1,316
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Carbon Dots in the Detection of Pathogenic Bacteria and Viruses

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 219-246 | Published online: 09 May 2022

References

  • Kaya, H. O.; Cetin, A. E.; Azimzadeh, M.; Topkaya, S. N. Pathogen Detection with Electrochemical Biosensors: Advantages, Challenges and Future Perspectives. J. Electroanal. Chem. (Lausanne) 2021, 882, 114989. DOI: 10.1016/j.jelechem.2021.114989.
  • Zhao, V. X. T.; Wong, T. I.; Zheng, X. T.; Tan, Y. N.; Zhou, X. Colorimetric Biosensors for Point-of-Care Virus Detections. Mater. Sci. Energy Technol. 2020, 3, 237–249. DOI: 10.1016/j.mset.2019.10.002.
  • Iravani, S. Nano- and Biosensors for the Detection of SARS-CoV-2: Challenges and Opportunities. Mater. Adv. 2020, 1, 3092–3103. DOI: 10.1039/D0MA00702A.
  • Souf, S. Recent Advances in Diagnostic Testing for Viral Infections. Biosci. Horizons 2016, 9, 1–11. DOI: 10.1093/biohorizons/hzw010.
  • Zhang, N.; Wang, L.; Deng, X.; Liang, R.; Su, M.; He, C.; Hu, L.; Su, Y.; Ren, J.; Yu, F.; et al. Recent Advances in the Detection of Respiratory Virus Infection in Humans. J. Med. Virol. 2020, 92, 408–417. DOI: 10.1002/jmv.25674.
  • Choi, Y.; Hwang, J. H.; Lee, S. Y. Recent Trends in Nanomaterials-Based Colorimetric Detection of Pathogenic Bacteria and Viruses. Small Methods 2018, 2, 1700351. DOI: 10.1002/smtd.201700351.
  • Shen, Y.; Zhang, Y.; Gao, Z. F.; Ye, Y.; Wu, Q.; Chen, H.-Y.; Xu, J.-J. Recent Advances in Nanotechnology for Simultaneous Detection of Multiple Pathogenic Bacteria. Nano Today 2021, 38, 101121. DOI: 10.1016/j.nantod.2021.101121.
  • Augustine, R.; Das, S.; Hasan, A.; S, A.; Abdul Salam, S.; Augustine, P.; Dalvi, Y. B.; Varghese, R.; Primavera, R.; Yassine, H. M.; et al. Rapid Antibody-Based COVID-19 Mass Surveillance: Relevance, Challenges, and Prospects in a Pandemic and Post-Pandemic World. JCM 2020, 9, DOI:3372. DOI: 10.3390/jcm9103372.
  • Li, H.-Y.; Jia, W.-N.; Li, X.-Y.; Zhang, L.; Liu, C.; Wu, J. Advances in Detection of Infectious Agents by Aptamer-Based Technologies. Emerg. Microbes Infect. 2020, 9, 1671–1681. DOI: 10.1080/22221751.2020.1792352.
  • Li, H.; He, J.; Bao, W.; Wang, P.; Lv, Y.; Xu, C.; Hu, P.; Gao, Y.; Zheng, S.; An, J.; et al. Key Points of Technical Review for the Registration of SARS-CoV-2 Antigen/Antibody Tests. Bioanalysis 2021, 13, 77–88. DOI: 10.4155/bio-2020-0219.
  • He, J.; Hu, P.; Gao, Y.; Zheng, S.; Xu, C.; Liu, R.; Fang, L.; Li, R.; Han, C.; An, J.; et al. Comparison and Application of Different Immunoassay Methods for the Detection of SARS-CoV-2. J. Med. Virol. 2020, 92, 2777–2784. DOI: 10.1002/jmv.26187.
  • Broughton, J. P.; Deng, X.; Yu, G.; Fasching, C. L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J. A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR–Cas12-Based Detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870–874. DOI: 10.1038/s41587-020-0513-4.
