480
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Mini-Review: Electrochemical Sensors Used for the Determination of Water- and Fat-Soluble Vitamins: B, D, K

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-10 | Published online: 26 Feb 2022

References

  • Robert Horton, H.; Moran, L.; Ochs, R.; Rawn, J.; Scrimgeour, K. Principles of Biochemistry. 2nd ed.; Prentice-Hall: New Jersey, 1996.
  • Kodama, K.; Suzuki, M.; Toyosawa, T.; Araki, S. Inhibitory Mechanisms of Highly Purified Vitamin B2 on the Productions of Proinflammatory Cytokine and NO in Endotoxin-Induced Shock in Mice. Life Sci. 2005, 78, 134–139. DOI: 10.1016/j.lfs.2005.04.037.
  • Scholte, H. R.; Busch, H. F. M.; Bakker, H. D.; Bogaard, J. M.; Luyt-Houwen, I. E. M.; Kuyt, L. P. Riboflavin-Responsive Complex I Deficiency. Biochim. Biophys. Acta 1995, 1271, 75–83. DOI: 10.1016/0925-4439(95)00013-T.
  • Nie, T.; Zhang, K.; Xu, J.; Lu, L.; Bai, L. A Facile One-Pot Strategy for the Electrochemical Synthesis of Poly (3, 4-Ethylenedioxythiophene)/Zirconia Nanocomposite as an Effective Sensing Platform for Vitamins B2, B6 and C. J. Electroanal. Chem. 2014, 717, 1–9. DOI: 10.1016/j.jelechem.2014.01.006.
  • Stanković, D. M.; Kuzmanović, D.; Mehmeti, E.; Kalcher, K. Sensitive and Selective Determination of Riboflavin (Vitamin B2) Based on Boron-Doped Diamond Electrode. Monatsh. Chem. 2016, 147, 995–1000. DOI: 0.1007/s00706-016-1665-2. DOI: 10.1007/s00706-016-1665-2.
  • Pérez-Ruiz, T.; Martínez-Lozano, C.; Sanz, A.; Tomás, V. Photokinetic Determination of Riboflavin and Riboflavin 5’-Phosphate Using Flow Injection Analysis and Chemiluminescene Detection. Analyst 1994, 119, 1825–1828. DOI: 10.1039/AN9941901825.
  • Llorent-Martínez, E. J.; Ortega-Barrales, P.; Molina-Díaz, A. Sequential Injection Multi-Optosensor Based on a Dualluminescene System Using Two Sensing Zones: Application to Multivitamin Determination. Microchim. Acta 2008, 162, 199–204. DOI: 10.1007/s00604-007-0861-5.
  • Romeu-Nadal, M.; Morera-Pons, S.; Castellote, A. I.; Lopez-Sabater, M. C. Rapid High-Performance Liquid Chromatographic Method for Vitamin C Determination in Human Milk versus an Enzymatic Method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 830, 41–46. DOI: 10.1016/j.jchromb.2005.10.018.
  • Wirkus, D.; Jakubus, A.; Owczuk, R.; Stepnowski, P.; Paszkiewicz, M. Development and Application of Novelty Pretreatment Method for the Concurrent Quantitation of Eleven Water-Soluble B Vitamins in Ultrafiltrates after Renal Replacement Therapy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1043, 228–234. DOI: 10.1016/j.jchromb.2016.09.021.
  • Moreno, P.; Salvadó, V. Determination of Eight Water- and Fat-Soluble Vitamins in Multi-Vitamin Pharmaceutical Formulations by High-Performance Liquid Chromatography. J. Chromatogr. A 2000, 870, 207–215. DOI: 10.1016/S0021-9673(99)01021-3.
  • Gu, H. Y.; Yu, A. M.; Chen, H. Y. Electrochemical Behavior and Simultaneous Determination of Vitamin B2, B6 and C Electrochemically Pretreated Glassy Carbon Electrode. Anal. Lett. 2001, 34, 2361–2374. DOI: 10.1081/AL-100107301.
  • Ghasemi, J.; Vosough, M. Simulataneous Spectrophotometric Determination of Folic Acid, Thiamin, Riboflavin, and Pyridoxal Using Partial Least-Squares Regression Method. Spectrosc. Lett. 2002, 35, 153–169. DOI: 10.1081/SL-120003802.
