1,350
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Volatile Organic Compounds as Potential Biomarkers for Noninvasive Disease Detection by Nanosensors: A Comprehensive Review

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, & ORCID Icon show all
Pages 1828-1839 | Published online: 24 Feb 2022

References

  • Mazzone, P. J. Analysis of Volatile Organic Compounds in the Exhaled Breath for the Diagnosis of Lung Cancer. J. Thorac. Oncol. 2008, 3, 774–780. DOI: 10.1097/JTO.0b013e31817c7439.
  • Shirasu, M.; Touhara, K. The Scent of Disease: Volatile Organic Compounds of the Human Body Related to Disease and Disorder. J. Biochem. 2011, 150, 257–266. DOI: 10.1093/jb/mvr090.
  • Amann, A.; Costello, B. D. L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The Human Volatilome: Volatile Organic Compounds (VOCs) in Exhaled Breath, Skin Emanations, Urine, Feces and Saliva. J Breath Res. 2014, 8, 034001. DOI: 10.1088/1752-7155/8/3/034001.
  • Sethi, S.; Nanda, R.; Chakraborty, T. Clinical Application of Volatile Organic Compound Analysis for Detecting Infectious Diseases. Clin. Microbiol. Rev. 2013, 26, 462–475. DOI: 10.1128/CMR.00020-13.
  • Whittle, C. L.; Fakharzadeh, S.; Eades, J.; Preti, G. Human Breath Odors and Their Use in Diagnosis. Ann. N. Y. Acad. Sci. 2007, 1098, 252–266. DOI: 10.1196/annals.1384.011.
  • Gouzi, F.; Ayache, D.; Hédon, C.; Molinari, N.; Vicet, A. Breath Acetone Concentration: Too Heterogeneous to Constitute a Diagnosis or Prognosis Biomarker in Heart Failure? A Systematic Review and Meta-Analysis. J. Breath. Res. 2021, 16, 6. DOI: 10.1088/1752-7163/ac356d.
  • Tranchito, L.; Gul, Z.; Cikach, F.; Shrestha, K.; Dweik, R.; Tang, W. H. W. Reduction in Exhaled Acetone Tracks with Weight Loss following Diuretic Therapy in Acute Decompensated Heart Failure. J. Card. Fail. 2013, 19, S10. DOI: 10.1016/j.cardfail.2013.06.029.
  • Yokokawa, T.; Sugano, Y.; Shimouchi, A.; Shibata, A.; Nakayama, T.; Ohara, T.; Jinno, N.; Kanzaki, H.; Anzai, T. A Case of Acute Decompensated Heart Failure Evaluated by Series of Exhaled Acetone Concentrations as Noninvasive Biomarker of Heart Failure Severity. Int. J. Cardiol. 2016, 204, 112–113. DOI: 10.1016/j.ijcard.2015.11.173.
  • Han, T. L.; Wan, Y. T.; Li, J. J.; Zhang, H. G.; Liu, J. H.; Huang, X. J.; Liu, J. Y. In Situ Gold Nanoparticle-Decorated Three-Dimensional Tin Dioxide Nanostructures for Sensitive and Selective Gas-Sensing Detection of Volatile Organic Compounds. J. Mater. Chem. C. 2017, 5, 6193–6201. DOI: 10.1039/C7TC01496A.
  • Othman, F. M.; Abdul-Hamead, A. Z. A. Gas Sensing Using Tri-Metal Oxides for Breath Analysis. Mater. Sci. Eng. 2018, 454, 12060. DOI: 10.1088/1757-899X/454/1/012060.
  • Gouma, P. I.; Kalyanasundaram, K. A Selective Nanosensing Probe for Nitric Oxide. Appl. Phys. Lett. 2008, 93, 244102–244104. DOI: 10.1063/1.3050524.
  • Lee, S. H.; Hoffman, D. M.; Jacobson, A. J.; Lee, T. R. Transparent, Homogeneous Tin Oxide (SnO2) Thin Films Containing SnO2-Coated Gold Nanoparticles. Chem. Mater. 2013, 25, 4697–4702. DOI: 10.1021/cm402098n.
  • Nayak, A. K.; Ghosh, R.; Santra, S.; Guh, P. K.; Pradhan, D. Hierarchical Nanostructured WO3-SnO2 for Selective Sensing of Volatile Organic Compounds. Nanoscale. 2015, 7, 12460–12473. DOI: 10.1039/C5NR02571K.
  • Kwak, C. H.; Woo, H. S.; Lee, J. H. Selective Trimethylamine Sensors Using Cr2O3-Decorated Sno2 Nanowires. Sens. Actuators B Chem. 2014, 204, 231–238. DOI: 10.1016/j.snb.2014.07.084.
  • Raj, V.; Charles, S.; Ramasamy, M.; Narayanasamy, A.; Goenka, L.; Kamatchi, M.; George, M.; Arockiaraj, J.; Dhandapani, V. E.; Kanchana Mala, K. Cell Cycle Arrest in Peripheral Blood Mononuclear Cells: A Non-Invasive Method for Diagnosis of Coronary Artery Disease. Process Biochem. 2019, 84, 153–160. DOI: 10.1016/j.procbio.2019.05.027.
