1,548
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Electrochemical (Bio)Sensors for the Detection of Organophosphorus Pesticides Based on Nanomaterial-Modified Electrodes: A Review

, , , ORCID Icon, &
Pages 1766-1791 | Published online: 02 Mar 2022

References

  • Cha, E. S.; Chang, S. S.; Choi, Y.; Lee, W. J. Trends in Pesticide Suicide in South Korea, 1983-2014. Epidemiol. Psychiatr. Sci. 2019, 29, e25. DOI: 10.1017/S2045796019000118.
  • Kumar, P.; Kim, K. H.; Deep, A. Recent Advancements in Sensing Techniques Based on Functional Materials for Organophosphate pesticides. Biosens. Bioelectron. 2015, 70, 469–481. DOI: 10.1016/j.bios.2015.03.066.
  • Hernandez, A. F.; Gil, F.; Lacasana, M. Toxicological Interactions of Pesticide Mixtures: An Update. Arch. Toxicol. 2017, 91, 3211–3223. DOI: 10.1007/s00204-017-2043-5.
  • Song, D.; Wang, Y.; Lu, X.; Gao, Y.; Li, Y.; Gao, F. Ag Nanoparticles-Decorated Nitrogen-Fluorine co-Doped Monolayer MoS2 Nanosheet for Highly Sensitive Electrochemical Sensing of Organophosphorus Pesticides. Sens. Actuators, B. 2018, 267, 5–13. DOI: 10.1016/j.snb.2018.04.016.
  • Sun, L.; Xu, W.; Peng, T.; Chen, H.; Ren, L.; Tan, H.; Xiao, D.; Qian, H.; Fu, Z. Developmental Exposure of Zebrafish Larvae to Organophosphate Flame Retardants Causes Neurotoxicity. Neurotoxicol. Teratol. 2016, 55, 16–22. DOI: 10.1016/j.ntt.2016.03.003.
  • Mishra, A.; Kumar, J.; Melo, J. S.; Sandaka, B. P. Progressive Development in Biosensors for Detection of Dichlorvos Pesticide: A Review. J. Environ. Chem. Eng. 2021, 9, 105067. DOI: 10.1016/j.jece.2021.105067.
  • Barker, Z.; Venkatchalam, V.; Martin, A. N.; Farquar, G. R.; Frank, M. Detecting Trace Pesticides in Real Time Using Single Particle Aerosol Mass Spectrometry. Anal. Chim. Acta. 2010, 661, 188–194. DOI: 10.1016/j.aca.2009.12.031.
  • Masia, A.; Suarez-Varela, M. M.; Llopis-Gonzalez, A.; Pico, Y. Determination of Pesticides and Veterinary Drug Residues in Food by Liquid Chromatography-Mass Spectrometry: A Review. Anal. Chim. Acta. 2016, 936, 40–61. DOI: 10.1016/j.aca.2016.07.023.
  • Pelajic, M.; Pecek, G.; Mutavdzic Pavlovic, D.; Vitali Cepo, D. Novel Multiresidue Method for Determination of Pesticides in Red Wine Using Gas Chromatography-Mass Spectrometry and Solid Phase Extraction. Food Chem 2016, 200, 98. DOI: 10.1016/j.foodchem.2016.01.018.
  • Pico, Y.; Alfarhan, A. H.; Barcelo, D. How Recent Innovations in Gas Chromatography-Mass Spectrometry Have Improved Pesticide Residue Determination: An Alternative Technique to Be in Your Radar. Trac, Trends Anal. Chem. 2020, 122, 115720. DOI: 10.1016/j.trac.2019.115720.
  • Amali, R. K. A.; Lim, H. N.; Ibrahim, I.; Huang, N. M.; Zainal, Z.; Ahmad, S. A. A. Significance of Nanomaterials in Electrochemical Sensors for Nitrate Detection: A Review. Trends Environ. Anal. Chem. 2021, 31, e00135. DOI: 10.1016/j.teac.2021.e00135.
  • Anu Prathap, M. U.; Kaur, B.; Srivastava, R. Electrochemical Sensor Platforms Based on Nanostructured Metal Oxides, and Zeolite-Based Materials. Chem. Rec. 2019, 19, 883–907. DOI: 10.1002/tcr.201800068.
  • Bo, X.; Zhou, M.; Guo, L. Electrochemical Sensors and Biosensors Based on Less Aggregated Graphene. Biosens. Bioelectron. 2017, 89, 167–186. DOI: 10.1016/j.bios.2016.05.002.
  • Liu, T.; Chu, Z.; Jin, W. Electrochemical Mercury Biosensors Based on Advanced Nanomaterials. J. Mater. Chem. B. 2019, 7, 3620–3632. DOI: 10.1039/C9TB00418A.
  • Pundir, C. S.; Malik, A. Preety Bio-Sensing of Organophosphorus Pesticides: A Review. Biosens Bioelectron 2019, 140, 111348. DOI: 10.1016/j.bios.2019.111348.
  • Liu, G.; Lin, Y. Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Anal. Chem. 2005, 77, 5894–5901. DOI: 10.1021/ac050791t.
  • Gannavarapu, K. P.; Ganesh, V.; Thakkar, M.; Mitra, S.; Dandamudi, R. B. Nanostructured Diatom-ZrO2 Composite as a Selective and Highly Sensitive Enzyme Free Electrochemical Sensor for Detection of Methyl Parathion. Sens Actuators B Chem .. 2019, 288, 611–617. DOI: 10.1016/j.snb.2019.03.036.
  • Shanmugam, R.; Manavalan, S.; Chen, S.-M.; Keerthi, M.; Lin, L.-H. Methyl Parathion Detection Using SnS2/N, S–Co-Doped Reduced Graphene Oxide Nanocomposite. ACS Sustainable Chem. Eng. 2020, 8, 11194–11203. DOI: 10.1021/acssuschemeng.0c02528.
  • Liao, C.; Mak, C.; Zhang, M.; Chan, H. L.; Yan, F. Flexible Organic Electrochemical Transistors for Highly Selective Enzyme Biosensors and Used for Saliva Testing. Adv. Mater. 2015, 27, 676–681. DOI: 10.1002/adma.201404378.
