734
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Advances in Chemical Analysis of Oil Spills Since the Deepwater Horizon Disaster

ORCID Icon, , , , , , & show all
Pages 1638-1697 | Published online: 07 Mar 2022

References

  • Kujawinski, E. B.; Reddy, C. M.; Rodgers, R. P.; Thrash, J. C.; Valentine, D. L.; White, H. K. The First Decade of Scientific Insights from the Deepwater Horizon Oil Release. Nat. Rev. Earth Environ. 2020, 1, 237–250. DOI: 10.1038/s43017-020-0046-x.
  • Stout, S. A.; Wang, Z. Standard Handbook Oil Spill Environmental Forensics - Fingerprinting and Source Identification; 2nd ed. Elsevier Academic Press: San Diego, CA, 2016.
  • Stout, S. A.; Wang, Z. Oil Spill Environmental Forensics - Case Studies; Elsevier Butterworth-Heinemann: Cambridge, MA, 2018.
  • Wang, Z.; Stout, S. A. Oil Spill Environmental Forensics: Fingerprinting and Source Identification; Elsevier Academic Press Inc: San Diego, 2007.
  • Murawski, S. A.; Ainsworth, C. H.; Gilbert, C.; Hollander, C. B.; Schluter, M.; Wetzel, D. L. Deep Water Oil Spills - Facts, Fate and Effects; Springer: Switzerland, 2020.
  • Overton, E. B.; Wade, T. L.; Radovic, J. R.; Meyer, B. M.; Miles, M. S.; Larter, S. R. Chemical Composition of Macondo and Other Crude Oils and Compositional Alterations during Oil Spills. Oceanog. 2016, 29, 50–63. DOI: 10.5670/oceanog.2016.62.
  • Tarr, M.; Zito, P.; Overton, E.; Olson, G.; Adkikari, P.; Reddy, C. Weathering of Oil Spilled in the Marine Environment. Oceanog. 2016, 29, 126–135. DOI: 10.5670/oceanog.2016.77.
  • Wise, S. A.; Sander, L. C.; Schantz, M. M. Analytical Methods for Determination of Polycyclic Aromatic Hydrocarbons (PAHs) – A Historical Perspective on the 16 US EPA Priority Pollutant PAHs. Polycyclic Aromat. Compd. 2015, 35, 187–247. DOI: 10.1080/10406638.2014.970291.
  • Wang, Z. D.; Yang, C.; Yang, Z. Y.; Brown, C. E.; Hollebone, B. P.; Stout, S. A. Petroleum Biomarker Fingerprinting for oil Spill Characterization and Source Identification; In Oil Spill Environmental Forensics: Fingerprinting and Source Identification; Elsevier Academic Press: San Diego, CA; 2007; pp 73–146.
  • Payne, J. R.; Phillips, C. R. Photochemistry of Petroleum in Water. Environ. Sci. Technol. 1985, 19, 569–579. DOI: 10.1021/es00137a602.
  • Charrie-Duhaut, A.; Lemoine, S.; Adam, P.; Connan, J.; Albrecht, P. Abiotic Oxidation of Petroleum Bitumens under Natural Conditions. Org. Geochem. 2000, 31, 977–1003. DOI: 10.1016/S0146-6380(00)00109-1.
  • Rontani, J. F.; Giral, P. J. P. Significance of Photosensitized Oxidation of Alkanes during the Photochemical Degradation of Petroleum Hydrocarbon Fractions in Seawater. International Journal of Environmental Analytical Chemistry 1990, 42, 61–68. DOI: 10.1080/03067319008028316.
  • Larson, R. A.; Hunt, L. L. Photo-Oxidation of a Refined Petroleum Oil – Inhibition by beta-Carotene and Role of Singlet Oxygen. Photochem. Photobiol. 1978, 28, 553–555. DOI: 10.1111/j.1751-1097.1978.tb06968.x.
  • Larson, R. A.; Hunt, L. L.; Blankenship, D. W. Formation of Toxic Products from a Number-2 Fuel Oil by Photooxidation. Environ. Sci. Technol. 1977, 11, 492–496. DOI: 10.1021/es60128a002.
  • Chesler, S. N.; Gump, B. H.; Hertz, H. S.; May, W. E.; Wise, S. A. Determination of Trace Level Hydrocarbons in Marine Biota. Anal. Chem. 1978, 50, 805–810. DOI: 10.1021/ac50027a034.
  • Hilpert, L. R.; May, W. E.; Wise, S. A.; Chesler, S. N.; Hertz, H. S. Inter-Lablaboratory Comparison of Determinations of Trace Level Petroleum Hydrocarbons in Marine Sediments. Anal. Chem. 1978, 50, 458–463. DOI: 10.1021/ac50025a025.
  • Kline, W. F.; Wise, S. A.; May, W. E. The Application of Perdeuterated Polycyclic Aromatic Hydrocarbons (PAHs) as Internal Standards for the Liquid Chromatographic Determination of PAH in a Petroleum Crude Oil and Other Complex Mixtures. J. Liq. Chromatogr. 1985, 8, 223–237. DOI: 10.1080/01483918508067074.
  • Schantz, M. M.; Benner, B. A.; Chesler, S. N.; Koster, B. J.; Hehn, K. E.; Stone, S. F.; Kelly, W. R.; Zeisler, R.; Wise, S. A. Preparation and Analysis of a Marine Sediment Reference Material for the Determination of Trace Organic Constituents. Fresenius. J. Anal. Chem. 1990, 338, 501–514. DOI: 10.1007/BF00322527.
  • Wise, S. A.; Benner, B. A.; Christensen, R. G.; Koster, B. J.; Kurz, J.; Schantz, M. M.; Zeisler, R. Preparation and Analysis of a Frozen Mussel Tissue Reference Material for the Determination of Trace Organic Constituents. Environ. Sci. Technol. 1991, 25, 1695–1704. DOI: 10.1021/es00022a003.
  • Schantz, M. M.; Benner, B. A.; Hays, M. J.; Kelly, W. R.; Vocke, R. D.; Demiralp, R.; Greenberg, R. R.; Schiller, S. B.; Lauenstein, G. G.; Wise, S. A. Certification of Standard Reference Material (SRM) 1941a, Organics in Marine Sediment. Fresenius. J. Anal. Chem. 1995, 352, 166–173. DOI: 10.1007/BF00322319.
  • Wise, S. A.; Schantz, M. M.; Benner, B. A.; Hays, M. J.; Schiller, S. B. Certification of Polycyclic Aromatic Hydrocarbons in a Marine Sediment Standard Reference Material. Anal. Chem. 1995, 67, 1171–1178. DOI: 10.1021/ac00103a006.
  • NIST, Certificate of Analysis. Standard Refernce Material 1941b Organics in Marine Sediment. National Institute of Standards and Technology: Gaithersburg, MD, 2015.
  • Wise, S. A.; Poster, D. L.; Schantz, M. M.; Kucklick, J. R.; Sander, L. C.; de Alda, M. L.; Schubert, P.; Parris, R. M.; Porter, B. J. Two New Marine Sediment Standard Reference Materials (SRMs) for the Determination of Organic Contaminants. Anal. Bioanal. Chem. 2004, 378, 1251–1264. DOI: 10.1007/s00216-003-2431-y.
  • Wise, S. A.; Poster, D. L.; Leigh, S. D.; Rimmer, C. A.; Mossner, S.; Schubert, P.; Sander, L. C.; Schantz, M. M. Polycyclic Aromatic Hydrocarbons (PAHs) in a Coal Tar Standard Reference material-SRM 1597a Updated. Anal. Bioanal. Chem. 2010, 398, 717–728. DOI: 10.1007/s00216-010-4008-x.
  • Parris, R. M.; Schantz, M. M.; Wise, S. A. Comparability of Measurements of PAHs in the Marine environment - Results of a Performance-Based Quality Assurance Program. Polycyclic Aromat. Compd. 1996, 9, 249–256. DOI: 10.1080/10406639608031225.
  • Schantz, M. M.; Parris, R. M.; Wise, S. A. NIST Intercomparison Exercise Program for Organic Contaminants in the Marine Environment: Description and Results of 2007 Organic Intercomparison Exercises (NISTIR 7501); National Institute of Standards and Technology: Gaithersburg, MD, 2008.
  • Kucklick, J. R.; Schantz, M. M. Interlaboratory Comparison Study to Support the Deepwater Horizon Natural Resource Damage Assessment: Description and Results for QA11Blood01 - PAHs, PAH Metabolites, and DOSS in Solution and Blood (NISTIR 7869); National Institute of Standards and Technology (NIST): Gaithersburg, MD, 2011.
  • Schantz, M. M.; Kucklick, J. R. Interlaboratory Analytical Comparison Study to Support Deepwater Horizon Natural Resource Damage Assessment: Description and Results for Crude Oil QA10OIL01 (NISTIR 7792); National Institute of Standards and Technology (NIST): Gaithersburg, MD, 2011.
  • Schantz, M. M.; Kucklick, J. R. Interlaboratory Analytical Comparison Study to Support Deepwater Horizon Natural Resource Damage Assessment: Description and Results for Marine Sediment QA10SED01 (NISTIR 7792); National Institute of Standards and Technology (NIST): Gaithersburg, MD, 2011.
  • Schantz, M. M.; Kucklick, J. R. Interlaboratory Analytical Comparison Study to Support Deepwater Horizon Natural Resourc Damage Assessment: Description and Results for Mussel Tissue QA10TIS01 (NISTIR 7793); National Institute of Standards and Technology (NIST): Gaithersburg, MD, 2011.
  • Wise, S. A.; Poster, D. L.; Kucklick, J. R.; Keller, J. M.; VanderPol, S. S.; Sander, L. C.; Schantz, M. M. Standard Reference Materials (SRMs) for Determination of Organic Contaminants in Environmental Samples. Anal. Bioanal. Chem. 2006, 386, 1153–1190. DOI: 10.1007/s00216-006-0719-4.
  • Wise, S. A. From Urban Dust and Marine Sediment to Ginkgo Biloba and Human Serum-a Top Ten List of Standard Reference Materials (SRMs). Anal. Bioanal. Chem.. 2022, 414, 31–52. DOI: 10.1007/s00216-021-03527-w.
  • May, W. E.; Parris, R. M.; Beck, II, C. M.; Fassett, J. D.; Greenberg, R. R.; Guenther, F. R.; Kramer, G. W.; Wise, S. A.; Gills, T. E.; Gettings, R.; MacDonald, B. Definitions of Terms and Modes Used at NIST for Value Assignment of Reference Materials for Chemical Measurment. National Institute of Standards and Technology: Gaithersburg, MD, 2000.
  • Beauchamp, C. R. C.; Carney, J. E.; Choquette, S. J.; Cole, K. D.; DeRose, P. C.; Epstein, M. S.; Kline, M. C.; Lippa, K. A.; Lucon, E.; Phnney, K. W.; et al. Metrological Tools for the Reference Materials and Reference Instruments of the NIST Materials Measurement Laboratory, NIST Special Publication 260–136. U.S. Government Printing Office: Washington, DC, 2020.
  • Beauchamp, C. R. C.; Camara, J. E.; Carney, J.; Choquette, S. J.; Cole, K. D.; DeRose, P. C.; Duewer, D. L.; Epstein, M. S.; Kline, M. C.; Lippa, K. A.; et al. Metrological Tools for the Reference Materials and Reference Instruments of the NIST Materials Measurement Laboratory, NIST Special Publication 260-136. U.S. Government Printing Office: Washington, DC, 2021.