  • Yang, J.; Carey, P.; Ren, F.; Lobo, B. C.; Gebhard, M.; Leon, M. E.; Lin, J.; Pearton, S. J. Nanosensor Networks for Health-Care Applications. Nanosensors for Smart Cities. 2020; pp 405–417. DOI: 10.1016/B978-0-12-819870-4.00023-2.
  •  Dosedělová, V.; Foret, F.; Doubková, M.; Brat, K.; Kubáň, P. A Novel Temperature-Controlled Open Source Microcontroller Based Sampler for Collection of Exhaled Breath Condensate in Point-of-care diagnostics. Talanta. 2022, 237, 122984. DOI: 10.1016/j.talanta.2021.122984.
  • Velusamy, P.; Su, C.-H.; Kannan, K.; Kumar, G. V.; Anbu, P.; Gopinath, S. C. B. Surface Engineered Iron Oxide Nanoparticles as Efficient Materials for Antibiofilm Application. Biotechnol. Appl. Biochem. 2021. DOI: 10.1002/bab.2146.
  • Das, S.; Pal, M. Review - Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review. J. Electrochem. Soc. 2020, 167, 037562. DOI: 10.1149/1945-7111/ab67a6.
  • Popov, T. A. Human Exhaled Breath Analysis. Ann. Allergy. Asthma Immunol. 2011, 106, 451–456; quiz 457. DOI: 10.1016/j.anai.2011.02.016.
  •  Rydosz, A. Sensors for Enhanced Detection of Acetone as a Potential Tool for Noninvasive Diabetes Monitoring. Sensors (Basel). 2018, 18, 2298. DOI: 10.3390/s18072298.
  • Peled, N.; Fuchs, V.; Kestenbaum, E. H.; Oscar, E.; Bitran, R. An Update on the Use of Exhaled Breath Analysis for the Early Detection of Lung Cancer. Lung Cancer (Auckl). 2021, 16, 81–92. DOI: 10.2147/LCTT.S320493.
  • Dixit, K.; Fardindoost, S.; Ravishankara, A.; Tasnim, N.; Hoorfar, M. Exhaled Breath Analysis for Diabetes Diagnosis and Monitoring: Relevance, Challenges and Possibilities. Biosensors (Basel). 2021, 11, 476. DOI: 10.3390/bios11120476.
  • Lawal, O.; Ahmed, W. M.; Nijsen, T. M. E.; Goodacre, R.; Fowler, S. J. Exhaled Breath Analysis: A Review of 'Breath-Taking' Methods for Off-Line Analysis. Metabolomics. 2017, 13, 110. DOI: 10.1007/s11306-017-1241-8.
  • Phillips, M.; Gleeson, K.; Hughes, J. M. B.; Greenberg, J.; Cataneo, R. N.; Baker, L.; McVay, W. P. Volatile Organic Compounds in Breath as Markers of Lung Cancer: A Cross-Sectional Study. Lancet. 1999, 353, 1930–1933. DOI: 10.1016/S0140-6736(98)07552-7.
  • Wu, X.; Wang, H.; Wang, J.; Wang, D.; Shi, L.; Tian, X.; Sun, J. VOCs Gas Sensor Based on MOFs Derived Porous Au@Cr2O3-In2O3 Nanorods for Breath Analysis. Colloids Surf. A Physicochem. Eng. 2022, 6322, 127752. DOI: 10.1016/j.colsurfa.2021.127752..
  • Tozlu, B. H.; Şimşek, C.; Aydemir, O.; Karavelioglu, Y. A High-Performance Electronic Nose System for the Recognition of Myocardial Infarction and Coronary Artery Diseases. Biomed. Signal Process. Control. 2021, 64, 102247. DOI: 10.1016/j.bspc.2020.102247.
  • Murtz, M. Breath Diagnostics Using Laser Spectroscopy. Optics and Photonics News, 2005, vol. 16, pp 30–35. DOI: 10.1364/OPN.16.1.000030.
  • Hibbard, T.; Killard, A. J. Breath Ammonia Analysis: Clinical Application and Measurement. Crit. Rev. Anal. Chem. 2011, 41, 21–35. DOI: 10.1080/10408347.2011.521729.
  • Wang, Z.; Wang, C. Is Breath Acetone a Biomarker of Diabetes? A Historical Review on Breath Acetone Measurements. J. Breath Res. 2013, 7, 037109. DOI: 10.1088/1752-7155/7/3/037109.
  • Lindinger, W.; Hansel, A.; Jordan, A. On-Line Monitoring of Volatile Organic Compounds at PPTV Levels by Means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) Medical Applications, Food Control and Environmental Research. J. Mass Spect. Ion Proc. 1998, 173, 191–241. DOI: 10.1016/S0168-1176(97)00281-4.
