751
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Derivatization, an Applicable Asset for Conventional HPLC Systems without MS Detection in Food and Miscellaneous Analysis

, , , , , & show all
Pages 1807-1827 | Published online: 24 Feb 2022

References

  • Qi, B. L.; Liu, P.; Wang, Q. Y.; Cai, W. J.; Yuan, B. F.; Feng, Y. Q. Derivatization for Liquid Chromatography-Mass Spectrometry. TrAC - Trends Anal. Chem. 2014, 59, 121–132. DOI: 10.1016/j.trac.2014.03.013.
  • Kishikawa, N. Derivatization Techniques for Chromatographic Analysis. Anal. Sci. 2018, 34, 1109–1110. DOI: 10.2116/analsci.highlights1810.
  • Semwal, A.; Dogra, R.; Verma, K.; Bhatia, R. Impact of UPLC-MS in Food and Drug/Metabolite Analysis. Cpa. 2020, 17, 10–21. DOI: 10.2174/1573412915666190923105355.
  • Rosenfeld, J. Enhancement of Analysis by Analytical Derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1157–1158. DOI: 10.1016/j.jchromb.2011.04.010.
  • Sajid, M.; Płotka-Wasylka, J. Green” Nature of the Process of Derivatization in Analytical Sample Preparation. TrAC - Trends Anal. Chem. 2018, 102, 16–31. DOI: 10.1016/j.trac.2018.01.005.
  • Dogra, R.; Mandal, U. K. Recent Applications of Derivatization Techniques for Pharmaceutical and Bioanalytical Analysis through High-Performance Liquid Chromatography. Cac. 2022, 18, 217–243. DOI: 10.2174/1573411017666211108092115.
  • Su, Y.; Xia, S.; Wang, R.; Xiao, L. Phytohormonal Quantification Based on Biological Principles. In Hormone Metabolism and Signaling in Plants. Academic press: London, UK, 2017; pp 431–470DOI: 10.1016/B978-0-12-811562-6.00013-X.
  • Knapp, D. Handbook of Analytical Derivatization Reactions; John Wiley & Sons: New York, 1979.
  • Delgado-Povedano, M. M.; Luque de Castro, M. D. Ultrasound-Assisted Extraction and in Situ Derivatization. J. Chromatogr. A. 2013, 1296, 226–234. DOI: 10.1016/j.chroma.2013.04.004.
  • Lavilla, I.; Romero, V.; Costas, I.; Bendicho, C. Greener Derivatization in Analytical Chemistry. TrAC - Trends Anal. Chem. 2014, 61, 1–10. DOI: 10.1016/j.trac.2014.05.007.
  • Płotka-Wasylka, J. M.; Morrison, C.; Biziuk, M.; Namieśnik, J. Chemical Derivatization Processes Applied to Amine Determination in Samples of Different Matrix Composition. Chem. Rev. 2015, 115, 4693–4718. DOI: 10.1021/cr4006999.
  • Krull, I. S.; Deyl, Z.; Lingeman, H. General Strategies and Selection of Derivatization Reactions for Liquid Chromatography and Capillary Electrophoresis. J. Chromatogr. B Biomed. Sci. Appl 1994, 659, 1–17. DOI: 10.1016/0378-4347(94)00151-0.
  • Rosenfeld, J. M. Derivatization in the Current Practice of Analytical Chemistry. TrAC - Trends Anal. Chem. 2003, 22, 785–798. DOI: 10.1016/S0165-9936(03)01205-6.
  • Westermeier, R.; Naven, T.; Höpker, H. Proteomics in Practice: A Guide to Successful Experimental Design; John Wiley & Sons: Berlin, Germany, 2008.
  • Danielson, N. D.; Gallagher, P. A.; Bao, J. J. Chemical Reagents and Derivatization Procedures in Drug Analysis. In Encyclopedia of Analytical Chemistry, Meyers RA, Ed.; West Sussex, England: John Wiley & Sons, Ltd,; 2008. DOI: 10.1002/9780470027318.A1905.PUB2.
  • Du, Y.; Xia, L.; Xiao, X.; Li, G.; Chen, X. A Simple One-Step Ultrasonic-Assisted Extraction and Derivatization Method Coupling to High-Performance Liquid Chromatographyfor the Determination of ε-Aminocaproic Acid and Amino Acids in Cosmetics. J. Chromatogr. A. 2018, 1554, 37–44. DOI: 10.1016/j.chroma.2018.04.021.
  • Keith, L. H.; Gron, L. U.; Young, J. L. Green Analytical Methodologies. Chem. Rev. 2007, 107, 2695–2708. DOI: 10.1021/cr068359e.
  • Wang, Z.. Green Chemistry: Recent Advances in Developing Catalytic Processes in Environmentally-Benign Solvent Systems. Front. Chem. 2008, 1–43.
  • Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC - Trends Anal. Chem. 2013, 50, 78–84. DOI: 10.1016/j.trac.2013.04.010.
  • Perez, H. L.; Evans, C. A. Chemical Derivatization in Bioanalysis. Bioanalysis 2015, 7, 2435–2437. DOI: 10.4155/bio.15.182.
  • Cimlová, J.; Kružberská, P.; Švagera, Z.; Hušek, P.; Šimek, P. In Situ Derivatization-Liquid Liquid Extraction as a Sample Preparation Strategy for the Determination of Urinary Biomarker Prolyl-4-Hydroxyproline by Liquid Chromatography-Tandem Mass Spectrometry. J Mass Spectrom . 2012, 47, 294–302. DOI: 10.1002/jms.2952.
  • Cabaleiro, N.; Pena-Pereira, F.; de la Calle, I.; Bendicho, C.; Lavilla, I. Determination of Triclosan by Cuvetteless UV-Vis Micro-Spectrophotometry Following Simultaneous Ultrasound Assisted Emulsification-Microextraction with Derivatization: Use of a Micellar-Ionic Liquid as Extractant. Microchem. J. 2011, 99, 246–251. DOI: 10.1016/j.microc.2011.05.010.
  • Fedorowski, J.; LaCourse, W. R. A Review of Post-Column Photochemical Reaction Systems Coupled to Electrochemical Detection in HPLC. Anal. Chim. Acta 2010, 657, 1–8. DOI: 10.1016/j.aca.2009.10.011.
  • Saaid, M.; Saad, B.; Ali, A. S. M.; Saleh, M. I.; Basheer, C.; Lee, H. K. In Situ Derivatization Hollow Fibre Liquid-Phase Microextraction for the Determination of Biogenic Amines in Food Samples. J. Chromatogr. A. 2009, 1216, 5165–5170. DOI: 10.1016/j.chroma.2009.04.091.