  • Stoytcheva, M.; Zlatev, R.; Montero, G.; Velkova, Z.; Gochev, V. A Nanotechnological Approach to Biosensors Sensitivity Improvement: application to Organophosphorus Pesticides Determination. Biotechnology & Biotechnological Equipment 2018, 32, 213–220. DOI: 10.1080/13102818.2017.1389618.
  • Amine, A.; Arduini, F.; Moscone, D.; Palleschi, G. Recent Advances in Biosensors Based on Enzyme Inhibition. Biosens. Bioelectron. 2016, 76, 180–194. DOI: 10.1016/j.bios.2015.07.010.
  • Zhang, Y.; Arugula, M. A.; Wales, M.; Wild, J.; Simonian, A. L. A Novel Layer-by-Layer Assembled Multi-Enzyme/CNT Biosensor for Discriminative Detection between Organophosphorus and Non-Organophosphrus Pesticides. Biosens. Bioelectron. 2015, 67, 287–295. DOI: 10.1016/j.bios.2014.08.036.
  • He, L.; Cui, B.; Liu, J.; Song, Y.; Wang, M.; Peng, D.; Zhang, Z. Novel Electrochemical Biosensor Based on Core-Shell Nanostructured Composite of Hollow Carbon Spheres and Polyaniline for Sensitively Detecting Malathion. Sens. Actuators, B. 2018, 258, 813–821. DOI: 10.1016/j.snb.2017.11.161.
  • Zhao, F.; Yao, Y.; Li, X.; Lan, L.; Jiang, C.; Ping, J. Metallic Transition Metal Dichalcogenide Nanosheets as an Effective and Biocompatible Transducer for Electrochemical Detection of Pesticide. Anal. Chem. 2018, 90, 11658–11664. DOI: 10.1021/acs.analchem.8b03250.
  • He, Y.; Du, J.; Luo, J.; Chen, S.; Yuan, R. Coreactant-Free Electrochemiluminescence Biosensor for the Determination of Organophosphorus Pesticides. Biosens. Bioelectron. 2020, 150, 111898. DOI: 10.1016/j.bios.2019.111898.
  • Bao, J.; Hou, C.; Chen, M.; Li, J.; Huo, D.; Yang, M.; Luo, X.; Lei, Y. Plant Esterase-Chitosan/Gold Nanoparticles-Graphene Nanosheet Composite-Based Biosensor for the Ultrasensitive Detection of Organophosphate Pesticides. J Agric Food Chem .. 2015, 63, 10319–10326. DOI: 10.1021/acs.jafc.5b03971.
  • Cho, I. H.; Lee, J.; Kim, J.; Kang, M. S.; Paik, J. K.; Ku, S.; Cho, H. M.; Irudayaraj, J.; Kim, D. H. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification. Sensors (Basel) 2018, 18, 207. DOI: 10.3390/s18010207.
  • Lim, S. A.; Ahmed, M. U. Electrochemical Immunosensors and Their Recent Nanomaterial-Based Signal Amplification Strategies: A Review. RSC Adv. 2016, 6, 24995–25014. DOI: 10.1039/C6RA00333H.
  • Chen, H. M.; Jheng, K. R.; Yu, A. D. Direct, Label-Free, Selective, and Sensitive Microbial Detection Using a Bacteriorhodopsin-Based Photoelectric Immunosensor. Biosens. Bioelectron. 2017, 91, 24–31. DOI: 10.1016/j.bios.2016.12.032.
  • Liu, G.; Song, D.; Chen, F. Towards the Fabrication of a Label-Free Amperometric Immunosensor Using SWNTs for Direct Detection of Paraoxon. Talanta 2013, 104, 103–108. DOI: 10.1016/j.talanta.2012.11.039.
  • Sun, X.; Cao, Y.; Gong, Z.; Wang, X.; Zhang, Y.; Gao, J. An Amperometric Immunosensor Based on Multi-Walled Carbon Nanotubes-Thionine-Chitosan Nanocomposite Film for Chlorpyrifos Detection. Sensors (Basel) 2012, 12, 17247–17261. DOI: 10.3390/s121217247.
  • Dong, H.; Zhao, Q.; Li, J.; Xiang, Y.; Liu, H.; Guo, Y.; Yang, Q.; Sun, X. Broad-Spectrum Electrochemical Immunosensor Based on One-Step Electrodeposition of AuNP-Abs and Prussian Blue Nanocomposite for Organophosphorus Pesticide Detection. Bioprocess Biosyst Eng 2021, 44, 585–594. DOI: 10.1007/s00449-020-02472-9.
  • Zhou, J.; Zhao, Y.; Bao, J.; Huo, D.; Fa, H.; Shen, X.; Hou, C. One-Step Electrodeposition of Au-Pt Bimetallic Nanoparticles on MoS2 Nanoflowers for Hydrogen Peroxide Enzyme-Free Electrochemical Sensor. Electrochim. Acta 2017, 250, 152–158. DOI: 10.1016/j.electacta.2017.08.044.
  • Peltomaa, R.; Benito-Pena, E.; Gorris, H. H.; Moreno-Bondi, M. C. Biosensing Based on Upconversion Nanoparticles for Food Quality and Safety Applications. Analyst 2021, 146, 13–32. DOI: 10.1039/d0an01883j.
  • Huo, B.; Hu, Y.; Gao, Z.; Li, G. Recent Advances on Functional Nucleic Acid-Based Biosensors for Detection of Food Contaminants. Talanta 2021, 222, 121565. DOI: 10.1016/j.talanta.2020.121565.
  • Selvolini, G.; Băjan, I.; Hosu, O.; Cristea, C.; Săndulescu, R.; Marrazza, G. DNA-Based Sensor for the Detection of an Organophosphorus Pesticide: Profenofos. Sensors (Basel) 2018, 18, 2035. DOI: 10.3390/s18072035.
  • Yang, Y.; Liu, X.; Wu, M.; Wang, X.; Hou, T.; Li, F. Electrochemical Biosensing Strategy for Highly Sensitive Pesticide Assay Based on Mercury Ion-Mediated DNA Conformational Switch Coupled with Signal Amplification by Hybridization Chain Reaction. Sens. Actuators, B. 2016, 236, 597–604. DOI: 10.1016/j.snb.2016.06.044.
  • Fu, J.; An, X.; Yao, Y.; Guo, Y.; Sun, X. Electrochemical Aptasensor Based on One Step co-Electrodeposition of Aptamer and GO-CuNPs Nanocomposite for Organophosphorus Pesticide Detection. Sens. Actuators, B. 2019, 287, 503–509. DOI: 10.1016/j.snb.2019.02.057.
