1,054
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples

ORCID Icon, , ORCID Icon, , , , ORCID Icon & show all
Pages 44-60 | Published online: 15 Mar 2022

References

  • Xu, X.; Zhao, Y.; Zhao, X.; Wang, Y.; Deng, W. Sources of Heavy Metal Pollution in Agricultural Soils of a Rapidly Industrializing Area in the Yangtze Delta of China. Ecotoxicol. Environ. Saf. 2014, 108, 161–167. DOI: 10.1016/j.ecoenv.2014.07.001.
  • Hu, Y.; Liu, X.; Bai, J.; Shih, K.; Zeng, E. Y.; Cheng, H. Assessing Heavy Metal Pollution in the Surface Soils of a Region That Had Undergone Three Decades of Intense Industrialization and Urbanization. Environ. Sci. Pollut. Res. Int. 2013, 20, 6150–6159. DOI: 10.1007/s11356-013-1668-z.
  • Wu, Q.; Zhou, H.; Tam, N. F.; Tian, Y.; Tan, Y.; Zhou, S.; Li, Q.; Chen, Y.; Leung, J. Y. Contamination, Toxicity and Speciation of Heavy Metals in an Industrialized Urban River: Implications for the Dispersal of Heavy Metals. Mar. Pollut. Bull. 2016, 104, 153–161. DOI: 10.1016/j.marpolbul.2016.01.043.
  • Khan, E. Detecting Inorganic Arsenic below WHO Threshold Limit; A Comparative Study of Various Sensors. Int. J. Environ. Anal. Chem. 2021, 1–24. DOI: 10.1080/03067319.2021.1998476.
  • Martena, M. J.; Van Der Wielen, J. C.; Rietjens, I. M.; Klerx, W. N.; De Groot, H. N.; Konings, E. J. Monitoring of Mercury, Arsenic, and Lead in Traditional Asian Herbal Preparations on the Dutch Market and Estimation of Associated Risks. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 190–205. DOI: 10.1080/02652030903207235.
  • Miller, E. K.; Vanarsdale, A.; Keeler, G. J.; Chalmers, A.; Poissant, L.; Kamman, N. C.; Brulotte, R. Estimation and Mapping of Wet and Dry Mercury Deposition across Northeastern North America. Ecotoxicology 2005, 14, 53–70. DOI: 10.1007/s10646-004-6259-9.
  • Rahman, F. U.; Bibi, M.; Khan, E.; Shah, A. B.; Muhammad, M.; Tahir, M. N.; Shahzad, A.; Ullah, F.; Zahoor, M.; Alamery, S.; Batiha, G. E.-S. Thiourea Derivatives, Simple in Structure but Efficient Enzyme Inhibitors and Mercury Sensors. Molecules 2021, 26, 4506. DOI: 10.3390/molecules26154506.
  • Kennedy, C. J. Uptake and Accumulation of Mercury from Dental Amalgam in the Common Goldfish, Carassius auratus. Environ. Pollut. 2003, 121, 321–326. DOI: 10.1016/S0269-7491(02)00271-3.
  • Waldichuk, M. Some Biological Concerns in Heavy Metals Pollution. Pollut. Physiol. Mar. Org. 1974, 1, 1.
  • Zahir, F.; Rizwi, S. J.; Haq, S. K.; Khan, R. H. Low Dose Mercury Toxicity and Human Health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. DOI: 10.1016/j.etap.2005.03.007.
  • Carocci, A.; Rovito, N.; Sinicropi, M. S.; Genchi, G. Mercury Toxicity and Neurodegenerative Effects. Rev. Environ. Contam. Toxicol. 2014, 1. 1–18.
  • Trasande, L.; Landrigan, P. J.; Schechter, C. Public Health and Economic Consequences of Methyl Mercury Toxicity to the Developing Brain. Environ. Health Perspect. 2005, 113, 590–596. DOI: 10.1289/ehp.7743.
  • Clarkson, T. W.; Magos, L.; Myers, G. J. The Toxicology of Mercury-Current Exposures and Clinical Manifestations. N. Engl. J. Med. 2003, 349, 1731–1737. DOI: 10.1056/NEJMra022471.
  • Liu, J.; Lu, Y. Rational Design of “Turn‐on” Allosteric DNAzyme Catalytic Beacons for Aqueous Mercury Ions with Ultrahigh Sensitivity and Selectivity. Angew. Chem. 2007, 119, 7731–7734. DOI: 10.1002/ange.200702006.
  • Renzoni, A.; Zino, F.; Franchi, E. Mercury Levels along the Food Chain and Risk for Exposed Populations. Environ. Res. 1998, 77, 68–72. DOI: 10.1006/enrs.1998.3832.
  • Baughman, T. A. Elemental Mercury Spills. Environ. Health Perspect. 2006, 114, 147–152. DOI: 10.1289/ehp.7048.
