390
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Hollow Cathode Discharge Ionization Mass Spectrometry: Detection, Quantification and Gas Phase Ion-Molecule Reactions of Explosives and Related Compounds

, , , &
Pages 148-174 | Published online: 25 Apr 2022

References

  • Budzikiewicz, H.; Djerassi, C.; Williams, D. H. Structure Elucidation of Natural Products by Mass Spectrometry. Band 1: Alkaloids. Angew. Chem. 1965, 77, 392. DOI: 10.1002/ange.19650770834.
  • Budzikiewicz, H.; Djerassi, C.; Williams, D. H. Structure Elucidation of Natural Products by Mass Spectrometry: Steroids, Terpenoids, Sugars, and Miscellaneous Classes. Angew. Chem. 1966, 78, 124. DOI: 10.1002/ange.19660780131.
  • Budzikiewicz, H.; Djerassi, C.; Williams, D. H. Mass Spectrometry of Organic Compounds. J. Mass Spectrom. 1968, 1, 739–740. DOI: 10.1002/oms.1210010512.
  • Bryant, W. F.; Kinstle, T. H. Mass Spectroscopy of Organic Mercury Compounds. J. Organomet. Chem. 1970, 24, 573–587. DOI: 10.1016/S0022-328X(00)84486-1.
  • Biemann, K. Structure Determination of Natural Products by Mass Spectrometry. Annu. Rev. Anal. Chem. 2015, 8, 1–19. DOI: 10.1146/annurev-anchem-071114-040110.
  • Přichystal, J.; Schug, K. A.; Lemr, K.; Novák, J.; Havlíček, V. Structural Analysis of Natural Products. Anal. Chem. 2016, 88, 10338–10346. DOI: 10.1021/acs.analchem.6b02386.
  • McLuckey, S. A.; Goeringer, D. E.; Asano, K. G.; Vaidyanathan, G., Jr.; Stephenson, J. L. High Explosives Vapor Detection by Glow Discharge Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 287–298. DOI: 10.1002/(SICI)1097-0231(199602)10:3 < 287::AID-RCM429 > 3.0.CO;2-H.
  • Takáts, Z.; Cotte-Rodriguez, I.; Talaty, N.; Chen, H.; Cooks, R. G. Direct, Trace Level Detection of Explosives on Ambient Surfaces by Desorption Electrospray Ionization Mass Spectrometry. Chem. Commun. 2005, 1950–1952. DOI: 10.1039/B418697D.
  • Song, Y.; Cooks, R. G. Atmospheric Pressure Ion/Molecule Reactions for the Selective Detection of Nitroaromatic Explosives Using Acetonitrile and Air as Reagents. Rapid Commun. Mass Spectrom. 2006, 20, 3130–3138. DOI: 10.1002/rcm.2714.
  • Na, N.; Zhao, M.; Zhang, S.; Yang, C.; Zhang, X. Development of a Dielectric Barrier Discharge Ion Source for Ambient Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007a, 18, 1859–1862. DOI: 10.1016/j.jasms.2007.07.027.
  • Na, N.; Zhang, C.; Zhao, M.; Zhang, S.; Yang, C.; Fang, X.; Zhang, X. Direct Detection of Explosives on Solid Surfaces by Mass Spectrometry with an Ambient Ion Source Based on Dielectric Barrier Discharge. J. Mass. Spectrom. 2007b, 42, 1079–1085. DOI: 10.1002/jms.1243.
  • Cotte-Rodríguez, I.; Hernandez-Soto, H.; Chen, H.; Cooks, R. G. In Situ Trace Detection of Peroxide Explosives by Desorption Electrospray Ionization and Desorption Atmospheric Pressure Chemical Ionization. Anal. Chem. 2008, 80, 1512–1519. DOI: 10.1021/ac7020085.
  • Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X.; Cooks, R. G.; Ouyang, Z. Low-Temperature Plasma Probe for Ambient Desorption Ionization. Anal Chem. 2008, 80, 9097–9104. DOI: 10.1021/ac801641a.
  • Zhang, Y.; Ma, X.; Zhang, S.; Yang, C.; Ouyang, Z.; Zhang, X. Direct Detection of Explosives on Solid Surfaces by Low Temperature Plasma Desorption Mass Spectrometry. Analyst. 2009, 134, 176–181. http://DOI: DOI: 10.1039/b816230a.
  • Nilles, J. M.; Connell, T. R.; Stokes, S. T.; Durst, H. D. Explosive Detection Using Direct Analysis in Real Time (DART) Mass Spectrometry. Propellant. Explos. Pyrotech. 2010, 35, 446–451. DOI: 10.1002/prep.200900084.
  • Garcia-Reyes, J. F.; Harper, J. D.; Salazar, G. A.; Charipar, N. A.; Ouyang, Z.; Cooks, R. G. Detection of Explosives and Related Compounds by Low-Temperature Plasma Ambient Ionization Mass Spectrometry. Anal Chem. 2011, 83, 1084–1092. DOI: 10.1021/ac1029117.
  • Takada, Y.; Nagano, H.; Suzuki, Y.; Sugiyama, M.; Nakajima, E.; Hashimoto, Y.; Sakairi, M. High-Throughput Walkthrough Detection Portal for Counter Terrorism: Detection of Triacetone Triperoxide (TATP) Vapor by Atmospheric-Pressure Chemical Ionization Ion Trap Mass Spectrometry. Rapid Commun Mass Spectrom. 2011, 25, 2448–2452. DOI: 10.1002/rcm.5147.
  • Habib, A.; Usmanov, D. T.; Ninomiya, S.; Chen, L. C.; Hiraoka, K. Alternating current corona discharge/atmospheric pressure chemical ionization for mass spectrometry . Rapid Commun Mass Spectrom. 2013, 27, 2760–2766. DOI: 10.1002/rcm.6744.