  • Jia, S.; Ryu, Y.; Kwon, S. W.; Lee, J. An in Situ Benzoylation-Dispersive Liquid-Liquid Microextraction Method Based on Solidification of Floating Organic Droplets for Determination of Biogenic Amines by Liquid Chromatography-Ultraviolet Analysis. J. Chromatogr. A. 2013, 1282, 1–10. DOI: 10.1016/j.chroma.2013.01.041.
  • Mahesh, V.; Narayana, R.; Mohana, C.; Kumar, A. Headspace Single-Drop Microextraction with in-Drop Derivatization Followed by Reversed-Phase HPLC Analysis to Determine Residual Acetaldehyde in Polyethylene Terephthalate. Sep. Sci. Plus. 2018, 1, 237–243. DOI: 10.1002/sscp.201800001.
  • Wang, N.; Duan, C.; Geng, X.; Li, S.; Ding, K.; Guan, Y. One Step Rapid Dispersive Liquid-Liquid Micro-Extraction with in-Situ Derivatization for Determination of Aflatoxins in Vegetable Oils Based on High Performance Liquid Chromatography Fluorescence Detection. Food Chem. 2019, 287, 333–337. DOI: 10.1016/j.foodchem.2019.02.099.
  • Krenková, J.; Foret, F. Immobilized Microfluidic Enzymatic Reactors. Electrophoresis 2004, 25, 3550–3563. DOI: 10.1002/elps.200406096.
  • Rzygalinski, I.; Pobozy, E.; Drewnowska, R.; Trojanowicz, M. Enzymatic in-Capillary Derivatization for Glucose Determination by Electrophoresis with Spectrophotometric Detection. Electrophoresis 2008, 29, 1741–1748. DOI: 10.1002/elps.200700726.
  • Damm, M.; Rechberger, G.; Kollroser, M.; Kappe, C. O. Microwave-Assisted High-Throughput Derivatization Techniques Utilizing Silicon Carbide Microtiter Platforms. J. Chromatogr. A. 2010, 1217, 167–170. DOI: 10.1016/j.chroma.2009.11.071.
  • Luque de Castro, M. D.; Priego-Capote, F. Ultrasound-Assisted Preparation of Liquid Samples. Talanta 2007, 72, 321–334. DOI: 10.1016/j.talanta.2006.11.013.
  • Gioia, M. G.; Gatti, R.; Minarini, A. LC Determination of Leuprolide Component Amino Acids in Injectable Solution by Phanquinone Pre-Column Derivatization Labelling Procedure. J. Pharm. Biomed. Anal. 2005, 37, 1135–1141. DOI: 10.1016/j.jpba.2004.09.028.
  • Hernández-Cassou, S.; Saurina, J. Derivatization Strategies for the Determination of Biogenic Amines in Wines by Chromatographic and Electrophoretic Techniques. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1270–1281. DOI: 10.1016/j.jchromb.2010.11.020.
  • Cháfer-Pericás, C.; Herráez-Hernández, R.; Campíns-Falcó, P. A New Selective Method for Dimethylamine in Water Analysis by Liquid Chromatography Using Solid-Phase Microextraction and Two-Stage Derivatization with o-Phthalaldialdehyde and 9-Fluorenylmethyl Chloroformate. Talanta 2005, 66, 1139–1145. DOI: 10.1016/j.talanta.2005.01.013.
  • Cháfer-Pericás, C.; Campíns-Falcó, P.; Herráez-Hernández, R. Comparative Study of the Determination of Trimethylamine in Water and Air by Combining Liquid Chromatography and Solid-Phase Microextraction with on-Fiber Derivatization. Talanta 2006, 69, 716–723. DOI: 10.1016/j.talanta.2005.11.013.
  • Ordóñez, J. L.; Callejón, R. M.; Morales, M. L.; García-Parrilla, M. C. A Survey of Biogenic Amines in Vinegars. Food Chem. 2013, 141, 2713–2719. DOI: 10.1016/j.foodchem.2013.05.087.
  • Tang, T.; Shi, T.; Qian, K.; Li, P.; Li, J.; Cao, Y. Determination of Biogenic Amines in Beer with Pre-Column Derivatization by High Performance Liquid Chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 507–512. DOI: 10.1016/j.jchromb.2008.12.064.
  • Wan Raihana, W. A.; Gan, S. H.; Tan, S. C. Stereoselective Method Development and Validation for Determination of Concentrations of Amphetamine-Type Stimulants and Metabolites in Human Urine Using a Simultaneous Extraction-Chiral Derivatization Approach. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 8–16. DOI: 10.1016/j.jchromb.2010.10.037.
  • Burakham, R.; Grudpan, K. Flow Injection and Sequential Injection on-Line Pre-Column Derivatization for Liquid Chromatography. J. Chromatogr. Sci. 2009, 47, 631–635. DOI: 10.1093/chromsci/47.8.631.
  • Vanhoenacker, G.; Dumont, E.; David, F.; Baker, A.; Sandra, P. A, A. B.-… of C.; 2009, undefined. Determination of Arylamines and Aminopyridines in Pharmaceutical Products Using in-Situ Derivatization and Liquid chromatography-mass spectrometry. J. Chromatogr. A. 2009, 1216, 3563–3570. Elsevier, DOI: 10.1016/j.chroma.2008.08.102.
  • Hyötyläinen, T. Principles, Developments and Applications of on-Line Coupling of Extraction with Chromatography. J. Chromatogr. A. 2007, 1153, 14–28. DOI: 10.1016/j.chroma.2006.11.102.
  • Ferreira, A. M. C.; Laespada, M. E. F.; Pavón, J. L. P.; Cordero, B. M. In Situ Aqueous Derivatization as Sample Preparation Technique for Gas Chromatographic Determinations. J. Chromatogr. A. 2013, 1296, 70–83. DOI: 10.1016/j.chroma.2013.04.084.
  • Meyer, J.; Karst, U. Determination of Paracetamol (Acetaminophen) by HPLC with Post-Column Enzymatic Derivatization and Fluorescence Detection. Chromatographia 2001, 54, 163–167. DOI: 10.1007/BF02492237.
  • Gant-Branum, R. L.; Kerr, T. J.; McLean, J. A. Labeling Strategies in Mass Spectrometry-Based Protein Quantitation. Analyst 2009, 134, 1525–1530. DOI: 10.1039/b904643g.
  • Dasgupta, A.; Banerjee, P. Microwave Induced Rapid Preparation of Acetyl, Trifluoroacetyl and Tert-Butyl Dimethylsilyl Derivatives of Fatty Alcohols and Diacylglycerols for Gas Chromatography-Mass Spectrometric Analysis. Chem. Phys. Lipids 1993, 65, 217–224. DOI: 10.1016/0009-3084(93)90019-Y.