  • Cui, F.; Zhou, Z.; Zhou, H. S. Molecularly Imprinted Polymers and Surface Imprinted Polymers Based Electrochemical Biosensor for Infectious Diseases. Sensors 2020, 20, DOI:996. DOI: 10.3390/s20040996.
  • Paul, R.; Ostermann, E.; Wei, Q. Advances in Point-of-Care Nucleic Acid Extraction Technologies for Rapid Diagnosis of Human and Plant Diseases. Biosens. Bioelectron 2020, 169, 112592. DOI: 10.1016/j.bios.2020.112592.
  • Li, Z.; Yu, T.; Paul, R.; Fan, J.; Yang, Y.; Wei, Q. Agricultural Nanodiagnostics for Plant Diseases: Recent Advances and Challenges. Nanoscale Adv. 2020, 2, 3083–3094. DOI: 10.1039/C9NA00724E.
  • Bhardwaj, S. K.; Bhardwaj, N.; Kumar, V.; Bhatt, D.; Azzouz, A.; Bhaumik, J.; Kim, K. H.; Deep, A. Recent Progress in Nanomaterial-Based Sensing of Airborne Viral and Bacterial Pathogens. Environ. Int. 2021, 146, 106183. DOI: 10.1016/j.envint.2020.106183.
  • Zhu, L.; Ling, J.; Zhu, Z.; Tian, T.; Song, Y.; Yang, C. Selection and Applications of Functional Nucleic Acids for Infectious Disease Detection and Prevention. Anal. Bioanal. Chem. 2021, 413, 4563–4579. DOI: 10.1007/s00216-020-03124-3.
  • Rajwade, J. M.; Chikte, R. G.; Paknikar, K. M. Nanomaterials: New Weapons in a Crusade against Phytopathogens. Appl. Microbiol. Biotechnol. 2020, 104, 1437–1461. DOI: 10.1007/s00253-019-10334-y.
  • Prasad, R.; Bhattacharyya, A.; Nguyen, Q. D. Nanotechnology in Sustainable Agriculture: Recent Developments. Front. Microbiol. 2017, 8, 1014–1013. DOI:10.3389/fmicb.2017.01014.
  • Regnault, B.; Martin-Delautre, S.; Lejay-Collin, M.; Lefèvre, M.; Grimont, P. A. D. Oligonucleotide Probe for the Visualization of Escherichia coli/Escherichia fergusonii Cells by in Situ Hybridization: Specificity and Potential Applications. Res. Microbiol. 2000, 151, 521–533. DOI:10.1016/S0923-2508(00)00222-9.
  • Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots versus Organic Dyes as Fluorescent Labels. Nat. Methods 2008, 5, 763–775. DOI: 10.1038/nmeth.1248.
  • Kladsomboon, S.; Thippakorn, C.; Seesaard, T. Development of Organic-Inorganic Hybrid Optical Gas Sensors for the Non-Invasive Monitoring of Pathogenic Bacteria. Sensors (Switzerland) 2018, 18, 3189. DOI: 10.3390/s18103189.
  • Huang, A.; Qiu, Z.; Jin, M.; Shen, Z.; Chen, Z.; Wang, X.; Li, J. W. High-Throughput Detection of Food-Borne Pathogenic Bacteria Using Oligonucleotide Microarray with Quantum Dots as Fluorescent Labels. Int. J. Food Microbiol. 2014, 185, 27–32. DOI: 10.1016/j.ijfoodmicro.2014.05.012.
  • Hwang, M. J.; Jang, A. S.; Lim, D. K. Comparative Study of Fluorescence and Surface-Enhanced Raman Scattering with Magnetic Microparticle-Based Assay for Target Bacterial DNA Detection. Sensors Actuators, B Chem. 2021, 329, 129134. DOI: 10.1016/j.snb.2020.129134.