  • Nalin, F.; Sander, L. C.; Wilson, W. B.; Wise, S. A. Gas Chromatographic Retention Behavior of Polycyclic Aromatic Hydrocarbons (PAHs) and Alkyl-Substituted PAHs on Two Stationary Phases of Different Selectivity. Anal. Bioanal. Chem. 2018, 410, 1123–1137. DOI: 10.1007/s00216-017-0700-4.
  • Murray, J. A.; Sander, L. C.; Wise, S. A.; Reddy, C. M. Gulf of Mexico Research Initiative 2014/2015 Hydrocarbon Intercalibration Experiment: Description and Results for SRM 2779 Gulf of Mexico Crude Oil and Candidate SRM 2777 Weathered Gulf of Mexico Crude Oil (NISTIR 8123). National Institute of Standards and Technology: Gaithersburg, MD, 2016, p. 331.
  • Lobodin, V. V.; Maksimova, E. V.; Rodgers, R. P. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill. Anal. Chem. 2016, 88, 6914–6922. DOI: 10.1021/acs.analchem.6b01652.
  • Aeppli, C.; Carmichael, C. A.; Nelson, R. K.; Lemkau, K. L.; Graham, W. M.; Redmond, M. C.; Valentine, D. L.; Reddy, C. M. Oil Weathering after the Deepwater Horizon Disaster Led to the Formation of Oxygenated Residues. Environ. Sci. Technol. 2012, 46, 8799–8807. DOI: 10.1021/es3015138.
  • Litman, E.; Emsbo-Mattingly, S.; Wong, W. Critical Review of an Interlaboratory Forensic Dataset: Effects on Data Interpretation in Oil Spill Studies. In Oil Spill Environmental Forensics - Case Studies, S. A. Stout and Z. Wang, Eds.; Elsevier Butterworth-Heinemann: Cambridge, MA, 2018, p. 1.
  • Ramachandran, V.; van Tol, J.; McKenna, A. M.; Rodgers, R. P.; Marshall, A. G.; Dalal, N. S. High Field Electron Paramagnetic Resonance Characterization of Electronic and Structural Environments for Paramagnetic Metal Ions and Organic Free Radicals in Deepwater Horizon Oil Spill Tar Balls. Anal. Chem. 2015, 87, 2306–2313. DOI: 10.1021/ac504080g.
  • Worton, D. R.; Zhang, H. F.; Isaacman-VanWertz, G.; Chan, A. W. H.; Wilson, K. R.; Goldstein, A. H. Comprehensive Chemical Characterization of Hydrocarbons in NIST Standard Reference Material 2779 Gulf of Mexico Crude Oil. Environ. Sci. Technol. 2015, 49, 13130–13138. DOI: 10.1021/acs.est.5b03472.
  • Romero, I. C.; Schwing, P. T.; Brooks, G. R.; Larson, R. A.; Hastings, D. W.; Ellis, G.; Goddard, E. A.; Hollander, D. J. Hydrocarbons in Deep-Sea Sediments following the 2010 Deepwater Horizon Blowout in the Northeast Gulf of Mexico. PLoS One. 2015, 10, e0128371. DOI: 10.1371/journal.pone.0128371.
  • Jarvis, J. M.; Billing, J. M.; Hallen, R. T.; Schmidt, A. J.; Schaub, T. M. Hydrothermal Liquefaction Biocrude Compositions Compared to Petroleum Crude and Shale Oil. Energy Fuels 2017, 31, 2896–2906. DOI: 10.1021/acs.energyfuels.6b03022.
  • Aeppli, C.; Swarthout, R. F.; O’Neil, G. W.; Katz, S. D.; Nabi, D.; Ward, C. P.; Nelson, R. K.; Sharpless, C. M.; Reddy, C. M. How Persistent and Bioavailable Are Oxygenated Deepwater Horizon Oil Transformation Products? Environ. Sci. Technol. 2018, 52, 7250–7258. DOI: 10.1021/acs.est.8b01001.
  • Smith, D. F.; Podgorski, D. C.; Rodgers, R. P.; Blakney, G. T.; Hendrickson, C. L. 21 Tesla FT-ICR Mass Spectrometer for Ultrahigh-Resolution Analysis of Complex Organic Mixtures. Anal. Chem. 2018, 90, 2041–2047. DOI: 10.1021/acs.analchem.7b04159.
  • Seeley, M. E.; Wang, Q.; Bacosa, H.; Rosenheim, B. E.; Liu, Z. F. Environmental Petroleum Pollution Analysis Using Ramped Pyrolysis-Gas Chromatography-Mass Spectrometry. Org. Geochem. 2018, 124, 180–189. DOI: 10.1016/j.orggeochem.2018.07.012.
  • Niles, S. F.; Chacon-Patino, M. L.; Chen, H.; McKenna, A. M.; Blakney, G. T.; Rodgers, R. P.; Marshall, A. G. Molecular-Level Characterization of Oil-Soluble Ketone/Aldehyde Photo-Oxidation Products by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Reveals Similarity Between Microcosm and Field Samples. Environ. Sci. Technol. 2019, 53, 6887–6894. DOI: 10.1021/acs.est.9b00908.
  • Niles, S. F.; Chacon-Patino, M. L.; Marshall, A. G.; Rodgers, R. P. Molecular Composition of Photooxidation Products Derived from Sulfur-Containing Compounds Isolated from Petroleum Samples. Energy Fuels 2020, 34, 14493–14504. DOI: 10.1021/acs.energyfuels.0c02869.
  • Ghetu, C. C.; Scott, R. P.; Wilson, G.; Liu-May, R.; Anderson, K. A. Improvements in Identification and Quantitation of Alkylated PAHs and Forensic Ratio Sourcing. Anal. Bioanal. Chem. 2021, 413, 1651–1664. DOI: 10.1007/s00216-020-03127-0.
  • Idowu, I. G.; Xia, Z.; Sandau, C. D.; Misselwitz, M.; Thomas, P.; Marvin, C.; Tomy, G. T. Comparison of Different Approaches to Quantify Substituted Polycyclic Aromatic Compounds. J. Chromatogr. A 2021, 1651, 462317. DOI: 10.1016/j.chroma.2021.462317.
  • Romero, I. C.; Chanton, J. P.; Brooks, G. R.; Bosman, S.; Larson, R. A.; Harris, A.; Schwing, P.; Diercks, A. Molecular Markers of Biogenic and Oil-Derived Hydrocarbons in Deep-Sea Sediments following the Deepwater Horizon Spill. Front. Mar. Sci. 2021, 8, 15. DOI: 10.3389/fmars.2021.637970.
  • Liu, Z. Y.; Phillips, J. B. Comprehensive 2-Dimensional Gas Chromatography Using an on-Column Thermal Modulator Interface. J. Chromatogr. Sci. 1991, 29, 227–231. DOI: 10.1093/chromsci/29.6.227.
  • Eiserbeck, C.; Nelson, R. K.; Reddy, C. M.; Grice, K. Advances in Comprehensive Two-Dimensional Gas Chromatography (GCxGC). In Principles and Practice of Analytical Techniques in Geosciences, Grice, K. Ed. Cambridge: Royal Soc Chemistry, 2015, 324.
  • Nelson, R. K.; Aeppli, C.; Arey, J. S.; Chen, H.; de Oliveira, A. H. B.; Eiserbeck, C.; Frysinger, G. S.; Gaines, R. B.; Grice, K.; Gros, J.; et al. Applications of Comprehensive Two-Dimensional Gas Chromatography (GC x GC) in Studying the Source, Transport, and Fate of Petroleum Hydrocarbons in the Environment. London: Academic Press Ltd-Elsevier Science Ltd, 2016.
  • Frysinger, G. S.; Gaines, R. B.; Ledford, E. B. Quantitative Determination of BTEX and Total Aromatic Compounds in Gasoline by Comprehensive Two-Dimensional Gas Chromatography (GC x GC). J. High Resol. Chromatogr. 1999, 22, 195–200. DOI: 10.1002/(SICI)1521-4168(19990401)22:4<195::AID-JHRC195>3.0.CO;2-7.
  • Frysinger, G. S.; Gaines, R. B. Comprehensive Two-Dimensional Gas Chromatography with Mass Spectrometric Detection (GC x GC/MS) Applied to the Analysis of Petroleum. J. High Resol. Chromatogr. 1999, 22, 251–255. DOI: 10.1002/(SICI)1521-4168(19990501)22:5<251::AID-JHRC251>3.0.CO;2-V.
  • DeMello, J. A.; Carmichael, C. A.; Peacock, E. E.; Nelson, R. K.; Arey, J. S.; Reddy, C. M. Biodegradation and Environmental Behavior of Biodiesel Mixtures in the Sea: An Initial Study. Mar. Pollut. Bull. 2007, 54, 894–904. DOI: 10.1016/j.marpolbul.2007.02.016.
  • Frysinger, G. S.; Gaines, R. B. Separation and Identification of Petroleum Biomarkers by Comprehensive Two-Dimensional Gas Chromatography. J. Sep. Sci. 2001, 24, 87–96. DOI: 10.1002/1615-9314(20010201)24:2<87::AID-JSSC87>3.0.CO;2-0.
  • Gaines, R. B.; Frysinger, G. S.; Hendrick-Smith, M. S.; Stuart, J. D. Oil Spill Source Identification by Comprehensive Two-Dimensional Gas Chromatography. Environ. Sci. Technol. 1999, 33, 2106–2112. DOI: 10.1021/es9810484.
  • Reddy, C. M.; Eglinton, T. I.; Hounshell, A.; White, H. K.; Xu, L.; Gaines, R. B.; Frysinger, G. S. The West Falmouth Oil Spill after Thirty Years: The Persistence of Petroleum Hydrocarbons in Marsh Sediments. Environ. Sci. Technol. 2002, 36, 4754–4760. DOI: 10.1021/es020656n.
  • Lemkau, K. L.; Peacock, E. E.; Nelson, R. K.; Ventura, G. T.; Kovecses, J. L.; Reddy, C. M. The M/V Cosco Busan Spill: Source Identification and Short-Term Fate. Mar. Pollut. Bull. 2010, 60, 2123–2129. DOI: 10.1016/j.marpolbul.2010.09.001.
  • Nelson, R. K.; Kile, B. M.; Plata, D. L.; Sylva, S. P.; Xu, L.; Reddy, C. M.; Gaines, R. B.; Frysinger, G. S.; Reichenbach, S. E. Tracking the Weathering of an Oil Spill with Comprehensive Two-Dimensional Gas Chromatography. Environ. Forensics 2006, 7, 33–44. DOI: 10.1080/15275920500506758.
  • Frysinger, G. S.; Gaines, R. B.; Xu, L.; Reddy, C. M. Resolving the Unresolved Complex Mixture in Petroleum-Contaminated Sediments. Environ. Sci. Technol. 2003, 37, 1653–1662. DOI: 10.1021/es020742n.
  • Wardlaw, G. D.; Arey, J. S.; Reddy, C. M.; Nelson, R. K.; Ventura, G. T.; Valentine, D. L. Disentangling Oil Weathering at a Marine Seep Using GC x GC: Broad Metabolic Specificity Accompanies Subsurface Petroleum Biodegradation. Environ. Sci. Technol. 2008, 42, 7166–7173. DOI: 10.1021/es8013908.
  • Arey, J. S.; Nelson, R. K.; Xu, L.; Reddy, C. M. Using Comprehensive Two-Dimensional Gas Chromatography Retention Indices to Estimate Environmental Partitioning Properties for a Complete Set of Diesel Fuel Hydrocarbons. Anal. Chem. 2005, 77, 7172–7182. DOI: 10.1021/ac051051n.
