effective Monitoring of Lysosomal pH in Live Cells and Cancer Tissues. Sens. Actuators B, Chem. 2018, 262, 913–921. DOI: 10.1016/j.snb.2018.02.082.
  • Xia, S.; Wang, J.; Bi, J.; Wang, X.; Fang, M.; Phillips, T.; May, A.; Conner, N.; Tanasova, M.; Luo, F. T.; Liu, H. Fluorescent Probes Based on π-Conjugation Modulation between Hemicyanine and Coumarin Moieties for Ratiometric Detection of pH Changes in Live Cells with Visible and Near-Infrared Channels. Sens. Actuators B Chem. 2018, 265, 699–708. DOI: 10.1016/j.snb.2018.02.168.
  • Liu, H.; Wang, J.; Xia, S.; Bi, J.; Fang, M.; Mazi, W.; Zhang, Y.; Conner, N.; Luo, F. T.; Lu, H. P. Ratiometric near-Infrared Fluorescent Probes Based on through-Bond Energy Transfer and π-Conjugation Modulation between Tetraphenylethene and Hemicyanine Moieties for Sensitive Detection of pH Changes in Live Cells. Bioconjugate Chem. 2018, 29, 1406–1418. DOI: 10.1021/acs.bioconjchem.8b00111.
  • Lee, D.; Swamy, K. M. K.; Hong, J.; Lee, S.; Yoon, J. A Rhodamine-Based Fluorescent Probe for the Detection of Lysosomal pH Changes in Living Cells. Sens. Actuators B Chem. 2018, 266, 416–421. DOI: 10.1016/j.snb.2018.03.133.
  • Wu, L.; Wang, Y.; James, T. D.; Jia, N.; Huang, C. A Hemicyanine Based Ratiometric Fluorescence Probe for Mapping Lysosomal pH during Heat Stroke in Living Cells. Chem. Commun. 2018, 54, 5518–5521. DOI: 10.1039/C8CC02330A.
  • Zhang, Y.; Xia, S.; Fang, M.; Mazi, W.; Zeng, Y.; Johnston, T.; Pap, A.; Luck, R.; Liu, H. New Near-Infrared Rhodamine Dyes with Large Stokes Shifts for Sensitive Sensing of Intracellular pH Changes and Fluctuations. Chem. Commun. 2018, 54, 7625–7628. DOI: 10.1039/C8CC03520B.
  • Zhu, M.; Xing, P.; Zhou, Y.; Gong, L.; Zhang, J.; Qi, D.; Bian, Y.; Du, H.; Jiang, J. Lysosome-Targeting Ratiometric Fluorescent pH Probes Based on Long-Wavelength BODIPY. J. Mater. Chem. B. 2018, 6, 4422–4426. DOI: 10.1039/C8TB00883C.
  • Wang, C.; Dong, B.; Kong, X.; Zhang, N.; Song, W.; Lin, W. Dual Site-Controlled Two-Photon Fluorescent Probe for the Imaging of Lysosomal pH in Living Cells. Luminescence 2018, 33, 1275–1280. DOI: 10.1002/bio.3546.
  • Liu, H.; Chen, T. H.; Zhang, S.; Jaishi, M.; Adhikari, R.; Bi, J.; Fang, M.; Xia, S.; Zhang, Y.; Luck, R. L.; et al. New Near-Infrared Fluorescent Probes with Single-Photon Anti-Stokes-Shift Fluorescence for Sensitive Determination of pH Variances in Lysosomes with a Double-Checked Capability. ACS Appl. Bio. Mater. 2018, 1, 549–560. DOI: 10.1021/acsabm.8b00020.
  • Zhang, Y.; Bi, J.; Xia, S.; Mazi, W.; Wan, S.; Mikesell, L.; Luck, R. L.; Liu, H. A Near-Infrared Fluorescent Probe Based on a FRET Rhodamine Donor Linked to a Cyanine Acceptor for Sensitive Detection of Intracellular pH Alternations. Molecules 2018, 23, 2679. DOI: 10.3390/molecules23102679.
  • Wang, J.; Xia, S.; Bi, J.; Zhang, Y.; Fang, M.; Luck, R. L.; Zeng, Y.; Chen, T. H.; Lee, H. M.; Liu, H. Near-Infrared Fluorescent Probes Based on TBET and FRET Rhodamine Acceptors with Different pKa Values for Sensitive Ratiometric Visualization of pH Changes in Live Cells. J. Mater. Chem. B. 2019, 7, 198–209. DOI: 10.1039/C8TB01524D.
  • Ning, P.; Hou, L.; Feng, Y.; Xu, G.; Bai, Y.; Yu, H.; Meng, X. Real-Time Visualizing Autophagy by Monitoring the Fluctuation of Lysosomal pH with a Ratiometric Two-Photon Fluorescent Probe. Chem. Commun. 2019, 55, 1782–1785. DOI: 10.1039/C8CC09517E.
  • Li, J.; Li, X.; Jia, J.; Chen, X.; Lv, Y.; Guo, Y.; Li, J. A Ratiometric near-Infrared Fluorescence Strategy Based on Spiropyran in Situ Switching for Tracking Dynamic Changes of Live-Cell Lysosomal pH. Dyes Pigm. 2019, 166, 433–442. DOI: 10.1016/j.dyepig.2019.03.060.