  • Sekar, R.; Kailasa, S. K.; Abdelhamid, H. N.; Chen, Y.-C.; Wu, H.-F. Electrospray Ionization Tandem Mass Spectrometric Studies of Copper and Iron Complexes with Tobramycin. Inter. J. Mass Spectrom. 2013, 338, 23–29. DOI: 10.1016/j.ijms.2012.12.001.
  • Su, Y.; Wang, H.; Liu, J.; Wei, P.; Cooks, R. G.; Ouyang, Z. Quantitative Paper Spray Mass Spectrometry Analysis of Drugs of Abuse. Analyst 2013, 138, 4443–4447. DOI: 10.1039/c3an00934c.
  • Habib, A.; Ninomiya, S.; Chen, L. C.; Usmanov, D. T.; Hiraoka, K. Desorption Mass Spectrometry for Nonvolatile Compounds Using an Ultrasonic Cutter. J Am Soc Mass Spectrom. 2014, 25, 1177–1180. DOI: 10.1007/s13361-014-0899-7.
  • Groeneveld, G.; de Puit, M.; Bleay, S.; Bradshaw, R.; Francese, S. Detection and Mapping of Illicit Drugs and Their Metabolites in Fingermarks by MALDI MS and Compatibility with Forensic Techniques. Sci Rep. 2015, 5, 11716. DOI: 10.1038/srep11716.
  • Habib, A.; Chen, L. C.; Usmanov, D. T.; Yu, Z.; Hiraoka, K. Detection of Explosives Using a Hollow Cathode Discharge Ion Source. Rapid Commun Mass Spectrom. 2015, 29, 601–610. DOI: 10.1002/rcm.7142.
  • Chen, Y.-C.; Abdelhamid, H. N.; Wu, H.-F. Simple and Direct Quantitative Analysis for Quinidine Drug in Fish Tissues. Mass Spectrom. Lett. 2017, 8, 8–13. DOI: 10.5478/MSL.2017.8.1.8.
  • Kumano, S.; Nagano, H.; Takada, Y.; Sugiyama, M.; Mizuno, H.; Ito, T.; Nojiri, T.; Hashimoto, Y.; Namai, M.; Nakamura, J. Development of Evaluation Method for Explosives Trace Detection with Non-Contact Sampling. Sci. Technol. Adv. Mater. 2018, 79, 124–130. https://iss.ndl.go.jp/books/R000000004-I029207003-00.
  • Usmanov, D. T.; Mandal, M. K.; Hiraoka, K.; Ninomiya, S.; Wada, H.; Matsumura, M.; Sanada-Morimura, S.; Nonami, H.; Yamabe, S. Dipping Probe Electrospray Ionization/Mass Spectrometry for Direct on-Site and Low-Invasive Food Analysis. Food Chem. 2018, 260, 53–60. DOI: 10.1016/j.foodchem.2018.04.003.
  • Ng, T.-T.; So, P.-K.; Hu, B.; Yao, Z.-P. Rapid Detection and Quantitation of Drugs-of-Abuse by Wooden-Tip Electrospray Ionization Mass Spectrometry. J Food Drug Anal. 2019, 27, 428–438. DOI: 10.1016/j.jfda.2018.09.002.
  • Habib, A.; Nargis, A.; Bi, L.; Zhao, P.; Wen, L. Analysis of Amphetaminic Drug Compounds in Urine by Headspace- Dielectric Barrier Discharge Ionization-Mass Spectrometry. Arab. J. Chem. 2020, 13, 2162–2170. DOI: 10.1016/j.arabjc.2018.04.001.
  • Bi, L.; Habib, A.; Chen, L.; Xu, L.; Wen, L. Ultra-Trace Level Detection of Nonvolatile Compounds Studied by Ultrasonic Cutter Blade Coupled with Dielectric Barrier Discharge Ionization-Mass Spectrometry. Talanta. 2021, 222, 121673. DOI: 10.1016/j.talanta.2020.121673.
  • Habib, A.; Bi, L.; Hong, H.; Wen, L. Challenges and Strategies of Chemical Analysis of Drugs of Abuse and Explosives by Mass Spectrometry. Front Chem. 2021a, 8, 598487. DOI: 10.3389/fchem.2020.598487.
  • Habib, A.; Bi, L.; Wen, L. Simultaneous Detection and Quantification of Explosives by a Modified Hollow Cathode Discharge Ion Source. Talanta. 2021b, 233, 122596. DOI: 10.1016/j.talanta.2021.122596.
  • Hong, H.; Habib, A.; Bi, L.; Wen, L. Gas Phase Ion-Molecule Reactions of Nitroaromatic Explosive Compounds Studied by Hollow Cathode Discharge Ionization-Mass Spectrometry. Talanta. 2022, 236, 122834. DOI: 10.1016/j.talanta.2021.122834.
  • Dalmazio, I.; de Urzedo, A.; Alves, T.; Catharino, R. R.; Eberlin, M. N.; Nascentes, C. C.; Augusti, R. Electrospray Ionization Mass Spectrometry Monitoring of Indigo Carmine Degradation by Advanced Oxidative Processes. J Mass Spectrom. 2007, 42, 1273–1278. DOI: 10.1002/jms.1159.
  • Schröder, D. Applications of Electrospray Ionization Mass Spectrometry in Mechanistic Studies and Catalysis Research. Acc Chem Res. 2012, 45, 1521–1532. DOI: 10.1021/ar3000426.