  • C, G. A.; Varghese, A.; M, N. Recent Advances in Nanomaterials Based Molecularly Imprinted Electrochemical Sensors. Crit Rev Anal Chem 2021. DOI: 10.1080/10408347.2021.1937925.
  • Wang, W.; Wang, X.; Cheng, N.; Luo, Y.; Lin, Y.; Xu, W.; Du, D. Recent Advances in Nanomaterials-Based Electrochemical (Bio)Sensors for Pesticides Detection. Trac, Trends Anal. Chem. 2020, 132, 116041. DOI: 10.1016/j.trac.2020.116041.
  • Wang, B.; Hong, J.; Liu, C.; Zhu, L.; Jiang, L. An Electrochemical Molecularly Imprinted Polymer Sensor for Rapid β-Lactoglobulin Detection. Sensors 2021, 21, 8240. DOI: 10.3390/s21248240.
  • Zheng, X.; Khaoulani, S.; Ktari, N.; Lo, M.; Khalil, A. M.; Zerrouki, C.; Fourati, N.; Chehimi, M. M. Towards Clean and Safe Water: A Review on the Emerging Role of Imprinted Polymer-Based Electrochemical Sensors. Sensors (Basel) 2021, 21, 4300. DOI: 10.3390/s21134300.
  • Motaharian, A.; Motaharian, F.; Abnous, K.; Hosseini, M. R.; Hassanzadeh-Khayyat, M. Molecularly Imprinted Polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples . Anal. Bioanal. Chem. 2016, 408, 6769–6779. DOI: 10.1007/s00216-016-9802-7.
  • Xu, G.; Huo, D.; Hou, J.; Zhang, C.; Zhao, Y.; Hou, C.; Bao, J.; Yao, X.; Yang, M. An Electrochemical Aptasensor of Malathion Based on Ferrocene/DNA-Hybridized MOF, DNA Coupling-Gold Nanoparticles and Competitive DNA Strand Reaction. Microchem. J. 2021, 162, 105829. DOI: 10.1016/j.microc.2020.105829.
  • Karimi-Maleh, H.; Yola, M. L.; Atar, N.; Orooji, Y.; Karimi, F.; Senthil Kumar, P.; Rouhi, J.; Baghayeri, M. A Novel Detection Method for Organophosphorus Insecticide Fenamiphos: Molecularly Imprinted Electrochemical Sensor Based on Core-Shell Co3O4@MOF-74 Nanocomposite. J Colloid Interface Sci . 2021, 592, 174–185. DOI: 10.1016/j.jcis.2021.02.066.
  • Cao, Y.; Wang, L.; Shen, C.; Wang, C.; Hu, X.; Wang, G. An Electrochemical Sensor on the Hierarchically Porous Cu-BTC MOF Platform for Glyphosate Determination. Sens. Actuators, B. 2019, 283, 487–494. DOI: 10.1016/j.snb.2018.12.064.
  • Ma, L.; He, Y.; Wang, Y.; Wang, Y.; Li, R.; Huang, Z.; Jiang, Y.; Gao, J. Nanocomposites of Pt Nanoparticles Anchored on UiO66-NH2 as Carriers to Construct Acetylcholinesterase Biosensors for Organophosphorus Pesticide Detection. Electrochim. Acta 2019, 318, 525–533. DOI: 10.1016/j.electacta.2019.06.110.
  • Li, X.; Gao, X.; Gai, P.; Liu, X.; Li, F. Degradable Metal-Organic Framework/Methylene Blue Composites-Based Homogeneous Electrochemical Strategy for Pesticide Assay. Sens. Actuators, B. 2020, 323, 128701. DOI: 10.1016/j.snb.2020.128701.
  • Chen, P.; Liu, Z.; Liu, J.; Liu, H.; Bian, W.; Tian, D.; Xia, F.; Zhou, C. A Novel Electrochemiluminescence Aptasensor Based CdTe QDs@NH2-MIL-88(Fe) for Signal Amplification. Electrochim. Acta 2020, 354, 136644. DOI: 10.1016/j.electacta.2020.136644.
  • Wang, Z.; Ma, B.; Shen, C.; Cheong, L. Z. Direct, Selective and Ultrasensitive Electrochemical Biosensing of Methyl Parathion in Vegetables Using Burkholderia cepacia Lipase@MOF Nanofibers-Based Biosensor. Talanta 2019, 197, 356–362. DOI: 10.1016/j.talanta.2019.01.052.
  • Zhao, G.; Zhou, B.; Wang, X.; Shen, J.; Zhao, B. Detection of Organophosphorus Pesticides by Nanogold/Mercaptomethamidophos Multi-Residue Electrochemical Biosensor. Food Chem. 2021, 354, 129511. DOI: 10.1016/j.foodchem.2021.129511.
  • Lu, X.; Tao, L.; Li, Y.; Huang, H.; Gao, F. A Highly Sensitive Electrochemical Platform Based on the Bimetallic Pd@Au Nanowires Network for Organophosphorus Pesticides Detection. Sens. Actuators, B. 2019, 284, 103–109. DOI: 10.1016/j.snb.2018.12.125.
  • Pajooheshpour, N.; Rezaei, M.; Hajian, A.; Afkhami, A.; Sillanpää, M.; Arduini, F.; Bagheri, H. Protein Templated Au-Pt Nanoclusters-Graphene Nanoribbons as a High Performance Sensing Layer for the Electrochemical Determination of Diazinon. Sens. Actuators, B. 2018, 275, 180–189. DOI: 10.1016/j.snb.2018.08.014.
  • Gao, N.; He, C.; Ma, M.; Cai, Z.; Zhou, Y.; Chang, G.; Wang, X.; He, Y. Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor. Anal. Chim. Acta. 2019, 1072, 25–34. DOI: 10.1016/j.aca.2019.04.043.
  • Cui, H. F.; Wu, W. W.; Li, M. M.; Song, X.; Lv, Y.; Zhang, T. T. A Highly Stable Acetylcholinesterase Biosensor Based on chitosan-TiO2-Graphene Nanocomposites for Detection of Organophosphate Pesticides. Biosens. Bioelectron. 2018, 99, 223–229. DOI: 10.1016/j.bios.2017.07.068.