  • Damm, M.; Rechberger, G.; Kollroser, M.; Kappe, C. O. An Evaluation of Microwave-Assisted Derivatization Procedures Using Hyphenated Mass Spectrometric Techniques. J. Chromatogr. A. 2009, 1216, 5875–5881. DOI: 10.1016/j.chroma.2009.06.035.
  • Xu, X.; Liu, Z.; Zhao, X.; Su, R.; Zhang, Y.; Shi, J.; Zhao, Y.; Wu, L.; Ma, Q.; Zhou, X.; et al. Ionic Liquid-Based Microwave-Assisted Surfactant-Improved Dispersive Liquid-Liquid Microextraction and Derivatization of Aminoglycosides in Milk Samples. J. Sep. Sci. 2013, 36, 585–592. DOI: 10.1002/jssc.201200801.
  • Luo, X.; Sun, Z.; Wang, X.; Yu, Y.; Ji, Z.; Zhang, S.; Li, G.; You, J. Determination of Nitrofuran Metabolites in Marine Products by High Performance Liquid Chromatography-Fluorescence Detection with Microwave-Assisted Derivatization. New J. Chem. 2019, 43, 2649–2657. DOI: 10.1039/C8NJ05479G.
  • Chávez, G.; Bravo, B.; Piña, N.; Arias, M.; Vivas, E.; Ysambertt, F.; Márquez, N.; Cáceres, A. Determination of Aliphatic Alcohols after on-Line Microwave-Assisted Derivatization by Liquid Chromatography-Photodiode Array Detection. Talanta 2004, 64, 1323–1328. DOI: 10.1016/j.talanta.2004.05.055.
  • Suslick, K. S.; Nyborg, W. L. Ultrasound: Its Chemical, Physical and Biological Effects. J. Acoust. Soc. Am. 1990, 87, 919–920. DOI: 10.1121/1.398864.
  • Mason, T. J. Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing. Wiley-Vch: Weinheim, Germany, 2002.
  • Fiamegos, Y. C.; Nanos, C. G.; Stalikas, C. D. Ultrasonic-Assisted Derivatization Reaction of Amino Acids Prior to Their Determination in Urine by Using Single-Drop Microextraction in Conjunction with Gas Chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 813, 89–94. DOI: 10.1016/j.jchromb.2004.09.013.
  • Huang, K. J.; Wei, C. Y.; Liu, W. L.; Xie, W. Z.; Zhang, J. F.; Wang, W. Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Combined with High-Performance Liquid Chromatography-Fluorescence Detection for Sensitive Determination of Biogenic Amines in Rice Wine Samples. J. Chromatogr. A 2009, 1216, 6636–6641. DOI: 10.1016/j.chroma.2009.07.070.
  • Lores, M.; Cabaleiro, O.; Cela, R. Post-Column Photochemical Derivatization in High-Performance Liquid Chromatography. TrAC - Trends Anal. Chem. 1999, 18, 392–400. DOI: 10.1016/S0165-9936(98)00121-6.
  • García-Borregón, P. F.; Lores, M.; Cela, R. Analysis of Barbiturates by Micro-High-Performance Liquid Chromatography with Post-Column Photochemical Derivatization. J. Chromatogr. A 2000, 870, 39–44. DOI: 10.1016/S0021-9673(99)01227-3.
  • K, M. If the Conventional Sample Preparation Methods Are Elusive to the Analyte in Liquid Chromatography. Part I II CMS Newsletter 2011, 7, 1–4.
  • Robards, K.; Robards, K.; Haddad, P.; Haddad, P. Principles and Practice of Modern Chromatographic Methods. Academic press: London, 1994.
  • Jansen, H.; Brinkman, U. A. T.; Frei, R. W. Miniaturization of Solid-Phase Reactors for on-Line Post-Column Derivatization in Narrow-Bore Liquid Chromatography. Chromatographia 1985, 20, 453–460. DOI: 10.1007/BF02344785.
  • Wan, D.; Morisseau, C.; Hammock, B. D.; Yang, J. A. Fast and Selective Approach for Profiling Vicinal Diols Using Liquid Chromatography-Post Column Derivatization-Double Precursor Ion Scanning Mass Spectrometry. Molecules 2022, 27, 283. DOI: 10.3390/molecules27010283.
  • Zacharis, C. K.; Tzanavaras, P. D. Liquid Chromatography Coupled to on-Line Post Column Derivatization for the Determination of Organic Compounds: A Review on Instrumentation and Chemistries. Anal. Chim. Acta 2013, 798, 1–24. DOI: 10.1016/j.aca.2013.07.032.
  • O'Brien-Coker, I. C.; Perkins, G.; Mallet, A. I. Aldehyde Analysis by High Performance Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2001, 15, 920–928. DOI: 10.1002/rcm.324.
  • Williams, T. I.; Lovell, M. A.; Lynn, B. C. Analysis of Derivatized Biogenic Aldehydes by LC Tandem Mass Spectrometry. Anal. Chem. 2005, 77, 3383–3389. DOI: 10.1021/.ac048265+.
  • Eggink, M.; Wijtmans, M.; Kretschmer, A.; Kool, J.; Lingeman, H.; De Esch, I. J. P.; Niessen, W. M. A.; Irth, H. Targeted LC-MS Derivatization for Aldehydes and Carboxylic Acids with a New Derivatization Agent 4-APEBA. Anal. Bioanal. Chem. 2010, 397, 665–675. DOI: 10.1007/s00216-010-3575-1.
  • Eggink, M.; Wijtmans, M.; Ekkebus, R.; Lingeman, H.; De Esch, I. J. P.; Kool, J.; Niessen, W. M. A.; Irth, H. Development of a Selective ESI-MS Derivatization Reagent: Synthesis and Optimization for the Analysis of Aldehydes in Biological Mixtures. Anal. Chem. 2008, 80, 9042–9051. DOI: 10.1021/ac801429w.
  • Kushnir, M. M.; Rockwood, A. L.; Roberts, W. L.; Pattison, E. G.; Bunker, A. M.; Fitzgerald, R. L.; Meikle, A. W. Performance Characteristics of a Novel Tandem Mass Spectrometry Assay for Serum Testosterone. Clin. Chem 2006, 52, 120–128. DOI: 10.1373/clinchem.2005.052167.
  • Niwa, M.; Watanabe, N.; Ochiai, H.; Yamashita, K. Determination of Testosterone Concentrations in Rat Plasma Using Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry Combined with Ethyl Oxime and Acetyl Ester Derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 824, 258–266. DOI: 10.1016/j.jchromb.2005.07.033.