  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9, 106381. DOI: 10.1016/j.jece.2021.106381.
  • Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal Importance, Coordination Chemistry with Selected Metals (cu, Ag, au) and Chemosensing of Thiourea Derivatives. A Review. Crit. Rev. Anal. Chem. 2020, 51, 1–23. DOI: 10.1080/10408347.2020.1777523.
  • Rastogi, L.; Sashidhar, R.; Karunasagar, D.; Arunachalam, J. Gum Kondagogu Reduced/Stabilized Silver Nanoparticles as Direct Colorimetric Sensor for the Sensitive Detection of Hg2+ in Aqueous System. Talanta 2014, 118, 111–117. DOI: 10.1016/j.talanta.2013.10.012.
  • Apilux, A.; Siangproh, W.; Praphairaksit, N.; Chailapakul, O. Simple and Rapid Colorimetric Detection of Hg(II) by a paper-based device using silver nanoplates . Talanta 2012, 97, 388–394. DOI: 10.1016/j.talanta.2012.04.050.
  • Sumesh, E.; Bootharaju, M.; Pradeep, T. A Practical Silver Nanoparticle-Based Adsorbent for the Removal of Hg2+ from Water. J. Hazard. Mater. 2011, 189, 450. DOI: 10.1016/j.jhazmat.2011.02.061.
  • Sharma, K.; Singh, G.; Singh, G.; Kumar, M.; Bhalla, V. Silver Nanoparticles: Facile Synthesis and Their Catalytic Application for the Degradation of Dyes. RSC Adv. 2015, 5, 25781–25788. DOI: 10.1039/C5RA02909K.
  • Davarpanah, J.; Kiasat, A. R. Catalytic Application of Silver Nanoparticles Immobilized to Rice husk-SiO2-Aminopropylsilane Composite as Recyclable Catalyst in the Aqueous Reduction of Nitroarenes. Catal. Commun. 2013, 41, 6–11. DOI: 10.1016/j.catcom.2013.06.020.
  • Wu, Y.; Tilley, R. D.; Gooding, J. J. Challenges and Solutions in Developing Ultrasensitive Biosensors. J. Am. Chem. Soc. 2019, 141, 1162–1170. DOI: 10.1021/jacs.8b09397.
  • Xie, T.; Jing, C.; Long, Y.-T. Single Plasmonic Nanoparticles as Ultrasensitive Sensors. Analyst 2017, 142, 409–420. DOI: 10.1039/c6an01852a.
  • Langhammer, C.; Larsson, E. M.; Kasemo, B.; Zoric, I. Indirect Nanoplasmonic Sensing: ultrasensitive Experimental Platform for Nanomaterials Science and Optical Nanocalorimetry. Nano Lett. 2010, 10, 3529–3538. DOI: 10.1021/nl101727b.
  • Tseng, W.-B.; Hsieh, M.-M.; Chen, C.-H.; Chiu, T.-C.; Tseng, W.-L. Functionalized Gold Nanoparticles for Sensing of Pesticides: A Review. J. Food Drug Anal. 2020, 28, 4.
  • Sarkar, D.; Xie, X.; Kang, J.; Zhang, H.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of Transition Metal Dichalcogenides with Metallic Nanoparticles: Implications for Doping and Gas-Sensing. Nano Lett. 2015, 15, 2852–2862. DOI: 10.1021/nl504454u.
  • Zeng, S.; Yong, K.-T.; Roy, I.; Dinh, X.-Q.; Yu, X.; Luan, F. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics 2011, 6, 491–506. DOI: 10.1007/s11468-011-9228-1.
  • Lee, K.-S.; El-Sayed, M. A. Gold and Silver Nanoparticles in Sensing and Imaging: sensitivity of Plasmon Response to Size, Shape, and Metal Composition. J. Phys. Chem. B 2006, 110, 19220–19225. DOI: 10.1021/jp062536y.
  • Caro, C.; Castillo, P. M.; Klippstein, R.; Pozo, D.; Zaderenko, A. P. Silver Nanoparticles: Sensing and Imaging Applications. Silver Nanoparticles 2010.
  • Cobley, C. M.; Skrabalak, S. E.; Campbell, D. J.; Xia, Y. Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications. Plasmonics 2009, 4, 171–179. DOI: 10.1007/s11468-009-9088-0.
  • Aslan, K.; Zhang, J.; Lakowicz, J. R.; Geddes, C. D. Saccharide Sensing Using Gold and Silver Nanoparticles-A Review. J. Fluoresc. 2004, 14, 391–400. DOI: 10.1023/B:JOFL.0000031820.17358.28.
  • Kumar, V.; Singh, D. K.; Mohan, S.; Bano, D.; Gundampati, R. K.; Hasan, S. H. Green Synthesis of Silver Nanoparticle for the Selective and Sensitive Colorimetric Detection of Mercury (II) Ion. J. Photochem. Photobiol. B 2017, 168, 67–77. DOI: 10.1016/j.jphotobiol.2017.01.022.
