230
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Micrometeorological Methods for the Indirect Estimation of Odorous Emissions

ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 1531-1560 | Published online: 18 Feb 2022

References

  • Bokowa, A.; Diaz, C.; Koziel, J.A.; McGinley, M.; Barclay, J.; Schauberger, G.; Guillot, J.-M.; Sneath, R.; Capelli, L.; Zorich, V.; et al. Summary and Overview of the Odour Regulations Worldwide. Atmosphere 2021, 12, 206. DOI: 10.3390/atmos12020206.
  • Brancher, M.; Griffiths, K.; Franco, D.; Lisboa, H. A Review of Odour Impact Criteria in Selected Countries around the World. Chemosphere 2017, 168, 1531–1570. DOI: 10.1016/j.chemosphere.2016.11.160.
  • Bax, C.; Sironi, S.; Capelli, L. How Can Odors Be Measured? An Overview of Methods and Their Applications. Atmosphere 2020, 11, 92. DOI: 10.3390/atmos11010092.
  • Conti, C.; Guarino, M.; Bacenetti, J. Measurements Techniques and Models to Assess Odor Annoyance: A Review. Environ. Int. 2020, 134, 105261. DOI: 10.1016/j.envint.2019.105261.
  • Muñoz, R.; Sivret, E.C.; Parcsi, G.; Lebrero, R.; Wang, X.; Suffet, I.H.; Stuetz, R.M. Monitoring Techniques for Odour Abatement Assessment. Water Res. 2010, 44, 5129–5149. DOI: 10.1016/j.watres.2010.06.013.
  • Parker, D.B.; Gilley, J.; Woodbury, B.; Kim, K.-H.; Galvin, G.; Bartelt-Hunt, S.L.; Li, X.; Snow, D.D. Odorous VOC Emission following Land Application of Swine Manure Slurry. Atmospheric Environ. 2013, 66, 91–100. DOI: 10.1016/j.atmosenv.2012.01.001.
  • Jo, S.-H.; Kim, K.-H.; Jeon, B.-H.; Lee, M.-H.; Kim, Y.-H.; Kim, B.-W.; Cho, S.-B.; Hwang, O.-H.; Bhattacharya, S.S. Odor Characterization from Barns and Slurry Treatment Facilities at a Commercial Swine Facility in South Korea. Atmospheric Environ. 2015, 119, 339–347. DOI: 10.1016/j.atmosenv.2015.08.064.
  • González, D.; Colón, J.; Sánchez, A.; Gabriel, D. A Systematic Study on the VOCs Characterization and Odour Emissions in a Full-Scale Sewage Sludge Composting Plant. J. Hazard Mater. 2019, 373, 733–740. DOI: 10.1016/j.jhazmat.2019.03.131.
  • Sironi, S.; Capelli, L.; del Rosso, R. Odor Emissions. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2014.
  • Gardner, J.W.; Bartlett, P.N. A Brief History of Electronic Noses. Sensors Actuat. B Chem. 1994, 18, 210–211. DOI: 10.1016/0925-4005(94)87085-3.
  • Cipriano, D.; Capelli, L. Evolution of Electronic Noses from Research Objects to Engineered Environmental Odour Monitoring Systems: A Review of Standardization Approaches. Biosensors 2019, 9, 75. DOI: 10.3390/bios9020075.
  • H Guo; Z Yu; C. Lague Livestock Odour Dispersion Modeling: A Review. In Proceedings of the 2006 CSBE/SCGAB, Edmonton, AB Canada, July 16-19, 2006; American Society of Agricultural and Biological Engineers: St. Joseph, MI, 2006.
  • 10. Sironi, S.; Capelli, L.; Céntola, P.; del Rosso, R.; Pierucci, S. Odour impact assessment by Means of Dynamic Olfactometry, Dispersion Modelling and Social Participation. Atmospheric Environ. 2010, 44, 354–360. DOI: 10.1016/j.atmosenv.2009.10.029.
  • 10. Capelli, L.; Sironi, S.; del Rosso, R. Odor Sampling: Techniques and Strategies for the Estimation of Odor Emission Rates from Different Source Types. Sensors (Basel) 2013, 13, 938–955, DOI: 10.3390/s130100938.
  • 10. Schlegelmilch, M.; Streese, J.; Stegmann, R. Odour Management and Treatment Technologies: An Overview. Waste Manag. 2005, 25, 928–939. DOI: 10.1016/j.wasman.2005.07.006.
  • 10. Capelli, L.; Sironi, S.; Del Rosso, R.; Céntola, P.; Rossi, A.; Austeri, C. Olfactometric Approach for the Evaluation of citizens' exposure to industrial emissions in the city of Terni, Italy. Sci. Total Environ. 2011, 409, 595–603. DOI: 10.1016/j.scitotenv.2010.10.054.
  • 10. Guillot, J.M.; Clincke, A.S.; Guilleman, M. Odour Emission from Liquid and Solid Area Sources: A Large Intercomparison of Sampling Devices. Chem. Eng. Trans. 2014, 40, 151–156. DOI: 10.3303/CET1440026.
  • Romain, A.C.; Delva, J.; Nicolas, J. Complementary Approaches to Measure Environmental Odours Emitted by Landfill Areas. Sens. Actuat. B: Chem. 2008, 131, 18–23. DOI: 10.1016/j.snb.2007.12.005.
  • Lebrero, R.; Bouchy, L.; Stuetz, R.; Muñoz, R. Odor Assessment and Management in Wastewater Treatment Plants: A Review. Crit. Rev. Environ. Sci. Technol. 2011, 41, 915–950. DOI: 10.1080/10643380903300000.
  • Barczak, R.J.; Kulig, A. Comparison of Different Measurement Methods of Odour and Odorants Used in the Odour Impact Assessment of Wastewater Treatment Plants in Poland. Water Sci. Technol. 2017, 75, 944–951. DOI: 10.2166/wst.2016.560.
  • Schiffman, S.S. Livestock Odors: Implications for Human Health and Well-Being. J. Anim. Sci. 1998, 76, 1343–1355. DOI: 10.2527/1998.7651343x.
  • Smith, R.J.; Watts, P.J. Determination of Odour Emission Rates from Cattle Feedlots: Part 1, A Review. J. Agricul. Eng. Res. 1994, 57, 145–155. DOI: 10.1006/jaer.1994.1014.
  • Smith, R.J.; Watts, P.J. Determination of Odour Emission Rates from Cattle Feedlots: Part 2, Evaluation of Two Wind Tunnels of Different Size. J. Agricult. Eng. Res. 1994, 58, 231–240. DOI: 10.1006/jaer.1994.1053.
  • Invernizzi, M.; Ilare, J.; Capelli, L.; Sironi, S. Proposal of a Method for Evaluating Odour Emissions from Refinery Storage Tanks. Chem. Eng. Trans. 2018, 68, 49–54. DOI: 10.3303/CET1868009.
  • Onat, A. The Effects of Sealing Materials on Elimination of Fugitive Emissions. Mater. Design 2008, 29, 533–538. DOI: 10.1016/j.matdes.2006.12.017.
  • Lucernoni, F.; Capelli, L.; Sironi, S. Odour Sampling on Passive Area Sources: Principles and Methods. Chem. Eng. Trans. 2016, 54, 55–60.