  • Ryter, S. W.; Choi, A. Carbon Monoxide in Exhaled Breath Testing and Therapeutics. J. Breath Res. 2013, 7, 017111. DOI: 10.1088/1752-7155/7/1/017111.
  • Bovey, F.; Cros, J.; Tuzson, B.; Seyssel, K.; Schneiter, P.; Emmenegger, L.; Tappy, L. Breath Acetone as a Marker of Energy Balance: An Exploratory Study in Healthy Humans. Nutr. Diabetes. 2018, 8, 5. DOI: 10.1038/s41387-018-0058-5.
  • Calenic, B.; Amann, A. Detection of Volatile Malodorous Compounds in Breath: Current Analytical Techniques and Implications in Human Disease. Bioanalysis. 2014, 6, 357–376. DOI: 10.4155/bio.13.306.
  • Haick, H.; Broza, Y. Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, Origin, and Implementation of Breath Volatile Cancer Markers. Chem. Soc. Rev. 2014, 7, 1423–1449. DOI: 10.1039/c3cs60329f.
  • Jian, R. S.; Sung, L. Y.; Lu, C. J. Measuring Real-Time Concentration Trends of Individual VOC in an Elementary School Using a Sub-ppb Detection μGC and a Single GC-MS Analysis. Chemosphere. 2014, 99, 261–266. DOI: 10.1016/j.chemosphere.2013.10.094.
  • Kennis, M.; Gerritsen, L.; van Dalen, M.; Williams, A.; Cuijpers, P.; Bockting, C. Prospective Biomarkers of Major Depressive Disorder: A Systematic Review and Meta-Analysis. Mol. Psychiatry. 2020, 25, 321–338. DOI: 10.1038/s41380-019-0585-z.
  • Berg, J. M.; Tymoczko, J. L.; Stryer, L. Protein Turnover and Amino Acid Catabolism. In Biochemistry, 5th ed. W H Freeman: New York, NY, 2002; p 633.
  • Lu, H. Y.; Ning, X. Y.; Chen, Y. Q.; Han, S. J.; Chi, P.; Zhu, S. N.; Yue, Y. Predictive Value of Serum Creatinine, Blood Urea Nitrogen, Uric Acid, and Β2-Microglobulin in the Evaluation of Acute Kidney Injury after Orthotopic Liver Transplantation. Chin. Med. J. (Engl.). 2018, 131, 1059–1066. DOI: 10.4103/0366-6999.230726.
  • Essiet, O. I. Diagnosis of Kidney Failure by Analysis of the Concentration of Ammonia in Exhaled Human Breath. J. Emerg. Trends Eng. Appl. Sci. 2013, 4, 859.
  • Butterworth, R. F. Hepatic Encephalopathy. Alcohol Res. Health. 2003, 27, 240–246.
  • Kearney, D. J.; Hubbard, T.; Putnam, M. Breath Ammonia Measurement in Helicobacter pylori Infection. Dig. Dis. Sci. 2002, 47, 2523–2530. DOI: 10.1023/a:1020568227868.
  • Tada, H.; Fujino, N.; Hayashi, K.; Kawashiri, M.-A.; Takamura, M. Human Genetics and Its Impact on Cardiovascular Disease. J. Cardiol. 2022, 79, 233–239. DOI: 10.1016/j.jjcc.2021.09.005.
  • World Health Organization. 2020. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
  • Kaptoge, S.; Pennells, L.; De Bacquer, D.; Cooney, M. T.; Kavousi, M.; Stevens, G.; Riley, L. M.; Savin, S.; Khan, T.; Altay, S.; et al. World Health Organization Cardiovascular Disease Risk Charts: Revised Models to Estimate Risk in 21 Global Regions. Lancet Glob. Health. 2019, 7, e1332–e1345. DOI: 10.1016/S2214-109X(19)30318-3.
  • Timmis, A.; Townsend, N.; Gale, C. P.; Torbica, A.; Lettino, M.; Petersen, S. E.; Mossialos, E. A.; Maggioni, A. P.; Kazakiewicz, D.; May, H. T.; European Society of Cardiology; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur Heart J. 2020, 41, 12–85. DOI: 10.1093/eurheartj/ehz859.
  • Benjamin, E. J.; Muntner, P.; Alonso, A.; Bittencourt, M. S.; Callaway, C. W.; Carson, A. P.; Chamberlain, A. M.; Chang, A. R.; Cheng, S.; Das, S. R.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee; et al. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation. 2019, 139, e56–e528. DOI: 10.1161/CIR.0000000000000659.
  • Angell, S. Y.; McConnell, M. V.; Anderson, C. A. M.; Bibbins-Domingo, K.; Boyle, D. S.; Capewell, S.; Ezzati, M.; de Ferranti, S.; Gaskin, D. J.; Goetzel, R. Z.; et al. The American Heart Association 2030 Impact Goal: A Presidential Advisory from the American Heart Association. Circulation. 2020, 141, e120–e138. DOI: 10.1161/CIR.0000000000000758.