  • Xie, Y.; Tu, X.; Ma, X.; Fang, Q.; Liu, G.; Dai, R.; Qu, F.; Yu, Y.; Lu, L.; Huang, X. A CuO-CeO2 Composite Prepared by Calcination of a Bimetallic Metal-Organic Framework for Use in an Enzyme-Free Electrochemical Inhibition Assay for Malathion. Mikrochim. Acta. 2019, 186, 567. DOI: 10.1007/s00604-019-3684-2.
  • Gu, C.; Wang, Q.; Zhang, L.; Yang, P.; Xie, Y.; Fei, J. Ultrasensitive Non-Enzymatic Pesticide Electrochemical Sensor Based on HKUST-1-Derived Copper Oxide @ Mesoporous Carbon Composite. Sens. Actuators, B. 2020, 305, 127478. DOI: 10.1016/j.snb.2019.127478.
  • Tian, X.; Liu, L.; Li, Y.; Yang, C.; Zhou, Z.; Nie, Y.; Wang, Y. Nonenzymatic Electrochemical Sensor Based on CuO-TiO2 for Sensitive and Selective Detection of Methyl Parathion Pesticide in Ground Water. Sens. Actuators, B. 2018, 256, 135–142. DOI: 10.1016/j.snb.2017.10.066.
  • Nasir, M. Z. M.; Mayorga-Martinez, C. C.; Sofer, Z.; Pumera, M. Two-Dimensional 1T-Phase Transition Metal Dichalcogenides as Nanocarriers to Enhance and Stabilize Enzyme Activity for Electrochemical Pesticide Detection. ACS Nano. 2017, 11, 5774–5784. DOI: 10.1021/acsnano.7b01364.
  • Peng, L.; Dong, S.; Wei, W.; Yuan, X.; Huang, T. Synthesis of Reticulated Hollow Spheres Structure NiCo2S4 and Its Application in Organophosphate Pesticides biosensor. Biosens. Bioelectron. 2017, 92, 563–569. DOI: 10.1016/j.bios.2016.10.059.
  • Zhang, Y.; Kang, T.-F.; Wan, Y.-W.; Chen, S.-Y. Gold Nanoparticles-Carbon Nanotubes Modified Sensor for Electrochemical Determination of Organophosphate Pesticides. Microchim. Acta 2009, 165, 307–311. DOI: 10.1007/s00604-008-0134-y.
  • Xu, G.; Huo, D.; Hou, C.; Zhao, Y.; Bao, J.; Yang, M.; Fa, H. A Regenerative and Selective Electrochemical Aptasensor Based on Copper Oxide Nanoflowers-Single Walled Carbon Nanotubes Nanocomposite for Chlorpyrifos Detection. Talanta 2018, 178, 1046–1052. DOI: 10.1016/j.talanta.2017.08.086.
  • Yao, J.; Liu, Z.; Jin, M.; Zou, Y.; Chen, J.; Xie, P.; Wang, X.; Akinoglu, E. M.; Zhou, G.; Shui, L. Uniform Honeycomb CNT-Microparticles Prepared via Droplet-Microfluidics and Sacrificial Nanoparticles for Electrochemical Determination of Methyl Parathion. Sens. Actuators, B. 2020, 321, 128517. DOI: 10.1016/j.snb.2020.128517.
  • Zhao, H.; Ma, H.; Li, X.; Liu, B.; Liu, R.; Komarneni, S. Nanocomposite of Halloysite Nanotubes/Multi-Walled Carbon Nanotubes for Methyl Parathion Electrochemical Sensor Application. Appl. Clay Sci. 2021, 200, 105907. DOI: 10.1016/j.clay.2020.105907.
  • Chen, Z.; Zhang, Y.; Yang, Y.; Shi, X.; Zhang, L.; Jia, G. Hierarchical Nitrogen-Doped Holey Graphene as Sensitive Electrochemical Sensor for Methyl Parathion Detection. Sens. Actuators, B. 2021, 336, 129721. DOI: 10.1016/j.snb.2021.129721.
  • Kaur, R.; Rana, S.; Lalit, K.; Singh, P.; Kaur, K. Electrochemical Detection of Methyl Parathion via a Novel Biosensor Tailored on Highly Biocompatible Electrochemically Reduced Graphene Oxide-Chitosan-Hemoglobin Coatings. Biosens. Bioelectron. 2020, 167, 112486. DOI: 10.1016/j.bios.2020.112486.
  • Khosropour, H.; Rezaei, B.; Rezaei, P.; Ensafi, A. A. Ultrasensitive Voltammetric and Impedimetric Aptasensor for Diazinon Pesticide Detection by VS2 Quantum Dots-Graphene Nanoplatelets/Carboxylated Multiwalled Carbon Nanotubes As A New Group Nanocomposite For Signal Enrichment. Anal. Chim. Acta. 2020, 1111, 92–102. DOI: 10.1016/j.aca.2020.03.047.
  • Wang, B.; Ye, C.; Zhong, X.; Chai, Y.; Chen, S.; Yuan, R. Electrochemical Biosensor for Organophosphate Pesticides and Huperzine-A Detection Based on Pd Wormlike Nanochains/Graphitic Carbon Nitride Nanocomposites and Acetylcholinesterase. Electroanalysis 2016, 28, 304–311. DOI: 10.1002/elan.201500339.
  • Bilal, S.; Mudassir Hassan, M.; Fayyaz Ur Rehman, M.; Nasir, M.; Jamil Sami, A.; Hayat, A. An Insect Acetylcholinesterase Biosensor Utilizing WO3/g-C3N4 Nanocomposite Modified Pencil Graphite Electrode for Phosmet Detection in Stored Grains. Food Chem. 2021, 346, 128894. DOI: 10.1016/j.foodchem.2020.128894.
  • Dong, J.; Hou, J.; Jiang, J.; Ai, S. Innovative Approach for the Electrochemical Detection of Non-Electroactive Organophosphorus Pesticides Using Oxime As Electroactive Probe . Anal. Chim. Acta. 2015, 885, 92–97. DOI: 10.1016/j.aca.2015.05.033.
  • Zhao, F.; Yao, Y.; Jiang, C.; Shao, Y.; Barcelo, D.; Ying, Y.; Ping, J. Self-Reduction Bimetallic Nanoparticles on Ultrathin MXene Nanosheets as Functional Platform for Pesticide Sensing. J. Hazard. Mater. 2020, 384, 121358. DOI: 10.1016/j.jhazmat.2019.121358.