  • Star-Weinstock, M.; Williamson, B. L.; Dey, S.; Pillai, S.; Purkayastha, S. LC-ESI-MS/MS Analysis of Testosterone at Sub-Picogram Levels Using a Novel Derivatization Reagent. Anal. Chem. 2012, 84, 9310–9317. DOI: 10.1021/ac302036r.
  • DeBarber, A. E.; Sandlers, Y.; Pappu, A. S.; Merkens, L. S.; Duell, P. B.; Lear, S. R.; Erickson, S. K.; Steiner, R. D. Profiling Sterols in Cerebrotendinous Xanthomatosis: Utility of Girard Derivatization and High Resolution Exact Mass LC-ESI-MS(n) analysis . J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1384–1392. DOI: 10.1016/j.jchromb.2010.11.019.
  • Cobice, D. F.; Logan MacKay, C.; Goodwin, R. J. A.; McBride, A.; Langridge-Smith, P. R.; Webster, S. P.; Walker, B. R.; Andrew, R. Mass Spectrometry Imaging for Dissecting Steroid Intracrinology within Target Tissues. Anal. Chem. 2013, 85, 11576–11584. DOI: 10.1021/ac402777k.
  • Higashi, T.; Shibayama, Y.; Shimada, K. Determination of Salivary Dehydroepiandrosterone Using Liquid Chromatography-Tandem Mass Spectrometry Combined with Charged Derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 846, 195–201. DOI: 10.1016/j.jchromb.2006.08.050.
  • Van Leeuwen, S. M.; Hendriksen, L.; Karst, U. Determination of Aldehydes and Ketones Using Derivatization with 2,4-Dinitrophenylhydrazine and Liquid Chromatography-Atmospheric Pressure Photoionization-Mass Spectrometry. J. Chromatogr. A 2004, 1058, 107–112. DOI: 10.1016/j.chroma.2004.08.149.
  • Higashi, Y. Improved Method for Determination of Raspberry Ketone in Fragrance Mist by HPLC-Fluorescence Analysis after Pre-Column Derivatization with 4-(N,N-Dimethylaminosulfonyl)-7- (N-Chloroformylmethyl-N-Methylamino) -2,1,3-Benzoxadiazole Yasuhiko. Jasmi. 2018, 08, 17–24. DOI: 10.4236/jasmi.2018.82002.
  • Barry, S. J.; Carr, R. M.; Lane, S. J.; Leavens, W. J.; Manning, C. O.; Monté, S.; Waterhouse, I. Use of S-Pentafluorophenyl Tris(2,4,6-Trimethoxyphenyl)Phosphonium Acetate Bromide and (4-Hydrazino-4-Oxobutyl) [Tris(2,4,6-Trimethoxyphenyl)Phosphonium Bromide for the Derivatization of Alcohols, Aldehydes and Ketones for Detection by Liquid chromatography/electrospray mass spectrometry. Rapid Commun. Mass. Spectrom. 2003, 17, 484–497. DOI: 10.1002/rcm.933.
  • Higashi, T.; Nishio, T.; Hayashi, N.; Shimada, K. Alternative Procedure for Charged Derivatization to Enhance Detection Responses of Steroids in Electrospray Ionization-MS. Chem. Pharm. Bull. (Tokyo) 2007, 55, 662–665. DOI: 10.1248/cpb.55.662.
  • Hala, D.; Overturf, M. D.; Petersen, L. H.; Huggett, D. B. Quantification of 2-Hydrazinopyridine Derivatized Steroid Hormones in Fathead Minnow (Pimephales Promelas) Blood Plasma Using LC-ESI+/MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 591–598. DOI: 10.1016/j.jchromb.2011.01.020.
  • Yamashita, K.; Masuda, A.; Hoshino, Y.; Komatsu, S.; Numazawa, M. Assay of Labile Estrogen O-Quinones, Potent Carcinogenic Molecular Species, by High Performance Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry with Phenazine Derivatization. J. Steroid Biochem. Mol. Biol. 2010, 119, 141–148. DOI: 10.1016/j.jsbmb.2010.02.016.
  • Engelhardt, H.; Krämer, M.; Waldhoff, H. Enhancement of Protein Detection by Microwave-Induced Hydrolysis and OPA Derivatization. Chromatographia 1990, 30, 523–526. DOI: 10.1007/BF02269798.
  • Moon, K.; Lim, C.; Kim, S.; Oh, D. C. Facile Determination of the Absolute Configurations of α-Hydroxy Acids by Chiral Derivatization Coupled with Liquid Chromatography-Mass Spectrometry Analysis. J. Chromatogr. A 2013, 1272, 141–144. DOI: 10.1016/j.chroma.2012.11.006.
  • Baños, C. E.; Silva, M. Comparison of Several Sorbents for Continuous in Situ Derivatization and Preconcentration of Low-Molecular Mass Aldehydes Prior to Liquid Chromatography-Tandem Mass Spectrometric Determination in Water Samples. J. Chromatogr. A 2009, 1216, 6554–6559. DOI: 10.1016/j.chroma.2009.08.004.
  • Higashi, T.; Yamauchi, A.; Shimada, K.; Koh, E.; Mizokami, A.; Namiki, M. Determination of Prostatic Androgens in 10 Mg of Tissue Using Liquid Chromatography-Tandem Mass Spectrometry with Charged Derivatization. Anal. Bioanal. Chem. 2005, 382, 1035–1043. DOI: 10.1007/s00216-005-3233-1.
  • Huang, Y. Q.; Liu, J. Q.; Gong, H.; Yang, J.; Li, Y.; Feng, Y. Q. Use of Isotope Mass Probes for Metabolic Analysis of the Jasmonate Biosynthetic Pathway. Analyst 2011, 136, 1515–1522. DOI: 10.1039/c0an00736f.
  • Duan, X.; Chen, X.; Yang, Y.; Zhong, D. Precolumn Derivatization of Cysteine Residues for Quantitative Analysis of Five Major Cytochrome P450 Isoenzymes by Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2007, 21, 3234–3244. DOI: 10.1002/rcm.3202.
  • Suh, J. H.; Kim, R.; Yavuz, B.; Lee, D.; Lal, A.; Ames, B. N.; Shigenaga, M. K. Clinical Assay of Four Thiol Amino Acid Redox Couples by LC-MS/MS: Utility in Thalassemia. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3418–3427. DOI: 10.1016/j.jchromb.2009.06.041.
  • Guan, X.; Hoffman, B.; Dwivedi, C.; Matthees, D. P. A Simultaneous Liquid Chromatography/Mass Spectrometric Assay of Glutathione, Cysteine, Homocysteine and Their Disulfides in Biological Samples. J. Pharm. Biomed. Anal. 2003, 31, 251–261. DOI: 10.1016/S0731-7085(02)00594-0.