  • Machado, A. P.; Alcântara, P. Nitric Oxide-Dependent Endogenous and Exogenous Vasodilators. The Mechanism of Action of Nitrates. Rev. Port. Cardiol. 1995, 14, 61–71.
  • Pope, A. J.; Karrupiah, K.; Kearns, P. N.; Xia, Y.; Cardounel, A. J. Role of Dimethylarginine Dimethylaminohydrolases in the Regulation of Endothelial Nitric Oxide Production. J. Biol. Chem. 2009, 284, 35338–35347. DOI: 10.1074/jbc.M109.037036.
  • Karuppiah, K.; Druhan, L. J.; Chen, C. A.; Smith, T.; Zweier, J. L.; Sessa, W. C.; Cardounel, A. J. Suppression of eNOS-Derived Superoxide by Caveolin-1: A Biopterin-Dependent Mechanism. Am. J. Physiol. Heart Circ. 2011, 301, 903–911. DOI: 10.1152/ajpheart.00936.2010.
  • Ivy, J. L. Inorganic Nitrate Supplementation for Cardiovascular Health. Methodist Debakey Cardiovasc. J. 2019, 15, 200–206. DOI: 10.14797/mdcj-15-3-200.
  • Habib, S.; Ali, A. Biochemistry of Nitric Oxide. Indian J. Clin. Biochem. 2011, 26, 3–17. DOI: 10.1007/s12291-011-0108-4.
  • Hahn, Y. S. Measurements of Fractional Exhaled Nitric Oxide in Pediatric Asthma. Korean J. Pediatr. 2013, 56, 424–430. DOI: 10.3345/kjp.2013.56.10.424.
  • Polhemus, D. J.; Lefer, D. J. Emergence of Hydrogen Sulfide as an Endogenous Gaseous Signaling Molecule in Cardiovascular Disease. Circ. Res. 2014, 114, 730–737. DOI: 10.1161/CIRCRESAHA.114.300505.
  • Hosoki, R.; Matsuki, N.; Kimura, H. The Possible Role of Hydrogen Sulfide as an Endogenous Smooth Muscle Relaxant in Synergy with Nitric Oxide. Biochem. Biophys. Res. Commun. 1997, 28, 527–531. DOI: 10.1006/bbrc.1997.6878.
  • Abe, K.; Kimura, H. The Possible Role of Hydrogen Sulfide as an Endogenous Neuromodulator. J. Neurosci. 1996, 16, 1066–1071. DOI: 10.1523/JNEUROSCI.16-03-01066.1996.
  • Moody, B. F.; Calvert, J. W. Emergent Role of Gasotransmitters in Ischemia-Reperfusion Injury. Med. Gas Res. 2011, 1, 3. DOI: 10.1186/2045-9912-1-3.
  • Suzuki, Y.; Saito, J.; Munakata, M.; Shibata, Y. Hydrogen Sulfide as a Novel Biomarker of Asthma and Chronic Obstructive Pulmonary Disease. Allergol. Int. 2021, 70, 181–189. DOI: 10.1016/j.alit.2020.10.003.
  •  Ruzsányi, V.; Kalapos, M. P. Breath Acetone as a Potential Marker in Clinical Practice. J. Breath Res. 2017, 11, 024002. DOI: 10.1088/1752-7163/aa66d3.
  • Jung, C.; Shemyakin, A.; Böhm, F.; Pernow, J. Endothelial Microparticles in Patients with Insulin Resistance. Diabetes Metab. 2009, 35, 71–73. DOI: 10.1016/j.diabet.2008.10.001.
  • Sun, M.; Chen, Z.; Gong, Z.; Zhao, X.; Jiang, C.; Yuan, Y.; Wang, Z.; Li, Y.; Wang, C. Determination of Breath Acetone in 149 Type 2 Diabetic Patients Using a Ringdown Breath-Acetone Analyzer. Anal. Bioanal. Chem. 2015, 407, 1641–1650. DOI: 10.1007/s00216-014-8401-8.
  • King, J.; Mochalski, P.; Unterkofler, K.; Teschl, G.; Klieber, M.; Stein, M.; Amann, A.; Baumann, M. Breath Isoprene: Muscle Dystrophy Patients Support the Concept of a Pool of Isoprene in the Periphery of the Human Body. Biochem. Biophys. Res. Commun. 2012, 423, 526–530. DOI: 10.1016/j.bbrc.2012.05.159.
  •  Alkhouri, N.; Singh, T.; Alsabbagh, E.; Guirguis, J.; Chami, T.; Hanouneh, I.; Grove, D.; Lopez, R.; Dweik, R. Isoprene in the Exhaled Breath is a Novel Biomarker for Advanced Fibrosis in Patients with Chronic Liver Disease: A Pilot Study. Clin. Trans. Gastroenterol. 2015, 6, 17. DOI: 10.1038/ctg.2015.40.
