1,133
Views
22
CrossRef citations to date
0
Altmetric
Review Articles

Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review

ORCID Icon & ORCID Icon
Pages 93-109 | Published online: 13 Apr 2022

References

  • Zhang, X. Y.; Lin, F. F.; Wong, M. T. F.; Feng, X. L.; Wang, K. Identification of Soil Heavy Metal Sources from Anthropogenic Activities and Pollution Assessment of Fuyang County, China. Environ. Monit. Assess. 2009, 154, 439–449. DOI: 10.1007/s10661-008-0410-7.
  • Yuce, G.; Pinarbasi, A.; Ozcelik, S.; Ugurluoglu, D. Soil and Water Pollution Derived from Anthropogenic Activities in the Porsuk River Basin, Turkey. Environ. Geol. 2006, 49, 359–375. DOI: 10.1007/s00254-005-0072-5.
  • Qiu, H.; Zhu, X.; Wang, L.; Pan, J.; Pu, X.; Zeng, X.; Zhang, L.; Peng, Z.; Zhou, L. Attributable Risk of Hospital Admissions for Overall and Specific Mental Disorders Due to Particulate Matter Pollution: A Time-Series Study in Chengdu, China. Environ. Res. 2019, 170, 230–237. DOI: 10.1016/j.envres.2018.12.019.
  • Chen, C.; Liu, C.; Chen, R.; Wang, W.; Li, W.; Kan, H.; Fu, C. Ambient Air Pollution and Daily Hospital Admissions for Mental Disorders in Shanghai, China. Sci. Total Environ. 2018, 613-614, 324–330. DOI: 10.1016/j.scitotenv.2017.09.098.
  • Behrendt, H.; Alessandrini, F.; Buters, J.; Krämer, U.; Koren, H.; Ring, J. Environmental Pollution and Allergy: Historical Aspects. Chemical Immunology and Allergy; S. Karger AG 2014, 100, 268–277. DOI: 10.1159/000359918.
  • Lodovici, M.; Bigagli, E. Oxidative Stress and Air Pollution Exposure. J. Toxicol. 2011, 2011, 487074. DOI: 10.1155/2011/487074.
  • Fiordelisi, A.; Piscitelli, P.; Trimarco, B.; Coscioni, E.; Iaccarino, G.; Sorriento, D. The Mechanisms of Air Pollution and Particulate Matter in Cardiovascular Diseases. Heart Fail. Rev. 2017, 22, 337–347. DOI: 10.1007/s10741-017-9606-7.
  • Xu, X.; Nie, S.; Ding, H.; Hou, F. F. Environmental Pollution and Kidney Diseases. Nat. Rev. Nephrol. 2018, 14, 313–324. DOI: 10.1038/nrneph.2018.11.
  • Kim, H.; Kim, W. H.; Kim, Y. Y.; Park, H. Y. Air Pollution and Central Nervous System Disease: A Review of the Impact of Fine Particulate Matter on Neurological Disorders. Front. Public Health. 2020, 8, 575330. DOI: 10.3389/fpubh.2020.575330.
  • Sunyer, J. The Neurological Effects of Air Pollution in Children. Eur. Respir. J. 2008, 32, 535–537. DOI: 10.1183/09031936.00073708.
  • Darrow, L. A.; Woodruff, T. J.; Parker, J. D. Maternal Smoking as a Confounder in Studies of Air Pollution and Infant Mortality. Epidemiology 2006, 17, 592–593. DOI: 10.1097/01.ede.0000229951.26189.27.
  • Sih, T. Correlation between Respiratory Alterations and Respiratory Diseases Due to Urban Pollution. Int. J. Pediatric Otorhinolaryngol. 1999, 49, S261–S267. DOI: 10.1016/S0165-5876(99)00174-3.
  • Törnqvist, H.; Mills, N. L.; Gonzalez, M.; Miller, M. R.; Robinson, S. D.; Megson, I. L.; MacNee, W.; Donaldson, K.; Söderberg, S.; Newby, D. E.; et al. Persistent Endothelial Dysfunction in Humans after Diesel Exhaust Inhalation. Am. J. Respir. Crit. Care Med. 2007, 176, 395–400. DOI: 10.1164/rccm.200606-872OC.