  • Arey, J. S.; Nelson, R. K.; Plata, D. L.; Reddy, C. M. Disentangling Oil Weathering Using GC x GC. 2. Mass Transfer calculations. Environ. Sci. Technol. 2007, 41, 5747–5755. DOI: 10.1021/es070006p.
  • Arey, J. S.; Nelson, R. K.; Reddy, C. M. Disentangling Oil Weathering Using GC x GC. 1. Chromatogram Analysis. Environ. Sci. Technol. 2007, 41, 5738–5746. DOI: 10.1021/es070005x.
  • Mao, D. B.; Lookman, R.; Van De Weghe, H.; Weltens, R.; Vanermen, G.; Brucker, N. D.; Diels, L. Estimation of Ecotoxicity of Petroleum Hydrocarbon Mixtures in Soil Based on HPLC-GCXGC Analysis. Chemosphere 2009, 77, 1508–1513. DOI: 10.1016/j.chemosphere.2009.10.004.
  • Pollo, B. J.; Alexandrino, G. L.; Augusto, F.; Hantao, L. W. The Impact of Comprehensive Two-Dimensional Gas Chromatography on Oil & Gas Analysis: Recent Advances and Applications in Petroleum Industry. Trends Analyt. Chem. 2018, 105, 202–217. DOI: 10.1016/j.trac.2018.05.007.
  • Nelson, R. K.; Gosselin, K. M.; Hollander, D. J.; Murawski, S. A.; Gracia, A.; Reddy, C. M.; Radovic, J. R. Exploring the Complexity of Two Iconic Crude Oil Spills in the Gulf of Mexico (Ixtoc I and Deepwater Horizon) Using Comprehensive Two-Dimensional Gas Chromatography (GC x GC). Energy Fuels 2019, 33, 3925–3933. DOI: 10.1021/acs.energyfuels.8b04384.
  • White, H. K.; Hsing, P. Y.; Cho, W.; Shank, T. M.; Cordes, E. E.; Quattrini, A. M.; Nelson, R. K.; Camilli, R.; Demopoulos, A. W. J.; German, C. R.; et al. Impact of the Deepwater Horizon Oil Spill on a Deep-Water Coral Community in the Gulf of Mexico. Proc Natl Acad Sci USA 2012, 109, 20303–20308. DOI: 10.1073/pnas.1118029109.
  • Gros, J.; Reddy, C. M.; Aeppli, C.; Nelson, R. K.; Carmichael, C. A.; Arey, J. S. Resolving Biodegradation Patterns of Persistent Saturated Hydrocarbons in Weathered Oil Samples From the Deepwater Horizon Disaster. Environ. Sci. Technol. 2014, 48, 1628–1637. DOI: 10.1021/es4042836.
  • Aeppli, C.; Reddy, C. M.; Nelson, R. K.; Kellermann, M. Y.; Valentine, D. L. Recurrent Oil Sheens at the Deepwater Horizon Disaster Site Fingerprinted with Synthetic Hydrocarbon Drilling Fluids. Environ. Sci. Technol. 2013, 47, 8211–8219. DOI: 10.1021/es4024139.
  • Farrington, J. W.; Quinn, J. G. "Unresolved Complex Mixture" (UCM): A Brief History of the Term and Moving Beyond it . Mar. Pollut. Bull. 2015, 96, 29–31. DOI: 10.1016/j.marpolbul.2015.04.039.
  • Gaines, R. B.; Frysinger, G. S.; Reddy, C. M.; Nelson, R. K.; Wang, Z.; Stout, S. A. Oil Spill Source Identification by Comprehensive Two-Dimensional Gas Chromatography (GCxGC). San Diego: Elsevier Academic Press Inc, 2007.
  • Prince, R. C.; Elmendorf, D. L.; Lute, J. R.; Hsu, C. S.; Haith, C. E.; Senius, J. D.; Dechert, G. J.; Douglas, G. S.; Butler, E. L. 17.alpha.(H)-21.beta.(H)-hopane as a Conserved Internal Marker for Estimating the Biodegradation of Crude Oil. Environ. Sci. Technol. 1994, 28, 142–145. DOI: 10.1021/es00050a019.
  • Prince, RC.; Walters, C. C. Biodegradation of Oil Hydrocarbons and Its Implications for Source Identification. In Standard Handbook Oil Spill Environmental Forensics: Fingerprinting and Source Identification, 2nd ed.; Stout, S. A., Wang, Z., Eds.; Elsevier Academic Press: San Diego, CA, 2016; p. 869.
  • Prince, RC.; Walters, C. C.; Wang, Z.; Stout, S. A. Biodegradation of Oil Hydrocarbons and Its Implications for Source Identification. In Oil Spill Environmental Forensics: Fingerprinting and Source Identification; Wang, Z., Stout, S. A., Eds.; Elsevier Academic Press: San Diego, CA, 2007; pp 349.
  • Peters, K. E.; Walters, C. C.; Moldowan, J. M. The Biomarker Guide: Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History. Cambridge University Press: Cambridge, England, 2007.
  • Hansen, A. B.; Daling, P. S.; Faksness, L. G.; Sorheim, K. R.; Kienhuis, P.; Duus, R.; Wang, Z.; Stout, S. A. Emerging CEN Methodology for Oil Spill Identification; In Oil Spill Environmental Forensics: Fingerprinting and Source identification, Wang Z., Stout, S.A., eds.; 2007, Elsevier Academic Press: San Diego, CA, 2007, pp 229-256.
  • White, H. K.; Hsing, P. Y.; Cho, W.; Shank, T. M.; Cordes, E. E.; Quattrini, A. M.; Nelson, R. K.; Camilli, R.; Demopoulos, A. W. J.; German, C. R.; et al. Reply to Boehm and Carragher: Multiple Lines of Evidence Link Deep-Water Coral Damage to Deepwater Horizon Oil Spill. Proceedings of the National Academy of Sciences of the United States of America 2012, 109, E2648–E2648. DOI: 10.1073/pnas.1210413109.
  • Carmichael, C. A.; Arey, J. S.; Graham, W. M.; Linn, L. J.; Lemkau, K. L.; Nelson, R. K.; Reddy, C. M. Floating Oil-Covered Debris from Deepwater Horizon: identification and Application. Environ. Res. Lett. 2012, 7, 015301. DOI: 10.1088/1748-9326/7/1/015301.
  • Gupta, A. S.; Reddy, C. M.; Nelson, R. K. United States Patent No., 2014.
  • Damavandi, H. G.; Sen Gupta, A.; Nelson, R. K.; Reddy, C. M. Interpreting Comprehensive Two-Dimensional Gas Chromatography Using Peak Topography Maps With Application to Petroleum Forensics. Chem. Cent. J. 2016, 10, 75. DOI: 10.1186/s13065-016-0211-y.
  • Mullins, O. C.; Nelson, R. K.; Raghuraman, B.; Reddy, C. M. United States Patent No. 2010.
  • Nelson, R. K.; Aeppli, C.; Carmichael, C. A.; Kellerman, M. Y.; Valentine, D. L.; Reddy, C. M. GCxGC Forensic Analysis of Oil Sheens at the Deepwater Horizon Disaster Site Helps Pinpoint the Source of Oil Leakage. LC GC North America 2013, 18.
  • Yan, B. Z.; Passow, U.; Chanton, J. P.; Nothig, E. M.; Asper, V.; Sweet, J.; Pitiranggon, M.; Diercks, A.; Pak, D. Sustained Deposition of Contaminants from the Deepwater Horizon Spill. Proc Natl Acad Sci USA 2016, 113, E3332–E3340. DOI: 10.1073/pnas.1513156113.
  • Lincoln, S. A.; Radovic, J. R.; Gracia, A.; Jaggi, A.; Oldenburg, T. B. P.; Larter, S. R. Molecular Legacy of the 1979 Ixtoc I Oil Spill in Deep-Sea Sediments of the Southern Gulf of Mexico. in Deep Oil Spills - Facts, Fate, and Effects, eds. S. A. Murawski, C. H. Ainsworth, S. A. Gilbert, D. J. Hollander, C. B. Paris, M. Schluter, and D. Wetzel. Springer International Publishing: Switzerland, 2019, p. 312
  • Radovic, J. R.; Romero, I. C.; Oldenburg, T. B. P.; Larter, S. R.; Tunnell, Jr, J. W. 40 Years of Weathering of Coastal Oil Residues in the Southern Gulf of Mexico. in Deep Oil Spills - Facts, Fate, and Effects, Eds. S. A. Murawski, C. H. Ainsworth, S. A. Gilbert, D. J. Hollander, C. B. Paris, M. Schluter, and D. Wetzel: Springer International Publishing: Switzerland, 2019, pp 612.
  • Patton, J. S.; Rigler, M. W.; Boehm, P. D.; Fiest, D. L. Ixtoc I Oil Spill - Flaking of Surface Mousse in the Gulf of Mexico. Nature 1981, 290, 235–238. DOI: 10.1038/290235a0.
  • Boehm, P. D.; Fiest, D. L.; Mackay, D.; Paterson, S. Physical Chemical Weathering of Petroleum Hydrocarbons from the Ixtoc-I Blowout - Chemical Measurements and a Weathering Model. Environ. Sci. Technol. 1982, 16, 498–505. DOI: 10.1021/es00102a014.
  • McKenna, A. M.; Nelson, R. K.; Reddy, C. M.; Savory, J. J.; Kaiser, N. K.; Fitzsimmons, J. E.; Marshall, A. G.; Rodgers, R. P. Expansion of the Analytical Window for Oil Spill Characterization by Ultrahigh Resolution Mass Spectrometry: Beyond Gas Chromatography. Environ. Sci. Technol. 2013, 47, 7530–7539. DOI: 10.1021/es305284t.
  • Ruddy, B. M.; Huettel, M.; Kostka, J. E.; Lobodin, V. V.; Bythell, B. J.; McKenna, A. M.; Aeppli, C.; Reddy, C. M.; Nelson, R. K.; Marshall, A. G.; Rodgers, R. P. Targeted Petroleomics: Analytical Investigation of Macondo Well Oil Oxidation Products from Pensacola Beach. Energy Fuels 2014, 28, 4043–4050. DOI: 10.1021/ef500427n.
  • Purcell, J. M.; Juyal, P.; Kim, D. G.; Rodgers, R. P.; Hendrickson, C. L.; Marshall, A. G. Sulfur Speciation in Petroleum: Atmospheric Pressure Photoionization or Chemical Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2007, 21, 2869–2874. DOI: 10.1021/ef700210q.
  • Purcell, J. M.; Rodgers, R. P.; Hendrickson, C. L.; Marshall, A. G. Speciation of Nitrogen Containing Aromatics by Atmospheric Pressure Photoionization or Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 1265–1273. DOI: 10.1016/j.jasms.2007.03.030.
  • Strausz, O. P.; Lown, E. M.; Morales-Izquierdo, A.; Kazmi, N.; Montgomery, D. S.; Payzant, J. D.; Murgich, J. Chemical Composition of Athabasca Bitumen: The Distillable Aromatic Fraction. Energy Fuels 2011, 25, 4552–4579. DOI: 10.1021/ef200833e.
  • Hooper, C. H. The IXTOC I Oil Spill: The Federal Scientific Response. ed. N. O. a. A. A. U.S. Dept of Commerce, Office of Marine Pollution Assessment: 1982.
  • Oldenburg, T. B. P.; Brown, M.; Bennett, B.; Larter, S. R. The Impact of Thermal Maturity Level on the Composition of Crude Oils, Assessed Using Ultra-High Resolution Mass Spectrometry. Org. Geochem. 2014, 75, 151–168. DOI: 10.1016/j.orggeochem.2014.07.002.