  • Shi, Y.; Meng, X.; Yang, H.; Song, L.; Liu, S.; Xu, A.; Chen, Z.; Huang, W.; Zhao, Q. Lysosome-Specific Sensing and Imaging of pH Variations in Vitro and in-Vivo Utilizing a Near-Infrared Boron Complex. J. Mater. Chem. B. 2019, 7, 3569–3575. DOI: 10.1039/C8TB03353F.
  • Xia, S.; Fang, M.; Wang, J.; Bi, J.; Mazi, W.; Zhang, Y.; Luck, R. L.; Liu, H. Near-Infrared Fluorescent Probes with BODIPY Donors and Rhodamine and Merocyanine Acceptors for Ratiometric Determination of Lysosomal pH Variance. Sens. Actuators B Chem. 2019, 294, 1–13. DOI: 10.1016/j.snb.2019.05.005.
  • Ge, J.; Zhang, K.; Fan, L.; Wang, X.; Zhang, C.; Dong, C.; Wong, M. S.; Shuang, S. Novel Long-Wavelength Emissive Lysosome-Targeting Ratiometric Fluorescent Probes for Imaging in Live Cells. Analyst 2019, 144, 4288–4294. DOI: 10.1039/C9AN00697D.
  • Zhang, T.; Zhang, Y.; Wang, R.; Xu, D. Tuning Dual-Channel Fluorescence-Enhanced Chemosensor for Imaging of Living Cells in Extreme Acidity. Dyes Pigm. 2019, 171, 107672. DOI: 10.1016/j.dyepig.2019.107672.
  • Niu, W.; Jia, J.; Li, J.; Zhang, C.; Yun, K. Ratiometric Emission NIR-Fluorescent Probe for the Detection of Lysosomal pH in Living Cells and in Vivo. New J. Chem. 2019, 43, 13363–13370. DOI: 10.1039/C9NJ02771H.
  • Yuan, G.; Ding, H.; Zhou, L. An Effective FRET-Based Two-Photon Ratiometric Fluorescent Probe with Double Well-Resolved Emission Bands for Lysosomal pH Changes in Living Cells and Zebrafish. Spectrochim. Acta A 2020, 224, 117397. DOI: 10.1016/j.saa.2019.117397.
  • Mazi, W.; Adhikari, R.; Zhang, Y.; Xia, S.; Fang, M.; Luck, R. L.; Tajiri, M.; Tiwari, A.; Tanasova, M.; Liu, H. Fluorescent Probes with High pKa Values Based on Traditional, Near-Infrared Rhodamine, and Hemicyanine Fluorophores for Sensitive Detection of Lysosomal pH Variations. Methods 2019, 168, 40–50. DOI: 10.1016/j.ymeth.2019.07.012.
  • Tian, M.; Liu, C.; Dong, B.; Zuo, Y.; Lin, W. A Dual-Site Controlled Ratiometric Probe Revealing the Simultaneous Down-Regulation of pH in Lysosomes and Cytoplasm during Autophagy. Chem. Commun. 2019, 55, 10440–10443. DOI: 10.1039/C9CC03679B.
  • Mao, G. J.; Liang, Z. Z.; Gao, G. Q.; Wang, Y. Y.; Guo, X. Y.; Su, L.; Zhang, H.; Ma, Q. J.; Zhang, G. A Photostable Si-Rhodamine-Based Near-Infrared Fluorescent Probe for Monitoring Lysosomal pH during Heat Stroke. Anal. Chim. Acta. 2019, 1092, 117–125. DOI: 10.1016/j.aca.2019.09.053.
  • Yan, Y.; Zhang, X.; Zhang, X.; Li, N.; Man, H.; Chen, L.; Xiao, Y. Ratiometric Sensing Lysosomal pH in Inflammatory Macrophages by a BODIPY-Rhodamine Dyad with Restrained FRET. Chin. Chem. Lett. 2020, 31, 1091–1094. DOI: 10.1016/j.cclet.2019.10.025.
  • Yu, F.; Jing, X.; Lin, W. Single-/Dual-Responsive pH Fluorescent Probes Based on the Hybridization of Unconventional Fluorescence and Fluorophore for Imaging Lysosomal pH Changes in HeLa Cells. Anal. Chem. 2019, 91, 15213–15219. DOI: 10.1021/acs.analchem.9b04088.
  • Zhang, X. F.; Wang, T. R.; Cao, X. Q.; Shen, S. L. A near-Infrared Rhodamine-Based Lysosomal pH Probe and Its Application in Lysosomal pH Rise during Heat Shock. Spectrochim. Acta A 2020, 227, 117761. DOI: 10.1016/j.saa.2019.117761.
  • Zhang, Y.; Zhao, Y.; Wu, Y.; Zhao, B.; Wang, L.; Song, B. Hemicyanine Based Naked-Eye Ratiometric Fluorescent Probe for Monitoring Lysosomal pH and Its Application. Spectrochim. Acta A 2020, 227, 117767. DOI: 10.1016/j.saa.2019.117767.