  • Zhao, Y.; Wang, S.; Aunan, K.; Martin Seip, H.; Hao, J. Air Pollution and Lung Cancer Risks in China-a Meta-Analysis. Sci. Total Environ. 2006, 366, 500–513. DOI: 10.1016/j.scitotenv.2005.10.010.
  • Fernández-Navarro, P.; García-Pérez, J.; Ramis, R.; Boldo, E.; López-Abente, G. Industrial Pollution and Cancer in Spain: An Important Public Health Issue. Environ. Res. 2017, 159, 555–563. DOI: 10.1016/j.envres.2017.08.049.
  • García-Pérez, J.; Lope, V.; López-Abente, G.; González-Sánchez, M.; Fernández-Navarro, P. Ovarian Cancer Mortality and Industrial Pollution. Environ. Pollut. 2015, 205, 103–110. DOI: 10.1016/j.envpol.2015.05.024.
  • Menzinger, F.; Schmitt-Kopplin, P.; Freitag, D.; Kettrup, A. Analysis of Agrochemicals by Capillary Electrophoresis. J. Chromatogr. A. 2000, 891, 45–67. DOI: 10.1016/S0021-9673(00)00567-7.
  • Guo, Z. X.; Cai, Q.; Yang, Z. Determination of Glyphosate and Phosphate in Water by Ion Chromatography—Inductively Coupled Plasma Mass Spectrometry Detection. J. Chromatogr. A. 2005, 1100, 160–167. DOI: 10.1016/j.chroma.2005.09.034.
  • Chen, S. H.; Yang, Z. Y.; Wu, H. L.; Kou, H. S.; Lin, S. J. Determination of Thiocyanate Anion by High-Performance Liquid Chromatography with Fluorimetric Detection. J. Anal. Toxicol. 1996, 20, 38–42. DOI: 10.1093/jat/20.1.38.
  • Wang, F.; Cao, M.; Wang, N.; Muhammad, N.; Wu, S.; Zhu, Y. Simple Coupled Ultrahigh Performance Liquid Chromatography and Ion Chromatography Technique for Simultaneous Determination of Folic Acid and Inorganic Anions in Folic Acid Tablets. Food Chem. 2018, 239, 62–67. DOI: 10.1016/j.foodchem.2017.06.016.
  • Arienzo, M.; Capasso, R. Analysis of Metal Cations and Inorganic Anions in Olive Oil Mill Waste Waters by Atomic Absorption Spectroscopy and Ion Chromatography. Detection of Metals Bound Mainly to the Organic Polymeric Fraction. J. Agric. Food Chem. 2000, 48, 1405–1410. DOI: 10.1021/jf990588x.
  • Schmidt, A. C.; Kutschera, K.; Mattusch, J.; Otto, M. Analysis of Accumulation, Extractability, and Metabolization of Five Different Phenylarsenic Compounds in Plants by Ion Chromatography with Mass Spectrometric Detection and by Atomic Emission Spectroscopy. Chemosphere 2008, 73, 1781–1787. DOI: 10.1016/j.chemosphere.2008.09.001.
  • Hein, R.; Li, X.; Beer, P. D.; Davis, J. J. Enhanced Voltammetric Anion Sensing at Halogen and Hydrogen Bonding Ferrocenyl SAMs. Chem. Sci. 2020, 12, 2433–2440. DOI: 10.1039/d0sc06210c.
  • Beer, P. D.; Cadman, J. Electrochemical and Optical Sensing of Anions by Transition Metal Based Receptors. Coord. Chem. Rev. 2000, 205, 131–155. DOI: 10.1016/S0010-8545(00)00237-X.
  • Beer, P. D.; Gale, P. A.; Chen, G. Z. Mechanisms of Electrochemical Recognition of Cations, Anions and Neutral Guest Species by Redox-Active Receptor Molecules. Coord. Chem. Rev. 1999, 185–186, 3–36. DOI: 10.1016/S0010-8545(98)00246-X.
  • Muhammad, M.; Khan, S.; Fayaz, H. Charge-Transfer Complex–Based Spectrophotometric Method for the Determination of Mesotrione in Environmental Samples. Environ. Monit. Assess 2021, 193, 1–7. DOI: 10.1007/S10661-021-09432-0.
  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9, 106381. DOI: 10.1016/j.jece.2021.106381.