  • Radovic, J. R.; Aeppli, C.; Nelson, R. K.; Jimenez, N.; Reddy, C. M.; Bayona, J. M.; Albaiges, J. Assessment of Photochemical Processes in Marine Oil Spill Fingerprinting. Mar. Pollut. Bull. 2014, 79, 268–277. DOI: 10.1016/j.marpolbul.2013.11.029.
  • Oberle, F. K. J.; Swarzenski, P. W.; Reddy, C. M.; Nelson, R. K.; Baasch, B.; Hanebuth, T. J. J. Deciphering the Lithological Consequences of Bottom Trawling to Sedimentary Habitats on the Shelf. J. Mar. Syst. 2016, 159, 120–131. DOI: 10.1016/j.jmarsys.2015.12.008.
  • Koolen, H. H. F.; Swarthout, R. F.; Nelson, R. K.; Chen, H.; Krajewski, L. C.; Aeppli, C.; McKenna, A. M.; Rodgers, R. P.; Reddy, C. M. Unprecedented Insights into the Chemical Complexity of Coal Tar from Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry and Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2015, 29, 641–648. DOI: 10.1021/ef502428d.
  • Swarthout, R. F.; Gros, J.; Arey, J. S.; Reddy, C. M.; Nelson, R. K.; Valentine, D. L. Comprehensive Two-Dimensional Gas Chromatography to Assess Petroleum Product Weathering. In Hydrocarbon and Lipid Microbiology Protocols. McGonity, T.J., Timmis, K.N., Nogales, B., Eds.; Springer Nature: Switzerland, 2016; pp 129–149.
  • Chen, H.; Nelson, R. K.; Swarthout, R. F.; Shigenaka, G.; de Oliveira, A. H. B.; Reddy, C. M.; McKenna, A. M. Detailed Compositional Characterization of the 2014 Bangladesh Furnace Oil Released into the World's Largest Mangrove Forest. Energy Fuels 2018, 32, 3232–3242. DOI: 10.1021/acs.energyfuels.7b03944.
  • Green, H. S.; Fuller, S. A.; Meyer, A. W.; Joyce, P. S.; Aeppli, C.; Nelson, R. K.; Swarthout, R. F.; Valentine, D. L.; White, H. K.; Reddy, C. M. Pelagic Tar Balls Collected in the North Atlantic Ocean and Caribbean Sea from 1988 to 2016 Have Natural and Anthropogenic Origins. Mar. Pollut. Bull. 2018, 137, 352–359. DOI: 10.1016/j.marpolbul.2018.10.030.
  • Drollette, B. D.; Hoelzer, K.; Warner, N. R.; Darrah, T. H.; Karatum, O.; O'Connor, M. P.; Nelson, R. K.; Fernandez, L. A.; Reddy, C. M.; Vengosh, A.; et al. Elevated Levels of Diesel Range Organic Compounds in Groundwater near Marcellus Gas Operations Are Derived from Surface Activities. (Vol. 112, p. 13184). 2015. Proceedings of the National Academy of Sciences of the United States of America, 116, (2019):9135.
  • Aeppli, C.; Nelson, R. K.; Radovic, J. R.; Carmichael, C. A.; Valentine, D. L.; Reddy, C. M. Recalcitrance and Degradation of Petroleum Biomarkers upon Abiotic and Biotic Natural Weathering of Deepwater Horizon Oil. Environ. Sci. Technol. 2014, 48, 6726–6734. DOI: 10.1021/es500825q.
  • Evans, M.; Liu, J. Q.; Bacosa, H.; Rosenheim, B. E.; Liu, Z. F. Petroleum Hydrocarbon Persistence following the Deepwater Horizon Oil Spill as a Function of Shoreline Energy. Mar. Pollut. Bull. 2017, 115, 47–56. DOI: 10.1016/j.marpolbul.2016.11.022.
  • Peters, K. E. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bull. 1986, 70, 318.
  • Behar, F.; Pelet, R.; Roucache, J. Geochemistry of Asphaltenes. Org. Geochem. 1984, 6, 587–595. DOI: 10.1016/0146-6380(84)90081-0.
  • Larter, S. R.; Horsfield, B. Determination of Structural Components of Kerogens by the Use of Analytical Pyrolysis Methods; In Organic Geochemistry. Topics in Geobiology Vol. 11; Engel, M. H., Macko, S.A,. Eds.; Springer: Boston, MA, 1993. pp 271-287.
  • Tang, Y. C.; Stauffer, M. Development of Multiple Cold Trap Pyrolysis. J. Anal. Appl. Pyrolysis 1994, 28, 167–174. DOI: 10.1016/0165-2370(93)00779-M.
  • Oudot, J.; Chaillan, F. Pyrolysis of Asphaltenes and Biomarkers for the Fingerprinting of the Amoco-Cadiz Oil Spill After 23 Years. CR. Chim. 2010, 13, 548–552. DOI: 10.1016/j.crci.2009.12.002.
  • Pendergraft, M. A.; Dincer, Z.; Sericano, J. L.; Wade, T. L.; Kolasinski, J.; Rosenheim, B. E. Linking Ramped Pyrolysis Isotope Data to Oil Content Through PAH Analysis. Environ. Res. Lett. 2013, 8, 044038. DOI: 10.1088/1748-9326/8/4/044038.
  • Pendergraft, M. A.; Rosenheim, B. E. Varying Relative Degradation Rates of Oil in Different Forms and Environments Revealed by Ramped Pyrolysis. Environ. Sci. Technol. 2014, 48, 10966–10974. DOI: 10.1021/es501354c.
  • Rosenheim, B. E.; Day, M. B.; Domack, E.; Schrum, H.; Benthien, A.; Hayes, J. M. Antarctic Sediment Chronology by Programmed-Temperature Pyrolysis: Methodology and Data Treatment. Geochem. Geophys. Geosyst. 2008, 9, 16.
  • Tang, Y.; Stauffer, M. Multiple Cold Trap Pyrolysis Gas Chromatography - A New Technique for Modeling Hydrocarbon Generation. Org. Geochem. 1994, 22, 863–872. DOI: 10.1016/0146-6380(94)90144-9.
  • Snowdon, L. R.; Volkman, J. K.; Zhang, Z. R.; Tao, G. L.; Liu, P. The Organic Geochemistry of Asphaltenes and Occluded Biomarkers. Org. Geochem. 2016, 91, 3–15. DOI: 10.1016/j.orggeochem.2015.11.005.
  • Hemingway, J. D.; Rothman, D. H.; Rosengard, S. Z.; Galy, V. V. Technical Note: An Inverse Method to Relate Organic Carbon Reactivity to Isotope Composition From Serial Oxidation. Biogeosciences 2017, 14, 5099–5114. DOI: 10.5194/bg-14-5099-2017.
  • Wang, Q.; Leonce, B.; Seeley, M. E.; Adegboyega, N. F.; Lu, K. J.; Hockaday, W. C.; Liu, Z. F. Elucidating the Formation Pathway of Photo-Generated Asphaltenes from Light Louisiana Sweet Crude Oil after Exposure to Natural Sunlight in the Gulf of Mexico. Org. Geochem. 2020, 150, 104126. DOI: 10.1016/j.orggeochem.2020.104126.
  • Reddy, C. M.; Arey, J. S.; Seewald, J. S.; Sylva, S. P.; Lemkau, K. L.; Nelson, R. K.; Carmichael, C. A.; McIntyre, C. P.; Fenwick, J.; Ventura, G. T.; et al. Composition and Fate of Gas and Oil Released to the Water Column during the Deepwater Horizon Oil Spill. Proc. Natl. Acad. Sci. USA 2012, 109, 20229–20234. DOI: 10.1073/pnas.1101242108.
  • Muhlberger, F.; Wieser, J.; Ulrich, A.; Zimmermann, R. Single Photon Ionization (SPI) via Incoherent VUV-Excimer Light: Robust and Compact Time-of-Flight Mass Spectrometer for on-Line, Real-Time Process Gas Analysis. Anal. Chem. 2002, 74, 3790–3801. DOI: 10.1021/ac0200825.
  • Gentner, D. R.; Isaacman, G.; Worton, D. R.; Chan, A. W. H.; Dallmann, T. R.; Davis, L.; Liu, S.; Day, D. A.; Russell, L. M.; Wilson, K. R.; et al. Elucidating Secondary Organic Aerosol from Diesel and Gasoline Vehicles through Detailed Characterization of Organic Carbon Emissions. Proc. Natl. Acad. Sci. USA. 2012, 109, 18318–18323. DOI: 10.1073/pnas.1212272109.
  • Isaacman, G.; Wilson, K. R.; Chan, A. W. H.; Worton, D. R.; Kimmel, J. R.; Nah, T.; Hohaus, T.; Gonin, M.; Kroll, J. H.; Worsnop, D. R.; Goldstein, A. H. Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry. Anal. Chem. 2012, 84, 2335–2342. DOI: 10.1021/ac2030464.
  • Nowak, J. A.; Weber, R. J.; Goldstein, A. H. Quantification of Isomerically Summed Hydrocarbon Contributions to Crude Oil by Carbon Number, Double Bond Equivalent, and Aromaticity Using Gas Chromatography with Tunable Vacuum Ultraviolet Ionization. Analyst 2018, 143, 1396–1405. DOI: 10.1039/c7an02046e.
  • Horning, E. C.; Horning, M. G.; Carroll, D. I.; Dzidic, I.; Stillwell, R. N. New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure. Anal. Chem. 1973, 45, 936–943. DOI: 10.1021/ac60328a035.
  • Daling, P. S.; Faksness, L. G.; Hansen, A. B.; Stout, S. A. Improved and Standardized Methodology for Oil Spill Fingerprinting. Env. Forensics 2002, 3, 263–278. DOI: 10.1080/713848389.
  • Adhikari, P. L.; Overton, E. B.; Pangeni, P.; Regmi, B. Application of Individual Response Factors for Accurate Quantitation of Alkylated PAH Homologs in Complex Samples Using Gas Chromatography/Triple Quadrupole Mass Spectrometry (GC-MS/MS). Microchem. J. 2022, 174, 107074. DOI: 10.1016/j.microc.2021.107074.
  • Adhikari, P. L.; Wong, R. L.; Overton, E. B. Application of Enhanced Gas Chromatography/Triple Quadrupole Mass Spectrometry for Monitoring Petroleum Weathering and Forensic Source Fingerprinting in Samples Impacted by the Deepwater Horizon Oil Spill. Chemosphere 2017, 184, 939–950. DOI: 10.1016/j.chemosphere.2017.06.077.
  • Han, Y. L.; Yin, F.; John, G. F.; Clement, T. P. Understanding the Relative Performance of SCAN, SIM, PMRM and MRM Methods for Quantifying Polycyclic Aromatic Hydrocarbons in Crude Oil Samples. Rapid Commun. Mass Spectrom. 2020, 34, 12. DOI: 10.1002/rcm.8765.
  • Idowu, I.; Francisco, O.; Thomas, P. J.; Johnson, W.; Marvin, C.; Stetefeld, J.; Tomy, G. T. Validation of a Simultaneous Method for Determining Polycyclic Aromatic Compounds and Alkylated Isomers in Biota. Rapid Commun. Mass Spectrom . 2018, 32, 277–287. DOI: 10.1002/rcm.8035.
  • Sorensen, L.; Meier, S.; Mjos, S. A. Application of Gas Chromatography/Tandem Mass Spectrometry to Determine a Wide Range of Petrogenic Alkylated Polycyclic Aromatic Hydrocarbons in Biotic Samples. Rapid Commun. Mass Spectrom. 2016, 30, 2052–2058. DOI: 10.1002/rcm.7688.