  • Riahi, R.; Mach, K. E.; Mohan, R.; Liao, J. C.; Wong, P. K. Molecular Detection of Bacterial Pathogens Using Microparticle Enhanced Double-Stranded DNA Probes. Anal. Chem. 2011, 83, 6349–6354. DOI:10.1021/ac2012575.
  • Sanvicens, N.; Pastells, C.; Pascual, N.; Marco, M. P. Nanoparticle-Based Biosensors for Detection of Pathogenic Bacteria. TrAC Trends Anal. Chem. 2009, 28, 1243–1252. DOI: 10.1016/j.trac.2009.08.002.
  • Jiang, Z.; Feng, B.; Xu, J.; Qing, T.; Zhang, P.; Qing, Z. Graphene Biosensors for Bacterial and Viral Pathogens. Biosens Bioelectron 2020, 166, 112471. DOI: 10.1016/j.bios.2020.112471.
  • Sharma, A.; Sharma, N.; Kumari, A.; Lee, H. J.; Kim, T. Y.; Tripathi, K. M. Nano-Carbon Based Sensors for Bacterial Detection and Discrimination in Clinical Diagnosis: A Junction between Material Science and Biology. Appl. Mater. Today 2020, 18, 100467. DOI: 10.1016/j.apmt.2019.100467.
  • Prajapati, S.; Padhan, B.; Amulyasai, B.; Sarkar, A. Nanotechnology-Based Sensors; Elsevier Inc.: Amsterdam, Netherlands, 2020. DOI: 10.1016/B978-0-12-816897-4.00011-4.
  • Alafeef, M.; Moitra, P.; Pan, D. Nano-Enabled Sensing Approaches for Pathogenic Bacterial Detection. Biosens. Bioelectron 2020, 165, 112276. DOI: 10.1016/j.bios.2020.112276.
  • Li, Z.; Lu, W.; Jia, S.; Yuan, H.; Gao, L. H. Design and Application of Conjugated Polymer Nanomaterials for Detection and Inactivation of Pathogenic Microbes. ACS Appl. Bio. Mater. 2021, 4, 370–386. DOI: 10.1021/acsabm.0c01395.
  • Hussain, W.; Ullah, M. W.; Farooq, U.; Aziz, A.; Wang, S. Bacteriophage-Based Advanced Bacterial Detection: Concept, Mechanisms, and Applications. Biosens. Bioelectron. 2021, 177, 112973. DOI: 10.1016/j.bios.2021.112973.
  • Riu, J.; Giussani, B. Electrochemical Biosensors for the Detection of Pathogenic Bacteria in Food. TrAC Trends Anal. Chem. 2020, 126, 115863. DOI: 10.1016/j.trac.2020.115863.
  • Bordbar, M. M.; Tashkhourian, J.; Tavassoli, A.; Bahramali, E.; Hemmateenejad, B. Ultrafast Detection of Infectious Bacteria Using Optoelectronic Nose Based on Metallic Nanoparticles. Sensors Actuators, B Chem. 2020, 319, 128262. DOI: 10.1016/j.snb.2020.128262.
  • Kumar, H.; Kuča, K.; Bhatia, S. K.; Saini, K.; Kaushal, A.; Verma, R.; Bhalla, T. C.; Kumar, D. Applications of Nanotechnology in Biosensor-Based Detection of Foodborne Pathogens. Sensors (Switzerland) 2020, 20, 1966–1919. DOI: 10.3390/s20071966.
  • Wang, S.; Li, L.; Jin, H.; Yang, T.; Bao, W.; Huang, S.; Wang, J. Electrochemical Detection of Hepatitis B and Papilloma Virus DNAs Using SWCNT Array Coated with Gold Nanoparticles. Biosens. Bioelectron 2013, 41, 205–210. DOI: 10.1016/j.bios.2012.08.021.
  • Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-Based Biosensors for Detection of Pathogenic Virus. Trends Analyt Chem. 2017, 97, 445–457. DOI: 10.1016/j.trac.2017.10.005.