  • Seiwert, B.; Karst, U. Analysis of Cysteine-Containing Proteins Using Precolumn Derivatization with N-(2-Ferroceneethyl)Maleimide and Liquid Chromatography/Electrochemistry/Mass Spectrometry. Anal. Bioanal. Chem. 2007, 388, 1633–1642. DOI: 10.1007/s00216-007-1260-9.
  • Seiwert, B.; Karst, U. Simultaneous LC/MS/MS Determination of Thiols and Disulfides in Urine Samples Based on Differential Labeling with Ferrocene-Based Maleimides. Anal. Chem. 2007, 79, 7131–7138. DOI: 10.1021/ac071016b.
  • Vichi, S.; Cortés-Francisco, N.; Caixach, J. Determination of Volatile Thiols in Lipid Matrix by Simultaneous Derivatization/Extraction and Liquid Chromatography-High Resolution Mass Spectrometric Analysis. Application to Virgin Olive Oil. J. Chromatogr. A 2013, 1318, 180–188. DOI: 10.1016/j.chroma.2013.10.015.
  • Zu, C.; Praay, H. N.; Bell, B. M.; Redwine, O. D. Derivatization of Fatty Alcohol Ethoxylate Non-Ionic Surfactants Using 2-Sulfobenzoic Anhydride for Characterization by Liquid Chromatography/Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2010, 24, 120–128. DOI: 10.1002/rcm.4367.
  • Lerma-García, M. J.; Ramis-Ramos, G.; Herrero-Martínez, J. M.; Gimeno-Adelantado, J. V.; Simó-Alfonso, E. F. Characterization of the Alcoholic Fraction of Vegetable Oils by Derivatization with Diphenic Anhydride Followed by High-Performance Liquid Chromatography with Spectrophotometric and Mass Spectrometric Detection. J. Chromatogr. A 2009, 1216, 230–236. DOI: 10.1016/j.chroma.2008.11.056.
  • Teshima, K.; Kondo, T. Analytical Method for Determination of Allylic Isoprenols in Rat Tissues by Liquid Chromatography/Tandem Mass Spectrometry following Chemical Derivatization with 3-Nitrophtalic Anhydride. J. Pharm. Biomed. Anal. 2008, 47, 560–566. DOI: 10.1016/j.jpba.2008.01.032.
  • Yang, J.; Wang, Y.; Pan, L.; Li, N.; Lu, X.; Guan, J.; Cheng, M.; Li, F. Enantioselective Determination of Trantinterol in Rat Plasma by Ultra Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry after Derivatization. Talanta 2009, 79, 1204–1208. DOI: 10.1016/j.talanta.2009.03.036.
  • Park, J.-Y.; Myung, S.-W.; Kim, I.-S.; Choi, D.-K.; Kwon, S.-J.; Yoon, S.-H. Simultaneous Measurement of Serotonin, Dopamine and Their Metabolites in Mouse Brain Extracts by High-Performance Liquid Chromatography with Mass Spectrometry following Derivatization with Ethyl Chloroformate. Biol. Pharm. Bull. 2013, 36, 252–258. DOI: 10.1248/bpb.b12-00689.
  • Yamashita, K.; Takahashi, M.; Tsukamoto, S.; Numazawa, M.; Okuyama, M.; Honma, S. Use of Novel Picolinoyl Derivatization for Simultaneous Quantification of Six Corticosteroids by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A 2007, 1173, 120–128. DOI: 10.1016/j.chroma.2007.10.023.
  • Zhang, F.; Bartels, M. J.; Brodeur, J. C.; McClymont, E. L.; Woodburn, K. B. Quantitation of 17α-Ethinylestradiol in Aquatic Samples Using Liquid-Liquid Phase Extraction, Dansyl Derivatization, and Liquid Chromatography/Positive Electrospray Tandem Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2004, 18, 2739–2742. DOI: 10.1002/rcm.1690.
  • Lacroix, C.; Saussereau, E. Fast Liquid Chromatography/Tandem Mass Spectrometry Determination of Cannabinoids in Micro Volume Blood Samples after Dabsyl Derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 905, 85–95. DOI: 10.1016/j.jchromb.2012.08.006.
  • De Bock, L.; Vande Casteele, S. R. F.; Mulliez, S. M. N.; Boussery, K.; Van Bocxlaer, J. F. P. In Vitro Cytochrome P450 Activity: Development and Validation of a Sensitive High Performance Liquid Chromatography-Tandem Mass Spectrometry Method for the Quantification of Six Probe Metabolites after Derivatization with Pyridine-3-Sulfonyl Chloride in an Aqueous Environment. J. Chromatogr. A 2011, 1218, 793–801. DOI: 10.1016/j.chroma.2010.12.055.
  • Lampinen Salomonsson, M.; Bondesson, U.; Hedeland, M. In Vitro Formation of Phase I and II Metabolites of Propranolol and Determination of Their Structures Using Chemical Derivatization and Liquid Chromatography-Tandem Mass Spectrometry. J Mass Spectrom . 2009, 44, 742–754. DOI: 10.1002/jms.1551.
  • Wu, Q.; Wu, D.; Shen, Z.; Duan, C.; Guan, Y. Quantification of Endogenous Brassinosteroids in Plant by on-Line Two-Dimensional Microscale Solid Phase Extraction-on Column Derivatization Coupled with High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2013, 1297, 56–63. DOI: 10.1016/j.chroma.2013.04.043.
  • Huo, F.; Wang, X.; Han, Y.; Bai, Y.; Zhang, W.; Yuan, H.; Liu, H. A New Derivatization Approach for the Rapid and Sensitive Analysis of Brassinosteroids by Using Ultra High Performance Liquid Chromatography-Electrospray Ionization Triple Quadrupole Mass Spectrometry. Talanta 2012, 99, 420–425. DOI: 10.1016/j.talanta.2012.05.073.
  • Higashi, T.; Takido, N.; Yamauchi, A.; Shimada, K. Electron-Capturing Derivatization of Neutral Steroids for Increasing Sensitivity in Liquid Chromatography/Negative Atmospheric Pressure Chemical Ionization-Mass Spectrometry. Anal. Sci. 2002, 18, 1301–1307. DOI: 10.2116/analsci.18.1301.
  • Tang, Y.; Chu, J. M.; Huang, W.; Xiong, J.; Xing, X. W.; Zhou, X.; Feng, Y. Q.; Yuan, B. F. Hydrophilic Material for the Selective Enrichment of 5-Hydroxymethylcytosine and its Liquid Chromatography-tandem Mass Spectrometry Detection . Anal. Chem. 2013, 85, 6129–6135. DOI: 10.1021/ac4010869.