  • Romero, I. C. A High-Throughput Method (ASE-GC/MS/MS/MRM) for Quantification of Multiple Hydrocarbon Compounds in Marine Environmental Samples. Mar. Technol. Soc. J. 2018, 52, 66–70. DOI: 10.4031/MTSJ.52.6.6.
  • Fernandez-Lima, F. A.; Becker, C.; McKenna, A. M.; Rodgers, R. P.; Marshall, A. G.; Russell, D. H. Petroleum Crude Oil Characterization by IMS-MS and FTICR MS. Anal. Chem. 2009, 81, 9941–9947. DOI: 10.1021/ac901594f.
  • Kohoutek, K. M.; Harrington, P. D. Electrospray Ionization Ion Mobility Mass Spectrometry. Crit. Rev. Anal. Chem. 2022.
  • Olanrewaju, C. A.; Ramirez, C. E.; Fernandez-Lima, F. Characterization of Deasphalted Crude Oils Using Gas Chromatography-Atmospheric Pressure Laser Ionization-Trapped Ion Mobility Spectrometry-Time-of-Flight Mass Spectrometry. Energy Fuels 2021, 35, 13722–13730. DOI: 10.1021/acs.energyfuels.1c01724.
  • Olanrewaju, C. A.; Ramirez, C. E.; Fernandez-Lima, F. Comprehensive Screening of Polycyclic Aromatic Hydrocarbons and Similar Compounds Using GC-APLI-TIMS-TOFMS/GC-EI-MS. Anal. Chem. 2021, 93, 6080–6087. DOI: 10.1021/acs.analchem.0c04525.
  • Roman-Hubers, A. T.; McDonald, T. J.; Baker, E. S.; Chiu, W. A.; Rusyn, I. A Comparative Analysis of Analytical Techniques for Rapid Oil Spill Identification. Environ. Toxicol. Chem. 2021, 40, 1034–1049. DOI: 10.1002/etc.4961.
  • Faulon, J. L.; Visco, D. P.; Roe, D. Enumerating Molecules. In Reviews in Computational Chemistry, Vol 21, eds. K. B. Lipkowitz, R. Larter, and T. R. Cundari. New York: Wiley-Vch, Inc, 2005, p. 209.
  • Fujita, S. Alkanes as Stereoisomers. Enumeration by the Combination of Two Dichotomies for Three-Dimensional Trees. Match-Communications in Mathematical and in Computer Chemistry 2007, 57, 299.
  • Marshall, A. G.; Rodgers, R. P. Petroleomics: The Next Grand Challenge for Chemical Analysis. Acc. Chem. Res. 2004, 37, 53–59. DOI: 10.1021/ar020177t.
  • Rodgers, R. P.; Schaub, T. M.; Marshall, A. G. Petroleomics: MS Returns to Its Roots. Anal. Chem. 2005, 77, 20A–27A. DOI: 10.1021/ac053302y.
  • Marshall, A. G.; Rodgers, R. P. Petroleomics: Chemistry of the Underworld. Proceedings of the National Academy of Sciences of the United States of America 2008, 105, 18090–18095. DOI: 10.1073/pnas.0805069105.
  • Hsu, C. S.; Lobodin, V. V.; Rodgers, R. P.; McKenna, A. M.; Marshall, A. G. Compositional Boundaries for Fossil Hydrocarbons. Energy Fuels 2011, 25, 2174–2178. DOI: 10.1021/ef2004392.
  • Griffiths, M. T.; Da Campo, R.; O'Connor, P. B.; Barrow, M. P. Throwing Light on Petroleum: Simulated Exposure of Crude Oil to Sunlight and Characterization Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2014, 86, 527–534. DOI: 10.1021/ac4025335.
  • Ray, P. Z.; Chen, H.; Podgorski, D. C.; McKenna, A. M.; Tarr, M. A. Sunlight Creates Oxygenated Species in Water-Soluble Fractions of Deepwater Horizon Oil. J. Hazard. Mater. 2014, 280, 636–643. DOI: 10.1016/j.jhazmat.2014.08.059.
  • Zito, P.; Podgorski, D. C.; Bartges, T.; Guillemette, F.; Roebuck, J. A.; Spencer, R. G. M.; Rodgers, R. P.; Tarr, M. A. Sunlight-Induced Molecular Progression of Oil into Oxidized Oil Soluble Species, Interfacial Material, and Dissolved Organic Matter. Energy Fuels 2020, 34, 4721–4726. DOI: 10.1021/acs.energyfuels.9b04408.
  • Ruddy, B. M.; Hendrickson, C. L.; Rodgers, R. P.; Marshall, A. G. Positive Ion Electrospray Ionization Suppression in Petroleum and Complex Mixtures. Energy Fuels 2018, 32, 2901–2907. DOI: 10.1021/acs.energyfuels.7b03204.
  • Hughey, C. A.; Rodgers, R. P.; Marshall, A. G.; Walters, C. C.; Qian, K. N.; Mankiewicz, P. Acidic and Neutral Polar NSO Compounds in Smackover Oils of Different Thermal Maturity Revealed by Electrospray High Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Org. Geochem. 2004, 35, 863–880. DOI: 10.1016/j.orggeochem.2004.02.008.
  • Qian, K. N.; Robbins, W. K.; Hughey, C. A.; Cooper, H. J.; Rodgers, R. P.; Marshall, A. G. Resolution and Identification of Elemental Compositions for More than 3000 Crude Acids in Heavy Petroleum by Negative-Ion Microelectrospray High-Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2001, 15, 1505–1511. DOI: 10.1021/ef010111z.
  • Rowland, S. M.; Robbins, W. K.; Corilo, Y. E.; Marshall, A. G.; Rodgers, R. P. Solid-Phase Extraction Fractionation to Extend the Characterization of Naphthenic Acids in Crude Oil by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2014, 28, 5043–5048. DOI: 10.1021/ef5015023.
  • Purcell, J. M.; Hendrickson, C. L.; Rodgers, R. P.; Marshall, A. G. Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Complex Mixture Analysis. Anal. Chem. 2006, 78, 5906–5912. DOI: 10.1021/ac060754h.
  • Chacon-Patino, M. L.; Niles, S. F.; Marshall, A. G.; Hendrickson, C. L.; Rodgers, R. P. Role of Molecular Structure in the Production of Water-Soluble Species by Photo-Oxidation of Petroleum. Environ. Sci. Technol. 2020, 54, 9968–9979. DOI: 10.1021/acs.est.0c01158.
  • Cho, Y.; Ahmed, A.; Islam, A.; Kim, S. Developments in FT-ICR MS Instrumentation, Ionization Techniques, and Data Interpretation Methods for Petroleomics. Mass Spectrom Rev. 2015, 34, 248–263. DOI: 10.1002/mas.21438.
  • King, S. M.; Leaf, P. A.; Olson, A. C.; Ray, P. Z.; Tarr, M. A. Photolytic and Photocatalytic Degradation of Surface Oil from the Deepwater Horizon Spill. Chemosphere 2014, 95, 415–422. DOI: 10.1016/j.chemosphere.2013.09.060.
  • Ward, C. P.; Armstrong, C. J.; Conmy, R. N.; French-McCay, D. P.; Reddy, C. M. Photochemical Oxidation Reduced the Efficacy of Aerial Dispersants Applied in Response to the Deepwater Horizon Spill. Environ. Sci. Technol. Lett. 2018, 5, 226–231. DOI: 10.1021/acs.estlett.8b00084.
  • Ward, C. P.; Overton, E. B. How the 2010 Deepwater Horizon Spill Reshaped Our Understanding of Crude Oil Photochemical Weathering at Sea: A Past, Present, and Future Perspective. Environ. Sci. Process. Impacts. 2020, 22, 1125–1138. DOI: 10.1039/d0em00027b.
  • Thingstad, T.; Pengerud, B. The Formation of Chocolate Mousse From Statfjord Crude Oil and Seawater. Mar. Pollut. Bull. 1983, 14, 214–216. DOI: 10.1016/0025-326X(83)90254-0.
  • Overton, E. B.; Patel, J. R.; Laseter, J. L. Chemical Characterization of Mousse and Selected Environmental Samples from the AMocoa Cadiz Oil Spill. Proceedings of the 1979 Oil Spill Conference (Prevention, Behavior, Control, Cleanup), API Publication 4308, 1979:169. DOI: 10.7901/2169-3358-1979-1-169.
  • Ruddy, B. M. An Investigation of Deepwater Horizon Heavy End Environmental Transformation by High Resolution Detection and Isolation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (Dissertation). Department of Chemistry and Biochemistry. Florida State University, 2013.
  • Chen, H.; Hou, A. X.; Corilo, Y. E.; Lin, Q. X.; Lu, J.; Mendelssohn, I. K.; Zhang, R.; Rodgers, R. P.; McKenna, A. M. 4 Years after the Deepwater Horizon Spill: Molecular Transformation of Macondo Well Oil in Louisiana Salt Marsh Sediments Revealed by FT-ICR Mass Spectrometry. Environ. Sci. Technol. 2016, 50, 9061–9069. DOI: 10.1021/acs.est.6b01156.
  • Hall, G. J.; Frysinger, G. S.; Aeppli, C.; Carmichael, C. A.; Gros, J.; Lemkau, K. L.; Nelson, R. K.; Reddy, C. M. Oxygenated Weathering Products of Deepwater Horizon Oil Come from Surprising Precursors. Mar. Pollut. Bull. 2013, 75, 140–149. DOI: 10.1016/j.marpolbul.2013.07.048.
  • Gulf of Mexico Research Initiative (GRIIDC), www.data.gulfresearchinitiative.org (accessed Dec. 24, 2021).
  • Krajewski, L. C.; Lobodin, V. V.; Robbins, W. K.; Jin, P.; Bota, G.; Marshall, A. G.; Rodgers, R. P. Method for Isolation and Detection of Ketones Formed from High Temperature Naphthenic Acid Corrosion. Energy Fuels 2017, 31, 10674–10679. DOI: 10.1021/acs.energyfuels.7b01803.
  • Krajewski, L. C.; Robbins, W. K.; Corilo, Y. E.; Bota, G.; Marshall, A. G.; Rodgers, R. P. Characterization of Ketones Formed in the Open System Corrosion Test of Naphthenic Acids by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2019, 33, 4946–4950. DOI: 10.1021/acs.energyfuels.9b00626.
  • Clingenpeel, A. C.; Robbins, W. K.; Corilo, Y. E.; Rodgers, R. P. Effect of the Water Content on Silica Gel for the Isolation of Interfacial Material from Athabasca Bitumen. Energy Fuels 2015, 29, 7150–7155. DOI: 10.1021/acs.energyfuels.5b01936.
  • Clingenpeel, A. C.; Rowland, S. M.; Corilo, Y. E.; Zito, P.; Rodgers, R. P. Fractionation of Interfacial Material Reveals a Continuum of Acidic Species That Contribute to Stable Emulsion Formation. Energy Fuels 2017, 31, 5933–5939. DOI: 10.1021/acs.energyfuels.7b00490.
  • Jarvis, J. M.; Robbins, W. K.; Corilo, Y. E.; Rodgers, R. P. Novel Method to Isolate Interfacial Material. Energy Fuels 2015, 29, 7058–7064. DOI: 10.1021/acs.energyfuels.5b01787.
  • Chen, H.; McKenna, A. M.; Niles, S. F.; Frye, J.; Glattke, T. J.; Rodgers, R. P. Time-Dependent Molecular Progression and Acute Toxicity of Oil-Soluble, Interfacially-Active, and Water-Soluble Species Reveals Their Rapid Formation in the Photodegradation of Macondo Well Oil. Sci. Total Environ. 2022, 813, 151884. DOI: 10.1016/j.scitotenv.2021.151884.