  • Lourenço, C.; Turner, C. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites. 2014, 4, 465–498. DOI: 10.3390/metabo4020465.
  • Chaudhary, P. P.; Conway, P. L.; Schlundt, J. Methanogens in Humans: Potentially Beneficial or Harmful for Health. Appl. Microbiol. Biotechnol. 2018, 102, 3095–3104. DOI: 10.1007/s00253-018-8871-2.
  • Polag, D.; Keppler, F. Global Methane Emissions from the Human Body: Past, Present and Future. Atmos. Environ. 2019, 214, 116823. DOI: 10.1016/j.atmosenv.2019.116823.
  • Dharmawardana, N.; Goddard, T.; Woods, C.; Watson, D. I.; Butler, R.; Ooi, E. H.; Yazbeck, R. Breath Methane to Hydrogen Ratio as a Surrogate Marker of Intestinal Dysbiosis in Head and Neck Cancer. Sci. Rep. 2020, 10, 15010. DOI: 10.1038/s41598-020-72115-2.
  • Ayala, A.; Muñoz, M. F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. DOI: 10.1155/2014/360438.
  • Pizzimenti, S.; Ciamporcero, E.; Daga, M.; Pettazzoni, P.; Arcaro, A.; Cetrangolo, G.; Minelli, R.; Dianzani, C.; Lepore, A.; Gentile, F.; Barrera, G. Interaction of Aldehydes Derived from Lipid Peroxidation and Membrane Proteins. Front. Physiol. 2013, 4, 242. DOI: 10.3389/fphys.2013.00242.
  • Skoumalová, A.; Hort, J. Blood Markers of Oxidative Stress in Alzheimer's disease. J. Cell. Mol. Med. 2012, 16, 2291–2300. DOI: 10.1111/j.1582-4934.2012.01585.x.
  • Khorashadi, M.; Beunders, R.; Pickkers, P.; Legrand, M. Proenkephalin: A New Biomarker for Glomerular Filtration Rate and Acute Kidney Injury. Nephron. 2020, 144, 655–666. DOI: 10.1159/000509352.
  • Havelka, A.; Sejersen, K.; Venge, P.; Pauksens, K.; Larsson, A. Calprotectin, a New Biomarker for Diagnosis of Acute Respiratory Infections. Sci. Rep. 2020, 10, 4208. DOI: 10.1038/s41598-020-61094-z.
  • Amor, R. E.; Nakhleh, M. K.; Barash, O.; Haick, H. Breath Analysis of Cancer in the Present and the Future. Eur. Respir. Rev. 2019, 28, 190002. DOI: 10.1183/16000617.0002-2019.
  • Velusamy, P.; Su, C.-H.; Venkat Kumar, G.; Adhikary, S.; Pandian, K.; Gopinath, S. C. B.; Chen, Y.; Anbu, P. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities. PLoS One. 2016, 11, e0157612. DOI: 10.1371/journal.pone.0157612.
  • Khan, K.; Saeed, I.; Khan, H. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. DOI: 10.1016/j.arabjc.2017.05.011.
  • Velusamy, P.; Srinivasa, C. M.; Venkat Kumar, G.; Qurishi, Y.; Su, C.-H.; Gopinath, S. C. B. A pH Stimuli Thiol Modified Mesoporous Silica Nanoparticles: Doxorubicin Carrier for Cancer Therapy. J. Taiwan Inst. Chem. Eng. 2018, 87, 264–271. DOI: 10.1016/j.jtice.2018.03.048.
  • Tofighi, G.; Degler, D.; Junker, B.; Müller, S.; Lichtenberg, H.; Wang, W.; Weimar, U.; Barsan, N.; Grunwaldt, J.-D. Microfluidically Synthesized Au, Pd and AuPd Nanoparticles Supported on SnO2 for Gas Sensing Applications. Sens. Actuators B Chem. 2019, 292, 48–56. DOI: 10.1016/j.snb.2019.02.107.
  • Chen, L.; Wang, H.-F.; Li, C.; Xu, Q. Bimetallic Metal-Organic Frameworks and Their Derivatives. Chem. Sci. 2020, 11, 5369–5403. DOI: 10.1039/D0SC01432J.
  • Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors. 2019, 9, 57. DOI: 10.3390/bios9020057.
  • Ma, X.; Wu, J.; Jiang, L.; Wang, M.; Deng, G.; Qu, S.; Chen, K. On-Chip Integration of a Metal-Organic Framework Nanomaterial on a SiO2 Waveguide for Sensitive VOC Sensing. Lab Chip. 2021, 21, 3298–3306. DOI: 10.1039/d1lc00503k.
  • Gupta, G.; Selvakumar, K.; Lakshminarasimhan, N.; Senthil Kumar, S. M.; Mamlouk, M. The Effects of Morphology, Microstructure and Mixed-Valent States of MnO2 on the Oxygen Evolution Reaction Activity in Alkaline Anion Exchange Membrane Water Electrolysis. J. Power Sources. 2020, 461, 228131. DOI: 10.1016/j.jpowsour.2020.228131.