  • Amendola, V.; Bonizzoni, M.; Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M.; Sancenón, F.; Taglietti, A. Some Guidelines for the Design of Anion Receptors. Coord. Chem. Rev. 2006, 250, 1451–1470. DOI: 10.1016/j.ccr.2006.01.006.
  • Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Colorimetric and Fluorescent Anion Sensors: An Overview of Recent Developments in the Use of 1,8-Naphthalimide-Based Chemosensors. Chem. Soc. Rev. 2010, 39, 3936–3953. DOI: 10.1039/b910560n.
  • Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal Importance, Coordination Chemistry with Selected Metals (Cu, Ag, Au) and Chemosensing of Thiourea Derivatives. A Review. Crit. Rev. Anal. Chem. 2020, 51, 1–23. DOI: 10.1080/10408347.2020.1777523.
  • Mohapatra, R. K.; Das, P. K.; Pradhan, M. K.; El-Ajaily, M. M.; Das, D.; Salem, H. F.; Mahanta, U.; Badhei, G.; Parhi, P. K.; Maihub, A. A.; E-Zahan, M. K. Recent Advances in Urea- and Thiourea-Based Metal Complexes: Biological, Sensor, Optical, and Corroson Inhibition Studies. Comments Inorg. Chem. 2019, 39, 127–187. DOI: 10.1080/02603594.2019.1594204.
  • Blažek Bregović, V.; Basarić, N.; Mlinarić-Majerski, K. Anion Binding with Urea and Thiourea Derivatives. Coord. Chem. Rev. 2015, 295, 80–124. DOI: 10.1016/j.ccr.2015.03.011.
  • Li, A. F.; Wang, J. H.; Wang, F.; Jiang, Y. B. Anion Complexation and Sensing Using Modified Urea and Thiourea-Based Receptors. Chem. Soc. Rev. 2010, 39, 3729–3745. DOI: 10.1039/b926160p.
  • Chen, L.; Berry, S. N.; Wu, X.; Howe, E. N. W.; Gale, P. A. Advances in Anion Receptor Chemistry. Chem. 2020, 6, 61–141. DOI: 10.1016/j.chempr.2019.12.002.
  • Beer, P. D.; Gale, P. A. Anion Recognition and Sensing: The State of the Art and Future Perspectives. Angew. Chem. Int. Ed. 2001, 40, 486–516. DOI: 10.1002/1521-3773(20010202)40:3 < 486::AID-ANIE486 > 3.0.CO;2-P.
  • Gale, P. A. Anion Receptor Chemistry. Chem. Commun. (Camb) 2011, 47, 82–86. DOI: 10.1039/c0cc00656d.
  • Keleş, E.; Aydıner, B.; Nural, Y.; Seferoğlu, N.; Şahin, E.; Seferoğlu, Z. A New Mechanism for Selective Recognition of Cyanide in Organic and Aqueous Solution. Eur. J. Org. Chem. 2020, 2020, 4681–4692. DOI: 10.1002/ejoc.202000342.
  • Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Atabey, H.; Seferoğlu, Z. New Naphthoquinone-Imidazole Hybrids: Synthesis, Anion Recognition Properties, DFT Studies and Acid Dissociation Constants. J. Mol. Liq 2021, 327, 114855. DOI: 10.1016/j.molliq.2020.114855.
  • Kubo, Y.; Kobayashi, A.; Ishida, T.; Misawa, Y.; James, T. D. Detection of Anions Using a Fluorescent Alizarin-Phenylboronic Acid Ensemble. Chem. Commun. 2005, 22, 2846–2848. DOI: 10.1039/b503588k.
  • Gale, P. A.; Caltagirone, C. Fluorescent and Colorimetric Sensors for Anionic Species. Coord. Chem. Rev. 2018, 354, 2–27. DOI: 10.1016/j.ccr.2017.05.003.
  • Joo, D. H.; Mok, J. S.; Bae, G. H.; Oh, S. E.; Kang, J. H.; Kim, C. Colorimetric Detection of Cu2+ and Fluorescent Detection of PO43- and S2- by a Multifunctional Chemosensor. Ind. Eng. Chem. Res. 2017, 56, 8399–8407. https://doi.org/10.1021/ACS.IECR.7B01115/SUPPL_FILE/IE7B01115_SI_001.PDF. DOI: 10.1021/acs.iecr.7b01115.