  • Yu, Z. g.; Liu, B.; Jiang, Z. h.; Zhang, G. l. Simultaneous Determination of Herbicide Mefenacet and Its Metabolites Residues in River Water by Solid Phase Extraction and Rapid Resolution Liquid Chromatography-Mass Spectrometry with Pre-Column Derivatization. J. Chromatogr. A 2009, 1216, 3090–3097. DOI: 10.1016/j.chroma.2009.01.093.
  • Hayama, T.; Sakaguchi, Y.; Yoshida, H.; Itoyama, M.; Todoroki, K.; Yamaguchi, M.; Nohta, H. Fluorous Derivatization Combined with Liquid Chromatography/Tandem Mass Spectrometry: A Method for the Selective and Sensitive Determination of Sialic Acids in Biological Samples. Rapid Commun. Mass. Spectrom. 2010, 24, 2868–2874. DOI: 10.1002/rcm.4710.
  • Wang, M.; Han, R. H.; Han, X. Fatty Acidomics: Global Analysis of Lipid Species Containing a Carboxyl Group with a Charge-Remote Fragmentation-Assisted Approach. Anal. Chem. 2013, 85, 9312–9320. DOI: 10.1021/ac402078p.
  • Higashi, T.; Ichikawa, T.; Inagaki, S.; Min, J. Z.; Fukushima, T.; Toyo'oka, T. Simple and Practical Derivatization Procedure for Enhanced Detection of Carboxylic Acids in Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2010, 52, 809–818. DOI: 10.1016/j.jpba.2010.03.001.
  • Peters, R.; Hellenbrand, J.; Mengerink, Y.; Van Der Wal, S. On-Line Determination of Carboxylic Acids, Aldehydes and Ketones by High-Performance Liquid Chromatography-Diode Array Detection-Atmospheric Pressure Chemical Ionisation Mass Spectrometry after Derivatization with 2-Nitrophenylhydrazine. J. Chromatogr. A 2004, 1031, 35–50. DOI: 10.1016/j.chroma.2003.10.100.
  • Uran, S.; Landmark, K. E.; Hjellum, G.; Skotland, T. Quantification of 13C Pyruvate and 13C Lactate in Dog Blood by Reversed-Phase Liquid Chromatography-Electrospray Ionization Mass Spectrometry after Derivatization with 3-Nitrophenylhydrazine. J. Pharm. Biomed. Anal. 2007, 44, 947–954. DOI: 10.1016/j.jpba.2007.04.001.
  • Qiu, J.; Wu, C.; Fang, Y.; Yang, C.; Li, X.; Piao, X.; Li, D. Derivatization and Liquid Chromatography-UV-Tandem Mass Spectrometric Analysis of Perfluorinated Carboxylic Acids. J. Chromatogr. A 2012, 1235, 132–140. DOI: 10.1016/j.chroma.2012.02.047.
  • Woudneh, M. B.; Coreen Hamilton, M.; Benskin, J. P.; Wang, G.; McEachern, P.; Cosgrove, J. R. A Novel Derivatization-Based Liquid Chromatography Tandem Mass Spectrometry Method for Quantitative Characterization of Naphthenic Acid Isomer Profiles in Environmental Waters. J. Chromatogr. A 2013, 1293, 36–43. DOI: 10.1016/j.chroma.2013.03.040.
  • Mohammadi, B.; Majnooni, M. B.; Khatabi, P. M.; Jalili, R.; Bahrami, G. 9-Fluorenylmethyl Chloroformate as a Fluorescence-Labeling Reagent for Derivatization of Carboxylic Acid Moiety of Sodium Valproate Using Liquid Chromatography/Tandem Mass Spectrometry for Binding Characterization: A Human Pharmacokinetic Study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 880, 12–18. DOI: 10.1016/j.jchromb.2011.11.009.
  • Chen, X.; Zhong, D.; Han, Y.; Xie, Z. Determination of Carbocysteine in Human Plasma by Liquid Chromatography/Tandem Mass Spectrometry Employing Precolumn Derivatization. Rapid Commun. Mass. Spectrom. 2003, 17, 192–196. DOI: 10.1002/rcm.894.
  • Lotfy, H. M.; Fayez, Y. M.; Michael, A. M.; Nessim, C. K. Simultaneous Determination of Mebeverine Hydrochloride and Chlordiazepoxide in Their Binary Mixture Using Novel Univariate Spectrophotometric Methods via Different Manipulation Pathways. Spectrochim Acta A Mol Biomol Spectrosc. 2016, 155(15), 11-20. DOI: 10.1016/j.saa.2015.10.033.
  • Bobeldijk, I.; Broess, K.; Speksnijder, P.; van Leerdam, T. Determination of the Herbicide Amitrole in Water with Pre-Column Derivatization, Liquid Chromatography and Tandem Mass Spectrometry. J. Chromatogr. A 2001, 938, 15–22. DOI: 10.1016/S0021-9673(01)01090-1.
  • Lampinen-Salomonsson, M.; Beckman, E.; Bondesson, U.; Hedeland, M. Detection of Altrenogest and Its Metabolites in Post Administration Horse Urine Using Liquid Chromatography Tandem Mass Spectrometry-Increased Sensitivity by Chemical Derivatisation of the Glucuronic Acid Conjugate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 833, 245–256. DOI: 10.1016/j.jchromb.2006.02.014.
  • Nirogi, R.; Komarneni, P.; Kandikere, V.; Boggavarapu, R.; Bhyrapuneni, G.; Benade, V.; Gorentla, S. A Sensitive and Selective Quantification of Catecholamine Neurotransmitters in Rat Microdialysates by Pre-Column Dansyl Chloride Derivatization Using Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 913–914, 41–47. DOI: 10.1016/j.jchromb.2012.09.034.
  • Masuda, M.; Saimaru, H.; Takamura, N.; Imai, K. An Improved Method for Proteomics Studies in C. elegans by Fluorogenic Derivatization, HPLC Isolation, Enzymatic Digestion and Liquid Chromatography-Tandem Mass Spectrometric Identification. Biomed. Chromatogr. 2005, 19, 556–560. DOI: 10.1002/bmc.479.
  • Nakanishi, K.; Katagi, M.; Zaitsu, K.; Shima, N.; Kamata, H.; Miki, A.; Kato, H.; Harada, K. I.; Tsuchihashi, H.; Suzuki, K. Simultaneous Enantiomeric Determination of MDMA and its Phase I and Phase II Metabolites in Urine by Liquid Chromatography-Tandem Mass Spectrometry with Chiral Derivatization . Anal. Bioanal. Chem. 2012, 404, 2427–2435. DOI: 10.1007/s00216-012-6385-9.
  • Toriumi, C.; Imai, K. An Identification Method for Altered Proteins in Tissues Utilizing Fluorescence Derivatization, Liquid Chromatography, Tandem Mass Spectrometry, and a Database-Searching Algorithm. Anal. Chem. 2003, 75, 3725–3730. DOI: 10.1021/ac020693x.