  • Farhadi, K.; Forough, M.; Molaei, R.; Hajizadeh, S.; Rafipour, A. Highly Selective Hg2+ Colorimetric Sensor Using Green Synthesized and Unmodified Silver Nanoparticles. Sens. Actuators B 2012, 161, 880–885. DOI: 10.1016/j.snb.2011.11.052.
  • Gao, S.; Jia, X.; Chen, Y. Old Tree with New Shoots: silver Nanoparticles for Label-Free and Colorimetric Mercury Ions Detection. J. Nanopart. Res. 2013, 15, 1385. DOI: 10.1007/s11051-012-1385-4.
  • Lokhande, A.; Shinde, N.; Shelke, A.; Babar, P.; Kim, J. H. Reliable and Reproducible Colorimetric Detection of Mercury Ions (Hg 2+) Using Green Synthesized Optically Active Silver Nanoparticles Containing Thin Film on Flexible Plastic Substrate. J. Solid State Electrochem. 2017, 21, 2747–2751. DOI: 10.1007/s10008-016-3481-3.
  • Jeevika, A.; Shankaran, D. R. Functionalized Silver Nanoparticles Probe for Visual Colorimetric Sensing of Mercury. Mater. Res. Bull. 2016, 83, 48–55. DOI: 10.1016/j.materresbull.2016.05.029.
  • Bhattacharjee, Y.; Chakraborty, A. Label-Free Cysteamine-Capped Silver Nanoparticle-Based Colorimetric Assay for Hg (II) Detection in Water with Subnanomolar Exactitude. ACS Sustain. Chem. Eng. 2014, 2, 2149–2154. DOI: 10.1021/sc500339n.
  • Ramesh, G.; Radhakrishnan, T. A Universal Sensor for Mercury (Hg, Hg(I), Hg(II)) Based on Silver Nanoparticle-Embedded Polymer Thin Film. ACS Appl. Mater. Interfaces 2011, 3, 988–994. DOI: 10.1021/am200023w.
  • Bhattacharjee, Y.; Chatterjee, D.; Chakraborty, A. Mercaptobenzoheterocyclic Compounds Functionalized Silver Nanoparticle, an Ultrasensitive Colorimetric Probe for Hg (II) Detection in Water with Picomolar Precision: A Correlation between Sensitivity and Binding Affinity. Sens. Actuators B 2018, 255, 210–216. DOI: 10.1016/j.snb.2017.08.066.
  • Wu, Z.-H.; Lin, J.-H.; Tseng, W.-L. Oligonucleotide-Functionalized Silver Nanoparticle Extraction and Laser-Induced Fluorescence for Ultrasensitive Detection of Mercury(II) ion. Biosens. Bioelectron. 2012, 34, 185–190. DOI: 10.1016/j.bios.2012.01.041.
  • Bhatt, K. D.; Vyas, D. J.; Makwana, B. A.; Darjee, S. M.; Jain, V. K.; Shah, H. Turn-on Fluorescence Probe for Selective Detection of Hg (II) by Calixpyrrole Hydrazide Reduced Silver Nanoparticle: Application to Real Water Sample. Chin. Chem. Lett. 2016, 27, 731–737. DOI: 10.1016/j.cclet.2016.01.012.
  • Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Xu, P.; Zhang, C.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; Yi, H. Gold Rush” in Modern Science: Fabrication Strategies and Typical Advanced Applications of Gold Nanoparticles in Sensing. Coord. Chem. Rev. 2018, 359, 1–31. DOI: 10.1016/j.ccr.2018.01.006.
  • Zhang, G. Functional Gold Nanoparticles for Sensing Applications. Nanotechnol. Rev. 2013, 2, 269–288. DOI: 10.1515/ntrev-2012-0088.
  • Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. DOI: 10.1021/cr2001178.
  • Tu, X.; Chen, W.; Guo, X. Facile One-Pot Synthesis of Near-Infrared Luminescent Gold Nanoparticles for Sensing Copper (II). Nanotechnology 2011, 22, 095701. DOI: 10.1088/0957-4484/22/9/095701.
  • Tang, Y.; Ding, Y.; Wu, T.; Lv, L.; Yan, Z. A Turn-on Fluorescent Probe for Hg2+ Detection by Using Gold Nanoparticle-Based Hybrid Microgels. Sens. Actuators B 2016, 228, 767–773. DOI: 10.1016/j.snb.2016.01.112.
  • Chen, G.-H.; Chen, W.-Y.; Yen, Y.-C.; Wang, C.-W.; Chang, H.-T.; Chen, C.-F. Detection of Mercury(II) Ions Using Colorimetric Gold Nanoparticles on Paper-Based Analytical Devices. Anal. Chem. 2014, 86, 6843–6849. DOI: 10.1021/ac5008688.