  • Han, Z.; Gu, X.; Wang, S.; Liu, L.; Wang, Y.; Zhao, Z.; Yu, Z. Time-Resolved In Situ Monitoring of Photocatalytic Reactions by Probe Electrospray Ionization Mass Spectrometry. Analyst. 2020, 145, 3313–3319. DOI: 10.1039/d0an00305k.
  • Mehara, J.; Roithová, J. Identifying Reactive Intermediates by Mass Spectrometry. Chem Sci. 2020, 11, 11960–11972. DOI. DOI: 10.1039/d0sc04754f.
  • Aebersold, R.; Mann, M. Mass Spectrometry-Based Proteomics. Nature. 2003, 422, 198–207. DOI: 10.1038/nature01511.
  • Han, X.; Aslanian, A.; Yates, J. R. Mass Spectrometry for Proteomics. Curr Opin Chem Biol. 2008, 12, 483–490. DOI: 10.1016/j.cbpa.2008.07.024.
  • Griffiths, W. J.; Wang, Y. Mass Spectrometry: From Proteomics to Metabolomics and Lipidomics. Chem Soc Rev. 2009, 38, 1882–1896. DOI: 10.1039/b618553n.
  • Ferreira, C. R.; Lo Turco, E. G.; Saraiva, S. A. Proteomics, Metabolomics and Lipidomics in Reproductive Biotechnologies: The MS Solutions. Acta Sci. Vet. 2010, 38, s591–s603.
  • Lei, Z.; Huhman, D. V.; Sumner, L. W. Mass Spectrometry Strategies in Metabolomics. J Biol Chem. 2011, 286, 25435–25442. DOI: 10.1074/jbc.R111.238691.
  • Köfeler, H. C.; Fauland, A.; Rechberger, G. N.; Trötzmüller, M. Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms. Metabolites. 2012, 2, 19–38. DOI: 10.3390/metabo2010019.
  • Wu, H.-F.; Gopal, J.; Abdelhamid, H. N.; Hasan, N. Quantum Dot Applications Endowing Novelty to Analytical Proteomics. Proteomics. 2012, 12, 2949–2961. DOI: 10.1002/pmic.201200295.
  • Smith, R.; Mathis, A. D.; Ventura, D.; Prince, J. T. Proteomics, Lipidomics, Metabolomics: A Mass Spectrometry Tutorial from a Computer Scientist’s Point of View. BMC Bioinform. 2014, 15, S9. http://www.biomedcentral.com/1471-2105/15/S7/S9.
  • Feider, C. L.; Krieger, A.; DeHoog, R. J.; Eberlin, L. S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal Chem. 2019, 91, 4266–4290. DOI: 10.1021/acs.analchem.9b00807.
  • Raftery, D. M. Spectrometry in Metabolomics: Methods and Protocols, Springer: Berlin, Germany, 2014.
  • Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D'Auria, J.; Ewald, J.; C Ewald, J.; Fraser, P. D.; Giavalisco, P.; Hall, R. D.; et al. Mass Spectrometry-Based Metabolomics: A Guide for Annotation, Quantification and Best Reporting Practices. Nat Methods. 2021, 18, 747–756. DOI: 10.1038/s41592-021-01197-1.
  • Cai, J.; Zheng, M.; Yan, C.-Q.; Fu, H.-Y.; Zhang, Y.-J.; Li, M.; Zhou, Z.; Zhang, Y.-H. Application and Progress of Single Particle Aerosol Time-of-Flight Mass Spectrometry in Fine Particulate Matter Research. Chin. J. Anal. Sci. 2015, 43, 765–774. DOI: 10.1016/S1872-2040(15)60825-8.
  • Ma, L.; Li, M.; Huang, Z.; Li, L.; Gao, W.; Nian, H.; Zou, L.; Fu, Z.; Gao, J.; Chai, F.; Zhou, Z. Real Time Analysis of Lead-Containing Atmospheric Particles in Beijing during Springtime by Single Particle Aerosol Mass Spectrometry. Chemosphere. 2016, 154, 454–462. DOI: 10.1016/j.chemosphere.2016.04.001.
  • Shariatgorji, M.; Svenningsson, P.; Andrén, P. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology. Neuropsychopharmacol. 2014, 39, 34–49. DOI: 10.1038/npp.2013.215.
  • Buchberger, A. R.; DeLaney, K.; Johnson, J.; Li, L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal Chem. 2018, 90, 240–265. DOI: 10.1021/acs.analchem.7b04733.
  • Fan, B.; Wang, J.; Xu, Y.; Chen, J. Single-Cell Protein Assays: A Review. Methods Mol Biol. 2018, 1754, 293–309. DOI: 10.1007/978-1-4939-7717-8_17.
  • Heaney, L. M. Advancements in Mass Spectrometry as a Tool for Clinical Analysis: part II. Clin Chem Lab Med. 2020, 58, 855–857. DOI: 10.1515/cclm-2020-0259.
  • Robert, S. Space Sciences (Mass Spectroscopy Applications). In: Mass Spectrometry: Instrumentation, Interpretation, and Applications; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2008, 253–266. DOI: 10.1002/9780470395813.ch11.
  • Arkin, C. R.; Griffin, T. P.; Hoffman, J. H.; Limero, T. Space Applications of Mass Spectrometry. NTRS - NASA Technical Reports Server: Washington, D.C., 2010, Ch. 31, 3–5. https://ntrs.nasa.gov/citations/20100039433.
  • NASA, Final Report of the International Space Station Independent Safety Task Force. Washington, DC, 2007.
  • Dempster, A. J. Positive Ray Analysis of Lithium and Magnesium. Phys. Rev. 1921, 18, 415–422. DOI: 10.1103/PhysRev.18.415.