  • Mohamed, A. M. I.; Mohamed, H. A.; Abdel-Latif, N. M.; Mohamed, M. R. A. Spectrofluorimetric Determination of Some Water-Soluble Vitamins. J AOAC Int. 2011, 94, 1758–1769. DOI: 10.5740/jaoacint.9-493.
  • Sun, J.; Ren, C.; Liu, L.; Chen, X. CdTe Quantum Dots as Fluorescence Sensor for the Determination of Vitamin B6 in Aqueous Solution. Chin. Chem. Lett. 2008, 19, 855–859. DOI: 10.1016/j.cclet.2008.04.029.
  • Snell, E. E.; Haskell, B. E. The metabolism of vitamin B-6. Comp. Biochem. 1971, 21, 47–71.
  • Ensiyeh, J.; Sakineh, M. A. C. Comparing Ginger and Vitamin B6 for the Treatment of Nausea and Vomiting in Pregnancy: A randomised controlled trial. Midwifery 2009, 25, 649–653. DOI: 10.1016/j.midw.2—7.10.013.
  • Niebyl, J. R.; Goodwin, T. M. Overview of nausea and vomiting with an emphasis on vitamins and ginger. Am. J. Obstet. Gynecol. 2002, 186, S253-S255. DOI: 10.1067/mob.2002.122595.
  • Jamigorn, M.; Phupong, V. Acupressure and Vitamin B6 to Relieve Nausea and Vomiting in Pregnancy: A Randomized Study. Arch. Gynecol. Obstet. 2007, 276, 245–249. DOI: 10.1007/s00404-007-0336-2.
  • Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S. A. An Electrochemical-Amplified-Platform Based on the Nanostructure Voltametric Sensor for the Determination of Carmoisine in the Presence of Tartrazine in Dried Fruit and Soft Drink Samples. Food Measure 2018, 12, 634–640. DOI: 10.1007/s11694-017-9676-1.
  • Eren, T.; Atar, N.; Yola, M. L.; Karimi-Maleh, H. A Sensitive Molecularly Imprinted Polymer Based Quartz Crystal Microbalance Nanosensor for Selective Determination of Lovastatin in red yeast rice. Food Chem. 2015, 185, 430–436. DOI: 10.101436./j.foodchem.2015.03.153.
  • Cheraghi, S.; Taher, M. A.; Karimi-Maleh, H. Highly Sensitive Square Wave Voltammetric Sensor Employing CdO/SWCNTSs and Room Temperature Ionic Liquid for Analysis of Vanillin and Folic Acid in Food Samples. J. Food Compos. Anal. 2017, 62, 254–259. DOI: 10.1016/j.jfca.2017.06.006.
  • Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M. A. Application of ZnO/CNTs Nanocomposite Ionic Liquid Paste Electrode as a Sensitive Voltammetrc Sensor for Determination of Ascorbic Acid in Food Sammples. Food Anal. Methods 2013, 6, 1639–1647. DOI: 10.1007/s1216-013-9585-9.
  • Shamsadin-Azad, Z.; Taher, M. A.; Cheraghi, S.; Karimi-Maleh, H. A Nanostructure Voltametric Platform Amplified with Ionic Liquid for Determination of Tert-Butylhydroxyanisole in the Presence Kojic Acid. Food Measure 2019, 13, 1781–1787. DOI: 10.1007/s11694-019-00096-6.
  • Herbert, V. Folic Acid. Annu. Rev. Med. 1965, 16, 359–370. DOI: 10.1146/annurev.me.16.020165.002043.
  • Nagaraja, P.; Vasantha, R. A.; Yathirajan, H. S. Spectrophotometric Determination of Folic Acid in Pharmaceutical Preparations by Coupling Reactions with Iminodibenzyl or 3-aminophenol or sodium molybdate-pyrocatechol . Anal. Biochem. 2002, 307, 316–321. DOI: 10.1016/S0003-2697(02)00038-6.