  • Huang, C.-C.; Chang, H.-T. Selective Gold-Nanoparticle-Based "Turn-On" Fluorescent Sensors for Detection of Mercury(II) in Aqueous Solution. Anal. Chem. 2006, 78, 8332–8338. DOI: 10.1021/ac061487i.
  • Wang, H.; Wang, Y.; Jin, J.; Yang, R. Gold Nanoparticle-Based Colorimetric and "Turn-On" Fluorescent Probe for Mercury(II) Ions in Aqueous Solution. Anal. Chem. 2008, 80, 9021–9028. DOI: 10.1021/ac801382k.
  • Kim, Y.-R.; Mahajan, R. K.; Kim, J. S.; Kim, H. Highly Sensitive Gold Nanoparticle-Based Colorimetric Sensing of Mercury(II) Through Simple Ligand Exchange Reaction in Aqueous Media. ACS Appl. Mater. Interfaces 2010, 2, 292–295. DOI: 10.1021/am9006963.
  • Lin, C.-Y.; Yu, C.-J.; Lin, Y.-H.; Tseng, W.-L. Colorimetric Sensing of Silver(I) and Mercury(II) Ions Based on an Assembly of Tween 20-Stabilized Gold Nanoparticles. Anal. Chem. 2010, 82, 6830–6837. DOI: 10.1021/ac1007909.
  • Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–Nickel Nanoparticles Decorated on Functionalized-MWCNT for High Precision Non-Enzymatic Glucose Sensing. Mater. Chem. Phys. 2020, 250, 123042. DOI: 10.1016/j.matchemphys.2020.123042.
  • Zhang, Y.; Xiao, X.; Sun, Y.; Shi, Y.; Dai, H.; Ni, P.; Hu, J.; Li, Z.; Song, Y.; Wang, L. Electrochemical Deposition of Nickel Nanoparticles on Reduced Graphene Oxide Film for Nonenzymatic Glucose Sensing. Electroanalysis 2013, 25, 959–966. DOI: 10.1002/elan.201200479.
  • Hameed, R. A. Amperometric Glucose Sensor Based on Nickel Nanoparticles/Carbon Vulcan XC-72R. Biosens. Bioelectron. 2013, 47, 248.
  • Chen, H.; Zhang, Z.; Cai, R.; Rao, W.; Long, F. Molecularly Imprinted Electrochemical Sensor Based on Nickel Nanoparticles-Graphene Nanocomposites Modified Electrode for Determination of Tetrabromobisphenol A. Electrochim. Acta 2014, 117, 385–392. DOI: 10.1016/j.electacta.2013.11.185.
  • Deng, P.; Nie, X.; Wu, Y.; Tian, Y.; Li, J.; He, Q. A Cost-Saving Preparation of Nickel Nanoparticles/Nitrogen-Carbon Nanohybrid as Effective Advanced Electrode Materials for Highly Sensitive Tryptophan Sensor. Microchem. J. 2021, 160, 105744. DOI: 10.1016/j.microc.2020.105744.
  • Veerakumar, P.; Chen, S.-M.; Madhu, R.; Veeramani, V.; Hung, C.-T.; Liu, S.-B. Nickel Nanoparticle-Decorated Porous Carbons for Highly Active Catalytic Reduction of Organic Dyes and Sensitive Detection of Hg(II) Ions . ACS Appl. Mater. Interfaces 2015, 7, 24810–24821. DOI: 10.1021/acsami.5b07900.
  • Yang, M.; Yang, Y.; Liu, Y.; Shen, G.; Yu, R. Platinum Nanoparticles-Doped Sol–Gel/Carbon Nanotubes Composite Electrochemical Sensors and Biosensors. Biosens. Bioelectron. 2006, 21, 1125–1131. DOI: 10.1016/j.bios.2005.04.009.
  • Gautam, M.; Jayatissa, A. H. Adsorption Kinetics of Ammonia Sensing by Graphene Films Decorated with Platinum Nanoparticles. J. Appl. Phys. 2012, 111, 094317. DOI: 10.1063/1.4714552.
  • Dovgolevsky, E.; Konvalina, G.; Tisch, U.; Haick, H. Monolayer-Capped Cubic Platinum Nanoparticles for Sensing Nonpolar Analytes in Highly Humid Atmospheres. J. Phys. Chem. C. 2010, 114, 14042–14049. DOI: 10.1021/jp105810w.
  • Li, L.-H.; Zhang, W.-D. Preparation of Carbon Nanotubes Supported Platinum Nanoparticles by an Organic Colloidal Process for Nonenzymatic Glucose Sensing. Microchim. Acta 2008, 163, 305–311. DOI: 10.1007/s00604-008-0016-3.