  • Wei, S. C.; Hsu, P. H.; Lee, Y. F.; Lin, Y. W.; Huang, C. C. Selective Detection of Iodide and Cyanide Anions Using Gold-Nanoparticle- Based Fluorescent Probes. ACS Appl. Mater. Interfaces. 2012, 4, 2652–2658. DOI: 10.1021/AM3003044/SUPPL_FILE/AM3003044_SI_001.PDF.
  • Weng, Y.; Zhu, Q.; Huang, Z. Z.; Tan, H. Time-Resolved Fluorescence Detection of Superoxide Anions Based on an Enzyme-Integrated Lanthanide Coordination Polymer Composite. ACS Appl. Mater. Interfaces 2020, 12, 30882–30889. DOI: 10.1021/acsami.0c09080.
  • Wang, M. Q.; Li, K.; Hou, J. T.; Wu, M. Y.; Huang, Z.; Yu, X. Q. BINOL-Based Fluorescent Sensor for Recognition of Cu(II) and Sulfide Anion in Water. J. Org. Chem. 2012, 77, 8350–8354. DOI: 10.1021/jo301196m.
  • Nawaz, H.; Zhang, J.; Tian, W.; Jin, K.; Jia, R.; Yang, T.; Zhang, J. Cellulose-Based Fluorescent Sensor for Visual and Versatile Detection of Amines and Anions. J. Hazard. Mater. 2020, 387, 121719. DOI: 10.1016/j.jhazmat.2019.121719.
  • Bansal, A.; Ingle, N.; Kaur, N.; Ingle, E. Recent Advancements in Fluoride: A Systematic Review. J. Int. Soc. Prev. Community Dent. 2015, 5, 341–346. DOI: 10.4103/2231-0762.165927.
  • Steiner, D. M.; Steiner, G. G. Fluoride as an Essential Element in the Prevention of Disease. Med. Hypotheses. 2004, 62, 710–717. DOI: 10.1016/j.mehy.2003.07.002.
  • Nielsen, F. H.; Sandstead, H. H. Are Nickel, Vanadium, Silicon, Fluorine, and Tin Essential for Man? A Review. Am. J. Clin. Nutr. 1974, 27, 515–520. DOI: 10.1093/ajcn/27.5.515.
  • Ozsvath, D. L. Fluoride and Environmental Health: A Review. Rev. Environ. Sci. Biotechnol. 2009, 8, 59–79. DOI: 10.1007/s11157-008-9136-9.
  • Whitford, G. M. Acute and Chronic Fluoride Toxicity. J. Dent. Res. 1992, 71, 1249–1254. DOI: 10.1177/00220345920710051901.
  • Barbier, O.; Arreola-Mendoza, L.; Del Razo, L. M. Molecular Mechanisms of Fluoride Toxicity. Chem. Biol. Interact. 2010, 188, 319–333. DOI: 10.1016/j.cbi.2010.07.011.
  • Dharmaratne, R. W. Exploring the Role of Excess Fluoride in Chronic Kidney Disease: A Review. Hum. Exp. Toxicol. 2019, 38, 269–279. DOI: 10.1177/0960327118814161.
  • Freni, S. C. Exposure to High Fluoride Concentrations in Drinking Water is Associated with Decreased Birth Rates. J. Toxicol. Environ. Health. 1994, 42, 109–121. DOI: 10.1080/15287399409531866.
  • Barberio, A. M.; Hosein, F. S.; Quiñonez, C.; McLaren, L. Fluoride Exposure and Indicators of Thyroid Functioning in the Canadian Population: Implications for Community Water Fluoridation. J. Epidemiol. Community Health. 2017, 71, 1019–1025. DOI: 10.1136/jech-2017-209129.
  • Krishnamachari, K. A. V. R. Skeletal Fluorosis in Humans: A Review of Recent Progress in the Understanding of the Disease. Progr. Food Nutr. Sci. 1986, 10, 279–314.
  • DenBesten, P.; Li, W. Chronic Fluoride Toxicity: Dental Fluorosis. Monogr Oral Sci. 2011; Vol. 22, pp 81–96. DOI: 10.1159/000327028.
  • Li, Y.; Liang, C.; Slemenda, C. W.; Ji, R.; Sun, S.; Cao, J.; Emsley, C. L.; Ma, F.; Wu, Y.; Ying, P.; et al. Effect of Long-Term Exposure to Fluoride in Drinking Water on Risks of Bone Fractures. J. Bone Miner. Res. 2001, 16, 932–939. DOI: 10.1359/jbmr.2001.16.5.932.