  • Lucernoni, F.; Capelli, L.; Sironi, S. Comparison of Different Approaches for the Estimation of Odour Emissions from Landfill Surfaces. Waste Manag. 2017, 63, 345–353. DOI: 10.1016/j.wasman.2016.09.041.
  • Invernizzi, M.; Sironi, S. Odour Emission Rate Estimation Methods for Hydrocarbon Storage Tanks. Chem. Eng. Trans. 2021, 85, 67–72. DOI: 10.3303/CET2185012.
  • Gostelow, P. Sampling for Measurement of Odours: Scientific and Technical Report No.17; IWA Publishing, 2003; ISBN 978-1-843-39033-6.
  • Hudson, N.; Ayoko, G.A. Odour Sampling 1: Physical Chemistry Considerations. Bioresour Technol. 2008, 99, 3982–3992. DOI: 10.1016/j.biortech.2007.04.034.
  • Hudson, N.; Ayoko, G.A. Odour Sampling. 2. Comparison of Physical and Aerodynamic Characteristics of Sampling Devices: A Review. Bioresour. Technol. 2008, 99, 3993–4007. DOI: 10.1016/j.biortech.2007.03.043.
  • Klenbusch, M.R. Measurement of Gaseous Emission Rates from Land Surfaces Using an Emission-Isolation Flux Chamber. User’s Guide; United States, 1986.
  • Reinhart, D.; Cooper, D.; Walker, B. Flux Chamber Design and Operation for the Measurement of Municipal Solid Waste Landfill Gas Emission Rates. J. Air Waste Manag. Assoc. 1992, 42, 1067–1070, DOI: 10.1080/10473289.1992.10467053.
  • Jiang, K.; Kaye, R. Comparison Study on Portable Wind Tunnel System and Isolation Chamber for Determination of Vocs from Areal Sources. Water Sci. Technol. 1996, 34, 583–589. DOI: 10.2166/wst.1996.0479.
  • Frechen, F.-B.; Frey, M.; Wett, M.; Löser, C. Aerodynamic Performance of a Low-Speed Wind Tunnel. Water Sci. Technol. 2004, 50, 57–64, doi: 10.2166/wst.2004.0220.
  • Parker, D.; Casey, K.; Todd, R.; Waldrip, H.; Marek, G.; Auvermann, B.; Marek, T.; Webb, K.; Willis, W.; Pemberton, B.; et al. Improved Chamber Systems for Rapid, Real-Time Nitrous Oxide Emissions from Manure and Soil. Trans. ASABE (Am. Soc. Agricul. Biol. Eng.) 2017, 60, 1–24. DOI: 10.13031/trans.12151.
  • Liu, D.; Nyord, T.; Rong, L.; Feilberg, A. Real-Time Quantification of Emissions of Volatile Organic Compounds from Land Spreading of Pig Slurry Measured by PTR-MS and Wind Tunnels. Sci. Total Environ. 2018, 639, 1079–1087. DOI: 10.1016/j.scitotenv.2018.05.149.
  • Moreno-Silva, C.; Calvo, D.C.; Torres, N.; Ayala, L.; Gaitán, M.; González, L.; Rincón, P.; Susa, M.R. Hydrogen Sulphide Emissions and Dispersion Modelling from a Wastewater Reservoir Using Flux Chamber Measurements and AERMOD® Simulations. Atmosph. Environ. 2020, 224, 117263. DOI: 10.1016/j.atmosenv.2020.117263.
  • Barczak, R.J.; Fisher, R.M.; Le-Minh, N.; Stuetz, R.M. Identification of Volatile Sulfur Odorants Emitted from Ageing Wastewater Biosolids. Chemosphere 2022, 287, 132210. DOI: 10.1016/j.chemosphere.2021.132210.
  • Regione Lombardia. D.g.r. 15 febbraio 2012 - n. IX/3018 Determinazioni Generali in Merito Alla Caratterizzazione Delle Emissioni Gassose in Atmosfera Derivanti Da Attività a Forte Impatto Odorigeno, 2012. https://www.regione.lombardia.it/wps/wcm/connect/e7464d04-b9c5-496f-8546-257170f9e658/DGR + 3018_2012_Linee+guida+odori.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-e7464d04-b9c5-496f-8546-257170f9e658-m6YF2gp ;
  • EN 13725:2003. Air quality – Determination of Odour Concentration by Dynamic Olfactometry, 2003. https://www.antpedia.com/standard/pdf/Z15/1703/BS%20EN%2013725-2003.pdf ;
  • Wales, E. LFTGN07: Guidance on Monitoring Landfill Gas Surface Emissions. Gas Guidance 2010, 67.
  • Prata, A.A.; Santos, J.M.; Timchenko, V.; Stuetz, R.M. A Critical Review on Liquid-Gas Mass Transfer Models for Estimating Gaseous Emissions from Passive Liquid Surfaces in Wastewater Treatment Plants. Water Res. 2018, 130, 388–406. DOI: 10.1016/j.watres.2017.12.001.
  • Lucernoni, F.; Capelli, L.; Busini, V.; Del Rosso, R.; Prata, A.A.; Stuetz, R.; Sironi, S. Investigation of Mass Transfer Phenomena Affecting Emission Rate of Gaseous Compounds from Porous Solids. Process Safety Environ. Protect. 2018, 116, 516–526. DOI: 10.1016/j.psep.2018.02.018.
  • Invernizzi, M.; Bellini, A.; Miola, R.; Capelli, L.; Busini, V.; Sironi, S. Assessment of the Chemical-Physical Variables Affecting the Evaporation of Organic Compounds from Aqueous Solutions in a Sampling Wind Tunnel. Chemosphere 2019, 220, 353–361. DOI: 10.1016/j.chemosphere.2018.12.124.
  • Andreão, W.L.; Santos, J.M.; Reis Jr., N.C.; Prata Jr., A.A.; Stuetz, R.M. Effects of Flux Chamber Configuration on the Sampling of Odorous Gases Emissions. Int. J. Heat Mass Transfer 2019, 140, 918–930. DOI: 10.1016/j.ijheatmasstransfer.2019.06.029.
  • Invernizzi, M.; Teramo, E.; Busini, V.; Sironi, S. A Model for the Evaluation of Organic Compounds Emission from Aerated Liquid Surfaces. Chemosphere 2020, 240, 124923, DOI: 10.1016/j.chemosphere.2019.124923.
  • Tagliaferri, F.; Invernizzi, M.; Sironi, S. Influence of Wind Velocity on the Emission Rate of Acetone Aqueous Solution at Different Concentrations. Chem. Eng. Trans. 2021, 127–132. DOI: 10.3303/CET2185022.
  • Mønster, J.; Kjeldsen, P.; Scheutz, C. Methodologies for Measuring Fugitive Methane Emissions from Landfills - A review. Waste Manag. 2019, 87, 835–859. DOI: 10.1016/j.wasman.2018.12.047.
  • Hu, E.; Babcock, E.L.; Bialkowski, S.E.; Jones, S.B.; Tuller, M. Methods and Techniques for Measuring Gas Emissions from Agricultural and Animal Feeding Operations. Crit. Rev. Anal. Chem. 2014, 44, 200–219. DOI: 10.1080/10408347.2013.843055.
  • Verma, S.B. Micrometeorological Methods for Measuring Surface Fluxes of Mass and Energy. Remote Sens. Rev. 1990, 5, 99–115. DOI: 10.1080/02757259009532124.