  • Fales, H. M.; Milne, G. W.; Pisano, J. J.; Brewer, H. B.; Blum, M. S.; MacConnell, J. G.; Brand, J.; Law, N. Biological Applications of Electron Ionization and Chemical Ionization Mass Spectrometry. Recent Prog Horm Res. 1972, 28, 591–626. https://pubmed.ncbi.nlm.nih.gov/4569234/.
  • Harrison, A. G. Chemical Ionization Mass Spectrometry, 2nd ed. CRC Press: Boca Raton, Florida, 1992.
  • Field, F. H. Chemical Ionization Mass Spectrometry. Acc. Chem. Res. 1968, 1, 42–49. DOI: 10.1021/ar50002a002.
  • Barber, M.; Bordoli, R. S.; Sedgwick, R. D.; Tyler, A. N. Fast Atom Bombardment of Solids as an Ion Source in Mass Spectrometry. Nature. 1981a, 293, 270–275. DOI: 10.1038/293270a0.
  • Barber, M.; Bordoli, R. S.; Sedgwick, R. D.; Tyler, A. N. Fast Atom Bombardment of Solids (F.A.B.): A New Ion Source for Mass Spectrometry. J. Chem. Soc., Chem. Commun. 1981b, 325–327. DOI: 10.1039/c39810000325.
  • Barber, M.; Bordoli, R. S.; Elliott, G. J.; Sedgwick, R. D.; Tyler, A. N. Fast Atom Bombardment Mass Spectrometry. Anal. Chem. 1982, 54, 645A–657A. DOI: 10.1021/ac00241a817.
  • Penning, F. M. Über Ionisation Durch Metastabile Atome (on the Ionization of Metastable Atoms). Naturwissenschaften. 1927, 15, 818–818. DOI: 10.1007/BF01505431.
  • Arango, C. A.; Shapiro, M.; Brumer, P. Cold Atomic Collisions: coherent Control of Penning and Associative Ionization. Phys. Rev. Lett. 2006, 97, 193202. DOI: 10.1103/PhysRevLett.97.193202.
  • Hiraoka, K.; Furuya, H.; Kambara, S.; Suzuki, S.; Hashimoto, Y.; Takamizawa, A. Atmospheric-Pressure Penning Ionization of Aliphatic Hydrocarbons. Rapid Commun Mass Spectrom. 2006, 20, 3213–3222. DOI: 10.1002/rcm.2706.
  • Meng, C. K.; Mann, M.; Fenn, J. B. Of Protons or Proteins. Z. Phys. D – Atoms. 1988, 10, 361–368. DOI: 10.1007/BF01384871.
  • Smith, R. D.; Barinaga, C. J.; Udseth, H. R. Improved Electrospray Ionization Interface for Capillary Zone Electrophoresis-Mass Spectrometry. Anal. Chem. 1988, 60, 1948–1952. DOI: 10.1021/ac00169a022.
  • Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science. 1989, 246, 64–71. DOI: 10.1126/science.2675315.
  • Gale, D. C.; Smith, R. D. Small Volume and Low Flow‐Rate Electrospray Lonization Mass Spectrometry of Aqueous Samples. Rapid Commun. Mass Spectrom. 1993, 7, 1017–1021. DOI: 10.1002/rcm.1290071111.
  • Hu, B.; Yao, Z. P. Electrospray Ionization Mass Spectrometry with Wooden Tips: A Review. Anal. Chim. Acta. 2021, 339136. DOI: 10.1016/j.aca.2021.339136.
  • Justes, D. R.; Talaty, N.; Cotte-Rodriguez, I.; Cooks, R. G. Detection of Explosives on Skin Using Ambient Ionization Mass Spectrometry. Chem. Commun. 2007, 21, 2142–2144. DOI: 10.1039/b703655h.
  • Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling under Ambient Conditions with Desorption Electrospray Ionization. Science. 2004, 306, 471–473. DOI: 10.1126/science.1104404.
  • Ifa, D. R.; Wu, C.; Ouyang, Z.; Cooks, R. G. Desorption Electrospray Ionization and Other Ambient Ionization Methods: current Progress and Preview. Analyst. 2010, 135, 669–681. DOI: 10.1039/b925257f.
  • Hiraoka, K.; Nishidate, K.; Mori, K.; Asakawa, D.; Suzuki, S. Development of Probe Electrospray Using a Solid Needle. Rapid Commun Mass Spectrom. 2007, 21, 3139–3144. DOI: 10.1002/rcm.3201.
  • Hiraoka, K.; Usmanov, D. T.; Chen, L. C.; Ninomiya, S.; Mandal, M. K.; Saha, S. Probe Electrospray Ionization (PESI) Mass Spectrometry with Discontinuous Atmospheric Pressure Interface (DAPI). Eur J Mass Spectrom (Chichester). 2015, 21, 327–334. DOI: 10.1255/ejms.1309.
  • Horning, E. C.; Horning, M. G.; Carroll, D. I.; Dzidic, I.; Stillwell, R. N. New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure. Anal. Chem. 1973, 45, 936–943. DOI: 10.1021/ac60328a035.
  • Carroll, D. I.; Dzidic, I.; Stillwell, R. N.; Haegele, K. D.; Horning, E. C. Atmospheric Pressure Ionization Mass Spectrometry. Corona Discharge Ion Source for Use in a Liquid Chromatograph-Mass Spectrometer-Computer Analytical System. Anal. Chem. 1975, 47, 2369–2373. DOI: 10.1021/ac60364a031.
  • Byrdwell, W. C. Atmospheric Pressure Chemical Ionization Mass Spectrometry for Analysis of Lipids. Lipids. 2001, 36, 327–346. DOI: 10.1007/s11745-001-0725-5.
  • Cody, R. B.; Laramee, J. A.; Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal Chem. 2005, 77, 2297–2302. DOI: 10.1021/ac050162j.