  • Kora, A. J.; Rastogi, L. Peroxidase Activity of Biogenic Platinum Nanoparticles: A Colorimetric Probe towards Selective Detection of Mercuric Ions in Water Samples. Sens. Actuators B 2018, 254, 690–700. DOI: 10.1016/j.snb.2017.07.108.
  • Wu, G.-W.; He, S.-B.; Peng, H.-P.; Deng, H.-H.; Liu, A.-L.; Lin, X.-H.; Xia, X.-H.; Chen, W. Citrate-Capped Platinum Nanoparticle as a Smart Probe for Ultrasensitive Mercury Sensing. Anal. Chem. 2014, 86, 10955–10960. DOI: 10.1021/ac503544w.
  • Gupta, D.; Dutta, D.; Kumar, M.; Barman, P.; Sarkar, C.; Basu, S.; Hazra, S. A Low Temperature Hydrogen Sensor Based on Palladium Nanoparticles. Sens. Actuators B 2014, 196, 215–222. DOI: 10.1016/j.snb.2014.01.106.
  • Chen, X-m.; Lin, Z-j.; Chen, D.-J.; Jia, T-t.; Cai, Z-m.; Wang, X-r.; Chen, X.; Chen, G-n.; Oyama, M. Nonenzymatic Amperometric Sensing of Glucose by Using Palladium Nanoparticles Supported on Functional Carbon Nanotubes. Biosens. Bioelectron. 2010, 25, 1803–1808. DOI: 10.1016/j.bios.2009.12.035.
  • Chen, X-m.; Cai, Z-x.; Huang, Z-y.; Oyama, M.; Jiang, Y-q.; Chen, X. Ultrafine Palladium Nanoparticles Grown on Graphene Nanosheets for Enhanced Electrochemical Sensing of Hydrogen Peroxide. Electrochim. Acta 2013, 97, 398–403. DOI: 10.1016/j.electacta.2013.02.047.
  • Veerakumar, P.; Veeramani, V.; Chen, S.-M.; Madhu, R.; Liu, S.-B. Palladium Nanoparticle Incorporated Porous Activated Carbon: electrochemical Detection of Toxic Metal Ions. ACS Appl. Mater. Interfaces 2016, 8, 1319–1326. DOI: 10.1021/acsami.5b10050.
  • Athanassiou, E. K.; Grass, R. N.; Stark, W. J. Large-Scale Production of Carbon-Coated Copper Nanoparticles for Sensor Applications. Nanotechnology 2006, 17, 1668–1673. DOI: 10.1088/0957-4484/17/6/022.
  • Guo, Y.; Cao, F.; Lei, X.; Mang, L.; Cheng, S.; Song, J. Fluorescent Copper Nanoparticles: Recent Advances in Synthesis and Applications for Sensing Metal Ions. Nanoscale 2016, 8, 4852–4863. DOI: 10.1039/c6nr00145a.
  • Jiang, D.; Liu, Q.; Wang, K.; Qian, J.; Dong, X.; Yang, Z.; Du, X.; Qiu, B. Enhanced Non-Enzymatic Glucose Sensing Based on Copper Nanoparticles Decorated Nitrogen-Doped Graphene. Biosens. Bioelectron. 2014, 54, 273–278. DOI: 10.1016/j.bios.2013.11.005.
  • Xu, Q.; Zhao, Y.; Xu, J. Z.; Zhu, J.-J. Preparation of Functionalized Copper Nanoparticles and Fabrication of a Glucose Sensor. Sens. Actuators B 2006, 114, 379–386. DOI: 10.1016/j.snb.2005.06.005.
  • Soomro, R. A.; Nafady, A.; Memon, N.; Sherazi, T. H.; Kalwar, N. H. L-Cysteine Protected Copper Nanoparticles as Colorimetric Sensor for Mercuric Ions. Talanta 2014, 130, 415. DOI: 10.1016/j.talanta.2014.07.023.
  • Lin, S. M.; Geng, S.; Li, N.; Li, N. B.; Luo, H. Q. D-Penicillamine-Templated Copper Nanoparticles via Ascorbic Acid Reduction as a Mercury Ion Sensor. Talanta 2016, 151, 106–113. DOI: 10.1016/j.talanta.2016.01.028.
  • Li, S.; Wei, T.; Tang, M.; Chai, F.; Qu, F.; Wang, C. Facile Synthesis of Bimetallic Ag-Cu Nanoparticles for Colorimetric Detection of Mercury Ion and Catalysis. Sens. Actuators B 2018, 255, 1471–1481. DOI: 10.1016/j.snb.2017.08.159.
  • Joshi, R. K.; Hu, Q.; Alvi, F.; Joshi, N.; Kumar, A. Au Decorated Zinc Oxide Nanowires for CO Sensing. J. Phys. Chem. C 2009, 113, 16199–16202. DOI: 10.1021/jp906458b.