  • Fowler, D. Measurements of CH4 and N2O Fluxes at the Landscape Scale Using Micrometeorological Methods. Philosoph. Trans. Royal Soc. London, A 1995, 351, 339–356. DOI: 10.1098/rsta.1995.0038.
  • Meyers, T.P.; Baldocchi, D.D. Current Micrometeorological Flux Methodologies with Applications in Agriculture. Micrometeorol. Agricult. Syst. 2015, 381–396. DOI: 10.2134/agronmonogr47.c16.
  • Maier, M.; Schack-Kirchner, H. Using the Gradient Method to Determine Soil Gas Flux: A Review. Agricult. Forest Meteorol. 2014, 192–193, 78–95. DOI: 10.1016/j.agrformet.2014.03.006.
  • Bax, C.; Lotesoriere, B.J.; Capelli, L. Real-Time Monitoring of Odour Concentration at a Landfill Fenceline : Performance Verification in the Field. 2021, 85, 19–24. DOI: 10.3303/CET2185004.
  • Horst, T.W.; Weil, J.C. How Far is Far Enough?: the Fetch Requirements for Micrometeorological Measurement of Surface Fluxes. J. Atmos. Oceanic Technol. 1994, 11, 1018–1025. > 2.0.CO;2. DOI: 10.1175/1520-0426(1994)011 < 1018:HFIFET.
  • Vesala, T.; Kljun, N.; Rannik, Ü.; Rinne, J.; Sogachev, A.; Markkanen, T.; Sabelfeld, K.; Foken, Th.; Leclerc, M.Y. Flux and Concentration Footprint Modelling: State of the Art. Environ. Pollut. 2008, 152, 653–666. DOI: 10.1016/j.envpol.2007.06.070.
  • Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; Vol. 13; ISBN 978-9-027-72769-5.
  • Dang, R.; Yang, Y.; Hu, F.; Wang, Z.; Zhang, S. A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data. Remote Sens. 2019, 11. DOI: 10.3390/rs11131590.
  • di Giuseppe, F.; Riccio, A.; Caporaso, L.; Bonafé, G.; Gobbi, G.P.; Angelini, F. Automatic Detection of Atmospheric Boundary Layer Height Using Ceilometer Backscatter Data Assisted by a Boundary Layer Model. Q.J.R. Meteorol. Soc. 2012, 138, 649–663. DOI: 10.1002/qj.964.
  • Blackadar, A.K. Turbulence and Diffusion in the Atmosphere. Lectures in Environmental Sciences; Springer, Berlin (Germany): Germany, 1997. ISBN 978-3-642-64425-2.
  • Garratt, J.R. Review: The Atmospheric Boundary Layer. Earth-Sci. Rev. 1994, 37, 89–134. DOI: 10.1016/0012-8252(94)90026-4.
  • Panosfsky, H.A.; Dutton, J.A. Atmospheric Turbulence: Models and Methods for Engineering Applications; 1984. ISBN 978-0-471-05714-7.
  • Sorbjan, Z. Structure of the Atmospheric Boundary Layer; 1989. ISBN 978-0-138-53557-5.
  • Brown, R.A. Fluid Mechanics of the Atmosphere; Academic Press, 1991. ISBN 978-0-080-91711-5.
  • Frisch, U. Turbulence: The Legacy of A.N. Kolmogorov; 1995. ISBN 9780521451031.
  • Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, 2000. ISBN 9780521598866.
  • Mortarini, L.; Ferrero, E.; Falabino, S.; Trini Castelli, S.; Richiardone, R.; Anfossi, D. Low-Frequency Processes and Turbulence Structure in a Perturbed Boundary Layer. Q.J.R. Meteorol. Soc. 2013, 139, 1059–1072. DOI: 10.1002/qj.2015.
  • Nappo, C.J. An Introduction to Atmospheric Gravity Waves ; Academic Press, 2013. ISBN 978-0-123-85224-3.
  • Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics: Mechanics of Turbulence; Dover Publications, Vol. 1; 2007. ISBN 978-0-486-45883-0.
  • Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics: Mechanics of Turbulence; Dover Publications, Vol. 2; 2007. ISBN 978-0-486-45891-5.
  • Reynolds, O. IV. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philosoph. Trans. Royal Soc. London. (A.) 1895, 186, 123–164, DOI: 10.1098/rsta.1895.0004.
  • Businger, J.A. Equations and Concepts. In Atmospheric Turbulence and Air Pollution Modelling; Springer Netherlands: Dordrecht, 1984; pp. 1–36.
  • Pielke, R.A. Mesoscale Meteorological Modeling; Academic Press, Vol. 98; 2013. ISBN 978-0-123-85238-0.
  • Burba, G.; Anderson, D. Introduction to the Eddy Covariance Method: General Guidelines and Conventional Workflow; 2007. ISBN E-BOOK ID: 1951D438-A0374350AA92950EFF6457.
  • Sozzi, R.; Valentini, M.; Georgiadis, T. Introduzione Alla Turbolenza Atmosferica: Concetti, Stime, Misure; 2002. ISBN 978-8-837-11325-4.
  • Arya, S.P.S. Introduction to Micrometeorology; Holton, J.R., Ed.; Academic Press: San Diego, Vol. 79; 2001. ISBN 978-0-120-59354-5.
  • Foken, T. Micrometeorology; Springer, Ed.; Vol. 2; 2008. ISBN 978-3-540-74665-2.
  • Tennekes, H. Similarity Relations, Scaling Laws and Spectral Dynamics BT - Atmospheric Turbulence and Air Pollution Modelling: A Course Held in The Hague, 21–25 September, 1981. In; Nieuwstadt, F.T.M., van Dop, H., Eds.; Springer Netherlands: Dordrecht, 1982; pp. 37–68. ISBN 978-94-010-9112-1.
  • Foken, T. 50 Years of the Monin–Obukhov Similarity Theory. Boundary-Layer Meteorol 2006, 119, 431–447. DOI: 10.1007/s10546-006-9048-6.
  • Wyngaard, J.C.; Coté, O. The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer. J. Atmos. Sci. 1971, 28, 190–201. > 2.0.CO;2. DOI: 10.1175/1520-0469(1971)028 < 0190:TBOTKE.
  • Kader, B.A. Determination of Turbulent Momentum and Heat Fluxes by Spectral Methods. Boundary-Layer Meteorol 1992, 61, 323–347. DOI: 10.1007/BF00119096.
  • Andreas, E.L.; Hill, R.J.; Gosz, J.R.; Moore, D.I.; Otto, W.D.; Sarma, A.D. Statistics of Surface-Layer Turbulence over Terrain with Metre-Scale Heterogeneity. Boundary-Layer Meteorol. 1998, 86, 379–408. DOI: 10.1023/A:1000609131683.
  • de Bruin, H.A.R.; Kohsiek, W.; van den Hurk, B.J.J.M. A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat, and Water Vapour Using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities. Boundary-Layer Meteorol. 1993, 63, 231–257. DOI: 10.1007/BF00710461.
  • Moraes, O.L.L. Turbulence Characteristics in the Surface Boundary Layer over the South American Pampa. Boundary-Layer Meteorol. 2000, 96, 317–335. DOI: 10.1023/A:1002604624749.
  • Hill, R.J. Implications of Monin?Obukhov Similarity Theory for Scalar Quantities. J. Atmos. Sci. 1989, 46, 2236–2244. > 2.0.CO;2. DOI: 10.1175/1520-0469(1989)046 < 2236:IOMSTF.