  • Dietrich, M.; Brown, C. J. P.; Block, G. The Effect of Folate Fortification of Cereal-Grain Products on Blood Folate Status, Dietary Folate Intake, and Dietary Folate Sources among Adult Non-Supplement Users in the United States. J. Am. Coll. Nutr. 2005, 24, 266–274. DOI: 10.1080/07315724.2005.10719474.
  • Breithaupt, D. E. Determination of Folic Acid by Ion-Pair RP-HLPC in Vitamin-Fortified Fruit Juices after Solid-Phase Extraction. Food Chem. 2001, 74, 521–525. DOI: 10.1016/S0308-8146(01)00219-9.
  • Kou, Y.; Lu, J.; Jiang, X.; Tian, B.; Xue, Y.; Wang, M.; Tan, L. Electrochemical Determination of Vitamin B12 Based on Cu2+-Involved Fenton-like Reaction. Electroanalysis 2019, 31, 1155–1163. DOI: 10.1002/elab.201900019.
  • Bandzuchova, L.; Selesovska, R.; Navratil, T.; Chylkova, J. Silver Solid Amalgam Electrode as a Tool for Monitoring the Electrochemical Reduction of Hydroxocobalamin. Electroanalysis 2013, 25, 213–222. DOI: 10.1002/elan.201200365.
  • Jia, Y.; Hu, Y.; Li, Y.; Zeng, Q.; Jiang, X.; Cheng, Z. Boron Doped Carbon Dots as a Multifunctional Fluorescent Probe for Sorbate and Vitamin B12. Mikrochim. Acta 2019, 186, 84. DOI: 10.1007/s00604-018-3196-5.
  • Kumar, S. S.; Chouhan, R. S.; Thakur, M. S. Trends in Analysis of Vitamin B12. Anal. Biochem. 2010, 398, 139–149. DOI: 10.1016/j.ab.2009.06.041.
  • Lichtenstein, A.; Ferreira Júnior, M.; Sales, M. M.; de Aguiar, F. B.; Fonseca, L. A. M.; Sumita, N. M.; Duarte, A, Vitamin D: Non-Skeletal Actions And Rational Use. Rev. Assoc. Med. Bras. (1992) 2013, 59, 495–506. DOI: 10.1016/j.ramb.2013.05.002.
  • Schmid, A.; Walther, B. Natural Vitamin D Content in Animal Products. Adv. Nutr. 2013, 4, 453–462. DOI: 10.3945/an.113.003780.
  • Dawson-Hughes, B.; Heaney, R. P.; Holick, M. F.; Lips, P.; Meunier, P. J.; Vieth, R. Estimates of Optimal Vitamin D Status. Osteoporos. Int. 2005, 16, 713–716. DOI: 10.1007/s00198-005-1867-7.
  • Ganji, V.; Milone, C.; Cody, M. M.; McCarty, F.; Wang, Y. T. Serum Vitamin D Concentrations Are Related to Depression in Young Adult US Population: The Third National Health and Nutrition Examination Survey. Int. Arch. Med. 2010, 3, 29. DOI: 10.1186/1755-7682-3-29.
  • Knekt, P.; Kilkkinen, A.; Rissanen, H.; Marniemi, J.; Sääksjärvi, K.; Heliövaara, M. Serum Vitamin D and the Risk of Parkinson Disease. Arch. Neurol. 2010, 67, 808–811. DOI: 10.1001/archneurol.2010.120.
  • Hajiluian, G.; Nameni, G.; Shahabi, P.; Mesgari-Abbasi, M.; Sadigh-Eteghad, S.; Farhangi, M. Vitamin D Administration, Cognitive Function, BBB Permeability and Neuroinflammatory Factors in High-Fat Diet-Induced Obese Rats. Int. J. Obes. (Lond) 2017, 41, 639–644. DOI: 10.1038/ijo.2017.10.
  • Talaei, A.; Mohamadi, M.; Adgi, Z. The Effect of Vitamin D on Insulin Resistance in Patients with Type 2 Diabetes. Diabetol. Metab. Syndr. 2013, 5, 8. DOI: 10.1186/1758-5996-5-8.
  • Mozos, I.; Marginean, O. Extraskeletal Functions of Vitamin D. Bio. Med. Res. Int 2015, 2015, 1–12. DOI: 10.1155/2015/109275.