  • Jiang, Y.; Zhang, X.; Pei, L.; Yue, S.; Ma, L.; Zhou, L.; Huang, Z.; He, Y.; Gao, J. Silver Nanoparticles Modified Two-Dimensional Transition Metal Carbides as Nanocarriers to Fabricate Acetycholinesterase-Based Electrochemical Biosensor. Chemical Engineering Journal 2018, 339, 547–556. DOI: 10.1016/j.cej.2018.01.111.
  • Song, D.; Jiang, X.; Li, Y.; Lu, X.; Luan, S.; Wang, Y.; Li, Y.; Gao, F. Metal-organic Frameworks-derived MnO2/Mn3O4 Microcuboids with Hierarchically Ordered Nanosheets and Ti3C2 MXene/Au NPs Composites for Electrochemical Pesticide Detection. J. Hazard. Mater. 2019, 373, 367–376. DOI: 10.1016/j.jhazmat.2019.03.083.
  • Wang, B.; Li, Y.; Hu, H.; Shu, W.; Yang, L.; Zhang, J. Acetylcholinesterase Electrochemical Biosensors with Graphene-Transition Metal Carbides Nanocomposites Modified for Detection of Organophosphate Pesticides. PLoS One. 2020, 15, e0231981. DOI: 10.1371/journal.pone.0231981.
  • Devic, T.; Serre, C.; Audebrand, N.; Marrot, J.; Férey, G. MIL-103, a 3-D Lanthanide-Based Metal Organic Framework with Large One-Dimensional Tunnels and a High Surface Area. J. Am. Chem. Soc. 2005, 127, 12788–12789. DOI: 10.1021/ja053992n.
  • He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale metal-Organic Frameworks for the Co-delivery of Cisplatin and Pooled siRNAs to Enhance Therapeutic Efficacy in Drug-resistant Ovarian Cancer Cells. J. Am. Chem. Soc. 2014, 136, 5181–5184. DOI: 10.1021/ja4098862.
  • Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295, 469–472. DOI: 10.1126/science.1067208.
  • Liu, Y.; Eubank, J. F.; Cairns, A. J.; Eckert, J.; Kravtsov, V.; Luebke, R.; Eddaoudi, M. Assembly of Metal-Organic Frameworks (MOFs) Based on Indium-Trimer Building Blocks: A Porous MOF with Soc Topology and High Hydrogen Storage. Angew. Chem. Int. Ed. Engl. 2007, 46, 3278–3283. DOI: 10.1002/anie.200604306.
  • Xiong, C. Y.; Wang, H. J.; Liang, W. B.; Yuan, Y. L.; Yuan, R.; Chai, Y. Q. Luminescence-Functionalized Metal-Organic Frameworks Based on a Ruthenium(II) Complex: A Signal Amplification Strategy for Electrogenerated Chemiluminescence Immunosensors. Chemistry 2015, 21, 9825–9832. DOI: 10.1002/chem.201500909.
  • Zhao, X.; Wang, Y.; Li, D. S.; Bu, X.; Feng, P. Metal-Organic Frameworks for Separation. Adv. Mater. 2018, 30, e1705189. DOI: 10.1002/adma.201705189.
  • Vikrant, K.; Tsang, D. C. W.; Raza, N.; Giri, B. S.; Kukkar, D.; Kim, K. H. Potential Utility of Metal-Organic Framework-Based Platform for Sensing Pesticides. ACS Appl Mater Interfaces 2018, 10, 8797–8817. DOI: 10.1021/acsami.8b00664.
  • Aguilera-Sigalat, J.; Bradshaw, D. Synthesis and Applications of Metal-Organic Framework–Quantum Dot (QD@MOF) Composites. Coord. Chem. Rev. 2016, 307, 267–291. DOI: 10.1016/j.ccr.2015.08.004.
  • Bennett, T. D.; Sotelo, J.; Tan, J.-C.; Moggach, S. A. Mechanical Properties of Zeolitic Metal–Organic Frameworks: mechanically Flexible Topologies and Stabilization against Structural Collapse. CrystEngComm 2015, 17, 286–289. DOI: 10.1039/C4CE02145B.
  • Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112, 1105–1125. DOI: 10.1021/cr200324t.
  • Stavila, V.; Talin, A. A.; Allendorf, M. D. MOF-Based Electronic and Opto-Electronic Devices. Chem. Soc. Rev. 2014, 43, 5994–6010. DOI: 10.1039/c4cs00096j.
  • Liu, Y.; Liu, Z.; Huang, D.; Cheng, M.; Zeng, G.; Lai, C.; Zhang, C.; Zhou, C.; Wang, W.; Jiang, D.; et al. Metal or Metal-Containing Nanoparticle@MOF Nanocomposites as a Promising Type of Photocatalyst. Coord. Chem. Rev. 2019, 388, 63–78. DOI: 10.1016/j.ccr.2019.02.031.
  • Kempahanumakkagari, S.; Kumar, V.; Samaddar, P.; Kumar, P.; Ramakrishnappa, T.; Kim, K. H. Biomolecule-Embedded Metal-Organic Frameworks as an Innovative Sensing Platform. Biotechnol. Adv. 2018, 36, 467–481. DOI: 10.1016/j.biotechadv.2018.01.014.
  • Nagabooshanam, S.; Roy, S.; Mathur, A.; Mukherjee, I.; Krishnamurthy, S.; Bharadwaj, L. M. Electrochemical Micro Analytical Device Interfaced with Portable Potentiostat for Rapid Detection of Chlorpyrifos Using Acetylcholinesterase Conjugated Metal Organic Framework Using Internet of Things. Sci. Rep. 2019, 9, 19862. DOI: 10.1038/s41598-019-56510-y.
  • Fenzl, C.; Hirsch, T.; Baeumner, A. J. Nanomaterials as Versatile Tools for Signal Amplification in (Bio)Analytical Applications. Trac, Trends Anal. Chem. 2016, 79, 306–316. DOI: 10.1016/j.trac.2015.10.018.
  • Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical Sensor and Biosensor Platforms Based on Advanced Nanomaterials for Biological and Biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. DOI: 10.1016/j.bios.2017.12.031.