  • Dias, N.L.; Brutsaert, W. Similarity of Scalars under Stable Conditions. Boundary-Layer Meteorol. 1996, 80, 355–373. DOI: 10.1007/BF00119423.
  • Prueger, J.H.; Kustas, W.P. Aerodynamic Methods for Estimating Turbulent Fluxes. In Micrometeorology in Agricultural Systems; 2015; pp. 407–436. ISBN 978-0-891-18158-3.
  • Finn, D.; Lamb, B.; Leclerc, M.Y.; Horst, T.W. Experimental Evaluation of Analytical and Lagrangian Surface-Layer Flux Footprint Models. Boundary-Layer Meteorol. 1996, 80, 283–308. DOI: 10.1007/BF00119546.
  • Rannik, Ü.; Aubinet, M.; Kurbanmuradov, O.; Sabelfeld, K.K.; Markkanen, T.; Vesala, T. Footprint Analysis for Measurements over a Heterogeneous Forest. Boundary-Layer Meteorol. 2000, 97, 137–166. DOI: 10.1023/A:1002702810929.
  • Kormann, R.; Meixner, F.X. An Analytical Footprint Model for Non-Neutral Stratification. Boundary-Layer Meteorol. 2001, 99, 207–224. DOI: 10.1023/A:1018991015119.
  • Neftel, A.; Spirig, C.; Ammann, C. Application and Test of a Simple Tool for Operational Footprint Evaluations. Environ. Pollut. 2008, 152, 644–652. DOI: 10.1016/j.envpol.2007.06.062.
  • Baldocchi, D. Flux Footprints within and over Forest Canopies. Boundary-Layer Meteorol. 1997, 85, 273–292. DOI: 10.1023/A:1000472717236.
  • Haenel, H.-D.; Grünhage, L. Footprint Analysis: A Closed Analytical Solution Based on Height-Dependent Profiles of Wind Speed and Eddy Viscosity. Boundary-Layer Meteorol. 1999, 93, 395–409. DOI: 10.1023/A:1002023724634.
  • Horst, T.W. The Footprint for Estimation of Atmosphere-Surface Exchange Fluxes by Profile Techniques. Boundary-Layer Meteorol. 1999, 90, 171–188. DOI: 10.1023/A:1001774726067.
  • Hsieh, C.-I.; Katul, G.G.; Schieldge, J.; Sigmon, J.T.; Knoerr, K.K. The Lagrangian Stochastic Model for Fetch and Latent Heat Flux Estimation above Uniform and Nonuniform Terrain. Water Resour. Res. 1997, 33, 427–438. DOI: 10.1029/96WR03136.
  • Hsieh, C.-I.; Katul, G.; Chi, T. An Approximate Analytical Model for Footprint Estimation of Scalar Fluxes in Thermally Stratified Atmospheric Flows. Advances in Water Resour. 2000, 23, 765–772. DOI: 10.1016/S0309-1708(99)00042-1.
  • Kljun, N.; Rotach, M.W.; Schmid, H.P. A Three-Dimensional Backward Lagrangian Footprint Model for a Wide Range of Boundary-Layer Stratifications. Boundary-Layer Meteorol. 2002, 103, 205–226. DOI: 10.1023/A:1014556300021.
  • Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Parameterisation for Flux Footprint Predictions. Boundary-Layer Meteorol. 2004, 112, 503–523. DOI: 10.1023/B:BOUN.0000030653.71031.96.
  • Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Two-Dimensional Parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. DOI: 10.5194/gmd-8-3695-2015.
  • Nieuwstadt, F. The Computation of the Friction Velocity u * and the Temperature Scale T * from Temperature and Wind Velocity Profiles by Least-Square Methods. Boundary-Layer Meteorol. 1978, 14, 235–246. DOI: 10.1007/BF00122621.
  • Sozzi, R.; Rossi, F.; Georgiadis, T. Parameter Estimation of Surface Layer Turbulence from Wind Speed Vertical Profile. Environm. Model. Software 2001, 16, 73–85. DOI: 10.1016/S1364-8152(00)00066-9.
  • Padro, J. An Investigation of Flux-Variance Methods and Universal Functions Applied to Three Land-Use Types in Unstable Conditions. Boundary-Layer Meteorol. 1993, 66, 413–425. DOI: 10.1007/BF00712731.
  • Katul, G.G.; Finkelstein, P.L.; Clarke, J.F.; Ellestad, T.G. An Investigation of the Conditional Sampling Method Used to Estimate Fluxes of Active, Reactive, and Passive Scalars. J. Appl. Meteor. 1996, 35, 1835–1845. DOI: 10.1175/1520-0450(1996)0351835:AIOTCS2.0.CO;2.
  • Sjöblom, A.; Smedman, A.-S. Comparison between Eddy-Correlation and Inertial Dissipation Methods in the Marine Atmospheric Surface Layer. Boundary-Layer Meteorol. 2004, 110, 141–164. DOI: 10.1023/A:1026006402060.
  • Hsieh, C.-I.; Katul, G.G. Dissipation Methods, Taylor’s Hypothesis, and Stability Correction Functions in the Atmospheric Surface Layer. J. Geophys. Res. 1997, 102, 16391–16405. DOI: 10.1029/97JD00200.
  • Hsieh, C.-I.; Katul, G.G.; Schieldge, J.; Sigmon, J.; Knoerr, K.R. Estimation of Momentum and Heat Fluxes Using Dissipation and Flux-Variance Methods in the Unstable Surface Layer. Water Resour. Res. 1996, 32, 2453–2462. DOI: 10.1029/96WR01337.
  • Vargas, R.; Yépez, E.A.; Andrade, J.L.; Ángeles, G.; Arredondo, T.; Castellanos, A.E.; Delgado-Balbuena, J.; Garatuza-Payán, J.; González Del Castillo, E.; Oechel, W.; et al. Progress and Opportunities for Monitoring Greenhouse Gases Fluxes in Mexican Ecosystems: The MexFlux Network. Atmósfera 2013, 26, 325–336. DOI: 10.1016/S0187-6236(13)71079-8.
  • Mizoguchi, Y.; Miyata, A.; Ohtani, Y.; Hirata, R.; Yuta, S. A Review of Tower Flux Observation Sites in Asia. J. Forest Res. 2009, 14, 1–9. DOI: 10.1007/s10310-008-0101-9.
  • Bhattacharyya, P.; Mohanty, S.; Sarkar, R.K.; Bhatia, A.; Jain, N.; Kumar, A.; Pathak, H. Measurement of Integrated Greenhouse Gas Flux with Eddy Covariance Technique. In Measurement of Greenhouse Gas Emission from Crop, Livestock and Aquaculture; 2013; pp. 18–28. ISBN 978-81-88708-98-7.
  • Chen, Z. Spatial Patterns and Mechanisms for Terrestrial Ecosystem Carbon Fluxes in the Northern Hemisphere; Springer, 2018. ISBN 978-981-1-07703-6.
  • Hargrove, W.W.; Hoffman, F.M.; Law, B.E. New Analysis Reveals Representativeness of the AmeriFlux Network. Eos Trans. AGU 2003, 84, 529–535. DOI: 10.1029/2003EO480001.
  • Todd, R. W., Cole, N. A., Rhoades, M. B., Parker, D. B.; Casey, K. D. Monthly, Seasonal, and Annual Ammonia Emissions from Southern High Plains Cattle Feedyards. J. Environ. Qual. 2011, 40, 1090–1095. DOI: 10.2134/jeq2010.0307.