  • Lavie, C. J.; Lee, J. H.; Milani, R. V. Vitamin D and Cardiovascular Disease Will It Live Up to Its Hype? J. Am. Coll. Cardiol. 2011, 58, 1547–1556. DOI: 10.1016/j.jacc.2011.07.008.
  • Palermo, A.; Tuccinardi, D.; D'Onofrio, L.; Watanabe, M.; Maggi, D.; Maurizi, A. R.; Greto, V.; Buzzetti, R.; Napoli, N.; Pozzilli, P.; Manfrini, S. Vitamin K and Osteoporosis: Myth or Reality? Metabolism 2017, 70, 57–71. DOI: 10.1016/j.metabol.2017.01.032.
  • Vermeer, C.; Braam, L. Role of K Vitamins in the Regulation of Tissue Calcification. J. Bone Miner. Metab. 2001, 19, 201–206. DOI: 10.1007/s007740170021.
  • Swanson, J. C.; Suttie, J. W. Vitamin K Dependent in Vitro Production of Prothrombin. Biochemistry 1982, 21, 6011–6018. DOI: 10.1021/bi00266a044.
  • Stenflo, J. Vitamin K and the Biosynthesis of Prothrombin. IV. Isolation of Peptides Containing Prosthetic Groups from Normal Prothrombin and the Corresponding Peptides from Dicoumarol-Induced Prothrombin. J. Biol. Chem. 1974, 249, 5527–5535. DOI: 10.1016/S0021-9258(20)79760-7.
  • Marchili, M. R.; Santoro, E.; Marchesi, A.; Bianchi, S.; Aufiero, L. R.; Villani, A. Vitamin K Deficiency: A Case Report and Review of Current Guidelines. Ital. J. Pediatr. 2018, 44, 1–5. DOI: 10.1186/s13052-018-0474-0.
  • Phillippi, J. C.; Holley, S. L.; Morad, A.; Collins, M. R. Prevention of Vitamin K Deficiency Bleeding. J. Midwifery Womens Health 2016, 61, 632–636. DOI: 10.1111/jmwh.12470.
  • Li, P.; Liu, Z.; Yan, Z.; Wang, X.; Akinoglu, E. M.; Jin, M.; Zhou, G.; Shui, L. An Electrochemical Sensor for Determination of Vitamin B2 and B6 Based on AuNPs@PDA-RGO Modified Glassy Carbon Electrode. J. Electrochem. Soc. 2019, 166, B821–B829. DOI: 10.1149/2.1281910jes.
  • Puangjan, A.; Chaiyasith, S.; Taweeporngitgul, W.; Keawteo, J. Application of Functionalized Multi-Walled Carbon Nanotubes Supporting Cuprous Oxide and Silver Oxide Composite Catalyst on Copper Substrate for Simultaneous Detection of Vitamin B2, Vitamin B6 and Ascorbic Acid. MSC 2017, 76, 383–397. DOI: 10.1016/j.msec.2017.03.040.
  • Vijayaprasath, G.; Habibulla, I.; Dharuman, V.; Balasubramanian, S.; Ganesan, R. Fabrication of Gd2O3 Nanosheet-Modified Glassy Carbon Electrode for Noenzymatib Highly Selective Electrochemical Detection of Vitamin B2. ACS Omega 2020, 5, 17892–17899. DOI: 10.1021/acsomega.9b04284.
  • Sangili, A.; Veerakumar, P.; Chen, S. M.; Rajkumar, C.; Lin, K. C. Voltammetric Determination of Vitamin B2 by Using a Highly Porous Carbon Electrode Modified with Palladium-Copper Nanoparticles. Mikrochim. Acta 2019, 186, 299. DOI: 10.1007/s00604-019-3396-7.
  • Sadeghi, H.; Shahidi, S. A.; Raeisis, N.; Saraei, A. G. H.; Karimi, F. Electrochemical Determination of Vitamin B6 in Water and Juice Samples Using an Electrochemical Sensor Amplified with NiO/CNTs and Ionic Liquid. Int. J. Electrochem. Sci. 2020, 15, 10488–10498. DOI: 10.20964/2020.10.51.