  • Beer, P. D.; Cormode, D. P.; Davis, J. J. Zinc Metalloporphyrin-Functionalised Nanoparticle Anion Sensors. Chem. Commun. 2004. DOI: 10.1039/b313658b.
  • Singh, R. C.; Singh, O.; Singh, M. P.; Chandi, P. S. Synthesis of Zinc Oxide Nanorods and Nanoparticles by Chemical Route and Their Comparative Study as Ethanol Sensors. Sens. Actuators B 2008, 135, 352–357. DOI: 10.1016/j.snb.2008.09.004.
  • Loh, K. J.; Chang, D. Zinc Oxide Nanoparticle-Polymeric Thin Films for Dynamic Strain Sensing. J. Mater. Sci. 2011, 46, 228–237. DOI: 10.1007/s10853-010-4940-3.
  • Mustafa, A.; Aslam, Z.; Shah, M. R. Colorimetric Sensing of Mercury Ions in Aqueous Solutions by Zinc Core–Shell Nanoparticles. Sens. Lett. 2016, 14, 800–807. DOI: 10.1166/sl.2016.3705.
  • Bhanjana, G.; Dilbaghi, N.; Kumar, R.; Kumar, S. Zinc Oxide Quantum Dots as Efficient Electron Mediator for Ultrasensitive and Selective Electrochemical Sensing of Mercury. Electrochim. Acta 2015, 178, 361–367. DOI: 10.1016/j.electacta.2015.07.113.
  • Lee, S. Y.; Lin, M.; Lee, A.; Park, Y. I. Lanthanide-Doped Nanoparticles for Diagnostic Sensing. Nanomaterials 2017, 7, 411. DOI: 10.3390/nano7120411.
  • Zheng, S.; Chen, W.; Tan, D.; Zhou, J.; Guo, Q.; Jiang, W.; Xu, C.; Liu, X.; Qiu, J. Lanthanide-Doped NaGdF4 Core-Shell Nanoparticles for Non-Contact Self-Referencing Temperature Sensors. Nanoscale 2014, 6, 5675–5679. DOI: 10.1039/c4nr00432a.
  • Comby, S.; Surender, E. M.; Kotova, O.; Truman, L. K.; Molloy, J. K.; Gunnlaugsson, T. Lanthanide-Functionalized Nanoparticles as MRI and Luminescent Probes for Sensing and/or Imaging Applications. Inorg. Chem. 2014, 53, 1867–1879. DOI: 10.1021/ic4023568.
  • Chen, P.; Zhang, J.; Xu, B.; Sang, X.; Chen, W.; Liu, X.; Han, J.; Qiu, J. Lanthanide Doped Nanoparticles as Remote Sensors for Magnetic Fields. Nanoscale 2014, 6, 11002–11006. DOI: 10.1039/c4nr02983f.
  • Huang, P.; Wu, F.; Mao, L. Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain. Anal. Chem. 2015, 87, 6834–6841. DOI: 10.1021/acs.analchem.5b01155.
  • Zhang, Z.; Wang, L.; Li, G.; Ye, B. Lanthanide Coordination Polymer Nanoparticles as a Turn-on Fluorescence Sensing Platform for Simultaneous Detection of Histidine and Cysteine. Analyst 2017, 142, 1821–1826. DOI: 10.1039/c7an00415j.
  • Tan, H.; Liu, B.; Chen, Y. Lanthanide Coordination Polymer Nanoparticles for Sensing of Mercury(II) by Photoinduced Electron Transfer. ACS Nano. 2012, 6, 10505–10511. DOI: 10.1021/nn304469j.
  • Li, Q.; Wang, C.; Tan, H.; Tang, G.; Gao, J.; Chen, C.-H. A Turn on Fluorescent Sensor Based on Lanthanide Coordination Polymer Nanoparticles for the Detection of Mercury (II) in Biological Fluids. RSC Adv. 2016, 6, 17811–17817. DOI: 10.1039/C5RA26849D.
  • Korzeniowska, B.; Nooney, R.; Wencel, D.; McDonagh, C. Silica Nanoparticles for Cell Imaging and Intracellular Sensing. Nanotechnology 2013, 24, 442002. DOI: 10.1088/0957-4484/24/44/442002.
  • Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. Y. Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Adv. Funct. Mater. 2007, 17, 1225–1236. DOI: 10.1002/adfm.200601191.
  • Burns, A.; Sengupta, P.; Zedayko, T.; Baird, B.; Wiesner, U. Core/Shell Fluorescent Silica Nanoparticles for Chemical Sensing: Towards Single-Particle Laboratories. Small 2006, 2, 723–726. DOI: 10.1002/smll.200600017.
  • Montalti, M.; Rampazzo, E.; Zaccheroni, N.; Prodi, L. Luminescent Chemosensors Based on Silica Nanoparticles for the Detection of Ionic Species. New J. Chem. 2013, 37, 28–34. DOI: 10.1039/C2NJ40673J.