  • Velu, D.; Rajasekar, K.; Senthil Kumar, S. M. N-Doped Hollow Mesoporous Carbon Nanospheres for Oxygen Reduction Reaction in Alkaline Media. ACS Appl. Nano. Mater. 2020, 3, 8875–8887. DOI: 10.1021/acsanm.0c01639..
  • Pavithra, K.; Senthil Kumar, S. M. Embedding Oxygen Vacancies and SnO2-CNT Surfaces via Microwave Polyol Strategy towards Effective Electrocatalytic Reduction of CO2 to Formate. Catal. Sci. Technol. 2020, 10, 1311–1322. DOI: 10.1039/C9CY01960J.
  • Sankarasubramanian, K.; Babu, K. J.; Soundarrajan, P.; Logu, T.; Gnanakumar, G.; Ramamurthi, K.; Sethuraman, K.; Senthil Kumar, S. M. A New Catalyst Ti Doped CdO Thin Film for Non-Enzymatic Hydrogen Peroxide Sensor Application. Sens. Actuators B Chem. 2019, 285, 164–172. DOI: 10.1016/j.snb.2018.12.161.
  • Das, J.; Velusamy, P. Catalytic Reduction of Methylene Blue Using Biogenic Gold Nanoparticles from Sesbania Grandiflora L. J. Taiwan Inst. Chem. Eng. 2014, 45, 2280–2285. DOI: 10.1016/j.jtice.2014.04.005.
  • Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for Biosensing Applications: A Review. Front. Chem. 2014, 2, 63. DOI: 10.3389/fchem.2014.00063.
  • Iram, S.; Zahera, M.; Khan, S.; Khan, I.; Syed, A.; Ansary, A. A.; Ameen, F.; Shair, O. H. M.; Khan, M. S. Gold Nanoconjugates Reinforce the Potency of Conjugated Cisplatin and Doxorubicin. Colloids Surf. B Biointerfaces. 2017, 160, 254–264. DOI: 10.1016/j.colsurfb.2017.09.017.
  • Bisker, G.; Yeheskely-Hayon, D.; Minai, L.; Yelin, D. Controlled Release of Rituximab from Gold Nanoparticles for Phototherapy of Malignant Cells. J. Control Release. 2012, 10, 303–309. DOI: 10.1016/j.jconrel.2012.06.030.
  • Najafabadi, M. E.; Kazemi, E.; Bagheri, H. Gradient Extractive Phase Prepared by Controlled Rate Infusion Method: An Applicable Approach in Solid Phase Microextraction for Non-Targeted Analysis. J. Chromatogr. A. 2018, 1574, 130–135. DOI: 10.1016/j.chroma.2018.09.001.
  • Fitzgerald, J. E.; Fenniri, H. Biomimetic Cross-Reactive Sensor Arrays: Prospects in Biodiagnostics. RSC Adv. 2016, 6, 80468–80484. DOI: 10.1039/C6RA16403J.
  • Sagiv, A.; Mansour, E.; Semiat, R.; Haick, H. Quantitative Measures of Reliability and Sensitivity of Nanoparticle-Based Sensors in Detecting Volatile Organic Compounds. ACS Omega. 2019, 4, 19983–19990. DOI: 10.1021/acsomega.9b02929.
  • McGinn, C. K.; Lamport, Z. A.; Kymissis, I. Review of Gravimetric Sensing of Volatile Organic Compounds. ACS Sens. 2020, 5, 1514–1534. DOI: 10.1021/acssensors.0c00333.
  • Adoga, J. O.; Channa, M. L.; Nadar, A. Kolaviron Attenuates Cardiovascular Injury in Fructose-Streptozotocin Induced Type-2 Diabetic Male Rats by Reducing Oxidative Stress, Inflammation, and Improving Cardiovascular Risk Markers. Biomed. Pharmacother. 2021, 144, 112323. DOI: 10.1016/j.biopha.2021.112323.
  • Xiao, T.; Wang, X.-Y.; Zhao, Z.-H.; Li, L.; Zhang, L.; Yao, H.-C.; Wang, J.-S.; Li, Z.-J. Highly Sensitive and Selective Acetone Sensor Based on C-Doped WO3 for Potential Diagnosis of Diabetes Mellitus. Sens. Actuators B. 2014, 199, 210–219. DOI: 10.1016/j.snb.2014.04.015.
  • Vernia, F.; Valvano, M.; Fabiani, S.; Stefanelli, G.; Longo, S.; Viscido, A.; Latella, G. Are Volatile Organic Compounds Accurate Markers in the Assessment of Colorectal Cancer and Inflammatory Bowel Diseases? A Review. Cancers (Basel). 2021, 13, 2361. DOI: 10.3390/cancers13102361.
  • Amer, H.; Kartikasari, A. E. R.; Plebanski, M. Elevated Interleukin-6 Levels in the Circulation and Peritoneal Fluid of Patients with Ovarian Cancer as a Potential Diagnostic Biomarker: A Systematic Review and Meta-Analysis. JPM. 2021, 11, 1335. DOI: 10.3390/jpm11121335.