  • Dong, Y.; Xiao, H.; Xing, L.; Wu, C.; Zhou, J.; Zhou, Z.; Liu, Y.; Zhuo, S.; Li, P. Two-Photon Fluorescence Visualization of Lysosomal pH Changes during Mitophagy and Cell Apoptosis. Talanta 2020, 209, 120549. DOI: 10.1016/j.talanta.2019.120549.
  • Zhang, Y.; Bu, F.; Zhao, Y.; Zhao, B.; Wang, L.; Song, B. A Hemicyanine Fluorescent Probe with Intramolecular Charge Transfer (ICT) Mechanism for Highly Sensitive and Selective Detection of Acidic pH and Its Application in Living cells. Anal. Chim. Acta. 2020, 1098, 155–163. DOI: 10.1016/j.aca.2019.11.040.
  • Wang, X.; Fan, L.; Wang, Y.; Zhang, C.; Liang, W.; Shuang, S.; Dong, C. Visual Monitoring of the Lysosomal pH Changes during Autophagy with a Red-Emission Fluorescent Probe. J. Mater. Chem. B. 2020, 8, 1466–1471. DOI: 10.1039/C9TB02551K.
  • Zhang, J.; Zhu, M.; Cui, J.; Wang, C.; Zhou, Z.; Wang, T.; Gong, L.; Su, C.; Qi, D.; Bian, Y.; et al. A Porphyrin-Pyranine Dyad for Ratiometric Fluorescent Sensing of Intracellular pH. J. Photochem. Photobiol. A 2020, 396, 112524. DOI: 10.1016/j.jphotochem.2020.112524.
  • Li, L.; Li, Y.; Dang, Y.; Chen, T.; Zhang, A.; Ding, C.; Xu, Z. Imidazole-Fused Benzothiadiazole-Based Red-Emissive Fluorescence Probe for Lysosomal pH Imaging in Living Cells. Talanta 2020, 217, 121066. DOI: 10.1016/j.talanta.2020.121066.
  • Li, L.; Xiong, Z.; Dang, Y.; Li, Y.; Zhang, A.; Ding, C.; Xu, Z.; Zhang, W. A Red-Emissive D-A-D Type Fluorescent Probe for Lysosomal pH Imaging. Anal. Methods 2020, 12, 2978–2984. DOI: 10.1039/D0AY00418A.
  • Wang, X.; Fan, L.; Wang, Y.; Zhang, C.; Liang, W.; Shuang, S.; Dong, C. A Red-Emission Fluorescent Probe for Visual Monitoring of the Lysosomal pH Changes during Mitophagy and Cell Apoptosis. J. Mater. Chem. B. 2020, 8, 1466–1471. DOI: 10.1039/C9TB02551K.
  • Ernster, L.; Schatz, G. Mitochondria: A Historical Review. J. Cell Biol. 1981, 91, 227s–255s. DOI: 10.1083/jcb.91.3.227s.
  • Zhu, L. P.; Yu, X. D.; Ling, S.; Brown, R. A.; Kuo, T. H. Mitochondrial Ca2+ Homeostasis in the Regulation of Apoptotic and Necrotic Cell Deaths. Cell Calcium 2000, 28, 107–117. DOI: 10.1054/ceca.2000.0138.
  • Desagher, S.; Martinou, J. C. Mitochondria as the Central Control Point of Apoptosis. Trends Cell Biol. 2000, 10, 369–377. DOI: 10.1016/S0962-8924(00)01803-1.
  • Andreyev, A. Y.; Kushnareva, Y. E.; Starkov, A. A. Mitochondrial Metabolism of Reactive Oxygen Species. Biochemistry 2005, 70, 200–214. DOI: 10.1007/s10541-005-0102-7.
  • Nakagawa, T.; Guarente, L. Urea Cycle Regulation by Mitochondrial Sirtuin, SIRT5. Aging 2009, 1, 578–581. DOI: 10.18632/aging.100062.
  • Singh, H.; Beckman, K.; Poulos, A. Peroxisomal Beta-Oxidation of Branched Chain Fatty Acids in Rat Liver. Evidence That Carnitine Palmitoyltransferase I Prevents Transport of Branched Chain Fatty Acids into Mitochondria. J. Biol. Chem. 1994, 269, 9514–9520. DOI: 10.1016/S0021-9258(17)36911-9.
  • Nie, G. J.; Sheftel, A. D.; Kim, S. F.; Ponka, P. Overexpression of Mitochondrial Ferritin Causes Cytosolic Iron Depletion and Changes Cellular Iron Homeostasis. Blood 2005, 105, 2161–2167. DOI: 10.1182/blood-2004-07-2722.
  • Wu, H.; Chen, Q. Hypoxia Activation of Mitophagy and Its Role in Disease Pathogenesis. Antioxid. Redox Signaling 2015, 22, 1032–1046. DOI: 10.1089/ars.2014.6204.
  • Youle, R. J.; Narendra, D. P. Mechanisms of Mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. DOI: 10.1038/nrm3028.
  • Kim, J. H.; Kim, H. Y.; Lee, Y. K.; Yoon, Y. S.; Xu, W. G.; Yoon, J. K.; Choi, S. E.; Ko, Y. G.; Kim, M. J.; Lee, S. J.; et al. Involvement of Mitophagy in Oncogenic K-Ras-Induced Transformation: Overcoming a Cellular Energy Deficit from Glucose Deficiency. Autophagy 2011, 7, 1187–1198. DOI: 10.4161/auto.7.10.16643.