  • Jose, D. A.; Kumar, D. K.; Ganguly, B.; Das, A. Efficient and Simple Colorimetric Fluoride Ion Sensor Based on Receptors Having Urea and Thiourea Binding Sites. Org. Lett. 2004, 6, 3445–3448. DOI: 10.1021/ol048829w.
  • Li, Z. Y.; Su, H. K.; Tong, H. X.; Yin, Y.; Xiao, T.; Sun, X. Q.; Jiang, J.; Wang, L. Calix[4]Arene Containing Thiourea and Coumarin Functionality as Highly Selective Fluorescent and Colorimetric Chemosensor for Fluoride Ion . Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 200, 307–312. DOI: 10.1016/j.saa.2018.04.040.
  • Kim, D. W.; Kim, J.; Hwang, J.; Park, J. K.; Kim, J. S. Anion Sensing Properties of New Colorimetric Chemosensors Based on Thiourea and Urea Moieties. Bull. Korean Chem. Soc. 2012, 33, 1159–1164. DOI: 10.5012/bkcs.2012.33.4.1159.
  • Wu, F. y.; Hu, M. h.; Wu, Y. m.; Tan, X. f.; Zhao, Y. q.; Ji, Z. j. Fluoride-Selective Colorimetric Sensor Based on Thiourea Binding Site and Anthraquinone Reporter. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2006, 65, 633–637. DOI: 10.1016/j.saa.2005.12.022.
  • Li, S.; Cao, X.; Chen, C.; Ke, S. Novel Salicylic Acid-Oriented Thiourea-Type Receptors as Colorimetric Chemosensor: Synthesis, Characterizations and Selective Naked-Eye Recognition Properties. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2012, 96, 18–23. DOI: 10.1016/j.saa.2012.04.102.
  • Nelson, L. Acute Cyanide Toxicity: Mechanisms and Manifestations. J. Emerg. Nurs. 2006, 32, 8–11. DOI: 10.1016/J.JEN.2006.05.012.
  • Egekeze, J. O.; Oehme, F. W. Cyanides and Their Toxicity: A Literature Review. Tijdschrift Voor Diergeneeskunde. 1980, 2, 104–114. DOI: 10.1080/01652176.1980.9693766.
  • Hamel, J. A Review of Acute Cyanide Poisoning with a Treatment Update. Crit. Care Nurse. 2011, 31, 72–82. DOI: 10.4037/ccn2011799.
  • Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. Sensors for the Optical Detection of Cyanide Ion. Chem. Soc. Rev. 2010, 39, 127–137. DOI: 10.1039/b907368j.
  • Akcil, A.; Erust, C.; Gahan, C. S. e.; Ozgun, M.; Sahin, M.; Tuncuk, A. Precious Metal Recovery from Waste Printed Circuit Boards Using Cyanide and Non-Cyanide Lixiviants–a Review. Waste Management (New York, NY) 2015, 45, 258–271. DOI: 10.1016/j.wasman.2015.01.017.
  • Campbell, S. C.; Olson, G. J.; Clark, T. R.; McFeters, G. Biogenic Production of Cyanide and Its Application to Gold Recovery. J. Ind. Microbiol. Biotechnol. 2001, 26, 134–139. DOI: 10.1038/sj.jim.7000104.
  • Suganya, S.; Velmathi, S. Fluorogenic and Chromogenic Heterocyclic Thiourea: Selective Recognition of Cyanide Ion via Nucleophilic Addition Reaction and Real Sample Analysis. Sensors Actuators, B Chem. 2015, 221, 1104–1113. DOI: 10.1016/j.snb.2015.07.059.
  • Lin, Y. S.; Zheng, J. X.; Tsui, Y. K.; Yen, Y. P. Colorimetric Detection of Cyanide with Phenyl Thiourea Derivatives. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2011, 79, 1552–1558. DOI: 10.1016/j.saa.2011.04.087.
  • Kumar, V.; Kaushik, M. P.; Srivastava, A. K.; Pratap, A.; Thiruvenkatam, V.; Row, T. N. G. Thiourea Based Novel Chromogenic Sensor for Selective Detection of Fluoride and Cyanide Anions in Organic and Aqueous Media. Anal. Chim. Acta. 2010, 663, 77–84. DOI: 10.1016/j.aca.2010.01.025.