  • Vasilescu, A.; Hrinczenko, B.; Swain, G. M.; Peteu, S. F. Exhaled Breath Biomarker Sensing. Biosens. Bioelectron. 2021, 182, 113193. DOI: 10.1016/j.bios.2021.113193.
  • Wang, C.; Shi, J.; Sun, B.; Liu, D.; Li, P.; Gong, Y.; He, Y.; Liu, S.; Xu, G.; Li, J.; et al. Breath Pentane as a Potential Biomarker for Survival in Hepatic Ischemia and Reperfusion Injury - A Pilot Study. PLoS One. 2012, 7, e44940. DOI: 10.1371/journal.pone.0044940.
  • Wang, Z.; Sun, M.; Wang, C. Detection of Melanoma Cancer Biomarker Dimethyl Disulfide Using Cavity Ringdown Spectroscopy at 266 nm. Appl. Spectrosc. 2016, 70, 1080–1085. DOI: 10.1177/0003702816641575.
  • Li, Z.; Polhemus, D. J.; Lefer, D. J. Evolution of Hydrogen Sulfide Therapeutics to Treat Cardiovascular Disease. Circ. Res. 2018, 123, 590–600. DOI: 10.1161/CIRCRESAHA.118.311134.
  • Gorham, K. A.; Andersen, M. P. S.; Meinardi, S.; Delfino, R. J.; Staimer, N.; Tjoa, T. F.; Sherwood, R.; Blake, D. R. Ethane and n-Pentane in Exhaled Breath Are Biomarkers of Exposure Not Effect. Biomarkers. 2009, 14, 17–25. DOI: 10.1080/13547500902730680.
  • Popa, C.; Petrus, M.; Bratu, A. M. Ammonia and Ethylene Biomarkers in the Respiration of the People with Schizophrenia Using Photoacoustic Spectroscopy. J. Biomed. Opt. 2015, 20, 57006. DOI: 10.1117/1.JBO.20.5.057006.
  • Chung, K. F. Hydrogen Sulfide as a Potential Biomarker of Asthma. Expert Rev. Respir. Med. 2014, 8, 5–13. DOI: 10.1586/17476348.2014.856267.
  • Lawin, H.; Ayi Fanou, L.; Hinson, V.; Wanjiku, J.; Ukwaja, N. K.; Gordon, S. B.; Fayomi, B.; Balmes, J. R.; Houngbegnon, P.; Avokpaho, E.; Sanni, A. Exhaled Carbon Monoxide: A Non-Invasive Biomarker of Short-Term Exposure to Outdoor Air Pollution. BMC Public Health 2017, 17, 320. DOI: 10.1186/s12889-017-4243-6.
  • Grabowska-Polanowska, B.; Miarka, P.; Skowron, M.; Chmiel, G.; Pietrzycka, A.; Śliwka, I. Breath Analysis as Promising Indicator of Hemodialysis Efficiency. Clin. Exp. Nephrol. 2019, 23, 251–257. DOI: 10.1007/s10157-018-1625-8.
  • Paardekooper, L. M.; van den Bogaart, G.; Kox, M.; Dingjan, I.; Neerincx, A. H.; Bendix, M. B.; Beest, M. T.; Harren, F. J. M.; Risby, T.; Pickkers, P.; et al. Ethylene, an Early Marker of Systemic Inflammation in Humans. Sci. Rep. 2017, 7, 6889. DOI: 10.1038/s41598-017-05930-9.
  • Fuchs, P.; Loeseken, C.; Schubert, J. K.; Miekisch, W. Breath Gas Aldehydes as Biomarkers of Lung Cancer. Int. J. Cancer. 2010, 126, 2663–2670. DOI: 10.1002/ijc.24970.
  • Hu, J.; Yang, J.; Wang, W.; Xue, Y.; Sun, Y.; Li, P.; Lian, K.; Zhang, W.; Chen, L.; Shi, J.; Chen, Y. Synthesis and Gas Sensing Properties of NiO/SnO2 Hierarchical Structures toward ppb Level Acetone Detection. Mater. Res. Bull. 2018, 102, 294–303. DOI: 10.1016/j.materresbull.2018.02.006.
  • Zhang, L.; Dong, B.; Xu, L.; Zhang, X.; Chen, J.; Sun, X.; Xu, H.; Zhang, T.; Bai, X.; Zhang, S.; Song, H. Three-Dimensional Ordered ZnO_Fe3O4 Inverse Opal Gas Sensor toward Trace Concentration Acetone Detection. Sens. Actuators B. 2017, 252, 367–374. DOI: 10.1016/j.snb.2017.05.167.
  • Wei, S.; Zhao, G.; Du, W.; Tian, Q. Synthesis and Excellent Acetone Sensing Properties of Porous WO3 Nanofibers. Vacuum. 2016, 124, 32–39. DOI: 10.1016/j.vacuum.2015.11.010.