  • Overton, E. B.; Laseter, J. L.; Mascarella, W.; Raschke, C.; Nuiry, I.; Farrington, J. W. Photo-Chemical Oxidation of IXTOC-I Oil. Proceedings of Symposium on Preliminary Results from the September, 1979 Researcher/Piece IXTOC-I Cruise, 1980, p. 341.
  • Chacon-Patino, M. L.; Smith, D. F.; Hendrickson, C. L.; Marshall, A. G.; Rodgers, R. P. Advances in Asphaltene Petroleomics. Part 4. Compositional Trends of Solubility Subfractions Reveal That Polyfunctional Oxygen-Containing Compounds Drive Asphaltene Chemistry. Energy Fuels 2020, 34, 3013–3030. DOI: 10.1021/acs.energyfuels.9b04288.
  • Glattke, T. J.; Chacon-Patino, M. L.; Marshall, A. G.; Rodgers, R. P. Molecular Characterization of Photochemically Produced Asphaltenes via Photooxidation of Deasphalted Crude Oils. Energy Fuels 2020, 34, 14419–14428. DOI: 10.1021/acs.energyfuels.0c02654.
  • Barrow, M. P.; Peru, K. M.; Headley, J. V. An Added Dimension: GC Atmospheric Pressure Chemical Ionization FTICR MS and the Athabasca Oil Sands. Anal. Chem. 2014, 86, 8281–8288. DOI: 10.1021/ac501710y.
  • Benigni, P.; DeBord, J. D.; Thompson, C. J.; Gardinali, P.; Fernandez-Lima, F. Increasing Polyaromatic Hydrocarbon (PAH) Molecular Coverage during Fossil Oil Analysis by Combining Gas Chromatography and Atmospheric-Pressure Laser Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). Energy Fuels 2016, 30, 196–203. DOI: 10.1021/acs.energyfuels.5b02292.
  • Zubarev, R. A.; Makarov, A. Orbitrap Mass spectrometry. Anal. Chem. 2013, 85, 5288–5296. DOI: 10.1021/ac4001223.
  • Huba, A. K.; Gardinali, P. R. Characterization of a Crude Oil Weathering Series by Ultrahigh-Resolution Mass Spectrometry Using Multiple Ionization Modes. Sci. Total Environ. 2016, 563-564, 600–610. DOI: 10.1016/j.scitotenv.2016.03.233.
  • Huba, A. K.; Huba, K.; Gardinali, P. R. Understanding the Atmospheric Pressure Ionization of Petroleum Components: The Effects of Size, Structure, and Presence of Heteroatoms. Sci. Total Environ. 2016, 568, 1018–1025. DOI: 10.1016/j.scitotenv.2016.06.044.
  • Wise, S. A.; Chesler, S. N.; Hertz, H. S.; Hilpert, L. R.; May, W. E. Chemically-Bonded Aminosilane Stationary Phase for High Performance Liquid Chromatographic Separation of Polynuclear Aromatic Compounds. Anal. Chem. 1977, 49, 2306–2310. DOI: 10.1021/ac50022a049.
  • Popl, M.; Dolansky, V.; Mostecky, J. Influence of Molecular Structure of Aromatic Hydrocarbons on Their Adsorptivity on Silica Gel. J. Chromatogr. 1976, 117, 117–127. DOI: 10.1016/S0021-9673(00)81072-9.
  • Popl, M.; Dolansky, V.; Mostecky, J. IInfluence of Molecular Structure of Aromatic Hydrocarbons on Their Adsorptivity on Alumina. J. Chromatogr. 1974, 91, 649–658. DOI: 10.1016/S0021-9673(01)97945-2.
  • Wise, S. A.; Bonnett, W. J.; May, W. E. Normal- and Reversed-Phase Liquid Chromatographic Separations of Polycyclic Aromatic Hydrocarbons. in Polynuclear Aromatic Hydrocarbons: Chemistry and Biological Effects; Eds. Bjorseth, A., and Cook, A. J. Battelle Press: Columbus OH, 1980.
  • Wise, S. A.; Benner, B. A.; Liu, H. C.; Byrd, G. D.; Colmsjo, A. Separation and Identification of Polycyclic Aromatic Hydrocarbon Isomers of Molecular Weight 302 in Complex Mixtures. Anal. Chem. 1988, 60, 630–637. DOI: 10.1021/ac00158a006.
  • Wise, S. A.; Benner, B. A.; Byrd, G. D.; Chesler, S. N.; Rebbert, R. E.; Schantz, M. M. Determination of Polycyclic Aromatic Hydrocarbons in a Coal Tar Standard Reference Material. Anal. Chem. 1988, 60, 887–894. DOI: 10.1021/ac00160a012.
  • Wise, S. A.; Benner, B. A.; Chesler, S. N.; Hilpert, L. R.; Vogt, C. R.; May, W. E. Characterization of the Polycyclic Aromatic Hydrocarbons from Two Standard Reference Material Air Particulate Samples. Anal. Chem. 1986, 58, 3067–3077. DOI: 10.1021/ac00127a036.
  • Wise, S. A.; Campbell, R. M.; West, W. R.; Lee, M. L.; Bartle, K. D. Characterization of Polycyclic Aromatic Hydrocarbon Minerals Curtisite, Idrialite and Pendletonite Using High-Performance Liquid Chromatography, Gas Chromatography, Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy. Chem. Geol. 1986, 54, 339–357. DOI: 10.1016/0009-2541(86)90148-8.
  • Wise, S. A.; Deissler, A.; Sander, L. C. Liquid Chromatographic Determination of Polycylic Aromatic Hydrocarbon Isomers of Molecular Weight 278 and 302 in Environmental Reference Materials. Olycyclic Aromatic Compounds 1993, 3, 169–184. DOI: 10.1080/10406639308047869.
  • Wise, S. A.; Sander, L. C.; May, W. E. Determination of Polycyclic Aromatic Hydrocarbons by Liquid Chromatography. J. Chromatogr. 1993, 642, 329–349. DOI: 10.1016/0021-9673(93)80097-R.
  • Wise, S. A.; Sander, L. C.; Schantz, M. M.; Hays, M. J.; Benner, B. A. Recertification of Standard Reference Material (SRM) 1649, Urban Dust, for the Determination of Polycyclic Aromatic Hydrocarbons (PAHs). Polycyclic Aromat. Compd. 2000, 13, 419–456. DOI: 10.1080/10406630008233854.
  • May, W. E.; Wise, S. A. Liquid Chromatographic Determination of Polycyclic Aromatic Hydrocarbons in Air Particulate Extracts. Anal. Chem. 1984, 56, 225–232. DOI: 10.1021/ac00266a024.
  • Wilson, W. B.; Hayes, H. V.; Sander, L. C.; Campiglia, A. D.; Wise, S. A. Normal-Phase Liquid Chromatography Retention Behavior of Polycyclic Aromatic Hydrocarbon and Their Methyl-Substituted Derivatives on an Aminopropyl Stationary Phase. Anal. Bioanal. Chem. 2017, 409, 5291–5305. DOI: 10.1007/s00216-017-0474-8.
  • S. A. Wise and L. C. Sander, Molecular Shape Recognition for Polycyclic Aromatic Hydrocarbons in Reversed-Phase Liquid Chromatography. In: Chromatographic Separation Based on Molecular Recognition, Ed. Jinno, K. Wiley-VCH: New York, NY, 1997, pp 1.
  • Wilson, W. B.; Hayes, H. V.; Sander, L. C.; Campiglia, A. D.; Wise, S. A. Normal-Phase Liquid Chromatography Retention Behavior of Polycyclic Aromatic Sulfur Heterocycles and Alkyl-Substituted Polycyclic Aromatic Sulfur Heterocycle Isomers on an Aminopropyl Stationary Phase. Anal. Bioanal. Chem. 2018, 410, 1511–1524. DOI: 10.1007/s00216-017-0795-7.
  • Sander, L. C.; Wise, S. A. Polycyclic Aromatic Hydrocarbon Structure Index. Gaithersburg, MD: National Institute of Standards and Technology (NIST), 1997.
  • Wilson, W. B.; Hayes, H. V.; Sander, L. C.; Campiglia, A. D.; Wise, S. A. Qualitative Characterization of SRM 1597a Coal Tar for Polycyclic Aromatic Hydrocarbons and Methyl-Substituted Derivatives via Normal-Phase Liquid Chromatography and Gas Chromatography/Mass Spectrometry. Anal. Bioanal. Chem. 2017, 409, 5171–5183. DOI: 10.1007/s00216-017-0464-x.
  • Ona-Ruales, J. O.; Sharma, A. K.; Wise, S. A. Identification and Quantification of Six-Ring C26H16 Cata-Condensed Polycyclic Aromatic Hydrocarbons in a Complex Mixture of Polycyclic Aromatic Hydrocarbons from Coal Tar. Anal. Bioanal. Chem. 2015, 407, 9165–9176. DOI: 10.1007/s00216-015-9084-5.
  • Schubert, P.; Schantz, M. M.; Sander, L. C.; Wise, S. A. Determination of Polycyclic Aromatic Hydrocarbons with Molecular Weight 300 and 302 in Environmental-Matrix Standard Reference Materials by Gas Chromatography/Mass Spectrometry. Anal. Chem. 2003, 75, 234–246. DOI: 10.1021/ac0259111.
  • Wilson, W. B.; Alfarhani, B.; Moore, A. F. T.; Bisson, C.; Wise, S. A.; Campiglia, A. D. Determination of High-Molecular Weight Polycyclic Aromatic Hydrocarbons in High Performance Liquid Chromatography Fractions of Coal Tar Standard Reference Material 1597a via Solid-Phase Nanoextraction and Laser-Excited Time-Resolved Shpol'skii Spectroscopy. Talanta 2016, 148, 444–453. DOI: 10.1016/j.talanta.2015.11.018.
  • Poster, D. L.; Schantz, M. M.; Sander, L. C.; Wise, S. A. Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) in Environmental Samples: A Critical Review of Gas Chromatographic (GC) Methods. Anal. Bioanal. Chem. 2006, 386, 859–881. DOI: 10.1007/s00216-006-0771-0.
  • Bystol, A. J.; Campiglia, A. D.; Gillispie, G. D. Laser-Induced Multidimensional Fluorescence Spectroscopy in Shpol'skii Matrixes with a Fiber-Optic Probe at Liquid Helium Temperature. Anal. Chem. 2001, 73, 5762–5770. DOI: 10.1021/ac010828j.
  • Bystol, A. J.; Thorstenson, T.; Campiglia, A. D. Laser-Induced Multidimensional Fluorescence Spectroscopy in Shpol'skii Matrixes for the Analysis of Polycyclic Aromatic Hydrocarbons in HPLC Fractions and Complex Environmental Extracts. Environ. Sci. Technol. 2002, 36, 4424–4429. DOI: 10.1021/es020691u.
  • Bystol, A. J.; Whitcomb, J. L.; Campiglia, A. D. Solid-liquid Extraction Laser Excited Time-Resolved Shpol'skii Spectrometry: A Facile Method for the Direct Detection of 15 Priority Pollutants in Water Samples . Environ. Sci. Technol. 2001, 35, 2566–2571. DOI: 10.1021/es010575b.
  • Bystol, A. J.; Whitcomb, J. L.; Campiglia, A. D. A Novel Approach for Solid-Liquid Extraction Laser-Excited Time-Resolved Shpol'skii Spectrometry. Talanta 2002, 57, 1101–1111. DOI: 10.1016/S0039-9140(02)00198-4.