  • El-Sakhawy, M.; Kamel, S.; Salama, A.; Sarhan, H.-A. Carboxymethyl Cellulose Acetate Butyrate: A Review of the Preparations, Properties, and Applications. J. Drug Deliv. 2014, 2014, 575969. DOI: 10.1155/2014/575969.
  • Cordeiro, C. F. Vinyl Acetate Polymers. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, 2000. DOI: 10.1002/0471238961.2209142503151804.a01.
  • Henderson, A. M. Ethylene-Vinyl Acetate (EVA) Copolymers: A General Review. IEEE Electr. Insul. Mag. 1993, 9, 30–38. DOI: 10.1109/57.249923.
  • Gupta, V. K.; Singh, A. K.; Bhardwaj, S.; Bandi, K. R. Biological Active Novel 2,4-Dinitro Phenyl Hydrazones as the Colorimetric Sensors for Selective Detection of Acetate Ion. Sensors Actuators B Chem. 2014, 197, 264–273. DOI: 10.1016/J.SNB.2014.03.006.
  • Juhász, M. L. W.; Marmur, E. S. A Review of Selected Chemical Additives in Cosmetic Products. Dermatol. Ther. 2014, 27, 317–322. DOI: 10.1111/dth.12146.
  • Hilderbrand, D. C.; Der, R.; Griffin, W. T.; Fahim, M. S. Effect of Lead Acetate on Reproduction. Am. J. Obstet. Gynecol. 1973, 115, 1058–1065. DOI: 10.1016/0002-9378(73)90554-1.
  • Ozmen, M.; Yurekli, M. Subacute Toxicity of Uranyl Acetate in Swiss-Albino Mice. Environ. Toxicol. Pharmacol. 1998, 6, 111–115. DOI: 10.1016/S1382-6689(98)00025-8.
  • McGinty, D.; Vitale, D.; Letizia, C. S.; Api, A. M. Fragrance Material Review on Benzyl Acetate. Food Chem. Toxicol. 2012, 50, S363–S384. DOI: 10.1016/j.fct.2012.02.057.
  • Letizia, C. S.; Cocchiara, J.; Lalko, J.; Api, A. M. Fragrance Material Review on Linalyl Acetate. Food Chem. Toxicol. 2003, 41, 965–976. DOI: 10.1016/S0278-6915(03)00014-0.
  • Huang, W.; Chen, Z.; Lin, H.; Lin, H. A Novel Thiourea-Hydrazone-Based Switch-on Fluorescent Chemosensor for Acetate. J. Lumin 2011, 131, 592–596. DOI: 10.1016/j.jlumin.2010.10.036.
  • Murali, M. G.; Vishnumurthy, K. A.; Seethamraju, S.; Ramamurthy, P. C. Colorimetric Anion Sensor Based on Receptor Having Indole- and Thiourea-Binding Sites. RSC Adv 2014, 4, 20592–20598. DOI: 10.1039/C4RA01555J.
  • Saikia, E.; Borpuzari, M. P.; Chetia, B.; Kar, R. Experimental and Theoretical Study of Urea and Thiourea Based New Colorimetric Chemosensor for Fluoride and Acetate Ions. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2016, 152, 101–108. DOI: 10.1016/j.saa.2015.07.065.
  • Misra, A.; Shahid, M.; Dwivedi, P. An Efficient Thiourea-Based Colorimetric Chemosensor for Naked-Eye Recognition of Fluoride and Acetate Anions: UV-Vis and 1HNMR Studies. Talanta 2009, 80, 532–538. DOI: 10.1016/j.talanta.2009.07.020.
  • Shao, J.; Lin, H.; Lin, H. K. A Simple and Efficient Colorimetric Anion Sensor Based on a Thiourea Group in DMSO and DMSO-Water and Its Real-Life Application. Talanta 2008, 75, 1015–1020. DOI: 10.1016/j.talanta.2007.12.041.
  • Granchi, D.; Baldini, N.; Ulivieri, F. M.; Caudarella, R. Role of Citrate in Pathophysiology and Medical Management of Bone Diseases. Nutrients 2019, 11, 2576. DOI: 10.3390/nu11112576.