  • Chang, C. C.; Chen, C. P.; Wu, T. H.; Yang, C. H.; Lin, C. W.; Chen, C. Y. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. Nanomaterials (Basel) 2019, 9, 861. DOI: 10.3390/nano9060861.
  • Peng, Y.; Rabin, C.; Walgama, C. T.; Pollok, N. E.; Smith, L.; Richards, I.; Crooks, R. M. Silver Nanocubes as Electrochemical Labels for Bioassays. ACS Sens. 2021, 6, 1111–1119. DOI: 10.1021/acssensors.0c02377.
  • Chang, Y. T.; Liao, P. Y.; Sheu, H. S.; Tseng, Y. J.; Cheng, F. Y.; Yeh, C. S. Near-Infrared Light-Responsive Intracellular Drug and siRNA Release Using au Nanoensembles with Oligonucleotide-Capped Silica Shell. Adv. Mater. 2012, 24, 3309–3314. DOI: 10.1002/adma.201200785.
  • Wolfrum, B.; Katelhon, E.; Yakushenko, A.; Krause, K. J.; Adly, N.; Huske, M.; Rinklin, P. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems. Acc. Chem. Res. 2016, 49, 2031–2040. DOI: 10.1021/acs.accounts.6b00333.
  • Fang, S.; Li, C.; Lin, J.; Zhu, H.; Cui, D.; Xu, Y.; Li, Z. Gold Nanorods-Based Theranostics for Simultaneous Fluorescence/Two-Photon Luminescence Imaging and Synergistic Phototherapies. J. Nanomater. 2016, 2016, 1. DOI: 10.1155/2016/1082746.
  • Wang, J.; Yang, B.; Zhong, J.; Yan, B.; Zhang, K.; Zhai, C.; Shiraishi, Y.; Du, Y.; Yang, P. Dopamine and Uric Acid Electrochemical Sensor Based on a Glassy Carbon Electrode Modified with Cubic Pd and Reduced Graphene Oxide Nanocomposite. J Colloid Interface Sci . 2017, 497, 172–180. DOI: 10.1016/j.jcis.2017.03.011.
  • Yang, L.; Xu, B.; Ye, H.; Zhao, F.; Zeng, B. A Novel Quercetin Electrochemical Sensor Based on Molecularly Imprinted Poly(Para-Aminobenzoic Acid) on 3D Pd Nanoparticles-Porous Graphene-Carbon Nanotubes Composite. Sens. Actuators, B. 2017, 251, 601–608. DOI: 10.1016/j.snb.2017.04.006.
  • Kumar, J. V.; Karthik, R.; Chen, S. M.; Muthuraj, V.; Karuppiah, C. Fabrication of Potato-like Silver Molybdate Microstructures for Photocatalytic Degradation of Chronic Toxicity Ciprofloxacin and Highly Selective Electrochemical Detection of H2O2. Sci. Rep. 2016, 6, 34149. DOI: 10.1038/srep34149.
  • Lebegue, E.; Anderson, C. M.; Dick, J. E.; Webb, L. J.; Bard, A. J. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode. Langmuir 2015, 31, 11734–11739. DOI: 10.1021/acs.langmuir.5b03123.
  • Rismetov, B.; Ivandini, T. A.; Saepudin, E.; Einaga, Y. Electrochemical Detection of Hydrogen Peroxide at Platinum-Modified Diamond Electrodes for an Application in Melamine Strip Tests. Diamond Relat. Mater. 2014, 48, 88–95. DOI: 10.1016/j.diamond.2014.07.003.
  • Sepunaru, L.; Plowman, B. J.; Sokolov, S. V.; Young, N. P.; Compton, R. G. Rapid Electrochemical Detection of Single Influenza Viruses Tagged with Silver nanoparticles. Chem. Sci. 2016, 7, 3892–3899. DOI: 10.1039/c6sc00412a.
  • Zhang, R.; Sun, C. L.; Lu, Y. J.; Chen, W. Graphene Nanoribbon-Supported PtPd Concave Nanocubes for Electrochemical Detection of TNT with High Sensitivity and Selectivity. Anal. Chem. 2015, 87, 12262–12269. DOI: 10.1021/acs.analchem.5b03390.
  • Bansal, P.; Bhanjana, G.; Prabhakar, N.; Dhau, J. S.; Chaudhary, G. R. Electrochemical Sensor Based on ZrO2 NPs/Au Electrode Sensing Layer for Monitoring Hydrazine and Catechol in Real Water Samples. J. Mol. Liq. 2017, 248, 651–657. DOI: 10.1016/j.molliq.2017.10.098.
  • Huang, X.; Zhao, G.; Liu, M.; Li, F.; Qiao, J.; Zhao, S. Highly Sensitive Electrochemical Determination of 1-Naphthol Based on High-Index Facet SnO2 Modified Electrode. Electrochim. Acta 2012, 83, 478–484. DOI: 10.1016/j.electacta.2012.08.008.
  • Wang, P.; Ge, L.; Li, M.; Li, W.; Li, L.; Wang, Y.; Yu, J. Photoelectrochemical Sensor Based on Molecularly Imprinted Polymer-Coated TiO2 Nanotubes for Lindane Specific Recognition and Detection. J. Inorg. Organomet. Polym. 2013, 23, 703–711. DOI: 10.1007/s10904-013-9836-7.
  • Yu, X.-Y.; Liu, Z.-G.; Huang, X.-J. Nanostructured Metal Oxides/Hydroxides-Based Electrochemical Sensor for Monitoring Environmental Micropollutants. Trends Environ. Anal. Chem. 2014, 3-4, 28–35. DOI: 10.1016/j.teac.2014.07.001.
  • Terzi, F.; Pigani, L.; Zanardi, C. Unusual Metals as Electrode Materials for Electrochemical Sensors. Curr. Opin. Electrochem. 2019, 16, 157–163. DOI: 10.1016/j.coelec.2019.05.005.
  • Yang, Y.; Yang, X.; Yang, Y.; Yuan, Q. Aptamer-Functionalized Carbon Nanomaterials Electrochemical Sensors for Detecting Cancer Relevant Biomolecules. Carbon 2018, 129, 380–395. DOI: 10.1016/j.carbon.2017.12.013.