  • Draz, M. S.; Shafiee, H. Applications of Gold Nanoparticles in Virus Detection. Theranostics 2018, 8, 1985–2017. DOI: 10.7150/thno.23856.
  • Chan, C.; Shi, J.; Fan, Y.; Yang, M. A Microfluidic Flow-through Chip Integrated with Reduced Graphene Oxide Transistor for Influenza Virus Gene Detection. Sensors Actuators, B Chem. 2017, 251, 927–933. DOI: 10.1016/j.snb.2017.05.147.
  • Hernández, R.; Vallés, C.; Benito, A. M.; Maser, W. K.; Xavier Rius, F.; Riu, J. Graphene-Based Potentiometric Biosensor for the Immediate Detection of Living Bacteria. Biosens. Bioelectron 2014, 54, 553–557. DOI: 10.1016/j.bios.2013.11.053.
  • Mat Zaid, M. H.; Abdullah, J.; Yusof, N. A.; Sulaiman, Y.; Wasoh, H.; Md Noh, M. F.; Issa, R. PNA Biosensor Based on Reduced Graphene Oxide/Water Soluble Quantum Dots for the Detection of Mycobacterium Tuberculosis. Sensors Actuators, B Chem. 2017, 241, 1024–1034. DOI: 10.1016/j.snb.2016.10.045.
  • Safardoust-Hojaghan, H.; Salavati-Niasari, M.; Amiri, O.; Hassanpour, M. Preparation of Highly Luminescent Nitrogen Doped Graphene Quantum Dots and Their Application as a Probe for Detection of Staphylococcus Aureus and E. coli. J. Mol. Liq. 2017, 241, 1114–1119. DOI: 10.1016/j.molliq.2017.06.106.
  • Appaturi, J. N.; Pulingam, T.; Thong, K. L.; Muniandy, S.; Ahmad, N.; Leo, B. F. Rapid and Sensitive Detection of Salmonella with Reduced Graphene Oxide-Carbon Nanotube Based Electrochemical Aptasensor. Anal. Biochem. 2020, 589, 113489. DOI: 10.1016/j.ab.2019.113489.
  • Imran, M.; Ehrhardt, C. J.; Bertino, M. F.; Shah, M. R.; Yadavalli, V. K. Chitosan Stabilized Silver Nanoparticles for the Electrochemical Detection of Lipopolysaccharide: A Facile Biosensing Approach for Gram-Negative Bacteria. Micromachines 2020, 11, 413. DOI: 10.3390/mi11040413.
  • Zhan, L.; Zhen, S. J.; Wan, X. Y.; Gao, P. F.; Huang, C. Z. A Sensitive Surface-Enhanced Raman Scattering Enzyme-Catalyzed Immunoassay of Respiratory Syncytial Virus. Talanta 2016, 148, 308–312. DOI: 10.1016/j.talanta.2015.10.081.
  • Wan, Y.; Sun, Y.; Qi, P.; Wang, P.; Zhang, D. Quaternized Magnetic Nanoparticles-Fluorescent Polymer System for Detection and Identification of Bacteria. Biosens. Bioelectron. 2014, 55, 289–293. DOI: 10.1016/j.bios.2013.11.080.
  • Gao, X.; Yao, X.; Zhong, Z.; Jia, L. Rapid and Sensitive Detection of Staphylococcus Aureus Assisted by Polydopamine Modified Magnetic Nanoparticles. Talanta 2018, 186, 147–153. DOI: 10.1016/j.talanta.2018.04.046.
  • Yang, H.; Liang, W.; Si, J.; Li, Z.; He, N. Long Spacer Arm-Functionalized Magnetic Nanoparticle Platform for Enhanced Chemiluminescent Detection of Hepatitis B Virus. J. Biomed. Nanotechnol. 2014, 10, 3610–3619. DOI: 10.1166/jbn.2014.2047.