  • Famulari, D.; Fowler, D.; Hargreaves, K.; Milford, C.; Nemitz, E.; Sutton, M.A.; Weston, K. Measuring Eddy Covariance Fluxes of Ammonia Using Tunable Diode Laser Absorption Spectroscopy. Water Air Soil Pollut. Focus 2005, 4, 151–158. DOI: 10.1007/s11267-005-3025-9.
  • Ferrara, R.M.; Loubet, B.; di Tommasi, P.; Bertolini, T.; Magliulo, V.; Cellier, P.; Eugster, W.; Rana, G. Eddy Covariance Measurement of Ammonia Fluxes: Comparison of High Frequency Correction Methodologies. Agricult. Forest Meteorol. 2012, 158–159, 30–42. DOI: 10.1016/j.agrformet.2012.02.001.
  • Ferrara, R.M.; Carozzi, M.; di Tommasi, P.; Nelson, D.D.; Fratini, G.; Bertolini, T.; Magliulo, V.; Acutis, M.; Rana, G. Dynamics of Ammonia Volatilisation Measured by Eddy Covariance during Slurry Spreading in North Italy. Agricult. Ecosyst. Environ. 2016, 219, 1–13. DOI: 10.1016/j.agee.2015.12.002.
  • Miller, D.J.; Sun, K.; Tao, L.; Khan, M.A.; Zondlo, M.A. Open-Path, Quantum Cascade-Laser-Based Sensor for High-Resolution Atmospheric Ammonia Measurements. Atmos. Meas. Tech. 2014, 7, 81–93. DOI: 10.5194/amt-7-81-2014.
  • Sun, K.; Tao, L.; Miller, D.J.; Zondlo, M.A.; Shonkwiler, K.B.; Nash, C.; Ham, J.M. Open-Path Eddy Covariance Measurements of Ammonia Fluxes from a Beef Cattle Feedlot. Agricult. Forest Meteorol. 2015, 213, 193–202. DOI: 10.1016/j.agrformet.2015.06.007.
  • Wienhold, F.G.; Frahm, H.; Harris, G.W. Measurements of N 2 O Fluxes from Fertilized Grassland Using a Fast Response Tunable Diode Laser Spectrometer. J. Geophys. Res. 1994, 99, 16557. DOI: 10.1029/93JD03279.
  • Smith, K. A., Clayton, H., Arab, J. R. M., Christensen, S., Ambus, P., Fowler, D., Hargreaves, K. J., Skiba, U., Harris, G. W., Wienhold, F. G., Klemedtsson, L.; Galle, B. Micrometeorological and Chamber Methods for Measurement of Nitrous Oxide Fluxes between Soils and the Atmosphere: Overview and Conclusions. J. Geophys. Res. 1994, 99, 16,16541–541. DOI: 10.1029/94JD00619.
  • Laville, P.; Jambert, C.; Cellier, P.; Delmas, R. Nitrous Oxide Fluxes from a Fertilised Maize Crop Using Micrometeorological and Chamber Methods. Agricult. Forest Meteorol. 1999, 96, 19–38. DOI: 10.1016/S0168-1923(99)00054-4.
  • Gosten, H.; Heinrich, G. On-Line Measurements of Ozone Surface Fluxes: Part I. Methodology and Instrumentation. Atmospheric Environ. 1996, 30, 897–909. DOI: 10.1016/1352-2310(95)00269-3.
  • Gerosa, G.; Cieslik, S.; Ballarin-Denti, A. Micrometeorological Determination of Time-Integrated Stomatal Ozone Fluxes over Wheat: A Case Study in Northern Italy. Atmospheric Environ. 2003, 37, 777–788. DOI: 10.1016/S1352-2310(02)00927-5.
  • Lamaud, E.; Brunet, Y.; Labatut, A.; Lopez, A.; Fontan, J.; Druilhet, A. The Landes Experiment: Biosphere-Atmosphere Exchanges of Ozone and Aerosol Particles above a Pine Forest. J. Geophys. Res. 1994, 99, 16511. DOI: 10.1029/94JD00668.
  • McDermitt, D., Burba, G., Xu, L., Anderson, T., Komissarov, A., Riensche, B., Schedlbauer, J., Starr, G., Zona, D., Oechel, W., Oberbauer, S.; Hastings, S. A New Low-Power, Open-Path Instrument for Measuring Methane Flux by Eddy Covariance. Appl. Phys. B 2011, 102, 391–405. DOI: 10.1007/s00340-010-4307-0.
  • Hargreaves, K.J.; Fowler, D.; Pitcairn, C.E.R.; Aurela, M. Annual Methane Emission from Finnish Mires Estimated from Eddy Covariance Campaign Measurements. Theoret. Appl. Climatol. 2001, 70, 203–213. DOI: 10.1007/s007040170015.
  • Kroon, P.S.; Hensen, A.; Jonker, H.J.J.; Ouwersloot, H.G.; Vermeulen, A.T.; Bosveld, F.C. Uncertainties in Eddy Covariance Flux Measurements Assessed from CH4 and N2O Observations. Agricult. Forest Meteorol. 2010, 150, 806–816, . DOI: 10.1016/j.agrformet.2009.08.008.
  • Karl, T.G.; Spirig, C.; Rinne, J.; Stroud, C.; Prevost, P.; Greenberg, J.; Fall, R.; Guenther, A. Virtual Disjunct Eddy Covariance Measurements of Organic Compound Fluxes from a Subalpine Forest Using Proton Transfer Reaction Mass Spectrometry. Atmos. Chem. Phys. 2002, 2, 279–291. DOI: 10.5194/acp-2-279-2002.
  • Spirig, C.; Neftel, A.; Ammann, C.; Dommen, J.; Grabmer, W.; Thielmann, A.; Schaub, A.; Beauchamp, J.; Wisthaler, A.; Hansel, A. Eddy Covariance Flux Measurements of Biogenic VOCs during ECHO 2003 Using Proton Transfer Reaction Mass Spectrometry. Atmos. Chem. Phys. 2005, 5, 465–481, DOI: 10.5194/acp-5-465-2005.
  • Velasco, E.; Pressley, S.; Grivicke, R.; Allwine, E.; Coons, T.; Foster, W.; Jobson, B.T.; Westberg, H.; Ramos, R.; Hernández, F.; et al. Eddy Covariance Flux Measurements of Pollutant Gases in Urban Mexico City. Atmos. Chem. Phys. 2009, 9, 7325–7342. DOI: 10.5194/acp-9-7325-2009.
  • Müller, M.; Graus, M.; Ruuskanen, T.M.; Schnitzhofer, R.; Bamberger, I.; Kaser, L.; Titzmann, T.; Hörtnagl, L.; Wohlfahrt, G.; Karl, T.; et al. First Eddy Covariance Flux Measurements by PTR-TOF. Atmos Meas Tech. 2010, 3, 387–395. DOI: 10.5194/amt-3-387-2010.
  • Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer Netherlands: Dordrecht, 2012. ISBN 978-9-400-72350-4.
  • Lee, X.; Massman, W.; Law, B. Handbook of Micrometeorology. A Guide for Surface Flux Measurement and Analysis; Kluwer Academic Publishers, 2005. ISBN 978-1-402-02265-4.