  • Maleknia, S. D.; Vail, T. M.; Cody, R. B.; Sparkman, D. O.; Bell, T. L.; Adams, M. A. Temperature-Dependent Release of Volatile Organic Compounds of Eucalypts by Direct Analysis in Real Time (DART) Mass Spectrometry. Rapid Commun Mass Spectrom. 2009, 23, 2241–2246. DOI: 10.1002/rcm.4133.
  • Javanshad, R.; Venter, A. R. Ambient Ionization Mass Spectrometry: real-Time, Proximal Sample Processing and Ionization. Anal. Methods. 2017, 9, 4896–4907. DOI: 10.1039/C7AY00948.
  • Shiea, J.; Huang, M.-Z.; Hsu, H.-J.; Lee, C.-Y.; Yuan, C.-H.; Beech, I.; Sunner, J. Electrospray-Assisted Laser Desorption/Ionization Mass Spectrometry for Direct Ambient Analysis of Solids. Rapid Commun Mass Spectrom. 2005, 19, 3701–3704. DOI: 10.1002/rcm.2243.
  • Chen, L. C.; Yu, Z.; Furuya, H.; Hashimoto, Y.; Takekawa, K.; Suzuki, H.; Ariyada, O.; Hiraoka, K. Development of Ambient Sampling Chemi/Chemical Ion Source with Dielectric Barrier Discharge. J Mass Spectrom. 2010, 45, 861–869. DOI: 10.1002/jms.1772.
  • Gilbert-López, B.; Lara-Ortega, F. J.; Robles-Molina, J.; Brandt, S.; Schütz, A.; MorenoGonzález, D.; García-Reyes, J. F.; Molina-Díaz, A.; Franzke, J. Detection of Multiclass Explosives and Related Compounds in Soil and Water by Liquid Chromatography-Dielectric Barrier Discharge Ionization-Mass Spectrometry. Anal Bioanal Chem. 2019, 411, 4785–4796. DOI: 10.1007/s00216-019-01627-2.
  • Mirsaleh-Kohan, N.; Robertson, W. D.; Compton, R. N. Electron Ionization Time-of-Flight Mass Spectrometry: Historical Review and Current Applications. Mass Spectrom Rev. 2008, 27, 237–285. DOI: 10.1002/mas.20162.
  • Kind, T.; Fiehn, O. Advances in Structure Elucidation of Small Molecules Using Mass Spectrometry. Bioanal Rev. 2010, 2, 23–60. DOI: 10.1007/s12566-010-0015-9.
  • Wei, J. N.; Belanger, D.; Adams, R. P.; Sculley, D. Rapid Prediction of Electron-Ionization Mass Spectrometry Using Neural Networks. ACS Cent Sci. 2019, 5, 700–708. DOI: 10.1021/acscentsci.9b00085.
  • Usmanov, D. T.; Akhunov, S. D.; Khasanov, U.; Rotshteyn, V. M.; Kasimov, B. S. Direct Detection of Morphine in Human Urine by Surface-Ionization Mass Spectrometry. Eur J Mass Spectrom (Chichester). 2020, 26, 153–157. DOI: 10.1177/1469066719875655.
  • Wang, Y.; Sun, J.; Qiao, J.; Ouyang, J.; Na Na, N. A “Soft” and “Hard” Ionization Method for Comprehensive Studies of Molecules. Anal Chem. 2018, 90, 14095–14099. DOI: 10.1021/acs.analchem.8b04437.
  • Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-Assisted Ultraviolet Laser Desorption of Non-Volatile Compounds. Int. J. Mass Spectrom. Ion Proc. 1987, 78, 53–68. DOI: 10.1016/0168-1176(87)87041-6.
  • Karas, M.; Bahr, U. Laser Desorption Ionization Mass Spectrometry of Large Biomolecules. Trends Anal. Chem. 1990, 9, 321–325. DOI: 10.1016/0165-9936(90)85065-F.
  • Abdelhamid, H. N.; Wu, H.-F. A Method to Detect Metal-Drug Complexes and Their Interactions with Pathogenic Bacteria via Graphene Nanosheet Assist Laser Desorption/Ionization Mass Spectrometry and Biosensors. Anal Chim Acta. 2012, 751, 94–104. DOI: 10.1016/j.aca.2012.09.012.
  • Abdelhamid, H. N.; Wu, H.-F. Furoic and Mefenamic Acids as New Matrices for Matrix Assisted Laser Desorption/Ionization-(MALDI)-Mass Spectrometry. Talanta. 2013, 115, 442–450. DOI: 10.1016/j.talanta.2013.05.050.
  • Abdelhamid, H. N. Ionic Liquids for Mass Spectrometry: Matrices, Separation and Microextraction. TrAC Trends Anal. Chem. 2016, 77, 122–138. DOI: 10.1016/j.trac.2015.12.007.
  • Abdelhamid, H. N.; Wu, H.-F. Gold Nanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry and Applications: From Simple Molecules to Intact Cells. Anal Bioanal Chem. 2016, 408, 4485–4502. DOI: 10.1007/s00216-016-9374-6.
  • Abdelhamid, H. N.; Chen, Z. Y.; Wu, H.-F. Surface Tuning Laser Desorption/Ionization Mass Spectrometry (STLDI-MS) for the Analysis of Small Molecules Using Quantum Dots. Anal Bioanal Chem. 2017, 409, 4943–4950. DOI: 10.1007/s00216-017-0433-4.
  • Abdelhamid, H. N. Nanoparticle-Based Surface Assisted Laser Desorption Ionization Mass Spectrometry: A Review. Mikrochim Acta. 2019, 186, 682. DOI: 10.1007/s00604-019-3770-5.