  • Wang, Y.; Alocilja, E. C. Gold Nanoparticle-Labeled Biosensor for Rapid and Sensitive Detection of Bacterial Pathogens. J Biol Eng 2015, 9, 16. DOI: 10.1186/s13036-015-0014-z.
  • Shakoori, Z.; Salimian, S.; Kharrazi, S.; Adabi, M.; Saber, R. Electrochemical DNA Biosensor Based on Gold Nanorods for Detecting Hepatitis B Virus. Anal. Bioanal. Chem. 2015, 407, 455–461. DOI: 10.1007/s00216-014-8303-9.
  • Elahi, N.; Kamali, M.; Baghersad, M. H.; Amini, B. A Fluorescence Nano-Biosensors Immobilization on Iron (MNPs) and Gold (AuNPs) Nanoparticles for Detection of Shigella Spp. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110113. DOI: 10.1016/j.msec.2019.110113.
  • Takemura, K.; Adegoke, O.; Takahashi, N.; Kato, T.; Li, T. C.; Kitamoto, N.; Tanaka, T.; Suzuki, T.; Park, E. Y. Versatility of a Localized Surface Plasmon Resonance-Based Gold Nanoparticle-Alloyed Quantum Dot Nanobiosensor for Immunofluorescence Detection of Viruses. Biosens. Bioelectron 2017, 89, 998–1005. DOI: 10.1016/j.bios.2016.10.045.
  • Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front. Chem. 2020, 8, 320–319. DOI:10.3389/fchem.2020.00320.
  • Tian, L.; Li, Z.; Wang, P.; Zhai, X.; Wang, X.; Li, T. Carbon Quantum Dots for Advanced Electrocatalysis. J. Energy Chem. 2021, 55, 279–294. DOI: 10.1016/j.jechem.2020.06.057.
  • Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. DOI: 10.1021/ja040082h.
  • Mansuriya, B. D.; Altintas, Z. Applications of Graphene Quantum Dots in Biomedical Sensors. Sensors (Switzerland) 2020, 20, 1072. DOI: 10.3390/s20041072.
  • Alaghmandfard, A.; Sedighi, O.; Tabatabaei Rezaei, N.; Abedini, A. A.; Malek Khachatourian, A.; Toprak, M. S.; Seifalian, A. Recent Advances in the Modification of Carbon-Based Quantum Dots for Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111756. DOI: 10.1016/j.msec.2020.111756.
  • Liu, Q.; Zhang, N.; Shi, H.; Ji, W.; Guo, X.; Yuan, W.; Hu, Q. One-Step Microwave Synthesis of Carbon Dots for Highly Sensitive and Selective Detection of Copper Ions in Aqueous Solution. New J. Chem. 2018, 42, 3097–3101. DOI: 10.1039/C7NJ05000C.
  • Schneider, J.; Reckmeier, C. J.; Xiong, Y.; Von Seckendorff, M.; Susha, A. S.; Kasak, P.; Rogach, A. L. Molecular Fluorescence in Citric Acid-Based Carbon Dots. J. Phys. Chem. C 2017, 121, 2014–2022. DOI: 10.1021/ACS.JPCC.6B12519/SUPPL_FILE/JP6B12519_SI_001.PDF.
  • Ðorđević, L.; Arcudi, F.; Prato, M. Preparation, Functionalization and Characterization of Engineered Carbon Nanodots. Nat. Protoc. 2019, 14, 2931–2953. DOI: 10.1038/s41596-019-0207-x.
  • Singh, I.; Arora, R.; Dhiman, H.; Pahwa, R. Carbon Quantum Dots: Synthesis, Characterization and Biomedical Applications. Turk. J. Pharm. Sci. 2018, 15, 219–230. DOI: 10.4274/tjps.63497.
  • Gan, Y. X.; Jayatissa, A. H.; Yu, Z.; Chen, X.; Li, M. Hydrothermal Synthesis of Nanomaterials. J. Nanomater. 2020, 2020, 1–3. DOI: 10.1155/2020/8917013.