  • Pernodet, N.; Fang, X.; Sun, Y.; Bakhtina, A.; Ramakrishnan, A.; Sokolov, J.; Ulman, A.; Rafailovich, M. Adverse Effects of Citrate/Gold Nanoparticles on Human Dermal Fibroblasts. Small 2006, 2, 766–773. DOI: 10.1002/SMLL.200500492.
  • Liu, C.; Hang, Y.; Jiang, T.; Yang, J.; Zhang, X.; Hua, J. A Light-up Fluorescent Probe for Citrate Detection Based on Bispyridinum Amides with Aggregation-Induced Emission Feature. Talanta 2018, 178, 847–853. DOI: 10.1016/j.talanta.2017.10.026.
  • Liu, Z. H.; Devaraj, S.; Yang, C. R.; Yen, Y. P. A New Selective Chromogenic and Fluorogenic Sensor for Citrate Ion. Sensors Actuators, B Chem 2012, 174, 555–562. DOI: 10.1016/j.snb.2012.07.030.
  • Rutala, W. A.; Weber, D. J. Uses of Inorganic Hypochlorite (Bleach) in Health-Care Facilities. Clin. Microbiol. Rev. 1997, 10, 597–610. DOI: 10.1128/CMR.10.4.597.
  • Hostynek, J. J.; Patrick, E.; Younger, B.; Maibach, H. I. Hypochlorite Sensitivity in Man. Contact Dermatitis. 1989, 20, 32–37. DOI: 10.1111/j.1600-0536.1989.tb03092.x.
  • Ohnishi, S.; Murata, M.; Kawanishi, S. DNA Damage Induced by Hypochlorite and Hypobromite with Reference to Inflammation-Associated Carcinogenesis. Cancer Lett. 2002, 178, 37–42. DOI: 10.1016/S0304-3835(01)00812-6.
  • Slaughter, R. J.; Watts, M.; Vale, J. A.; Grieve, J. R.; Schep, L. J. The Clinical Toxicology of Sodium Hypochlorite. Clin. Toxicol. (Phila) 2019, 57, 303–311. DOI: 10.1080/15563650.2018.1543889.
  • Panasenko, O. M.; Sergienko, V. I. Hypochlorite, Oxidative Modification of Plasma Lipoproteins, and Atherosclerosis. Bull. Exp. Biol. Med. 2001, 131, 407–415. DOI: 10.1023/A:1017926309665.
  • Pan, B.; Ren, H.; Lv, X.; Zhao, Y.; Yu, B.; He, Y.; Ma, Y.; Niu, C.; Kong, J.; Yu, F.; et al. Hypochlorite-Induced Oxidative Stress Elevates the Capability of HDL in Promoting Breast Cancer Metastasis. J. Transl. Med. 2012, 10, 1–13. DOI: 10.1186/1479-5876-10-65.
  • So, H.; Cho, H.; Lee, H.; Tran, M. C.; Kim, K. T.; Kim, C. Detection of Zinc (II) and Hypochlorite by a Thiourea-Based Chemosensor via Two Emission Channels and Its Application in Vivo. Microchem. J. 2020, 155, 104788. DOI: 10.1016/j.microc.2020.104788.
  • Alharbi, O. M. L.; Basheer, A. A.; Khattab, R. A.; Ali, I. Health and Environmental Effects of Persistent Organic Pollutants. J. Mol. Liq. 2018, 263, 442–453. DOI: 10.1016/j.molliq.2018.05.029.
  • Li, Q. Q.; Loganath, A.; Chong, Y. S.; Tan, J.; Obbard, J. P. Persistent Organic Pollutants and Adverse Health Effects in Humans. J. Toxicol. Environ. Health. A. 2006, 69, 1987–2005. DOI: 10.1080/15287390600751447.
  • World Health Organization. Indoor Air Quality: Organic Pollutants. Environ. Technol. Lett. 1989, 10, 855–858. DOI: 10.1080/09593338909384805.
  • Nohynek, G. J.; Fautz, R.; Benech-Kieffer, F.; Toutain, H. Toxicity and Human Health Risk of Hair Dyes. Food Chem. Toxicol. 2004, 42, 517–543. DOI: 10.1016/j.fct.2003.11.003.
  • Larsson, D. G. J. Pollution from Drug Manufacturing: Review and Perspectives. Phil. Trans. R Soc. B. 2014, 369, 20130571. DOI: 10.1098/rstb.2013.0571.