  • Burba, G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates; 2013. ISBN 978-0-61576827-4.
  • Dijk, A.; Moene, A.F.; de Bruin, H. The Principles of Surface Flux Physics: Theory, Practice and Description of the ECPACK Library. The Principles of Surface Flux Physics: Theory, Practice and Description of the ECPACK Library, 2004.
  • McMillen, R.T. An Eddy Correlation Technique with Extended Applicability to Non-Simple Terrain. Boundary-Layer Meteorol. 1988, 43, 231–245, DOI: 10.1007/BF00128405.
  • Sozzi, R.; Favaron, M. Sonic Anemometry and Thermometry: Theoretical Basis and Data-Processing Software. Environ. Software 1996, 11, 259–270. DOI: 10.1016/S0266-9838(96)00046-9.
  • Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic Anemometer Tilt Correction Algorithms. Boundary-Layer Meteorol. 2001, 99, 127–150. DOI: 10.1023/A:1018966204465.
  • Moore, C.J. Frequency Response Corrections for Eddy Correlation Systems. Boundary-Layer Meteorol. 1986, 37, 17–35. DOI: 10.1007/BF00122754.
  • Moncrieff, J.B.; Massheder, J.M.; de Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H.; Verhoef, A. A System to Measure Surface Fluxes of Momentum, Sensible Heat, Water Vapour and Carbon Dioxide. J. Hydrol. 1997, 188–189, 589–611. DOI: 10.1016/S0022-1694(96)03194-0.
  • Rannik, Ü.; Vesala, T. Autoregressive Filtering versus Linear Detrending in Estimation of Fluxes by the Eddy Covariance Method. Boundary-Layer Meteorol. 1999, 91, 259–280. DOI: 10.1023/A:1001840416858.
  • Lenschow, D.H.; Mann, J.; Kristensen, L. How Long is Long Enough When Measuring Fluxes and Other Turbulence Statistics? J. Atmos. Oceanic Technol. 1994, 11, 661–673. > 2.0.CO;2. DOI: 10.1175/1520-0426(1994)011 < 0661:HLILEW.
  • Rinne, J.; Ammann, C. Disjunct Eddy Covariance Method. In; 2012; pp. 291–307. ISBN 978-94-007-2350-4.
  • Rinne, J.; Douffet, T.; Prigent, Y.; Durand, P. Field Comparison of Disjunct and Conventional Eddy Covariance Techniques for Trace Gas Flux Measurements. Environ. Pollut. 2008, 152, 630–635. DOI: 10.1016/j.envpol.2007.06.063.
  • Turnipseed, A.A.; Pressley, S.N.; Karl, T.; Lamb, B.; Nemitz, E.; Allwine, E.; Cooper, W.A.; Shertz, S.; Guenther, A.B. The Use of Disjunct Eddy Sampling Methods for the Determination of Ecosystem Level Fluxes of Trace Gases. Atmos. Chem. Phys. 2009, 9, 981–994. DOI: 10.5194/acp-9-981-2009.
  • Hörtnagl, L.; Clement, R.; Graus, M.; Hammerle, A.; Hansel, A.; Wohlfahrt, G. Dealing with Disjunct Concentration Measurements in Eddy Covariance Applications: A Comparison of Available Approaches. Atmosp. Environ. 2010, 44, 2024–2032. DOI: 10.1016/j.atmosenv.2010.02.042.
  • Desjardins, R.L. Description and Evaluation of a Sensible Heat Flux Detector. Boundary-Layer Meteorol. 1977, 11, 147–154. DOI: 10.1007/BF02166801.
  • Hicks, B.B.; McMillen, R.T. A Simulation of the Eddy Accumulation Method for Measuring Pollutant Fluxes. J. Climate Appl. Meteor. 1984, 23, 637–643. > 2.0.CO;2. DOI: 10.1175/1520-0450(1984)023 < 0637:ASOTEA.
  • Siebicke, L.; Emad, A. True Eddy Accumulation Trace Gas Flux Measurements: Proof of Concept. Atmos. Meas. Tech. 2019, 12, 4393–4420. DOI: 10.5194/amt-12-4393-2019.
  • Businger, J.A.; Oncley, S.P. Flux Measurement with Conditional Sampling. J. Atmos. Oceanic Technol. 1990, 7, 349–352. > 2.0.CO;2. DOI: 10.1175/1520-0426(1990)007 < 0349:FMWCS.
  • Speer, R.E.; Peterson, K.A.; Ellestad, T.G.; Durham, J.L. Test of a Prototype Eddy Accumulator for Measuring Atmospheric Vertical Fluxes of Water Vapor and Particulate Sulfate. J. Geophys. Res. 1985, 90, 2119–2122. DOI: 10.1029/JD090iD01p02119.
  • Neumann, H.H.; den Hartog, G.; Guise-Bagley, L.F. Evaluation of a Digital-Valve Eddy Accumulator Using Water Vapour Flux Measurements and Numerical Simulations of Its Performance. Atmospheric Environment (1967) 1989, 23, 1305–1313. DOI: 10.1016/0004-6981(89)90154-6.
  • Komori, D.; Aoki, M.; Nagashima, T.; Ishida, T. Improvement of an Air Sampling System for the True Eddy Accumulation Technique. J. Agric. Meteorol. 2005, 60, 529–532. DOI: 10.2480/agrmet.529.
  • Rinne, H.J.I.; Delany, A.C.; Greenberg, J.P.; Guenther, A.B. A True Eddy Accumulation System for Trace Gas Fluxes Using Disjunct Eddy Sampling Method. J. Geophys. Res. 2000, 105, 24791–24798, DOI: 10.1029/2000JD900315.
  • Ruppert, J.; Thomas, C.; Foken, T. Scalar Similarity for Relaxed Eddy Accumulation Methods. Boundary-Layer Meteorol 2006, 120, 39–63, DOI: 10.1007/s10546-005-9043-3.
  • Brut, A.; Legain, D.; Durand, P.; Laville, P. A Relaxed Eddy Accumulator for Surface Flux Measurements on Ground-Based Platforms and aboard Research Vessels. J. Atmos. Oceanic Technol. 2004, 21, 411–427. > 2.0.CO;2. DOI: 10.1175/1520-0426(2004)021 < 0411:AREAFS.
  • Riederer, M.; Hübner, J.; Ruppert, J.; Brand, W.; Foken, T. Application of Relaxed Eddy Accumulation (REA) on Managed Grassland. Atmospheric Measur. Techn. Discussions 2014, 7, 4987–5026. DOI: 10.5194/amtd-7-4987-2014.
  • Mochizuki, T.; Tani, A.; Takahashi, Y.; Saigusa, N.; Ueyama, M. Long-Term Measurement of Terpenoid Flux above a Larix Kaempferi Forest Using a Relaxed Eddy Accumulation Method. Atmospheric Environ. 2014, 83, 53–61. DOI: 10.1016/j.atmosenv.2013.10.054.
  • Bowling, D.; Delany, A.C.; Turnipseed, A.; Baldocchi, D.; Monson, R. Modification of the Relaxed Eddy Accumulation Technique to Maximize m Measured Scalar Mixing Ratio Differences in Updrafts and Downdrafts. J. Geophys. Res. 1999, 104, 9121–9133. DOI: 10.1029/1999JD900013.