  • Lin, M. T.; Beal, M. F. Mitochondrial Dysfunction and Oxidative Stress in Neurodegenerative Diseases. Nature 2006, 443, 787–795. DOI: 10.1038/nature05292.
  • Trincado, C. V.; Carvajal, I. G.; Pennanen, C.; Parra, V.; Hill, J. A.; Rothermel, B. A.; Lavandero, S. Mitochondrial Dynamics, Mitophagy and Cardiovascular Disease. J. Physiol. 2016, 594, 509–525. DOI: 10.1113/JP271301.
  • Wrighton, K. H. Putting Energy into Mitophagy. Nat. Rev. Mol. Cell Biol. 2013, 14, 325–325. DOI: 10.1038/nrm3586.
  • Wisnovsky, S.; Lei, E. K.; Jean, S. R.; Kelley, S. O. Mitochondrial Chemical Biology: New Probes Elucidate the Secrets of the Powerhouse of the Cell. Cell Chem. Biol. 2016, 23, 917–927. DOI: 10.1016/j.chembiol.2016.06.012.
  • Li, K.; Feng, Q.; Niu, G.; Zhang, W.; Li, Y.; Kang, M.; Xu, K.; He, J.; Hou, H.; Tang, B. Z. Benzothiazole-Based AIEgen with Tunable Excited-State Intramolecular Proton Transfer and Restricted Intramolecular Rotation Processes for Highly Sensitive Physiological pH Sensing. ACS Sens. 2018, 3, 920–928. DOI: 10.1021/acssensors.7b00820.
  • Podder, A.; Won, M.; Kim, S.; Verwilst, P.; Maiti, M.; Yang, Z.; Qu, J.; Bhuniya, S.; Kim, J. S. A Two-Photon Fluorescent Probe Records the Intracellular pH through ‘OR’ Logic Operation via Internal Calibration. Sens. Actuators B Chem. 2018, 268, 195–204. DOI: 10.1016/j.snb.2018.04.092.
  • Qi, S.; Li, Q.; Liu, W.; Ren, H.; Zhang, H.; Wu, J.; Ge, J.; Wang, P. Coumarin/Fluorescein-Fused Fluorescent Dyes for Rapidly Monitoring Mitochondrial pH Changes in Living Cells. Spectrochim. Acta A 2018, 204, 590–597. DOI: 10.1016/j.saa.2018.06.095.
  • Gui, L.; Yuan, Z.; Kassaye, H.; Zheng, J.; Yao, Y.; Wang, F.; He, Q.; Shen, Y.; Liang, L.; Chen, H. Correction: A Tumor-Targeting Probe Based on a Mitophagy Process for Live Imaging. Chem. Commun. 2018, 54, 10774. DOI: 10.1039/C8CC04246B.
  • Niu, L. Q.; Huang, J.; Yan, Z. J.; Men, Y. H.; Luo, Y.; Zhou, X. M.; Wang, J. M.; Wang, J. H. Fluorescence Detection of Intracellular pH Changes in the Mitochondria-Associated Process of Mitophagy Using a Hemicyanine-Based Fluorescent Probe. Spectrochim. Acta A 2019, 207, 123–131. DOI: 10.1016/j.saa.2018.09.015.
  • Hong, K. I.; Park, S. H.; Lee, S. M.; Shin, I.; Jang, W. D. A pH-Sensitive Excited State Intramolecular Proton Transfer Fluorescent Probe for Imaging Mitochondria and Helicobacter pylori. Sens. Actuators B Chem. 2019, 286, 148–153. DOI: 10.1016/j.snb.2019.01.101.
  • Liu, X.; Wang, L.; Bing, T.; Zhang, N; Shangguan, D. A Mitochondria-Targeted Ratiometric Fluorescent pH Probe. ACS Appl. Bio Mater. 2019, 2, 1368–1375. DOI: 10.1021/acsabm.9b00061.
  • Wang, F.; Liu, D.; Shen, Y.; Liu, J.; Li, D.; Tian, X.; Zhang, Q.; Wu, J.; Li, S.; Tian, Y. A Two-Photon Mitochondria-Targeted Fluorescent Probe for the Detection of pH Fluctuation in Tumor and Living Cells. Dyes Pigm. 2019, 166, 92–97. DOI: 10.1016/j.dyepig.2019.03.033.
  • Xiao, H.; Dong, Y.; Zhou, J.; Zhou, Z.; Wu, X.; Wang, R.; Miao, Z.; Liu, Y.; Zhuo, S. Monitoring Mitochondrial pH with a Hemicyanine-Based Ratiometric Fluorescent Probe. Analyst 2019, 144, 3422–3427. DOI: 10.1039/C9AN00422J.
  • Jiang, X.; Liu, Z.; Yang, Y.; Li, H.; Qi, X.; Ren, W. X.; Deng, M.; Lü, M.; Wu, J.; Liang, S. A Mitochondria-Targeted Two-Photon Fluorescent Probe for Sensing and Imaging pH Changes in Living Cells. Spectrochim. Acta A 2020, 224, 117435. DOI: 10.1016/j.saa.2019.117435.