  • Liu, R.; Wan, L.; Liu, S.; Pan, L.; Wu, D.; Zhao, D. An Interface-Induced Co-Assembly Approach towards Ordered Mesoporous Carbon/Graphene Aerogel for High-Performance Supercapacitors. Adv. Funct. Mater. 2015, 25, 526–533. DOI: 10.1002/adfm.201403280.
  • Eguilaz, M.; Villalonga, R.; Rivas, G. Electrochemical Biointerfaces Based on Carbon Nanotubes-Mesoporous Silica Hybrid Material: Bioelectrocatalysis of Hemoglobin and Biosensing Applications. Biosens. Bioelectron. 2018, 111, 144–151. DOI: 10.1016/j.bios.2018.04.004.
  • Lu, X.; Yim, W.-L.; Suryanto, B. H. R.; Zhao, C. Electrocatalytic Oxygen Evolution at Surface-Oxidized Multiwall Carbon Nanotubes. J. Am. Chem. Soc. 2015, 137, 2901–2907. DOI: 10.1021/ja509879r.
  • Suryanto, B. H. R.; Chen, S.; Duan, J.; Zhao, C. Hydrothermally Driven Transformation of Oxygen Functional Groups at Multiwall Carbon Nanotubes for Improved Electrocatalytic Applications. ACS Appl Mater Interfaces 2016, 8, 35513–35522. DOI: 10.1021/acsami.6b14090.
  • Wang, D. Y.; Gong, M.; Chou, H. L.; Pan, C. J.; Chen, H. A.; Wu, Y.; Lin, M. C.; Guan, M.; Yang, J.; Chen, C. W.; et al. Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets-Carbon Nanotubes for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592. DOI: 10.1021/ja511572q.
  • Yang, Y.; Yang, X.; Chen, S.; Zou, M.; Li, Z.; Cao, A.; Yuan, Q. Rational Design of Hierarchical Carbon/Mesoporous Silicon Composite Sponges as High-Performance Flexible Energy Storage Electrodes. ACS Appl Mater Interfaces 2017, 9, 22819–22825. DOI: 10.1021/acsami.7b05032.
  • Hermann, S.; Schulze, S.; Ecke, R.; Liebig, A.; Schaefer, P.; Zahn, D. R. T.; Albrecht, M.; Hietschold, M.; Schulz, S. E.; Gessner, T. Growth of Carbon Nanotube Forests between a bi-Metallic Catalyst Layer and a SiO2 Substrate to Form a Self-Assembled Carbon–Metal Heterostructure. Carbon 2012, 50, 4765–4772. DOI: 10.1016/j.carbon.2012.05.034.
  • Ramnani, P.; Saucedo, N. M.; Mulchandani, A. Carbon Nanomaterial-Based Electrochemical Biosensors for Label-Free Sensing of Environmental Pollutants. Chemosphere 2016, 143, 85–98. DOI: 10.1016/j.chemosphere.2015.04.063.
  • Yan, Y.; Miao, J.; Yang, Z.; Xiao, F. X.; Yang, H. B.; Liu, B.; Yang, Y. Carbon Nanotube Catalysts: recent Advances in Synthesis, Characterization and Applications. Chem. Soc. Rev. 2015, 44, 3295–3346. DOI: 10.1039/c4cs00492b.
  • Hou, D.; Liu, Q.; Wang, X.; Quan, Y.; Qiao, Z.; Yu, L.; Ding, S. Facile Synthesis of Graphene via Reduction of Graphene Oxide by Artemisinin in Ethanol. J. Materiomics 2018, 4, 256–265. DOI: 10.1016/j.jmat.2018.01.002.
  • Jin, S.; Chung, B.; Park, H. J.; Cunning, B. V.; Lee, J. H.; Yoon, A.; Huang, M.; Seo, H.; Lee, D.; Lee, Z.; et al. Ultrahigh Strength and Modulus Graphene‐Based Hybrid Carbons with AB‐Stacked and Turbostratic Structures. Adv. Funct. Mater. 2020, 30, 2005381. DOI: 10.1002/adfm.202005381.
  • Low, C. T. J.; Walsh, F. C.; Chakrabarti, M. H.; Hashim, M. A.; Hussain, M. A. Electrochemical Approaches to the Production of Graphene Flakes and Their Potential Applications. Carbon 2013, 54, 1–21. DOI: 10.1016/j.carbon.2012.11.030.
  • Roldan, R.; Chirolli, L.; Prada, E.; Silva-Guillen, J. A.; San-Jose, P.; Guinea, F. Theory of 2D Crystals: graphene and beyond. Chem. Soc. Rev. 2017, 46, 4387–4399. DOI: 10.1039/c7cs00210f.
  • Zhang, W.; Zhu, S.; Luque, R.; Han, S.; Hu, L.; Xu, G. Recent Development of Carbon Electrode Materials and Their Bioanalytical and Environmental Applications. Chem. Soc. Rev. 2016, 45, 715–752. DOI: 10.1039/c5cs00297d.
  • Pakapongpan, S.; Poo-Arporn, R. P. Self-Assembly of Glucose Oxidase on Reduced Graphene Oxide-Magnetic Nanoparticles Nanocomposite-Based Direct Electrochemistry for Reagentless Glucose Biosensor. Mater Sci Eng C Mater Biol Appl … 2017, 76, 398–405. DOI: 10.1016/j.msec.2017.03.031.
  • Vilian, A. T. E.; Chen, S.-M.; Ali, M. A.; Al-Hemaid, F. M. A. Direct Electrochemistry of Glucose Oxidase Immobilized on ZrO2 Nanoparticles-Decorated Reduced Graphene Oxide Sheets for a Glucose Biosensor. RSC Adv 2014, 4, 30358–30367. DOI: 10.1039/C4RA04350B.
  • Lyu, L.; Seong, K-d.; Ko, D.; Choi, J.; Lee, C.; Hwang, T.; Cho, Y.; Jin, X.; Zhang, W.; Pang, H.; Piao, Y. Recent Development of Biomass-Derived Carbons and Composites as Electrode Materials for Supercapacitors. Mater. Chem. Front. 2019, 3, 2543–2570. DOI: 10.1039/C9QM00348G.
  • Pedrero, M.; Campuzano, S.; Pingarron, J. M. Quantum Dots as Components of Electrochemical Sensing Platforms for the Detection of Environmental and Food Pollutants: A Review. J AOAC Int . 2017, 100, 950–961. DOI: 10.5740/jaoacint.17-0169.