  • Wyngaard, J.C.; Moeng, C. Parameterizing Turbulent Diffusion through the Joint Probability Density. Boundary-Layer Meteorol. 1992, 60, 1–13. DOI: 10.1007/BF00122059.
  • Ammann, C.; Meixner, F. Stability Dependence of the Relaxed Eddy Accumulation Coefficient for Various Scalar Quantities. J. Geophys. Res. 2002, 107, ACL7-1–ACL7-9. DOI: 10.1029/2001JD000649.
  • Baker, J.M.; Norman, J.M.; Bland, W.L. Field-Scale Application of Flux Measurement by Conditional Sampling. Agricult. Forest Meteorol. 1992, 62, 31–52. DOI: 10.1016/0168-1923(92)90004-N.
  • Sakabe, A.; Ueyama, M.; Kosugi, Y.; Hamotani, K.; Hirano, T.; Hirata, R. Is the Empirical Coefficient b for the Relaxed Eddy Accumulation Method Constant? J. Atmos. Chem. 2014, 71, 79–94. DOI: 10.1007/s10874-014-9282-0.
  • Katul, G.; Peltola, O.; Gronholm, T.; Launiainen, S.; Mammarella, I.; Vesala, T. Ejective and Sweeping Motions above a Peatland and Their Role in Relaxed-Eddy-Accumulation Measurements and Turbulent Transport Modelling. Boundary-Layer Meteorol. 2018, 169, 163–184. DOI: 10.1007/s10546-018-0372-4.
  • Berkowicz, R.; Prahm, L.P. Evaluation of the Profile Method for Estimation of Surface Fluxes of Momentum and Heat. Atmospheric Environ. (1967) 1982, 16, 2809–2819. DOI: 10.1016/0004-6981(82)90032-4.
  • Arya, S.P. Finite-Difference Errors in Estimation of Gradients in the Atmospheric Surface Layer. J. Appl. Meteor. 1991, 30, 251–253. > 2.0.CO;2. DOI: 10.1175/1520-0450(1991)030 < 0251:FDEIEO.
  • Pattey, E.; Edwards, G.; Strachan, I.B.; Desjardins, R.L.; Kaharabata, S.; Wagner Riddle, C. Towards Standards for Measuring Greenhouse Gas Fluxes from Agricultural Fields Using Instrumented Towers. Can. J. Soil. Sci. 2006, 86, 373–400. DOI: 10.4141/S05-100.
  • Baek, B.; Todd, R.; Cole, N.; Koziel, J. Ammonia and Hydrogen Sulfide Flux and Dry Deposition Velocity Estimates Using Vertical Gradient Method at a Commercial Beef Cattle Feedlot. IJGENVI, 2006, 6, 189. DOI: 10.1504/IJGENVI.2006.010154.
  • Phillips, S.B.; Arya, S.P.; Aneja, V.P. Ammonia Flux and Dry Deposition Velocity from near-Surface Concentration Gradient Measurements over a Grass Surface in North Carolina. Atmospheric Environ. 2004, 38, 3469–3480. DOI: 10.1016/j.atmosenv.2004.02.054.
  • Todd, R.W.; Cole, N.A.; Harper, L.A.; Flesch, T.K.; Baek, B.H.; Todd, R.W.; Campbell Sr, P.; Flesch, T.K. Ammonia and Gaseous Nitrogen Emissions from a Commercial Beef Cattle Feedyard Estimated Using the Flux-Gradient Method and N:P Ratio Analysis; 2005.
  • Zemmelink, H.J.; Gieskes, W.W.C.; Klaassen, W.; de Groot, H.W.; de Baar, H.J.W.; Dacey, J.W.H.; Hintsa, E.J.; Mcgillis, W.R. Simultaneous Use of Relaxed Eddy Accumulation and Gradient Flux Techniques for the Measurement of Sea-to-Air Exchange of Dimethyl Sulphide. Atmospheric Environ. 2002, 36, 5709–5717. DOI: 10.1016/S1352-2310(02)00577-0.
  • Darmais, S., Dutaur, L., Larsen, B., Cieslik, S., Luchetta, L., Simon, V.; Torres, L. Emission Fluxes of VOC by Orange Trees Determined by Both Relaxed Eddy Accumulation and Vertical Gradient Approaches. Chemosphere - Global Change Sci. 2000, 2, 47–56. DOI: 10.1016/S1465-9972(99)00050-1.
  • Kamp, J.N.; Häni, C.; Nyord, T.; Feilberg, A.; Sørensen, L.L. The Aerodynamic Gradient Method: Implications of Non‐Simultaneous Measurements at Alternating Heights. Atmosphere, 2020, 11, 1067. DOI: 10.3390/atmos11101067.
  • Galle, B.; Klemedtsson, L.; Bergqvist, B.; Ferm, M.; Kåre Törnqvist; Griffith, D.W.T.; Jensen, N.-O.; Hansen, F. Measurements of Ammonia Emissions from Spreading of Manure Using Gradient FTIR Techniques. Atmospheric Environ. 2000, 34, 4907–4915. DOI: 10.1016/S1352-2310(00)00220-X.
  • Baker, B.; Guenther, A.; Greenberg, J.; Goldstein, A.; Fall, R. Canopy Fluxes of 2-Methyl-3-Buten-2-Ol over a Ponderosa Pine Forest by Relaxed Eddy Accumulation: Field Data and Model Comparison. J. Geophys. Res. 1999, 104, 26107–26114. DOI: 10.1029/1999JD900749.
  • Christensen, C.S.; Hummelshøj, P.; Jensen, N.O.; Larsen, B.; Lohse, C.; Pilegaard, K.; Skov, H. Determination of the Terpene Flux from Orange Species and Norway Spruce by Relaxed Eddy Accumulation. Atmospheric Environ. 2000, 34, 3057–3067. DOI: 10.1016/S1352-2310(99)00502-6.
  • Gallagher, M.; Clayborough, R.; Beswick, K.; Hewitt, C.N.; Owen, S.; Moncrieff, J.; Pilegaard, K. Assessment of a Relaxed Eddy Accumulation for Measurements of Fluxes of Biogenic Volatile Organic Compounds: Study over Arable Crops and a Mature Beech Forest. Atmospheric Environ. 2000, 34, 2887–2899. DOI: 10.1016/S1352-2310(00)00066-2.
  • Graus, M., Hansel, A., Wisthaler, A., Lindinger, C., Forkel, R., Hauff, K., Klauer, M., Pfichner, A., Rappenglück, B., Steigner, D.; Steinbrecher, R. A Relaxed-Eddy-Accumulation Method for the Measurement of Isoprenoid Canopy-Fluxes Using an Online Gas-Chromatographic Technique and PTR-MS Simultaneously. Atmospheric Environ. 2006, 40, 43–54. DOI: 10.1016/j.atmosenv.2005.09.094.
  • Park, C., Schade, G. W.; Boedeker, Ian. Boedeker an, I. Flux Measurements of Volatile Organic Compounds by the Relaxed Eddy Accumulation Method Combined with a GC-FID System in Urban Houston, Texas. Atmospheric Environ. 2010, 44, 2605–2614. DOI: 10.1016/j.atmosenv.2010.04.016.
  • Zhu, T.; Pattey, E.; Desjardins, R.L. Relaxed Eddy-Accumulation Technique for Measuring Ammonia Volatilization. Environ. Sci. Technol. 2000, 34, 199–203. DOI: 10.1021/es980928f.