  • Kim, K. H.; Kabir, E.; Jahan, S. A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. DOI: 10.1016/j.scitotenv.2016.09.009.
  • Sharpe, M. High on Pollution: Drugs as Environmental Contaminants. J. Environ. Monit. , 2003, 5, 42N–46N. DOI: 10.1039/b304973f.
  • Giles, L. V.; Koehle, M. S. The Health Effects of Exercising in Air Pollution. Sports Med. 2014, 44, 223–249. DOI: 10.1007/s40279-013-0108-z.
  • Swamy, K. M. K.; Eom, S.; Liu, Y.; Kim, G.; Lee, D.; Yoon, J. Rhodamine Derivatives Bearing Thiourea Groups Serve as Fluorescent Probes for Selective Detection of ATP in Mitochondria and Lysosomes. Sensors Actuators, B Chem. 2019, 281, 350–358. DOI: 10.1016/j.snb.2018.10.135.
  • Liu, Y.; Lee, D.; Wu, D.; Swamy, K. M. K.; Yoon, J. A New Kind of Rhodamine-Based Fluorescence Turn-on Probe for Monitoring ATP in Mitochondria. Sensors Actuators, B Chem. 2018, 265, 429–434. DOI: 10.1016/j.snb.2018.03.081.
  • Bošković, B. The Treatment of Soman Poisoning and Its Perspectives. Toxicol. Sci. 1981, 1, 203–213. DOI: 10.1093/toxsci/1.2.203.
  • Lumley, L.; Du, F.; Marrero-Rosado, B.; Stone, M.; Keith, Z.-M.; Schultz, C.; Whitten, K.; Walker, K.; Acon-Chen, C.; Wright, L.; Shih, T.-M. Soman-Induced Toxicity, Cholinesterase Inhibition and Neuropathology in Adult Male Göttingen Minipigs. Toxicol. Rep. 2021, 8, 896–907. DOI: 10.1016/j.toxrep.2021.04.005.
  • Lallement, G.; Demoncheaux, J. P.; Foquin, A.; Baubichon, D.; Galonnier, M.; Clarençon, D.; Dorandeu, F. Subchronic Administration of Pyridostigmine or Huperzine to Primates: Compared Efficacy against Soman Toxicity. Drug Chem. Toxicol. 2002, 25, 309–320. DOI: 10.1081/dct-120005893.
  • Li, S.; Zheng, Y.; Chen, W.; Zheng, M.; Zheng, H.; Zhang, Z.; Cui, Y.; Zhong, J.; Zhao, C. Chromo-Fluorogenic Detection of Soman and Its Simulant by Thiourea-Based Rhodamine Probe. Molecules 2019, 24, 827. DOI: 10.3390/molecules24050827.
  • Yadav, A.; Rene, E. R.; Mandal, M. K.; Dubey, K. K. Threat and Sustainable Technological Solution for Antineoplastic Drugs Pollution: Review on a Persisting Global Issue. Chemosphere 2021, 263, 128285. DOI: 10.1016/j.chemosphere.2020.128285.
  • Klimaszyk, P.; Rzymski, P. Water and Aquatic Fauna on Drugs: What Are the Impacts of Pharmaceutical Pollution?; Springer: Cham, 2018; pp 255–278. DOI: 10.1007/978-3-319-79014-5_12.
  • Almeida, Â.; Solé, M.; Soares, A. M. V. M.; Freitas, R. Anti-Inflammatory Drugs in the Marine Environment: Bioconcentration, Metabolism and Sub-Lethal Effects in Marine Bivalves. Environ. Pollut. 2020, 263, 114442. DOI: 10.1016/j.envpol.2020.114442.
  • Cleuvers, M. Mixture Toxicity of the anti-Inflammatory Drugs Diclofenac, Ibuprofen, Naproxen, and Acetylsalicylic Acid. Ecotoxicol. Environ. Saf. 2004, 59, 309–315. DOI: 10.1016/S0147-6513(03)00141-6.
  • Yaqoob, S.; Rahim, S.; Bhayo, A. M.; Shah, M. R.; Hameed, A.; Malik, M. I. A Novel and Efficient Colorimetric Assay for Quantitative Determination of Amlodipine in Environmental, Biological and Pharmaceutical Samples. ChemistrySelect 2019, 4, 10046–10053. DOI: 10.1002/slct.201902334.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.