  • Zhang, Y.; Yuan, Q.; Chen, T.; Zhang, X.; Chen, Y.; Tan, W. DNA-Capped Mesoporous Silica Nanoparticles as an Ion-Responsive Release System to Determine the Presence of Mercury in Aqueous Solutions. Anal. Chem. 2012, 84, 1956–1962. DOI: 10.1021/ac202993p.
  • Wu, C.; Peng, X.; Lu, Q.; Li, H.; Zhang, Y.; Yao, S. Ultrasensitive Silicon Nanoparticle Ratiometric Fluorescence Determination of Mercury (II). Anal. Lett. 2018, 51, 1013–1028. DOI: 10.1080/00032719.2017.1370595.
  • Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Carbon Nanoparticle-Based Fluorescent Bioimaging Probes. Sci. Rep. 2013, 3, 1473. DOI: 10.1038/srep01473.
  • Ali, H.; Bhunia, S. K.; Dalal, C.; Jana, N. R. Red Fluorescent Carbon Nanoparticle-Based Cell Imaging Probe. ACS Appl. Mater. Interfaces 2016, 8, 9305–9313. DOI: 10.1021/acsami.5b11318.
  • Tuccitto, N.; Riela, L.; Zammataro, A.; Spitaleri, L.; Li-Destri, G.; Sfuncia, G.; Nicotra, G.; Pappalardo, A.; Capizzi, G.; Trusso Sfrazzetto, G. Functionalized Carbon Nanoparticle-Based Sensors for Chemical Warfare Agents. ACS Appl. Nano Mater. 2020, 3, 8182–8191. DOI: 10.1021/acsanm.0c01593.
  • Li, H.; Zhai, J.; Tian, J.; Luo, Y.; Sun, X. Carbon Nanoparticle for Highly Sensitive and Selective Fluorescent Detection of Mercury(II) ion in Aqueous Solution. Biosens. Bioelectron. 2011, 26, 4656–4660. DOI: 10.1016/j.bios.2011.03.026.
  • Huang, H.; Lv, J.-J.; Zhou, D.-L.; Bao, N.; Xu, Y.; Wang, A.-J.; Feng, J.-J. One-Pot Green Synthesis of Nitrogen-Doped Carbon Nanoparticles as Fluorescent Probes for Mercury Ions. RSC Adv. 2013, 3, 21691. DOI: 10.1039/c3ra43452d.
  • Lan, M.; Zhang, J.; Chui, Y.-S.; Wang, P.; Chen, X.; Lee, C.-S.; Kwong, H.-L.; Zhang, W. Carbon Nanoparticle-Based Ratiometric Fluorescent Sensor for Detecting Mercury Ions in Aqueous Media and Living Cells. ACS Appl. Mater. Interfaces 2014, 6, 21270–21278. DOI: 10.1021/am5062568.
  • Lu, W.; Qin, X.; Liu, S.; Chang, G.; Zhang, Y.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions. Anal. Chem. 2012, 84, 5351–5357. DOI: 10.1021/ac3007939.
  • Yan, F.; Zou, Y.; Wang, M.; Mu, X.; Yang, N.; Chen, L. Highly Photoluminescent Carbon Dots-Based Fluorescent Chemosensors for Sensitive and Selective Detection of Mercury Ions and Application of Imaging in Living Cells. Sens. Actuators B 2014, 192, 488–495. DOI: 10.1016/j.snb.2013.11.041.
  • Huang, H.; Weng, Y.; Zheng, L.; Yao, B.; Weng, W.; Lin, X. Nitrogen-doped carbon quantum dots as fluorescent probe for "off-on" detection of mercury ions, l-cysteine and iodide ions. J. Colloid Interface Sci. 2017, 506, 373–378. DOI: 10.1016/j.jcis.2017.07.076.
  • Canfarotta, F.; Whitcombe, M. J.; Piletsky, S. A. Polymeric Nanoparticles for Optical Sensing. Biotechnol. Adv. 2013, 31, 1585–1599. DOI: 10.1016/j.biotechadv.2013.08.010.
  • Matsui, J.; Akamatsu, K.; Nishiguchi, S.; Miyoshi, D.; Nawafune, H.; Tamaki, K.; Sugimoto, N. Composite of Au Nanoparticles and Molecularly Imprinted Polymer as a Sensing Material. Anal. Chem. 2004, 76, 1310–1315. DOI: 10.1021/ac034788q.
  • Wackerlig, J.; Lieberzeit, P. A. Molecularly Imprinted Polymer Nanoparticles in Chemical Sensing–Synthesis, Characterisation and Application. Sens. Actuators B 2015, 207, 144–157. DOI: 10.1016/j.snb.2014.09.094.