  • Asadi, S.; Bouvier, N.; Wexler, A. S.; Ristenpart, W. D. The Coronavirus Pandemic and Aerosols: does COVID-19 Transmit via Expiratory Particles? Aerosol Sci Technol 2020, 54, 635–638. DOI: 10.1080/02786826.2020.1749229.
  • Chu, D. K.; Akl, E. A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H. J.; El-harakeh, A.; Bognanni, A.; Lotf, T.; Loeb, M, COVID-19 Systematic Urgent Review Group Effort (SURGE) Study Authors. Physical Distancing, Face Masks, and Eye Protection to Prevent Person-to-Person Transmission of SARS-CoV-2 and COVID-19: A Systematic Review and Meta-Analysis. Lancet. 2020, 395, 1973–1987. DOI: 10.1016/S0140-6736. (20)31142-9.
  • Tahamtan, A.; Ardebili, A. Real-time RT-PCR in COVID-19 Detection: Issues Affecting the Results. Expert Rev Mol Diagn. 2020, 20, 453–454. DOI: 10.1080/14737159.2020.1757437.
  • Yuan, Z. C.; Hu, B. Mass Spectrometry-Based Human Breath Analysis: Towards Covid-19 Diagnosis and Research. J. Anal. Test. 2021, 5, 287–297. DOI: 10.1007/s41664-021-00194-9.
  • Swiner, D. J.; Jackson, S.; Burris, B. J.; Badu-Tawiah, A. K. Applications of Mass Spectrometry for Clinical Diagnostics: The Influence of Turnaround Time. Anal Chem. 2020, 92, 183–202. DOI: 10.1021/acs.analchem.9b04901.
  • Mahmud, I.; Garrett, T. J. Mass Spectrometry Techniques in Emerging Pathogens Studies: COVID-19 Perspectives. J Am Soc Mass Spectrom. 2020, 31, 2013–2024. DOI: 10.1021/jasms.0c00238.
  • SoRelle, J. A.; Patel, K.; Filkins, L.; Park, J. Y. Mass Spectrometry for COVID-19. Clin Chem. 2020, 66, 1367–1368. DOI: 10.1093/clinchem/hvaa222.
  • Yuan, Z. C.; Li, W.; Wu, L.; Huang, D.; Wu, M.; Hu, B. Solid-Phase Microextraction Fiber in Face Mask for in Vivo Sampling and Direct Mass Spectrometry Analysis of Exhaled Breath Aerosol. Anal Chem. 2020, 92, 11543–11547. DOI: 10.1021/acs.analchem.0c02118.
  • Xiang, J.; Yan, M.; Li, H.; Liu, T.; Lin, C.; Huang, S.; Shen, C. Evaluation of Enzyme-Linked Immunoassay and Colloidal Gold-Immuno-Chromatographic Assay Kit for Detection of Novel Coronavirus (SARS-Cov-2) Causing an Outbreak of Pneumonia (COVID-19). MedRxiv. 2020, DOI: 10.1101/2020.02.27.20028787.
  • Hu, B.; Ouyang, G. In Situ Solid-Phase Microextraction Sampling of Analytes from Living Human Objects for Mass Spectrometry Analysis. Trends Anal. Chem. 2021, 143, 116368. DOI: 10.1016/j.trac.2021.116368.
  • Ibrahim, W.; Cordell, R. L.; Wilde, M. J.; Richardson, M.; Carr, L.; Dasi, A.; Hargadon, B.; Free, R. C.; Monks, P. S.; Brightling, C. E.; et al. Diagnosis of COVID-19 by Exhaled Breath Analysis Using Gas Chromatography-Mass Spectrometry. ERJ Open Res. 2021, 7, 00139–2021. DOI: 10.1183/23120541.00139-2021.
  • Lazari, L. C.; Ghilardi, F. R.; Rosa-Fernandes, L.; Assis, D. M.; Nicolau, J. C.; Santiago, V. F.; Dalcoquio, T. F.; Angeli, C. B.; Bertolin, A. J.; Marinho, C. R.; et al. Prognostic Accuracy of MALDI-TOF Mass Spectrometric Analysis of Plasma in COVID-19. Life Sci. Alliance. 2021, 4, e202000946. DOI: 10.26508/lsa.202000946.
  • Wu, L.; Yuan, Z. C.; Yang, B. C.; Huang, Z.; Hu, B. In vivo Solid-Phase Microextraction Swab-Mass Spectrometry for Multidimensional Analysis of Human Saliva. Anal Chim Acta. 2021, 1164, 338510. DOI: 10.1016/j.aca.2021.338510.
  • Hu, B. Recent Advances in Facemask Devices for in Vivo Sampling of Human Exhaled Breath Aerosols and Inhalable Environmental Exposures. Trends Anal. Chem. 2022, 151, 116600. DOI: 10.1016/j.trac.2022.116600.
  • Spinhirne, J. P.; Koziel, J. A.; Chirase, N. K. Gas Chromatography-Mass Spectrometry Analysis of Human Exhaled Volatile Organic Compounds via Wearable Facemask Microextraction Sampling. Chin. J. Anal. Chem. 2022, 50, 445–453. DOI: 10.1016/j.chroma.2003.08.062.
  • Ganeev, A. A.; Kuz’menkov, M. A.; Lyubimtsev, V. A.; Potapov, S. V.; Drobyshev, A. I.; Potemin, S. S.; Voronov, M. V. Pulsed Discharge in a Hollow Cathode with the Detection of Ions in a Time-of-Flight Mass Spectrometer: Analytical Capabilities in the Analysis of Solid Samples. J Anal Chem. 2007, 62, 444–453. DOI: 10.1134/S1061934807050097.