  • Doñ Ate-Buendia, C.; Torres-Mendieta, R.; Pyatenko, A.; Falomir, E.; Fernándezfernández-Alonso, M.; Mínguez-Vega, G. Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging. ACS Omega 2018, 3, 2735–2742. DOI: 10.1021/acsomega.7b02082.
  • Singh, R. K.; Kumar, R.; Singh, D. P.; Savu, R.; Moshkalev, S. A. Progress in Microwave-Assisted Synthesis of Quantum Dots (Graphene/Carbon/Semiconducting) for Bioapplications: A Review. Mater. Today Chem. 2019, 12, 282–314. DOI: 10.1016/j.mtchem.2019.03.001.
  • Su, Y.; Xie, M.; Lu, X.; Wei, H.; Geng, H.; Yang, Z.; Zhang, Y. Facile Synthesis and Photoelectric Properties of Carbon Dots with Upconversion Fluorescence Using Arc-Synthesized Carbon by-Products. RSC Adv. 2014, 4, 4839–4842. DOI: 10.1039/c3ra45453c.
  • Hassanvand, Z.; Jalali, F.; Nazari, M.; Parnianchi, F.; Santoro, C. Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem 2021, 8, 15–35. DOI: 10.1002/celc.202001229.
  • Pumera, M.; Sánchez, S.; Ichinose, I.; Tang, J. Electrochemical Nanobiosensors. Sensors Actuators B 2007, 123, 1195–1205. DOI: 10.1016/j.snb.2006.11.016.
  • Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J. M. Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. Nanomaterials 2019, 9, 634–618. DOI: 10.3390/nano9040634.
  • Molaei, M. J. Principles, Mechanisms, and Application of Carbon Quantum Dots in Sensors: A Review. Anal. Methods 2020, 12, 1266–1287. DOI: 10.1039/C9AY02696G.
  • Yang, L.; Deng, W.; Cheng, C.; Tan, Y.; Xie, Q.; Yao, S. Fluorescent Immunoassay for the Detection of Pathogenic Bacteria at the Single-Cell Level Using Carbon Dots-Encapsulated Breakable Organosilica Nanocapsule as Labels. ACS Appl. Mater. Interfaces 2018, 10, 3441–3448. DOI: 10.1021/acsami.7b18714.
  • Bahari, D.; Babamiri, B.; Salimi, A.; Salimizand, H. Ratiometric Fluorescence Resonance Energy Transfer Aptasensor for Highly Sensitive and Selective Detection of Acinetobacter baumannii Bacteria in Urine Sample Using Carbon Dots as Optical Nanoprobes. Talanta 2021, 221, 121619. DOI: 10.1016/j.talanta.2020.121619.
  • Hu, X.; Li, Y.; Xu, Y.; Gan, Z.; Zou, X.; Shi, J.; Huang, X.; Li, Z.; Li, Y. Green One-Step Synthesis of Carbon Quantum Dots from Orange Peel for Fluorescent Detection of Escherichia coli in Milk. Food Chem. 2021, 339, 127775. DOI: 10.1016/j.foodchem.2020.127775.
  • Robby, A. I.; Kim, S. G.; Lee, U. H.; In, I.; Lee, G.; Park, S. Y. Wireless Electrochemical and Luminescent Detection of Bacteria Based on Surface-Coated CsWO3-Immobilized Fluorescent Carbon Dots with Photothermal Ablation of Bacteria. Chem. Eng. J. 2021, 403, 126351. DOI: 10.1016/j.cej.2020.126351.
  • Meziani, M. J.; Dong, X.; Zhu, L.; Jones, L. P.; LeCroy, G. E.; Yang, F.; Wang, S.; Wang, P.; Zhao, Y.; Yang, L.; et al. Visible-Light-Activated Bactericidal Functions of Carbon “Quantum” Dots. ACS Appl. Mater. Interfaces 2016, 8, 10761–10766. DOI: 10.1021/acsami.6b01765.