  • Xu, H.; Song, D.; Cui, Y.; Hu, S.; Yu, Q. W.; Feng, Y. Q. Analysis of Hexanal and Heptanal in Human Blood by Simultaneous Derivatization and Dispersive Liquid-Liquid Microextraction Then LC-APCI-MS-MS. Chroma. 2009, 70, 775–781. DOI: 10.1365/s10337-009-1208-7.
  • Bomke, S.; Seiwert, B.; Dudek, L.; Effkemann, S.; Karst, U. Determination of Biogenic Amines in Food Samples Using Derivatization Followed by Liquid Chromatography/Mass Spectrometry. Anal. Bioanal. Chem. 2009, 393, 247–256. DOI: 10.1007/s00216-008-2420-2.
  • Yang, W. C.; Mirzaei, H.; Liu, X.; Regnier, F. E. Enhancement of Amino Acid Detection and Quantification by Electrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 4702–4708. DOI: 10.1021/ac0600510.
  • Inagaki, S.; Tano, Y.; Yamakata, Y.; Higashi, T.; Min, J. Z.; Toyo'oka, T. Highly Sensitive and Positively Charged Precolumn Derivatization Reagent for Amines and Amino Acids in Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2010, 24, 1358–1364. DOI: 10.1002/rcm.4521.
  • Shortreed, M. R.; Lamos, S. M.; Frey, B. L.; Phillips, M. F.; Patel, M.; Belshaw, P. J.; Smith, L. M. Ionizable Isotopic Labeling Reagent for Relative Quantification of Amine Metabolites by Mass Spectrometry. Anal. Chem. 2006, 78, 6398–6403. DOI: 10.1021/ac0607008.
  • Liu, R.; Jia, Y.; Cheng, W.; Ling, J.; Liu, L.; Bi, K.; Li, Q. Determination of Polyamines in Human Urine by Precolumn Derivatization with Benzoyl Chloride and High-Performance Liquid Chromatography Coupled with Q-Time-of-Flight Mass Spectrometry. Talanta 2011, 83, 751–756. DOI: 10.1016/j.talanta.2010.10.039.
  • Rebane, R.; Herodes, K. A Sensitive Method for Free Amino Acids Analysis by Liquid Chromatography with Ultraviolet and Mass Spectrometric Detection Using Precolumn Derivatization with Diethyl Ethoxymethylenemalonate: Application to the Honey Analysis. Anal. Chim. Acta 2010, 672, 79–84. DOI: 10.1016/j.aca.2010.04.014.
  • Yu, Y.; Cai, L.; Zuo, M.; Duan, G. Precolumn Derivatization Liquid Chromatography with Mass Spectrometry Assay for the Determination of Glucosamine in Small Volume Human Plasma. Ann. Chim. 2005, 95, 709–713. DOI: 10.1002/adic.200590082.
  • de Souza Santos Cheibub, A. M.; Silva Bahiense de Lyra, E.; Pereira Netto, A. D. Development and Validation of a Method for Simultaneous Determination of Trace Levels of Five Macrocyclic Lactones in Cheese by HPLC-Fluorescence after Solid–Liquid Extraction with Low Temperature Partitioning. Food Chem 2019, 272, 148–156. DOI: 10.1016/j.foodchem.2018.08.027.
  • Eruygur, N.; Dural, E. Determination of 1-Deoxynojirimycin by a Developed and Validated HPLC-FLD Method and Assessment of in-Vitro Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activity in Mulberry Varieties from Turkey. Phytomedicine 2019, 53, 234–242. DOI: 10.1016/j.phymed.2018.09.016.
  • Na, K.; Lee, T. B.; Park, K. H.; Shin, E. K.; Lee, Y. B.; Choi, H. K. Self-Assembled Nanoparticles of Hydrophobically-Modified Polysaccharide Bearing Vitamin H as a Targeted anti-Cancer Drug Delivery System. Eur. J. Pharm. Sci. 2003, 18, 165–173. DOI: 10.1016/S0928-0987(02)00257-9.
  • Lassen, A.; Kall, M.; Hansen, K.; Ovesen, L. A Comparison of the Retention of Vitamins B1, B2 and B6, and Cooking Yield in Pork Loin with Conventional and Enhanced Meal-Service Systems. Eur. Food Res. Technol. 2002, 215, 194–199. DOI: 10.1007/s00217-002-0554-6.
  • Fan, B.; You, J.; Suo, Y.; Qian, C. A Novel and Sensitive Method for Determining Vitamin B3 and B7 by Pre-Column Derivatization and High-Performance Liquid Chromatography Method with Fluorescence Detection. PLoS One. 2018, 13, e0198102–15. DOI: 10.1371/journal.pone.0198102.
  • Mottram, D. S.; Wedzicha, B. L.; Dodson, A. T. Acrylamide is Formed in the Maillard Reaction. Nature 2002, 419, 448–449. DOI: 10.1038/419448a.
  • Mucci, L. A.; Wilson, K. M. Acrylamide Intake through Diet and Human Cancer Risk. J Agric Food Chem. 2008, 56, 6013–6019. DOI: 10.1021/jf703747b.
  • Faraji, M.; Hamdamali, M.; Aryanasab, F.; Shabanian, M. 2-Naphthalenthiol Derivatization Followed by Dispersive Liquid-Liquid Microextraction as an Efficient and Sensitive Method for Determination of Acrylamide in Bread and Biscuit Samples Using High-performance Liquid Chromatography . J. Chromatogr. A 2018, 1558, 14–20. DOI: 10.1016/j.chroma.2018.05.021.
  • Yousefi, J.; Maheri-Sis, N.; Shaddel-Telli, A.; Hatefinezhad, K. Effect of Salbutamol (a Beta-Adrenergic Agonist) on Growth Performance of Broiler Chickens. Ann. Biol. Res. 2011, 2, 500–505. 2011, 2 (6), 500–505.
  • Pursel, V. G.; Bolt, D. J.; Miller, K. F.; Pinkert, C. A.; Hammer, R. E.; Palmiter, R. D.; Brinster, R. L. Expression and Performance in Transgenic Pigs. J. Reprod. Fertil. Suppl. 1990, 40, 235–245.
  • Nguyen, P. H. Determination of Cysteamine in Animal Feeds by High Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD). Sci. Technol. Dev. J 2018, 21, 37–43. DOI: 10.32508/stdj.v21i2.427.
  • Ouellette, R.; Rawn, J. D. Principles of Organic Chemistry, 1st ed.; Elsevier: Waltham, MA, USA, 2015.
  • Rigalli, A.; Loreto, V. D. Experimental Surgical Models in the Laboratory Rat - 1st Edition - Alf; CRC Press: Boca Raton, FL, USA, 2009.