  • Paschen, F. Bohr's Helium Lines. Ann. Phys. 1916, 355, 901–940. DOI: 10.1002/andp.19163551603.
  • Little, P. F.; von Engel, A. The Hollow-Cathode Effect and the Theory of Glow Discharges. Proc. Roy. Soc. A. 1954, 224, 209–227. DOI: 10.1098/rspa.1954.0152.
  • Helm, H. Experimental Evidence of the Existence of the Pendel Effect1 in a Low Pressure Hollow Cathode Discharge in Argon. Z. Naturforsch. 1972, 27, 1812–1820. DOI: 10.1515/zna-1972-1218.
  • Pak, H.; Kushner, M. J. Simulation of the Switching Performance of an Optically Triggered Pseudo‐Spark Thyratron. J. Appl. Phys. 1989, 66, 2325–2331. DOI: 10.1063/1.344291.
  • Schaefer, G.; Schoenbach, K. H. Physics and Applications of Pseudosparks, Eds. A. Gundersen, M.A., Schaefer, G., Plenum; Springer: Berlin, Germany, 1990, p. 55
  • Pak, H.; Kushner, M. J. Breakdown Characteristics in Nonplanar Geometries and Hollow Cathode Pseudospark Switches. J. Appl. Phys. 1992, 71, 94–100. DOI: 10.1063/1.350653.
  • Eichhorn, H.; Schoenbach, K. H.; Tessnow, T. Paschen’s Law for a Hollow Cathode Discharge. Appl. Phys. Lett. 1993, 63, 2481–2483. DOI: 10.1063/1.110455.
  • Marcus, R. K. Glow Discharge Spectroscopies, Plenum Press, New York, 1993.
  • Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W. Proton Transfer Reaction Mass Spectrometry: On-Line Trace Gas Analysis at the Ppb Level. Int. J. Mass Spectrom. Ion Processes. 1995, 149–150, 609–619. DOI: 10.1016/0168-1176(95)04294-U.
  • Lindinger, W.; Hansel, A.; Jordan, A. On-Line Monitoring of volatile organic compounds at Pptv Levels by Means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). Medical Applications, Food Control and Environment Research. Int. J. Mass Spectrom. Ion Processes. 1998, 173, 191–241. DOI: 10.1016/S0168-1176(97)00281-4.
  • Yang, C. L.; Harrison, W. W. Investigation of a Novel Hollow Cathode Configuration for Grimm-Type Glow Discharge Emission. Spectrochim. Acta Part B: At. Spectros. 2001, 56, 1195–1208. DOI: 10.1016/S0584-8547(01)00181-1.
  • Zhechev, D.; Zhemenik, V. I.; Tileva, S.; Mishinsky, G. V.; Pyrvanova, N. A Hollow Cathode Discharge Modification as a Source of Sputtered Atoms and Their Ions. Nucl. Instrum. Meth. Phys. Res. Sec. B: Beam Interac. Mater. Atoms. 2003, 204, 387–391. DOI: 10.1016/S0168-583X(02)01996-1.
  • Pessoa, R.; Sismanoglu, B. N.; Amorim, J.; Maciel, H. S. Hollow Cathode Discharges: low and High-Pressure Operation. In Gas Discharges – Fundamentals & Applications (Eds., Amorin, J.), Kerala, India: Transworld Research Network, 2007.
  • Blake, R. S.; Monks, P. S.; Ellis, A. W. Proton-Transfer Reaction Mass Spectrometry. Chem. Rev. 2009, 109, 861–896. DOI: 10.1021/cr800364q.
  • Gusarova, T.; Hodoroaba, V.-D.; Matschat, R.; Kipphardt, H.; Panne, U. Exploitation of the Hollow Cathode Effect for Sensitivity Enhancement of Grimm-Type DC Glow Discharge Optical Emission Spectroscopy. J. Anal. At. Spectrom. 2009, 24, 680–684. DOI: 10.1039/b814977a.
  • Mavrodineanu, R. Hollow Cathode Discharges: Analytical Applications. J Res Natl Bur Stand (1977). 1984 Mar–Apr, 89, 143–185. DOI: 10.6028/JRES.089.009.
  • Weinstein, V.; Steers, E.; Šmíd, P.; Pickering, J. C.; Mushtaq, S. A Detailed Comparison of Spectral Line Intensities with Plane and Hollow Cathodes in a Grimm Type Glow Discharge Source. J. Anal. At. Spectrom. 2010, 25, 1283–1289. DOI: 10.1039/c003457f.
  • Ishikawa, D.; Hasegawa, S. Development of Removable Hollow Cathode Discharge Apparatus for Sputtering Solid Metals. J. Spectrosc. 2019, 2019, 1–6. DOI: 10.1155/2019/7491671.
  • Thomson, J. J.; Thomson, G. P. Conduction of Electricity in Gases, Cambridge University Press: Cambridge, UK, 1933.
  • Costa, H. Via the Subsequent Delivery Electrons through a Photoelectric Effect in a Dependent Hydrogen Discharge. Z. Physik. 1939, 113, 531–546. DOI: 10.1007/BF01340086.
  • Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis (6th ed.); Thomson Brooks/Cole: Belmont, CA, 2006.
  • Ganeev, A. A.; Drobyshev, A. I.; Gubal, A. R.; Solovyev, N. D.; Chuchina, V. A.; Ivanenko, N. B.; Kononov, A. S.; Titova, A. D.; Gorbunov, I. S. Hollow Cathode and New Related Analytical Methods. J Anal Chem. 2019, 74, 975–981. DOI: 10.1134/S1061934819100046.
  • Sekimoto, K.; Takayama, M. Negative Ion Formation and Evolution in Atmospheric Pressure Corona Discharges between Point-to-Plane Electrodes with Arbitrary Needle Angle. Eur. Phys. J. D. 2010, 60, 589–599. DOI: 10.1140/epjd/e2010-10449-7.