  • Bystol, A. J.; Yu, S. J.; Campiglia, A. D. Analysis of Polycyclic Aromatic Hydrocarbons in HPLC Fractions by Laser-Excited Time-Resolved Shpol'skii Spectrometry with Cryogenic Fiber-Optic Probes. Talanta 2003, 60, 449–458. DOI: 10.1016/S0039-9140(03)00111-5.
  • Campiglia, A. D.; Bystol, A. J.; Yu, S. J. Instrumentation for Multidimensional Luminescence Spectroscopy and Its Application to Low-Temperature Analysis in Shpol'skii Matrixes and Optically Scattering Media. Anal. Chem. 2006, 78, 484–492. DOI: 10.1021/ac051332v.
  • Campiglia, A. D.; Yu, S. J.; Bystol, A. J.; Wang, H. Y. Measuring Scatter with a Cryogenic Probe and an ICCD Camera: Recording Absorption Spectra in Shpol'skii Matrixes and Fluorescence Quantum Yields in Glassy Solvents. Anal. Chem. 2007, 79, 1682–1689. DOI: 10.1021/ac061914s.
  • Goicoechea, H. C.; Yu, S. J.; Moore, A. F. T.; Campiglia, A. D. Four-Way Modeling of 4.2 K Time-Resolved Excitation Emission Fluorescence Data for the Quantitation of Polycyclic Aromatic Hydrocarbons in Soil Samples. Talanta 2012, 101, 330–336. DOI: 10.1016/j.talanta.2012.09.035.
  • Santana, A.; Comas, A.; Wise, S.; Wilson, W. B.; Campiglia, A. D. Instrumental Improvements for the Trace Analysis of Structural Isomers of Polycyclic Aromatic Hydrocarbons with Molecular Mass 302 Da. Anal. Chim. Acta 2020, 1100, 163. DOI: 10.1016/j.aca.2019.10.067.
  • Yu, S. J.; Campiglia, A. D. Laser-Excited Time-Resolved Shpol'skii Spectroscopy for the Direct Analysis of Dibenzopyrene Isomers in Liquid Chromatography Fractions. Appl. Spectrosc. 2004, 58, 1385–1393. DOI: 10.1366/0003702042641416.
  • Yu, S. J.; Campiglia, A. D. Direct Determination of Dibenzo[a,l]Pyrene and Its Four Dibenzopyrene Isomers in Water Samples by Solid-Liquid Extraction and Laser-Excited Time-Resolved Shpol'skii Spectrometry. Anal. Chem. 2005, 77, 1440–1447. DOI: 10.1021/ac048310d.
  • Wang, H. Y.; Campiglia, A. D. Determination of Polycyclic Aromatic Hydrocarbons in Drinking Water Samples by Solid-Phase Nanoextraction and High-Performance Liquid Chromatography. Anal. Chem. 2008, 80, 8202–8209. DOI: 10.1021/ac8014824.
  • Wang, H. Y.; Campiglia, A. D. Direct Determination of benzo[a]pyrene in Water Samples by a Gold Nanoparticle-Based Solid Phase Extraction Method and Laser-Excited Time-Resolved Shpol'skii Spectrometry. Talanta 2010, 83, 233–240. DOI: 10.1016/j.talanta.2010.09.013.
  • Wang, H. Y.; Wilson, W. B.; Campiglia, A. D. Using Gold Nanoparticles to Improve the Recovery and the Limits of Detection for the Analysis of Monohydroxy-Polycyclic Aromatic Hydrocarbons in Urine Samples. J. Chromatogr. A 2009, 1216, 5793–5799. DOI: 10.1016/j.chroma.2009.06.015.
  • Wang, H. Y.; Yu, S. J.; Campiglia, A. D. Solid-Phase Nano-Extraction and Laser-Excited Time-Resolved Shpol'skii Spectroscopy for the Analysis of Polycyclic Aromatic Hydrocarbons in Drinking Water Samples. Anal. Biochem. 2009, 385, 249–256. DOI: 10.1016/j.ab.2008.11.029.
  • Wilson, W. B.; Campiglia, A. D. Analysis of co-Eluted Isomers of High-Molecular Weight Polycyclic Aromatic Hydrocarbons in High Performance Liquid Chromatography Fractions via Solid-Phase Nanoextraction and Time-Resolved Shpol'skii Spectroscopy. J. Chromatogr. A 2011, 1218, 6922–6929. DOI: 10.1016/j.chroma.2011.08.015.
  • Wilson, W. B.; Campiglia, A. D. Determination of Polycyclic Aromatic Hydrocarbons with Molecular Weight 302 in Water Samples by Solid-Phase Nano-Extraction and Laser Excited Time-Resolved Shpol'skii Spectroscopy. Analyst 2011, 136, 3366–3374. DOI: 10.1039/c1an15309a.
  • Schmidt, W.; Grimmer, G.; Jacob, J.; Dettbarn, G.; Naujack, K. W. Polycyclic Aromatic Hydrocarbons with Mass Number 300 and 302 in Hard Coal Flue Gas Condensate - Partial Identification by Spectrometry and Independent Synthesis. Z Anal. Chem. 1987, 326, 401–413. DOI: 10.1007/BF00492789.
  • J. C, F. Large (C> = 24) Polycyclic Aromatic Hydrocarbons: Chemistry and Analysis. Wiley Interscience: New York, NY, 2000.
  • Durant, J. L.; Lafleur, A. L.; Plummer, E. F.; Taghizadeh, K.; Busby, W. F.; Thilly, W. G. Human Lymphoblast Mutagens in Urban Airborne Particles. Environ. Sci. Technol. 1998, 32, 1894–1906. DOI: 10.1021/es9706965.
  • Grimmer, G.; Brune, H.; Deutsch-Wenzel, R.; Dettbarn, G.; Misfeld, J.; Abel, U.; Timm, J. The Contribution of Polycyclic Aromatic Hydrocarbons to the Carcinogenic Impact of Emission Condensate from Coal Fired Residential Furnaces Evaluated by Topical Application to the Skin of Mice. Cancer Letters 1984, 23, 167–176. DOI: 10.1016/0304-3835(84)90150-2.
  • Marvin, C. H.; Lundrigan, J. A.; McCarry, B. E.; Bryant, D. W. Determination and Genotoxicity of High Molecular Mass Polycyclic Aromatic Hydrocarbons Isolated from Coal Tar Contaminated Sediment. Environ. Toxicol. Chem. 1995, 14, 2059–2066. DOI: 10.1002/etc.5620141208.
  • Bouloubassi, I.; Mejanelle, L.; Pete, R.; Fillaux, J.; Lorre, A.; Point, V. PAH Transport by Sinking Particles in the Open Mediterranean Sea: A 1 Year Sediment Trap Study. Mar. Pollut. Bull. 2006, 52, 560–571. DOI: 10.1016/j.marpolbul.2005.10.003.
  • Sun, J. A.; Khelifa, A.; Zheng, X. L.; Wang, Z. D.; So, L. L.; Wong, S.; Yang, C.; Fieldhouse, B. A Laboratory Study on the Kinetics of the Formation of Oil-Suspended Particulate Matter Aggregates Using the NIST-1941b Sediment. Mar. Pollut. Bull. 2010, 60, 1701–1707. DOI: 10.1016/j.marpolbul.2010.06.044.
  • Yamada, M.; Takada, H.; Toyoda, K.; Yoshida, A.; Shibata, A.; Nomura, H.; Wada, M.; Nishimura, M.; Okamoto, K.; Ohwada, K. Study on the Fate of Petroleum-Derived Polycyclic Aromatic Hydrocarbons (PAHs) and the Effect of Chemical Dispersant Using an Enclosed Ecosystem, Mesocosm. Mar. Pollut. Bull. 2003, 47, 105–113. DOI: 10.1016/S0025-326X(03)00102-4.
  • Cavalieri, E. L.; Higginbotham, S.; Ramakrishna, N. V. S.; Devanesan, P. D.; Todorovic, R.; Rogan, E. G.; Salmasi, S. Comparative Dose-Response Tumorigenicity Studies of Dibenzo[a,l]Pyrene versus 7,12-Dimethylbenz[a]Anthracene, Benzo[a]Pyrene and Two Dibenzo[a,l]Pyrene Dihydrodiols in Mouse Skin and Rat Mammary Gland. Carcinogenesis 1991, 12, 1939–1944. [ Mismatch] DOI: 10.1093/carcin/12.10.1939.
  • Devanesan, P.; Ariese, F.; Jankowiak, R.; Small, G. J.; Rogan, E. G.; Cavalieri, E. L. Preparation, Isolation, and Characterization of Dibenzo[a,l]pyrene Diol Epoxide-Deoxyribonucleoside Monophosphate Adducts by HPLC and Fluorescence Line-Narrowing Spectroscopy. Chem. Res. Toxicol. 1999, 12, 789–795. DOI: 10.1021/tx980202x.
  • Devanesan, P.; Ariese, F.; Jankowiak, R.; Small, G. J.; Rogan, E. G.; Cavalieri, E. L. A Novel Method for the Isolation and Identification of Stable DNA Adducts Formed by Dibenzo[a,l]pyrene and Dibenzo[a,l]pyrene 11, 12-Dihydrodiol 13,14-Epoxides in Vitro. Chem. Res. Toxicol. 1999, 12, 796–801. DOI: 10.1021/tx980203p.
  • Hayes, H. V.; Wilson, W. B.; Sander, L. C.; Wise, S. A.; Campiglia, A. D. Determination of Polycyclic Aromatic Hydrocarbons with Molecular Mass 302 in Standard Reference Material 1597a by Reversed-Phase Liquid Chromatography and Stop-Flow Fluorescence Detection (Vol 10, pg 2668, 2018). Anal. Methods 2018, 10, 5051–5051. DOI: 10.1039/C8AY90140F.
  • Hayes, H. V.; Wilson, W. B.; Santana, A. M.; Campiglia, A. D.; Sander, L. C.; Wise, S. A. Determination of Molecular Mass 302 Polycyclic Aromatic Hydrocarbons in Standard Reference Material 1597a by Reversed-Phase Liquid Chromatography and Constant Energy Synchronous Fluorescence Spectroscopy. Microchem. J. 2019, 149, 104061. DOI: 10.1016/j.microc.2019.104061.
  • Wilson, W. B.; Hayes, H. V.; Campiglia, A. D.; Wise, S. A. Qualitative Characterization of Three Combustion-Related Standard Reference Materials for Polycyclic Aromatic Sulfur Heterocycles and Their Alkyl-Substituted Derivatives via Normal-Phase Liquid Chromatography and Gas Chromatography/Mass Spectrometry. Anal. Bioanal. Chem. 2018, 410, 4177–4188. DOI: 10.1007/s00216-018-1065-z.
  • Bergvall, C.; Westerholm, R. Determination of Dibenzopyrenes in Standard Reference Materials (SRM) 1649a, 1650, and 2975 Using Ultrasonically Assisted Extraction and LC-GC-MS. Anal. Bioanal. Chem. 2006, 384, 438–447. DOI: 10.1007/s00216-005-0192-5.
  • Bergvall, C.; Westerholm, R. Determination of 252-302 Da and Tentative Identification of 316-376 Da Polycyclic Aromatic Hydrocarbons in Standard Reference Materials 1649a Urban Dust and 1650b and 2975 Diesel Particulate Matter by Accelerated Solvent extraction-HPLC-GC-MS. Anal. Bioanal. Chem. 2008, 391, 2235–2248. DOI: 10.1007/s00216-008-2182-x.