  •  Righettoni, M.; Tricoli, A.; Gass, S.; Schmid, A.; Amann, A.; Pratsinis, S. E. Breath Acetone Monitoring by Portable Si:WO3 Gas Sensors. Anal. Chim. Acta. 2012, 738, 69–75. DOI: 10.1016/j.aca.2012.06.002.
  • Shen, J. Y.; Zhang, L.; Ren, J.; Wang, J. C.; Yao, H. C.; Li, Z. J. Highly Enhanced Acetone Sensing Performance of Porous C-Doped WO3 Hollow Spheres by Carbon Spheres as Templates. Sens. Actuators B. 2017, 239, 597–607. DOI: 10.1016/j.snb.2016.08.069.
  • Navale, S. T.; Yang, Z. B.; Liu, C. H.; Cao, P. J.; Patil, V. B.; Ramgir, N. S. Enhanced Acetone Sensing Properties of Titanium Dioxidenanoparticles with a Sub-ppm Detection Limit. Sens. Actuators B. 2018, 255, 170. DOI: 10.1016/j.snb.2017.08.186.
  • Tomer, V. K.; Singh, K.; Kaur, H.; Shorie, M.; Sabherwal, P. Rapid Acetone Detection Using Indium Loaded WO3/SnO2 Nanohybridsensor. Sens. Actuators B. 2017, 253, 703–713. DOI: 10.1016/j.snb.2017.06.179.
  •  Imawan, C.; Solzbacher, F.; Steffes, H.; Obermeier, E. Gas-Sensing Characteristics of Modified-MoO3 Thin Films Using Ti-Overlayers for NH3 Gas Sensors. Sens. Actuators B Chem. 2000, 64, 193–197. DOI: 10.1016/S0925-4005(99)00506-7.
  • Wang, Y. D.; Wu, X. H.; Su, Q.; Li, Y. F.; Zhou, Z. L. Ammonia-Sensing Characteristics of Pt and SiO2 Doped SnO2 Materials. Solid State Electron. 2001, 45, 347–350. DOI: 10.1016/S0038-1101(00)00231-8.
  •  Tulliani, J.-M.; Cavalieri, A.; Musso, S.; Sardella, E.; Geobaldo, F. Room Temperature Ammonia Sensors Based on Zinc Oxide and Functionalized Graphite and Multi-Walled Carbon Nanotubes. Sens. Actuat. B. 2011, 152, 144–154. DOI: 10.1016/j.snb.2010.11.057.
  • Hu, Y.; Hu, X.; Qiu, J.; Quan, W.; Qin, W.; Min, X.; Lu, S.; Chen, S.; Du, W.; Chen, X.; Zhang, W. Nitric Oxide Detector Based on WO3-1wt%In2O3-1wt%Nb2O5 with State-of-the-Art Selectivity and ppb-Level Sensitivity. ACS Appl. Mater. Interfaces. 2018, 10, 42583–42592. DOI: 10.1021/acsami.8b14243.
  • Bonafede, R.; Manucha, W. Nitric Oxide and Related Factors Linked to Oxidation and Inflammation as Possible Biomarkers of Heart Failure. Clin. Investig. Arterioscler. 2018, 30, 84–94. DOI: 10.1016/j.arteri.2017.12.004.
  • Luo, P.; Xie, M.; Luo, J.; Kan, H.; Wei, Q. Nitric Oxide Sensors Using Nanospiral ZnO Thin Film Deposited by GLAD for Application to Exhaled Human Breath. RSC Adv. 2020, 10, 14877–14884. DOI: 10.1039/D0RA00488J.
  • Zhang, F.; Zhu, A.; Luo, Y.; Tian, Y.; Yang, J.; Qin, Y. CuO Nanosheets for Sensitive and Selective Determination of H2S with High Recovery Ability. J. Phys. Chem. C. 2010, 114, 19214–19219. DOI: 10.1021/jp106098z.
  • Zhao, Y.; Zhang, J.; Wang, Y.; Chen, Z. A Highly Sensitive and Room Temperature CNTs/SnO2/CuO Sensor for H2S Gas Sensing Applications. Nanoscale Res. Lett. 2020, 15, 40. DOI: 10.1186/s11671-020-3265-7.
  • Yu, H.-L.; Li, L.; Gao, X.-M.; Zhang, Y.; Meng, F.; Wang, T.-S.; Xiao, G.; Chen, Y.-J.; Zhu, C.-L. Synthesis and H2S Gas Sensing Properties of Cage-like MoO3/ZnO Composite. Sens. Actuators B. Chem. 2012, 171–172, 679–668. DOI: 10.1016/j.snb.2012.05.054.
  • Kim, J.; Yong, K. Mechanism Study of ZnO Nanorod-Bundle Sensors for H2S Gas Sensing. J. Phys. Chem. C. 2011, 115, 7218–7224. DOI: 10.1021/jp110129f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.