  • Takada, Y.; Kawaguchi, Y.; Nagano, H.; Suzuki, Y. Evaluation of False Alarm Rates of a Walkthrough Detection Portal Designed for Detecting Triacetone Triperoxide (TATP) Vapour from Field Test Results and Receiver Operating Characteristic (ROC) Curves. Int. J. Safety Secur. Eng. 2012, 2, 25–264. DOI: 10.2495/SAFE-V2-N3-256-264.
  • Chen, H.; Hu, B.; Hu, Y.; Huan, Y.; Zhou, Z.; Qiao, X. Neutral Desorption Using a Sealed Enclosure to Sample Explosives on Human Skin for Rapid Detection by EESI-MS. J Am Soc Mass Spectrom. 2009, 20, 719–722. DOI: 10.1016/j.jasms.2008.12.011.
  • Sigman, M. E.; Clark, C. D.; Fidler, R.; Geiger, C. L.; Clausen, C. A. Analysis of Triacetone Triperoxide by Gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry by electron and chemical ionization . Rapid Commun Mass Spectrom. 2006, 20, 2851–2857. DOI: 10.1002/rcm.2678.
  • Hiraoka, K.; Chen, L. C.; Iwama, T.; Mandal, M. K.; Ninomiya, S.; Suzuki, H.; Ariyada, O.; Furuya, H.; Takekawa, K. Development of a Remote-from-Plasma Dielectric Barrier Discharge Ion Source and Its Application to Explosives. J. Mass Spectrom. Soc. Jpn. 2010, 58, 215–220. DOI: 10.5702/massspec.58.215.
  • Hiraoka, K. Gas-Phase Ion/Molecule Reactions. in: K. Hiraoka (Eds.), Fundamentals of Mass Spectrometry, Springer: Berlin, Germany, 2013, chap. 7.
  • Yinon, J.; McClellan, J. E.; Yost, R. A. Electrospray Ionization Tandem Mass Spectrometry Collision-Induced Dissociation Study of Explosives in an Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1961–1970. DOI: 10.1002/(SICI)1097-0231(199712)11:18 < 1961::AID-RCM99 > 3.0.CO;2-K.
  • Chen, E. C.; Chen, E. S. The Calculation of Electron Affinities and Bond Dissociation Energies of Pesticides and Explosives Analyzed in Negative Ion Mobility Spectrometry. Int. J. Ion Mobility Spectrom. 2002, 3, 11.
  • Cooper, J.; Grant, C. D.; Zhang, J. An Initio Calculation of Ionization Potential and Electron Affinity of Six Common Explosive Compounds. RTC. 2012, 1, 11–19. DOI . DOI: 10.2147/RTC.S36686.
  • Nagato, K.; Matsui, Y.; Miyata, T.; Yamauchi, T. An Analysis of the Evolution of Negative Ions Produced by a Corona Ionizer in Air. Int. J. Mass Spectrom. 2006, 248, 142–147. DOI: 10.1016/j.ijms.2005.12.001.
  • Sekimoto, K.; Sakai, M.; Takayama, M. Specific Interaction between Negative Atmospheric Ions and Organic Compounds in Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry. J Am Soc Mass Spectrom. 2012, 23, 1109–1119. DOI: 10.1007/s13361-012-0363-5.
  • Usmanov, D. T.; Ninomiya, S.; Hiraoka, K. Flash Desorption/Mass Spectrometry for the Analysis of Less- and Nonvolatile Samples Using a Linearly Driven Heated Metal Filament. J Am Soc Mass Spectrom. 2013, 24, 1727–1735. DOI: 10.1007/s13361-013-0711-0.
  • Takada, Y.; Nagano, H.; Suga, M.; Hashimoto, Y.; Yamada, M.; Sakairi, M.; Kusumoto, K.; Ota, T.; Nakamura, J. Detection of Military Explosives by Atmospheric Pressure Chemical Ionization Mass Spectrometry with Counter-Flow Introduction. Propellants Explos. Pyrotech. 2002, 27, 224–228. DOI: 10.1002/1521-4087(200209)27:4 < 224::AID-PREP224 > 3.0.CO;2-V.
  • Batley, M.; Lyons, L. Electron Affinities of Organic Molecules. Nature 1962, 196, 573–574. DOI: 10.1038/196573a0.
  • Birch, A. J. Reduction by Dissolving Metals. Part I. J. Chem. Soc. 1944, 430–436. DOI: 10.1039/jr9440000430.
  • Birch, A. J. Reduction by Dissolving Metals. Nature. 1946, 158, 585–585. DOI: 10.1038/158585c0.
  • Usmanov, D. T.; Chen, L. C.; Yu, Z.; Yamabe, S.; Sakaki, S.; Hiraoka, K. Atmospheric Pressure Chemical Ionization of Explosives Using Alternating Current Corona Discharge Ion Source. J Mass Spectrom. 2015, 50, 651–661. DOI: 10.1002/jms.3552.
  • Sekimoto, K.; Takayama, M. Collision-Induced Dissociation Analysis of Negative Atmospheric Ion Adducts in Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry. J Am Soc Mass Spectrom. 2013, 24, 780–788. DOI: 10.1007/s13361-013-0576-2.
  • Smirnov, B. M. Negative Ions. McGraw-Hill Inc., New York, 1982.
  • Kober, S. L.; Hollert, H.; Frohme, M. Quantification of Nitroaromatic Explosives in Contaminated Soil Using MALDI-TOF Mass Spectrometry. Anal Bioanal Chem. 2019, 411, 5993–6003. DOI: 10.1007/s00216-019-01976-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.