  • Li, X.; Hu, Y.; Li, X.; Ma, H. Mitochondria-Immobilized Near-Infrared Ratiometric Fluorescent pH Probe to Evaluate Cellular Mitophagy. Anal. Chem. 2019, 91, 11409–11416. DOI: 10.1021/acs.analchem.9b02782.
  • Zhang, Y.; Xia, S.; Mikesell, L.; Whisman, N.; Fang, M.; Steenwinkel, T. E.; Chen, K.; Luck, R. L.; Werner, T.; Liu, H. Near-Infrared Hybrid Rhodol Dyes with Spiropyran Switches for Sensitive Ratiometric Sensing of pH Changes in Mitochondria and Drosophila melanogaster First-Instar Larvae. ACS Appl. Bio Mater. 2019, 2, 4986–4997. DOI: 10.1021/acsabm.9b00710.
  • Tang, W.; Dai, Y.; Gu, B.; Liu, M.; Yi, Z.; Li, Z.; Zhang, Z.; He, H.; Zeng, R. A near Infrared Fluorescent Probe Based on ICT for Monitoring Mitophagy in Living Cells. Analyst 2020, 145, 1427–1432. DOI: 10.1039/C9AN02053E.
  • Xia, S.; Wang, J.; Zhang, Y.; Whisman, N.; Bi, J.; Steenwinkel, T. E.; Wan, S.; Medford, J.; Tajiri, M.; Luck, R. L.; et al. Ratiometric Fluorescent Probes Based on Through-Bond Energy Transfer of Cyanine Donors to Near-Infrared Hemicyanine Acceptors for Mitochondrial pH Detection and Monitoring of Mitophagy. J. Mater. Chem. B. 2020, 8, 1603–1615. DOI: 10.1039/C9TB02302J.
  • Palokangas, H.; Ying, M.; VäÄnäNen, K.; Saraste, J. Retrograde Transport from the Pre-Golgi Intermediate Compartment and the Golgi Complex Is Affected by the Vacuolar H+-ATPase Inhibitor Bafilomycin A1. Mol. Biol. Cell. 1998, 9, 3561–3578. DOI: 10.1091/mbc.9.12.3561.
  • Campbell, B. J.; Rowe, G. E.; Leiper, K.; Rhodes, J. M. Increasing the Intra-Golgi pH of Cultured LS174T Goblet-Differentiated Cells Mimics the Decreased Mucin Sulfation and Increased Thomsen-Friedenreich Antigen (Galβ1-3GalNacα-) Expression Seen in Colon Cancer. Glycobiology 2001, 11, 385–393. DOI: 10.1093/glycob/11.5.385.
  • Schindler, M.; Grabski, S.; Hoff, E.; Simon, S. M. Defective pH Regulation of Acidic Compartments in Human Breast Cancer Cells (MCF-7) Is Normalized in Adriamycin-Resistant Cells (MCF-7adr). Biochemistry 1996, 35, 2811–2817. DOI: 10.1021/bi952234e.
  • Rivinoja, A.; Pujol, F. M.; Hassinen, A.; Kellokumpu, S. Golgi pH, Its Regulation and Roles in Human Disease. Ann. Med. 2012, 44, 542–554. DOI: 10.3109/07853890.2011.579150.
  • Xue, F.; Wen, Y.; Wei, P.; Gao, Y.; Zhou, Z.; Xiao, S.; Yi, T. A Smart Drug: A pH-Responsive Photothermal Ablation Agent for Golgi Apparatus Activated Cancer Therapy. Chem. Commun. 2017, 53, 6424–6427. DOI: 10.1039/C7CC03168H.
  • Yamashiro, D. J.; Tycko, B.; Fluss, S. R.; Maxfield, F. R. Segregation of Transferrin to a Mildly Acidic (pH 6.5) Para-Golgi Compartment in the Recycling Pathway. Cell 1984, 37, 789–800. DOI: 10.1016/0092-8674(84)90414-8.
  • Kellokumpu, S.; Sormunen, R.; Kellokumpu, I. Abnormal Glycosylation and Altered Golgi Structure in Colorectal Cancer: Dependence on intra-Golgi pH. FEBS Lett. 2002, 516, 217–224. DOI: 10.1016/S0014-5793(02)02535-8.
  • Barasch, J.; Kiss, B.; Prince, A.; Saiman, L.; Gruenert, D.; Al-Awqati, Q. Defective Acidification of Intracellular Organelles in Cystic Fibrosis. Nature 1991, 352, 70–73. DOI: 10.1038/352070a0.
  • Morava, E.; Guillard, M.; Lefeber, D. J.; Wevers, R. A. Autosomal Recessive Cutis Laxa Syndrome Revisited. Eur. J. Hum. Genet. 2009, 17, 1099–1110. DOI: 10.1038/ejhg.2009.22.
  • Vanoevelen, J.; Dode, L.; Raeymaekers, L.; Wuytack, F.; Missiaen, L. Diseases Involving the Golgi Calcium Pump. Subcell. Biochem. 2007, 45, 385–404. DOI: 10.1007/978-1-4020-6191-2_14.
  • Fan, L.; Wang, X.; Ge, J.; Li, F.; Zhang, C.; Lin, B.; Shuang, S.; Dong, C. A Golgi-Targeted Off-On Fluorescent Probe for Real-Time Monitoring of pH Changes in Vivo. Chem. Commun. 2019, 55, 6685–6688. DOI: 10.1039/C9CC02511A.