  • Foken, T.; Wichura, B. Tools for Quality Assessment of Surface-Based Flux Measurements. Agricult. Forest Meteorol. 1996, 78, 83–105. DOI: 10.1016/0168-1923(95)02248-1.
  • Nemitz, E.; Flynn, M.; Williams, P.; Milford, C.; Theobald, M.; Blatter, A.; Gallagher, M.; Sutton, M. A Relaxed Eddy Accumulation System for the Automated Measurement of Atmospheric Ammonia Fluxes. Water, Air, & Soil Pollution: Focus 2001, 1, 189–202. DOI: 10.1023/A:1013103122226.
  • Pattey, E.; Desjardins, R.L.; Rochette, P. Accuracy of the Relaxed Eddy-Accumulation Technique, Evaluated Using CO2 Flux Measurements. Boundary-Layer Meteorol. 1993, 66, 341–355. DOI: 10.1007/BF00712728.
  • Smith, E.; Gordon, R.; Campbell A.; Bourque, C.P. A. An Assessment of Odour Emissions from Land Applied Swine Manure. Can. Biosyst. Eng. 2007, 49, 6.33–6.40.
  • Mkhabela, M.; Gordon, R.; Smith, E.; Burton, D. Measurement of Odour Emissions Using Micrometeorological Techniques following Application of Hog Slurry to Grass. Can. Biosyst. Eng. 2008, 50, 6.37–6.45.
  • Beauchamp, E.G.; Kidd, G.E.; Thurtell, G. Ammonia Volatilization from Sewage Sludge Applied in the Field. J. Environ. Qual. 1978, 7, 141–146. DOI: 10.2134/jeq1978.00472425000700010030x.
  • Wilson, J.D.; Thurtell, G.W.; Kidd, G.E.; Beauchamp, E.G. Estimation of the Rate of Gaseous Mass Transfer from a Surface Source Plot to the Atmosphere. Atmospheric Environ. (1967) 1982, 16, 1861–1867. DOI: 10.1016/0004-6981(82)90374-2.
  • Gordon, R.; Schuepp, P.; Brunke, R.; Leclerc, M. Field Estimates of Ammonia Volatilization from Swine Manure by a Simple Micrometeorological Technique. Can. J. Soil. Sci. 1988, 68, 369–380. DOI: 10.4141/cjss88-034.
  • Southwood, M.; Rowland, J.; Lockwood, R.; Horrocks, D.; Pointing, J.; Longhurst, P.; Sneath, R.W.; Peirson, S.; Selwyn, T. Odour Guidance for Local Authorities; 2010.
  • Capelli, L.; Sironi, S.; Del Rosso, R.; Guillot, J.M. Measuring Odours in the Environment vs. Dispersion Modelling: A Review. Atmospheric Environ. 2013, 79, 731–743. DOI: 10.1016/j.atmosenv.2013.07.029.
  • Thomson, D.J. Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows. J. Fluid Mech. 1987, 180, 529–556. DOI: 10.1017/S0022112087001940.
  • Flesch, T.K.; Wilson, J.D.; Yee, E. Backward-Time Lagrangian Stochastic Dispersion Models and Their Application to Estimate Gaseous Emissions. J. Appl. Meteor. 1995, 34, 1320–1332. > 2.0.CO;2. DOI: 10.1175/1520-0450(1995)034 < 1320:BTLSDM.
  • Oke, T.R. Boundary Layer Climates; Routledge: London, 1987. ISBN 978-1-134-95134-5.
  • Dyer, A.J. A Review of Flux-Profile Relationships. Boundary-Layer Meteorol. 1974, 7, 363–372. DOI: 10.1007/BF00240838.
  • Dyer, A.J.; Hicks, B.B. Flux-Gradient Relationships in the Constant Flux Layer. Q.J Royal Met. Soc. 1970, 96, 715–721. DOI: 10.1002/qj.49709641012.
  • Beljaars, A.C.M.; Holtslag, A.A.M. Flux Parameterization over Land Surfaces for Atmospheric Models. J. Appl. Meteor. 1991, 30, 327–341. > 2.0.CO;2. DOI: 10.1175/1520-0450(1991)030 < 0327:FPOLSF.
  • Flesch, T.K.; Prueger, J.H.; Hatfield, J.L. Turbulent Schmidt Number from a Tracer Experiment. Agricult. Forest Meteorol. 2002, 111, 299–307, DOI: 10.1016/S0168-1923(02)00025-4.
  • Businger, J.A.; Wyngaard, J.C.; Izumi, Y.; Bradley, E.F. Flux-Profile Relationships in the Atmospheric Surface Layer. J. Atmos. Sci. 1971, 28, 181–189. > 2.0.CO;2. DOI: 10.1175/1520-0469(1971)028 < 0181:FPRITA.
  • Högström, U. Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation. Boundary-Layer Meteorol. 1988, 42, 55–78. DOI: 10.1007/BF00119875.
  • Gryanik, V.M.; Lüpkes, C.; Grachev, A.; Sidorenko, D. New Modified and Extended Stability Functions for the Stable Boundary Layer Based on SHEBA and Parametrizations of Bulk Transfer Coefficients for Climate Models. J. Atmospheric Sci. 2020, 77, 2687–2716. DOI: 10.1175/JAS-D-19-0255.1.
  • Högström, U. Von Kármán’s Constant in Atmospheric Boundary Layer Flow: Reevaluated. J. Atmos. Sci. 1985, 42, 263–270. > 2.0.CO;2. DOI: 10.1175/1520-0469(1985)042 < 0263:VKCIAB.
  • Hensen, A.; Nemitz, E.; Flynn, M.J.; Blatter, A.; Jones, S.K.; Sorensen, L.L.; Hensen, B.; Pryor, S.C.; Jensen, B.; Otjes, R.P. Inter-Comparison of Ammonia Fluxes Obtained Using the Relaxed Eddy Accumulation Technique To Cite This Version: Inter-Comparison of Ammonia Fluxes Obtained Using the Relaxed Eddy Accumulation Technique. DOI: 10.5194/bg-6-2575-2009ï.
  • McBain, M.C.; Desjardins, R. The Evaluation of a Backward Lagrangian Stochastic (BLS) Model to Estimate Greenhouse Gas Emissions from Agricultural Sources Using a Synthetic Tracer Source. Agricult. Forest Meteorol. 2005, 135, 61–72, DOI: 10.1016/j.agrformet.2005.10.003.
  • Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Crenna, B.P.; Sharpe, R.R. Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial. J. Appl. Meteor. 2004, 43, 487–502. > 2.0.CO;2. DOI: 10.1175/1520-0450(2004)043 < 0487:DGEFOT.
  • Gao, Z.; Desjardins, R.; Flesch, T. Comparison of a Simplified Micrometeorological Mass Difference Technique and an Inverse Dispersion Technique for Estimating Methane Emissions from Small Area Sources. Agricult. Forest Meteorol. AGR Forest Meteorol. 2009, 149, 891–898. DOI: 10.1016/j.agrformet.2008.11.005.
  • FleschT.K.harperL.powellM.wilsonJ.D. Inverse-Dispersion calculation of ammonia emissions from Wisconsin dairy farms. Trans. ASABE 2009, 52. doi:10.13031/2013.25946
  • Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of Flux Measurements for Density Effects Due to Heat and Water Vapour Transfer. Q.J Royal Met. Soc. 1980, 106, 85–100. DOI: 10.1002/qj.49710644707.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.