  • Elshafey, R.; Abo-Sobehy, G. F.; Radi, A.-E. Graphene Oxide/Graphene Quantum Dots: A Platform for Probing ds-DNA-Dimethoate Interaction and Dimethoate Sensing. Electroanal. Chem. 2021, 899, 115678. DOI: 10.1016/j.jelechem.2021.115678.
  • Gogotsi, Y.; Huang, Q. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano. 2021, 15, 5775–5780. DOI: 10.1021/acsnano.1c03161.
  • Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D Materials and Van Der Waals Heterostructures. Science 2016, 353, aac9439. DOI: 10.1126/science.aac9439.
  • Dong, Y.; Mallineni, S. S. K.; Maleski, K.; Behlow, H.; Mochalin, V. N.; Rao, A. M.; Gogotsi, Y.; Podila, R. Metallic MXenes: A New Family of Materials for Flexible Triboelectric Nanogenerators. Nano Energy 2018, 44, 103–110. DOI: 10.1016/j.nanoen.2017.11.044.
  • Jiang, Q.; Lei, Y.; Liang, H.; Xi, K.; Xia, C.; Alshareef, H. N. Review of MXene Electrochemical Microsupercapacitors. Energy Storage Mater. 2020, 27, 78–95. DOI: 10.1016/j.ensm.2020.01.018.
  • Shahzad, F.; Iqbal, A.; Zaidi, S. A.; Hwang, S.-W.; Koo, C. M. Nafion-Stabilized Two-Dimensional Transition Metal Carbide (Ti3C2Tx MXene) as a High-Performance Electrochemical Sensor for Neurotransmitter. J. Ind. Eng. Chem. 2019, 79, 338–344. DOI: 10.1016/j.jiec.2019.03.061.
  • Murugan, N.; Jerome, R.; Preethika, M.; Sundaramurthy, A.; Sundramoorthy, A. K. 2D-Titanium Carbide (MXene) Based Selective Electrochemical Sensor for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Journal of Materials Science & Technology 2021, 72, 122–131. DOI: 10.1016/j.jmst.2020.07.037.
  • Zhang, R.; Liu, J.; Li, Y. MXene with Great Adsorption Ability toward Organic Dye: An Excellent Material for Constructing a Ratiometric Electrochemical Sensing Platform. ACS Sens. 2019, 4, 2058–2064. DOI: 10.1021/acssensors.9b00654.
  • Tu, X.; Gao, F.; Ma, X.; Zou, J.; Yu, Y.; Li, M.; Qu, F.; Huang, X.; Lu, L. Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic Frameworks as High-performance Electrochemical Sensing Platform for Sensitive Detection of Carbendazim Pesticide. J. Hazard. Mater. 2020, 396, 122776. DOI: 10.1016/j.jhazmat.2020.122776.
  • Medetalibeyoglu, H.; Beytur, M.; Akyıldırım, O.; Atar, N.; Yola, M. L. Validated Electrochemical Immunosensor for Ultra-Sensitive Procalcitonin Detection: Carbon Electrode Modified with Gold Nanoparticles Functionalized Sulfur Doped MXene as Sensor Platform and Carboxylated Graphitic Carbon Nitride as Signal Amplification. Sens. Actuators, B. 2020, 319, 128195. DOI: 10.1016/j.snb.2020.128195.
  • Shen, L.; Zhou, X.; Zhang, X.; Zhang, Y.; Liu, Y.; Wang, W.; Si, W.; Dong, X. Carbon-Intercalated Ti3C2TxMXene for High-Performance Electrochemical Energy Storage. J. Mater. Chem. A. 2018, 6, 23513–23520. DOI: 10.1039/C8TA09600G.
  • Wang, R.; Chang, Z.; Fang, Z.; Xiao, T.; Zhu, Z.; Ye, B.; Xu, C.; Cheng, J. Pt Nanowire/Ti3C2Tx-CNT Hybrids Catalysts for the High Performance Oxygen Reduction Reaction for High Temperature PEMFC. Int. J. Hydrogen Energy 2020, 45, 28190–28195. DOI: 10.1016/j.ijhydene.2020.03.068.
  • Zheng, J.; Wang, B.; Ding, A.; Weng, B.; Chen, J. Synthesis of MXene/DNA/Pd/Pt Nanocomposite for Sensitive Detection of Dopamine. Electroanal. Chem. 2018, 816, 189–194. DOI: 10.1016/j.jelechem.2018.03.056.
  • Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D. Nanomaterials in Electrochemical Biosensors for Pesticide Detection: Advances and Challenges in Food Analysis. Microchim. Acta 2016, 183, 2063–2083. DOI: 10.1007/s00604-016-1858-8.
  • Delińska, K.; Yavir, K.; Kloskowski, A. Ionic Liquids in Extraction Techniques: Determination of Pesticides in Food and Environmental Samples. Trac, Trends Anal. Chem. 2021, 143, 116396. DOI: 10.1016/j.trac.2021.116396.
  • Boulanouar, S.; Mezzache, S.; Combes, A.; Pichon, V. Molecularly Imprinted Polymers for the Determination of Organophosphorus Pesticides in Complex Samples. Talanta 2018, 176, 465–478. DOI: 10.1016/j.talanta.2017.08.067.
  • Kalhor, H.; Hashemipour, S.; Yaftian, M. R. Ultrasound-Assisted Emulsification-Microextraction/Ion Mobility Spectrometry Combination: Application for Analysis of Organophosphorus Pesticide Residues in Rice Samples. Food Anal. Methods 2016, 9, 3006–3014. DOI: 10.1007/s12161-016-0492-8.
  • Musarurwa, H.; Chimuka, L.; Tavengwa, N. T. Green Pre-Concentration Techniques during Pesticide Analysis in Food Samples. J. Environ. Sci. Health. B. 2019, 54, 770–780. DOI: 10.1080/03601234.2019.1633213.
  • Elencovan, V.; Joseph, J.; Yahaya, N.; Abdul Samad, N.; Raoov, M.; Lim, V.; Zain, N. N. M. Exploring a Novel Deep Eutectic Solvents Combined with Vortex Assisted Dispersive Liquid-Liquid Microextraction and Its Toxicity for Organophosphorus Pesticides Analysis from Honey and Fruit Samples. Food Chem. 2022, 368, 130835. DOI: 10.1016/j.foodchem.2021.130835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.