  • Wang, H.; Yang, Y.; Huang, F.; He, Z.; Li, P.; Zhang, W.; Zhang, W.; Tang, B. In Situ Fluorescent and Photoacoustic Imaging of Golgi pH to Elucidate the Function of Transmembrane Protein 165. Anal. Chem. 2020, 92, 3103–3110. DOI: 10.1021/acs.analchem.9b04709.
  • Xu, W.; Zeng, Z.; Jiang, J. H.; Chang, Y. T.; Yuan, L. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. Angew. Chem. Int. Ed. Engl. 2016, 55, 13658–13699. DOI: 10.1002/anie.201510721.
  • Qiu, K.; Chen, Y.; Rees, T. W.; Ji, L.; Chao, H. Organelle-Targeting Metal Complexes: From Molecular Design to Bio-Applications. Coord. Chem. Rev. 2019, 378, 66–86. DOI: 10.1016/j.ccr.2017.10.022.
  • Wu, H. L.; Duan, Z. T.; Jiang, Z. D.; Cao, W. J.; Wang, Z. B.; Hu, K. W.; Gao, X.; Wang, S. K.; He, B. S.; Zhang, Z. Y.; Xie, H. G. Increased Endoplasmic Reticulum Stress Response is Involved in Clopidogrel-Induced Apoptosis of Gastric Epithelial Cells. PLoS One 2013, 8, e74381. DOI: 10.1371/journal.pone.0074381.
  • Braakman, I.; Bulleid, N. J. Protein Folding and Modification in the Mammalian Endoplasmic Reticulum. Annu. Rev. Biochem. 2011, 80, 71–99. DOI: 10.1146/annurev-biochem-062209-093836. [21495850]
  • Wu, M. M.; Llopis, J.; Adams, S.; McCaffery, J. M.; Kulomaa, M. S.; Machen, T. E.; Moore, H. P. H.; Tsien, R. Y. Organelle pH Studies Using Targeted Avidin and fluorescein-biotin. Chem. Biol. 2000, 7, 197–209. DOI: 10.1016/S1074-5521(00)00088-0. [10712929]
  • Paroutis, P.; Touret, N.; Grinstein, S. The pH of the Secretory Pathway: Measurement, Determinants, and Regulation. Physiology 2004, 19, 207–215. [Database] DOI: 10.1152/physiol.00005.2004.
  • Sano, R.; Reed, J. C. ER Stress-Induced Cell Death Mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 3460–3470. DOI: 10.1016/j.bbamcr.2013.06.028.
  • Özcan, U.; Cao, Q.; Yilmaz, E.; Lee, A. H.; Iwakoshi, N. N.; ÖZdelen, E.; Tuncman, G.; GörgüN, C.; Glimcher, L. H.; Hotamisligil, G. S. Endoplasmic Reticulum Stress Links Obesity, Insulin Action, and Type 2 Diabetes. Science 2004, 306, 457–461. DOI: 10.1126/science.1103160.
  • Eizirik, D. L.; Cardozo, A. K.; Cnop, M. The Role for Endoplasmic Reticulum Stress in Diabetes Mellitus. Endocr. Rev. 2008, 29, 42–61. DOI: 10.1210/er.2007-0015.
  • Xiao, H.; Zhang, R.; Wu, C.; Li, P.; Zhang, W.; Tang, B. A New pH-Sensitive Fluorescent Probe for Visualization of Endoplasmic Reticulum Acidification during Stress. Sens. Actuators B Chem. 2018, 273, 1754–1761. DOI: 10.1016/j.snb.2018.07.059.
  • Zhang, N.; Dong, B.; Kong, X.; Song, W.; Lin, W. A Two-Photon Endoplasmic Reticulum-Targeting Fluorescent Probe for the Imaging of pH in Living Cells and Zebrafish. Anal. Methods 2018, 10, 5702–5706. DOI: 10.1039/C8AY02199F.
  • Dong, B.; Song, W.; Lu, Y.; Kong, X.; Mehmood, A. H.; Lin, W. An Ultrasensitive Ratiometric Fluorescent Probe Based on ICT-PETFRET Mechanism for the Quantitative Measurement of pH Values in Endoplasmic Reticulum (ER). Chem. Commun. 2019, 55, 10776–10779. DOI: 10.1039/C9CC03114F.
  • Fang, M.; Xia, S.; Bi, J.; Wigstrom, T. P.; Valenzano, L.; Wang, J.; Mazi, W.; Tanasova, M.; Luo, F. T.; Liu, H. A Cyanine-Based Fluorescent Cassette with Aggregation-Induced Emission for Sensitive Detection of pH Changes in Live Cells. Chem. Commun. 2018, 54, 1133–1136. DOI: 10.1039/C7CC08986D.
  • Wang, L.; Cui, M.; Tang, H.; Cao, D. A BODIPY- 2-(2’-Hydroxyphenyl) Benzothiazole Conjugate with Solid State Emission and Used as a Fluorescent pH Probe. Anal. Methods 2018, 10, 1633–1639. DOI: 10.1039/C8AY00053K.