  • Sharma, A.; Arya, S. Economical and Efficient Electrochemical Sensing of Folic Acid Using a Platinum Electrode Modified with Hydrothermally Synthesized Pd and Ag Co-Doped SnO2 Nanoparticles. J. Electrochem. Soc. 2019, 166, B1107–B1115. DOI: 10.1149/2.0261913jes.
  • Yuan, M. M.; Zou, J.; Huang, Z. N.; Peng, D. M.; Yu, J. G. PtNPs-GNPs-MWCNTs-β-CD Nanocomposite Modified Glassy Carbon Electrode for Sensitive Electrochemical Detection of Folic Acid. Anal. Bioanal. Chem. 2020, 412, 2551–2564. DOI: 10.1007/s00216-020-02488-w.
  • Dimitropoulou, G.; Karastogianni, S.; Girousi, S. Development of an Electrochemical DNA Biosensor for the Detection of Vitamin B12 (Cyanocobalamin) at a Carbon Paste Modified Electrode with a Manganese(II) Complex. J. Appl. Bioanal. 2017, 3, 70–80. DOI: 10.17145/jab.17.011.
  • Karastogianni, S.; Girousi, S. Square Wave Voltammetric (SWN) Determination of Cyanocovalamin (Vitamin B12) in Pharmaceuticals and Supplements on a Carbon Paste Electrode (CPE) Modified by a Manganese(II) Polymeric Film. Anal. Lett. 2021, 55, 1–12. DOI: 10.1080/00032719.2021.1937195.
  • Sharma, A.; Arya, S.; Chauhan, D.; Solanki, P. R.; Khajuria, S.; Khosla, A. Synthesis of Au-SnO2 Nanoparticles for Electrochemical Determination of Vitamin B12. J. Mater. Res. Technol. 2020, 9, 14321–14337. DOI: 10.1016/j.jmrt.2020.10.024.
  • Pereira, D. F.; Santana, E. R.; Piovesan, J. V.; Spinelli, A. A Novel Electrochemical Strategy for Determination of Vitamin B12 by Co(I/II) Redox Pair Monitoring with Boron-Doped Diamond Electrode. Diam. Relat. Mater. 2020, 105, 107793. DOI: 10.1016/j.diamond.2020.107793.
  • Chauhan, D.; Kumar, R.; Panda, A. K.; Solanki, P. R. An Efficient Electrochemical Biosensor for Vitamin-D3 Detection Based on Aspartic Acid Functionalized Gadolinium Oxide Nanorods. J. Mater. Res. Technol. 2019, 8, 5490–5503. DOI: 10.1016/j.jmrt.2019.09.017.
  • Sarkar, T.; Bohidar, H. B.; Solanki, P. R. Carbon Dots-Modified Chitosan Based Electrochemical Biosensing Platform for Detection of Vitamin D. Int. J. Biol. Macromol. 2018, 109, 687–697. DOI: 10.1016/j.ijbiomac.2017.12.122.
  • Men, K.; Chen, Y.; Liu, J.; Wei, D. Electrochemical Detection of Vitamin D2 and D3 Based in a Au-Pd Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2017, 12, 9555–9564. DOI: 10.20964/2017.10.15.
  • Anusha, T.; Bhavani, K. S.; Kumar, J. S.; Brahman, P. K. Designing and Fabrication of Electrochemical Nanosensor Employing Fullerene-C60 and Bimetallic Nanoparticles Composite Film for the Detection of Vitamin D3 in Blood Samples. Diam. Relat. Mater. 2020, 104, 107761. DOI: 10.1016/j.diamond.2020.107761.
  • Jesadabundit, W.; Chaiyo, S.; Siangproh, W.; Chailapakul, O. Simple and Cost-Effective Electrochemical Approach for Monitoring of Vitamin K in Green Vegetables. ChemElectroChem 2020, 7, 155–162. DOI: 10.1002/celc.201901432.
  • Matuskova, M.; Cizmarova, I.; Chalova, P.; Mikus, P.; Piestansky, J. Rapid and Simple CZE-UV Method for Quality Control of B1 and B6 Vitamins in Drugs and Dietary Supplements. Eur. Pharmaceut. J. 2021, 68, 59–62. DOI: 10.2478/afpuc-2021-0002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.