  • Wang, H.; Zhang, P.; Chen, J.; Li, Y.; Yu, M.; Long, Y.; Yi, P. Polymer Nanoparticle-Based Ratiometric Fluorescent Probe for Imaging Hg2+ Ions in Living Cells. Sens. Actuators B 2017, 242, 818–824. DOI: 10.1016/j.snb.2016.09.177.
  • Childress, E. S.; Roberts, C. A.; Sherwood, D. Y.; LeGuyader, C. L.; Harbron, E. J. Ratiometric Fluorescence Detection of Mercury Ions in Water by Conjugated Polymer Nanoparticles. Anal. Chem. 2012, 84, 1235–1239. DOI: 10.1021/ac300022y.
  • Koh, I.; Josephson, L. Magnetic Nanoparticle Sensors. Sensors (Basel) 2009, 9, 8130–8145. DOI: 10.3390/s91008130.
  • Haun, J. B.; Yoon, T. J.; Lee, H.; Weissleder, R. Magnetic Nanoparticle Biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 291–304. DOI: 10.1002/wnan.84.
  • Xu, Y.; Zhou, Y.; Ma, W.; Wang, S.; Li, S. Functionalized Magnetic Core–Shell Fe 3 O 4@ SiO 2 Nanoparticles for Sensitive Detection and Removal of Hg 2+. J. Nanopart. Res. 2013, 15, 1716. DOI: 10.1007/s11051-013-1716-0.
  • Zhu, B.; Zhao, J.; Yu, H.; Yan, L.; Wei, Q.; Du, B. Development of Novel Naphthalimide-Functionalized Magnetic Fluorescent Nanoparticle for Simultaneous Determination and Removal of Hg2+. Opt. Mater. 2013, 35, 2220–2225. DOI: 10.1016/j.optmat.2013.06.006.
  • Cao, Q.-Y.; Han, Y.-M.; Wang, H.-M.; Xie, Y. A New Pyrenyl-Appended Triazole for Fluorescent Recognition of Hg2+ Ion in Aqueous Solution. Dyes Pigm. 2013, 99, 798–802. DOI: 10.1016/j.dyepig.2013.07.005.
  • Zhang, Z.; Lu, S.; Sha, C.; Xu, D. A Single Thiourea-Appended 1, 8-Naphthalimide Chemosensor for Three Heavy Metal Ions: Fe3+, Pb2+, and Hg2+. Sens. Actuators B 2015, 208, 258–266. DOI: 10.1016/j.snb.2014.10.136.
  • Thirupathi, P.; Lee, K.-H. A New Peptidyl Fluorescent Chemosensors for the Selective Detection of Mercury Ions Based on Tetrapeptide. Bioorg. Med. Chem. 2013, 21, 7964–7970. DOI: 10.1016/j.bmc.2013.09.058.
  • Atar, N.; Eren, T.; Yola, M. L.; Wang, S. A Sensitive Molecular Imprinted Surface Plasmon Resonance Nanosensor for Selective Determination of Trace Triclosan in Wastewater. Sens. Actuators B 2015, 216, 638–644. DOI: 10.1016/j.snb.2015.04.076.
  • Gwon, S.-Y.; Rao, B. A.; Kim, H.-S.; Son, Y.-A.; Kim, S.-H. Novel Styrylbenzothiazolium Dye-Based Sensor for Mercury, Cyanide and Hydroxide Ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 144, 226–234. DOI: 10.1016/j.saa.2015.02.094.
  • Liu, S.; Shi, Z.; Xu, W.; Yang, H.; Xi, N.; Liu, X.; Zhao, Q.; Huang, W. A Class of Wavelength-Tunable Near-Infrared aza-BODIPY Dyes and Their Application for Sensing Mercury Ion. Dyes Pigm. 2014, 103, 145–153. DOI: 10.1016/j.dyepig.2013.12.004.
  • Sulak, M.; Kursunlu, A. N.; Girgin, B.; Karakuş, Ö. Ö.; Güler, E. A Highly Selective Fluorescent Sensor for Mercury (II) Ion Based on Bodipy and Calix [4] Arene Bearing Triazolenaphthylene Groups; Synthesis and Photophysical Investigations. J. Photochem. Photobiol. A 2017, 349, 129–137. DOI: 10.1016/j.jphotochem.2017.09.022.
  • Ge, Y.; Xing, X.; Liu, A.; Ji, R.; Shen, S.; Cao, X. A Novel Imidazo [1, 5-a] Pyridine-Rhodamine FRET System as an Efficient Ratiometric Fluorescent Probe for Hg2+ in Living Cells. Dyes Pigm. 2017, 146, 136–142. DOI: 10.1016/j.dyepig.2017.06.067.
  • Hong, M.; Lu, S.; Lv, F.; Xu, D. A Novel Facilely Prepared Rhodamine-Based Hg2+ Fluorescent Probe with Three Thiourea Receptors. Dyes Pigm. 2016, 127, 94–99. DOI: 10.1016/j.dyepig.2015.12.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.