  • Tang, X.; Zhu, Z.; Wang, Y.; Han, J.; Ni, L.; Wang, L.; Zhang, H.; Li, J.; Qiu, Y. A Dual Site-Controlled Probe for Fluorescent Monitoring of Intracellular pH and Colorimetric Monitoring of Cu2+. Sens. Actuators B Chem. 2018, 270, 35–44. DOI: 10.1016/j.snb.2018.04.173.
  • Chao, J.; Song, K.; Zhang, Y.; Yin, C.; Huo, F.; Wang, J.; Zhang, T. A Pyrene-Based Colorimetric and Fluorescent pH Probe with Large Stokes Shift and Its Application in Bioimaging. Talanta 2018, 189, 150–156. DOI: 10.1016/j.talanta.2018.06.073.
  • Georgiev, N. I.; Said, A. I.; Toshkova, R. A.; Tzoneva, R. D.; Bojinov, V. B. A Novel Water-Soluble Perylenetetracarboxylic Diimide as a Fluorescent pH Probe: Chemosensing, Biocompatibility and Cell Imaging. Dyes Pigm. 2019, 160, 28–36. DOI: 10.1016/j.dyepig.2018.07.048.
  • Liu, Z.; Li, G.; Wang, Y.; Li, J.; Mi, Y.; Zou, D.; Li, T.; Wu, Y. Quinoline-Based Ratiometric Fluorescent Probe for Detection of Physiological pH Changes in Aqueous Solution and Living Cells. Talanta 2019, 192, 6–13. DOI: 10.1016/j.talanta.2018.09.026.
  • Wang, S.; Fan, Y.; Li, D.; Sun, C.; Lei, Z.; Lu, L.; Wang, T.; Zhang, F. Anti-Quenching NIR-II Molecular Fluorophores for in Vivo High-Contrast Imaging and pH Sensing. Nat. Commun. 2019, 10, 1058 DOI: 10.1038/s41467-019-09043-x.
  • Jiang, T.; Wang, X.; Wang, G.; Wang, Y.; Wang, K.; Xuan, X.; Chen, C.; Jiang, K.; Zhang, H. Light-Activated "Cycle-Reversible Intramolecular Charge Transfer" Fluorescent Probe: Monitoring of pHi Trace Change Induced by UV Light in Programmed Cell Death. Chem. Commun. 2019, 55, 5279–5282. DOI: 10.1039/C9CC01451A.
  • Song, W.; Dong, B.; Lu, Y.; Lin, W. Developing a Novel Ratiometric Fluorescent Probe Based on ESIPT for the Detection of pH Changes in Living Cells. Tetrahedron Lett. 2019, 60, 1696–1701. DOI: 10.1016/j.tetlet.2019.05.047.
  • Mai, H.; Wang, Y.; Li, S.; Jia, R.; Li, S.; Peng, Q.; Xie, Y.; Hu, X.; Wu, S. A pH-Sensitive near-Infrared Fluorescent Probe with Alkaline pKa for Chronic Wound Monitoring in Diabetic Mice. Chem. Commun. 2019, 55, 7374–7377. DOI: 10.1039/C9CC02289A.
  • Jin, D.; Wang, B.; Hou, Y.; Du, Y.; Li, X.; Chen, L. Novel Near-Infrared pH-Sensitive Cyanine-Based Fluorescent Probes for Intracellular pH Monitoring. Dyes Pigm. 2019, 170, 107612. DOI: 10.1016/j.dyepig.2019.107612.
  • Lin, B.; Fan, L.; Ying, Z.; Ge, J.; Wang, X.; Zhang, T.; Dong, C.; Shuang, S.; Wong, M. S. The Ratiometric Fluorescent Probe with High Quantum Yield for Quantitative Imaging of Intracellular pH. Talanta 2020, 208, 120279. DOI: 10.1016/j.talanta.2019.120279.
  • Zhu, J.; Gao, Q.; Tong, Q.; Wu, G. Fluorescent Probes Based on Benzothiazole-Spiropyran Derivatives for pH Monitoring in Vitro and in Vivo. Spectrochim. Acta A 2020, 225, 117506. DOI: 10.1016/j.saa.2019.117506.
  • Yin, H.; Zhao, B.; Kan, W.; Ding, L.; Wang, L.; Song, B.; Wang, W.; Deng, Q. A Phenanthro[9,10-d]Imidazole-Based Optical Sensor for Dual-Responsive Turn-on Detection of Acidic pH and Cu2+ in Chicken Blood and Living Cells. Dyes Pigm. 2020, 173, 107916. DOI: 10.1016/j.dyepig.2019.107916.
  • Yuan, X.; Zhang, T.; Yan, J.; Chen, X.; Wang, L.; Liu, X.; Zheng, K.; Zhang, N. A Simple Acidic ‘Turn-On’ Fluorescent pH Probe Based on BOPYIN and Its Visual Detection and Cellular Imaging. Dyes Pigm. 2020, 177, 108318. DOI: 10.1016/j.dyepig.2020.108318.
  • Mohamed, M. B. I.; Aysha, T. S.; Elmorsi, T. M.; El-Sedik, M.; Omara, S. T.; Shaban, E.; Kandil, O. M.; Bedair, A. H. Colorimetric Chemosensor and Turn on Fluorescence Probe for pH Monitoring Based on Xanthene Dye Derivatives and Its Bioimaging of Living Escherichia coli Bacteria. J. Fluoresc. 2020, 30, 601–612. DOI: 10.1007/s10895-020-02522-1.