  • Hayes, H. V.; Wilson, W. B.; Sander, L. C.; Wise, S. A.; Campiglia, A. D. Determination of Polycyclic Aromatic Hydrocarbons with Molecular Mass 302 in Standard Reference Material 1597a by Reversed-Phase Liquid Chromatography and Stop-Flow Fluorescence Detection. Anal. Methods 2018, 10, 2668–2675. DOI: 10.1039/C8AY00760H.
  • Gooijer, C.; Ariese, F.; Hofstraat, J. W. Shpol'skii Spectroscopy and Other Site-Selection Methods: Applications in Environmental Analysis, Bioanalytical Chemistry, and Chemical Physics, 1st ed. John Wiley & Sons: New York, 2000.
  • Gooijer, C.; Ariese, F.; Hofstraat, J. W.; Velthorst, N. H.; Spectroscopy, S. A Cryogenic High-Resolution Molecular Fluorescence Technique with a Distinct Potential in Analytical Chemistry. Trends Analyt. Chem. 1994, 13, 53–61. DOI: 10.1016/0165-9936(94)85065-8.
  • Garrigues, P.; Bourgeois, G.; Veyres, A.; Rima, J.; Lamotte, M.; Ewald, M. Comparison of Methylphenanthrene Isomer Detection in Petroleum Extracts by Gas Chromatography Mass Spectrometry and Shpolskii Luminescence Spectrometry. Anal. Chem. 1985, 57, 1068–1070. DOI: 10.1021/ac00283a023.
  • Garrigues, P.; Budzinski, H. Recent Analytical Advances in Shpol’skii Spectroscopy. Trends Analyt. Chem. 1995, 14, 231–239. DOI: 10.1016/0167-2940(96)81432-4.
  • Garrigues, P.; De Vazelhes, R.; Ewald, M.; Joussot-Dubien, J.; Schmitter, J. M.; Guiochon, G. Identification of Triaromatic Azaarenes in Crude Oils by High Resolution Spectrofluorimetry in Shpol’skii Matrices. Anal. Chem. 1983, 55, 138–140. DOI: 10.1021/ac00252a035.
  • Garrigues, P.; Ewald, M. High Resolution Emission Spectroscopy (Shpol’skii Effect) - a New Analytical Technique for the Analysis of Polycyclic Aromatic Hydrocarbons (PAH) in the Environmental Samples. Chemosphere 1987, 16, 485–494. DOI: 10.1016/0045-6535(87)90256-6.
  • Garrigues, P.; Marniesse, M. P.; Wise, S. A.; Bellocq, J.; Ewald, M. Identification of Mutagenic Methylbenz[a]anthracene and Methylchrysene Isomers in Natural Samples by Liquid Chromatography and Shpol'skii Spectrometry . Anal. Chem. 1987, 59, 1695–1700. DOI: 10.1021/ac00140a024.
  • Garrigues, P.; Parlanti, E.; Radke, M.; Bellocq, J.; Willsch, H.; Ewald, M. Identification of Alkylphenanthrenes in Shale Oil and Coal by Liquid and Capillary Gas Chromatography and High Resolution Spectrofluorimetry (Shpol’skii Effect). J. Chromatogr. 1987, 395, 217–228. DOI: 10.1016/S0021-9673(01)94112-3.
  • Goicoechea, H. C.; Yu, S. J.; Olivieri, A. C.; Campiglia, A. D. Four-Way Data Coupled to Parallel Factor Model Applied to Environmental Analysis: Determination of 2,3,7,8-Tetrachloro-Dibenzo-Para-Dioxin in Highly Contaminated Waters by Solid-Liquid Extraction Laser-Excited Time-Resolved Shpol'skii Spectroscopy. Anal. Chem. 2005, 77, 2608–2616. DOI: 10.1021/ac048343t.
  • Mohammad-Pour, G. S.; Ly, R. T.; Fairchild, D. C.; Burnstine-Townley, A.; Vazquez-Molina, D. A.; Trieu, K. D.; Campiglia, A. D.; Harper, J. K.; Uribe-Romo, F. J. Modular Design of Fluorescent Dibenzo- and Naphtho-Fluoranthenes: Structural Rearrangements and Electronic Properties. J. Org. Chem. 2018, 83, 8036–8053. DOI: 10.1021/acs.joc.8b00891.
  • Arruda, A. F.; Goicoechea, H. C.; Santos, M.; Campiglia, A. D.; Olivieri, A. C. Solid-Liquid Extraction Room Temperature Phosphorimetry and Pattern Recognition for Screening Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Water Samples. Environ. Sci. Technol. 2003, 37, 1385–1391. DOI: 10.1021/es020717h.
  • Bystol, A. J.; Campiglia, A. D. Fluorescence Line Narrowing Spectroscopy of Polycyclic Aromatic Hydrocarbons on Solid-Liquid Extraction Membranes. Appl. Spectrosc. 2003, 57, 697–702. DOI: 10.1366/000370203322005409.
  • NRC, Oil Spill Dispersants: Efficacy and Effects. National Academy of Sciences: Washington DC, 2005.
  • Prince, R. C. Oil Spill Dispersants: Boon or Bane? Environ. Sci. Technol. 2015, 49, 6376–6384. DOI: 10.1021/acs.est.5b00961.
  • Place, B. J.; Perkins, M. J.; Sinclair, E.; Barsamian, A. L.; Blakemore, P. R.; Field, J. A. Trace Analysis of Surfactants in Corexit Oil Dispersant Formulations and Seawater. Deep Sea Res 2 Top Stud Oceanogr . 2016, 129, 273–281. DOI: 10.1016/j.dsr2.2014.01.015.
  • NASEM, The Use of Dispersants in Marine Oil Spill Response. The National Academies of Sciences, Engineering, and Medicine: Washington, DC, 2019.
  • John, V.; Arnosti, C.; Field, J.; Kujawinski, E.; MacCormick, A. The Role of Dispersants in Oil Spill Remediation: Fundamental Concepts, Rationale for Use, Fate and Transport Issues. Oceanog. 2016, 29, 108–117. DOI: 10.5670/oceanog.2016.75.
  • Choyke, S.; Ferguson, P. L. Molecular Characterization of Nonionic Surfactant Components of the Corexit 9500 Oil Spill Dispersant by High-Resolution Mass Spectrometry. Rapid Commun. Mass Spectrom. 2019, 33, 1683–1694. DOI: 10.1002/rcm.8512.
  • Kujawinski, E. B.; Kido Soule, M. C.; Valentine, D. L.; Boysen, A. K.; Longnecker, K.; Redmond, M. C. Fate of Dispersants Associated with the Deepwater Horizon Oil Spill. Environ. Sci. Technol. 2011, 45, 1298–1306. DOI: 10.1021/es103838p.
  • Gray, J. L.; Kanagy, L. K.; Furlong, E. T.; Kanagy, C. J.; McCoy, J. W.; Mason, A.; Lauenstein, G. Presence of the Corexit Component Dioctyl Sodium Sulfosuccinate in Gulf of Mexico Waters after the 2010 Deepwater Horizon Oil Spill. Chemosphere 2014, 95, 124–130. DOI: 10.1016/j.chemosphere.2013.08.049.
  • Perkins, M. J.; Joye, S. B.; Field, J. A. Selective Quantification of DOSS in Marine Sediment and Sediment-Trap Solids by LC-QTOF-MS. Anal. Bioanal. Chem. 2017, 409, 971–978. DOI: 10.1007/s00216-016-0010-2.
  • Kleindienst, S.; Seidel, M.; Ziervogel, K.; Grim, S.; Loftis, K.; Harrison, S.; Malkin, S. Y.; Perkins, M. J.; Field, J.; Sogin, M. L.; et al. Chemical Dispersants Can Suppress the Activity of Natural Oil-Degrading Microorganisms. Proc Natl Acad Sci U S A 2015, 112, 14900–14905. DOI: 10.1073/pnas.1507380112.
  • Seidel, M.; Kleindienst, S.; Dittmar, T.; Joye, S. B.; Medeiros, P. M. Biodegradation of Crude Oil and Dispersants in Deep Seawater from the Gulf of Mexico: Insights from Ultra-High Resolution Mass Spectrometry. Deep Sea Research II 2016, 129, 108–118. DOI: 10.1016/j.dsr2.2015.05.012.
  • Choyke, S. Environmental Fate of Chemical Dispersant Corexit®9500 in Seawater by High-Resolution Mass Spectrometry [Dissertation]. Nicholas School of the Environment, Duke University, Durham, NC, 2019.
  • Campo, P.; Venosa, A. D.; Suidan, M. T. Biodegradability of Corexit 9500 and Dispersed South Louisiana Crude Oil at 5 and 25 °C. Environ. Sci. Technol. 2013, 47, 1960–1967. DOI: 10.1021/es303881h.
  • Baelum, J.; Borglin, S.; Chakraborty, R.; Fortney, J. L.; Lamendella, R.; Mason, O. U.; Auer, M.; Zemla, M.; Bill, M.; Conrad, M. E.; et al. Deep-Sea Bacteria Enriched by Oil and Dispersant From the Deepwater Horizon Spill. Environ. Microbiol. 2012, 14, 2405–2416. DOI: 10.1111/j.1462-2920.2012.02780.x.
  • White, H. K.; Lyons, S. L.; Harrison, S. J.; Findley, D. M.; Liu, Y.; Kujawinski, E. B. Long-Term Persistence of Dispersants Following the Deepwater Horizon Oil Spill. Environ. Sci. Technol. Lett. 2014, 1, 295–299. DOI: 10.1021/ez500168r.
  • Perkins, M. J. Assessing Chemical Dispersants Used During the Deepwater Horizon Oil Spill: Method Innovation and Application. In Environmental and Molecular Toxicology. Corvalis, OR: Oregon State University, 2017.
  • Kleindienst, S.; Paul, J. H.; Joye, S. B. Using Dispersants after Oil Spills: Impacts on the Composition and Activity of Microbial Communities. Nat. Rev. Microbiol. 2015, 13, 388–396. DOI: 10.1038/nrmicro3452.
  • Ward, C. P.; Sharpless, C. M.; Valentine, D. L.; French-McCay, D. P.; Aeppli, C.; White, H. K.; Rodgers, R. P.; Gosselin, K. M.; Nelson, R. K.; Reddy, C. M. Partial Photochemical Oxidation Was a Dominant Fate of Deepwater Horizon Surface Oil. Environ. Sci. Technol. 2018, 52, 1797–1805. DOI: 10.1021/acs.est.7b05948.
  • Nelson, R. K.; Aeppli, C.; Arey, J. S.; Chen, H.; de Oliviera, T. F.; Eiserbeck, C.; Frysinger, G. S.; Gaines, R. B.; Grice, K.; Gros, J.; et al. Applications of Comprehensive Two-Dimensional Gas Chromatography (GCxGC) in Studying the Source, Transport, and Fate of Petroleum Hydrocarbons in the Environment. In Standard Handbook Oil Spill Environmental Forensics - Fingerprinting and Source Identification, 2nd edition; Stout S.A., Wang Z., eds. Elsevier Academic Press: San Diego, 2016, pp 399–449.
  • Zito, P.; Podgorski, D. C.; Johnson, J.; Chen, H.; Rodgers, R. P.; Guillemette, F.; Kellerman, A. M.; Spencer, R. G. M.; Tarr, M. A. Molecular-Level Composition and Acute Toxicity of Photosolubilized Petrogenic Carbon. Environ. Sci. Technol. 2019, 53, 8235–8243. DOI: 10.1021/acs.est.9b01894.
  • Joye, S. B.; Kostka, J. E. Microbial Genomics of the Global Ocean System. Washington, DC: American Academy of Microbiology, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.