  • Sebaei, A. S.; Gomaa, A. M.; El-Zwahry, A. A.; Emara, E. A. Determination of Formaldehyde by HPLC with Stable Precolumn Derivatization in Egyptian Dairy Products. Int. J. Anal. Chem. 2018, 2018, 2757941. DOI: 10.1155/2018/2757941.
  • Okazaki, T.; Noguchi, T.; Igarashi, K.; Sakagami, Y.; Seto, H.; Mori, K.; Naito, H.; Masumura, T.; Sugahara, M. Gizzerosine, a New Toxic Substance in Fish Meal, Causessevere Gizzard Erosionin Chicks. Agric. Biol. Chem. 1983, 47, 2949–2952. DOI: 10.1080/00021369.1983.10866065.
  • Tao, Z.; Hu, Q.; Xu, X.; Kiyota, H.; Chen, Z.; Xie, S.; Qiao, N. Analytical Method to Evaluate Gizzerosine in Fishmeal after Diazonium Derivatization Using High-Performance Liquid Chromatography. Food Anal. Methods 2019, 12, 331–337. DOI: 10.1007/s12161-018-1364-1.
  • Cargnin, S. T.; Gnoatto, S. B. Ursolic Acid from Apple Pomace and Traditional Plants: A Valuable Triterpenoid with Functional Properties. Food Chem. 2017, 220, 477–489. DOI: 10.1016/j.foodchem.2016.10.029.
  • Wada, M.; Tojoh, Y.; Nakamura, S.; Mutoh, J.; Kai, H.; Matsuno, K.; Nakashima, K. Quantification of Three Triterpenic Acids in Dried Rosemary Using HPLC-Fluorescence Detection and 4-(4,5-Diphenyl-1H-Imidazole-2-Yl)Benzoyl Chloride Derivatization. Luminescence 2019, 34, 130–132. DOI: 10.1002/bio.3581.
  • Bhat, S. A.; Bhat, W. F.; Afsar, M.; Khan, M. S.; Al-Bagmi, M. S.; Bano, B. Modification of Chickpea Cystatin by Reactive Dicarbonyl Species: Glycation, Oxidation and Aggregation. Arch. Biochem. Biophys. 2018, 650, 103–115. DOI: 10.1016/j.abb.2018.05.015.
  • Shangari, N.; Mehta, R.; O'brien, P. J. Hepatocyte Susceptibility to Glyoxal is Dependent on Cell Thiamin Content. Chem. Biol. Interact. 2007, 165, 146–154. DOI: 10.1016/j.cbi.2006.11.009.
  • Wang, X. J.; Gao, F.; Li, L. C.; Hui, X.; Li, H.; Gao, W. Y. Quantitative Analyses of α-Dicarbonyl Compounds in Food Samples by HPLC Using 4-(2,3-Dimethyl-6-Quinoxalinyl)-1,2-Benzenediamine as a Derivatizing Reagent. Microchem. J.h 2018, 141, 64–70. DOI: 10.1016/j.microc.2018.05.006.
  • Wang, H.; Lu, Z.; Qu, H. J.; Liu, P.; Miao, C.; Zhu, T.; Li, J.; Hong, K.; Zhu, W. Antimicrobial Aflatoxins from the Marine-Derived Fungus Aspergillus flavus 092008. Arch. Pharm. Res. 2012, 35, 1387–1392. DOI: 10.1007/s12272-012-0808-1.
  • Liu, X.; Ying, G.; Sun, C.; Yang, M.; Zhang, L.; Zhang, S.; Xing, X.; Li, Q.; Kong, W. Development of an Ultrasonication-Assisted Extraction Based HPLC with a Fluorescence Method for Sensitive Determination of Aflatoxins in Highly Acidic Hibiscus Sabdariffa. Front. Pharmacol. 2018, 9, 1–9. DOI: 10.3389/fphar.2018.00284.
  • Bates, P. D.; Johnson, S. R.; Cao, X.; Li, J.; Nam, J. W.; Jaworski, J. G.; Ohlrogge, J. B.; Browse, J. Fatty Acid Synthesis is Inhibited by Inefficient Utilization of Unusual Fatty Acids for Glycerolipid Assembly. Proc. Natl. Acad. Sci. U S A. 2014, 111, 1204–1209. DOI: 10.1073/pnas.1318511111.
  • Rodrigues, C. E.; Tonial, M.; Schäfer, L.; Pasquali, G.; Kist, T. B. L. Performance of 3‑[4‑(Bromomethyl)Phenyl]‑7‑(Diethylamino) Coumarin as a Derivatization Reagent for the Analysis of Medium and Long Chain Fatty Acids Using HPLC with LIF Detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1100–1101, 50–57. DOI: 10.1016/j.jchromb.2018.09.043.
  • Bach, C.; Dauchy, X.; Chagnon, M. C.; Etienne, S. Chemical Compounds and Toxicological Assessments of Drinking Water Stored in Polyethylene Terephthalate (PET) Bottles: A Source of Controversy Reviewed. Water Res. 2012, 46, 571–583. DOI: 10.1016/j.watres.2011.11.062.
  • Sanderson, H.; Laird, B.; Pope, L.; Brain, R.; Wilson, C.; Johnson, D.; Bryning, G.; Peregrine, A. S.; Boxall, A.; Solomon, K. Assessment of the Environmental Fate and Effects of Ivermectin in Aquatic Mesocosms. Aquat. Toxicol. 2007, 85, 229–240. DOI: 10.1016/j.aquatox.2007.08.011.
  • Felici, E.; Wang, C. C.; Casado, C.; Vicario, A.; Pereyra, V.; Gómez, M. R. Preconcentration and Post-Column Fluorescent Derivatization for the Environmental Water Monitoring of an Antihelmintic Macrocyclic Drug Used in Livestock. Heliyon 2019, 5, e02025–7. DOI: 10.1016/j.heliyon.2019.e02025.
  • Andrzejewski, P.; Fijolek, L.; Nawrocki, J. An Influence of Hypothetical Products of Dimethylamine Ozonation on N-Nitrosodimethylamine Formation. J. Hazard. Mater. 2012, 229-230, 340–345. DOI: 10.1016/j.jhazmat.2012.06.009.
  • Gao, P. F.; Zheng, J. S.; Zhang, S. M.; Wen, X. J. Fluorescence Detection of Trace Dimethylamine and Diethylamine in Natural Water by HPLC with O-Phthalaldehyde and 7-Chlore-4nitrobenzo-2-Oax-1, 3-Diazole. IOP Conf. Ser: Earth Environ. Sci. 2019, 223, 012056. DOI: 10.1088/1755-1315/223/1/012056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.