  • Benitez-Martin, C.; Guadix, J. A.; Pearson, J. R.; Najera, F.; Perez-Pomares, J. M.; Perez-Inestrosa, E. Indolenine-Based Derivatives as Customizable Two-Photon Fluorescent Probes for pH Bioimaging in Living Cells. ACS Sens. 2020, 5, 1068–1074. DOI: 10.1021/acssensors.9b02590.
  • He, X.; Xu, W.; Xu, C.; Ding, F.; Chen, H.; Shen, J. Reversible Spiropyran-Based Chemosensor with pH-Switches and Application for Bioimaging in Living Cells, Pseudomonas aeruginosa and Zebrafish. Dyes Pigm. 2020, 180, 108497. DOI: 10.1016/j.dyepig.2020.108497.
  • Haldar, U.; Chaudhury, S. S.; Sharma, R.; Ruidas, B.; Patra, S. G.; Mukhopadhyay, C. D.; Lee, H. A Fluorimetric Water-Soluble Polymeric pH Chemosensor for Extremely Acidic Conditions: Live-Cell and Bacterial Imaging Application. Sens. Actuators B Chem. 2020, 320, 128379. DOI: 10.1016/j.snb.2020.128379.
  • He, X.; Ding, F.; Xu, W.; Xu, C.; Li, Y.; Qian, Y.; Zhao, S.; Chen, H.; Shen, J. FRET-Based Colorimetric and Ratiometric Sensor for Visualizing pH Change and Application for Bioimaging in Living Cells, Bacteria and Zebrafish. Anal. Chim. Acta. 2020, 1127, 29–38. DOI: 10.1016/j.aca.2020.06.031.
  • Yang, J.; Li, M.; Zhu, W. H. Dicyanomethylene-4H-Pyran-Based NIR Fluorescent Ratiometric Chemosensor for pH Measurement. Res. Chem. Intermed. 2018, 44, 3959–3969. DOI: 10.1007/s11164-018-3334-z.
  • Wang, Z.; Zhang, Y.; Li, M.; Yang, Y.; Xu, X.; Xu, H.; Liu, J.; Fang, H.; Wang, S. Two D-π-a Type Fluorescent Probes Based on Isolongifolanone for Sensing Acidic pH with Large Stokes Shifts. Tetrahedron 2018, 74, 3030–3037. DOI: 10.1016/j.tet.2018.05.008.
  • Hwang, S. M.; Kim, C. Fluorescent Detection of Zn2+ and Cu2+ by a Phenanthrene-Based Multifunctional Chemosensor That Acts as a Basic pH Indicator. Inorg. Chim. Acta 2018, 482, 375–383. DOI: 10.1016/j.ica.2018.06.039.
  • Yuan, C.; Li, J.; Xi, H.; Li, Y. A Sensitive Pyridine-Containing Turn-off Fluorescent Probe for pH Detection. Mater. Lett. 2019, 236, 9–12. DOI: 10.1016/j.matlet.2018.10.060.
  • Li, J.; Zhuge, X.; Yan, X.; Li, Y.; Yuan, C. Two pH-Responsive Fluorescence Probes Based on Indole Derivatives. Opt. Mater. 2019, 90, 257–263. DOI: 10.1016/j.optmat.2019.03.001.
  • Ye, F.; Liang, X. M.; Wu, N.; Li, P.; Chai, Q.; Fu, Y. A New Perylene-Based Fluorescent pH Chemosensor for Strongly Acidic Condition. Spectrochim. Acta A 2019, 216, 359–364. DOI: 10.1016/j.saa.2019.03.049.
  • Georgiev, N. I.; Krasteva, P. V.; Bojinov, V. B. A Ratiometric 4-Amido-1,8-Naphthalimide Fluorescent Probe Based on Excimer-Monomer Emission for Determination of pH and Water Content in Organic Solvents. J. Lumin. 2019, 212, 271–278. DOI: 10.1016/j.jlumin.2019.04.053.
  • Aysha, T. S.; Sedik, M. S.; Mohamed, M. B. I.; Gaballah, S. T.; Kamel, M. M. Dual Functional Colorimetric and Turn-off Fluorescence Probe Based on Pyrrolinone Ester Hydrazone Dye Derivative for Cu2+ Monitoring and pH Change. Dyes Pigm. 2019, 170, 107549. DOI: 10.1016/j.dyepig.2019.107549.
  • Wang, Y.; Zeng, L.; Zhou, J.; Jiang, B.; Zhao, L.; Wang, C.; Xu, B. A Dansyl Fluorescent pH Probe with Wide Responsive Range in Aqueous Solution. Spectrochim. Acta A 2019, 223, 117348. DOI: 10.1016/j.saa.2019.117348.
  • Hazra, A.; Roy, A.; Bhattacharjee, A.; Barma, A.; Roy, P. Quinoline Based Chromogenic and Fluorescence Chemosensor for pH: Effect of Isomer. J. Mol. Struct. 2020, 1201, 127173. DOI: 10.1016/j.molstruc.2019.127173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.