  • Bing, W.; Sun, H.; Yan, Z.; Ren, J.; Qu, X. Programmed Bacteria Death Induced by Carbon Dots with Different Surface Charge. Small 2016, 12, 4713–4718. DOI: 10.1002/smll.201600294.
  • Roh, S. G.; Robby, A. I.; Phuong, P. T. M.; In, I.; Park, S. Y. Photoluminescence-Tunable Fluorescent Carbon Dots-Deposited Silver Nanoparticle for Detection and Killing of Bacteria. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 613–623. DOI: 10.1016/j.msec.2018.12.070.
  • Choi, C. A.; Mazrad, Z. A. I.; Lee, G.; In, I.; Lee, K. D.; Park, S. Y. Boronate-Based Fluorescent Carbon Dot for Rapid and Selectively Bacterial Sensing by Luminescence off/on System. J. Pharm. Biomed. Anal. 2018, 159, 1–10. DOI: 10.1016/j.jpba.2018.06.043.
  • Wang, H.; Chi, Z.; Cong, Y.; Wang, Z.; Jiang, F.; Geng, J.; Zhang, P.; Ju, P.; Dong, Q.; Liu, C. Development of a Fluorescence Assay for Highly Sensitive Detection of Pseudomonas Aeruginosa Based on an Aptamer-Carbon Dots/Graphene Oxide System. RSC Adv. 2018, 8, 32454–32460. DOI: 10.1039/C8RA04819C.
  • Cui, F.; Sun, J.; de Dieu Habimana, J.; Yang, X.; Ji, J.; Zhang, Y.; Lei, H.; Li, Z.; Zheng, J.; Fan, M.; et al. Ultrasensitive Fluorometric Angling Determination of Staphylococcus Aureus in Vitro and Fluorescence Imaging in Vivo Using Carbon Dots with Full-Color Emission. Anal. Chem. 2019, 91, 14681–14690. DOI: 10.1021/acs.analchem.9b03916.
  • Pan, T.; Shan, X.; Jiang, D.; Qi, L.; Wang, W.; Chen, Z. Fluorometric Aptasensor for Determination of Escherichia coli O157:H7 by FRET Effect between Aminated Carbon Quantum Dots and Graphene Oxide. Anal. Sci. 2021, 37, 833–838. DOI: 10.2116/analsci.20P306.
  • Lee, H. N.; Ryu, J.-S.; Shin, C.; Chung, H. J. A Carbon-Dot-Based Fluorescent Nanosensor for Simple Visualization of Bacterial Nucleic Acids. Macromol. Biosci. 2017, 17, 1700086. DOI: 10.1002/mabi.201700086.
  • Chandra, S.; Mahto, T. K.; Chowdhuri, A. R.; Das, B.; Sahu, S. k. One Step Synthesis of Functionalized Carbon Dots for the Ultrasensitive Detection of Escherichia Coli and Iron (III). Sensors Actuators, B Chem. 2017, 245, 835–844. DOI: 10.1016/j.snb.2017.02.017.
  • Pangajam, A.; Theyagarajan, K.; Dinakaran, K. Highly Sensitive Electrochemical Detection of E. coli O157:H7 Using Conductive Carbon Dot/ZnO Nanorod/PANI Composite Electrode. Sens. Bio-Sensing Res. 2020, 29, 100317. DOI: 10.1016/j.sbsr.2019.100317.
  • Ye, W.; Guo, J.; Bao, X.; Chen, T.; Weng, W.; Chen, S.; Yang, M. Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs)-Based Electrochemical Biosensors. Materials (Basel) 2017, 10, 603. DOI: 10.3390/ma10060603.
  • Savas, S.; Altintas, Z. Graphene Quantum Dots as Nanozymes for Electrochemical Sensing of Yersinia Enterocolitica in Milk and Human Serum. Materials (Basel) 2019, 12, 2189. DOI: 10.3390/ma12132189.
  • Tufa, L. T.; Oh, S.; Tran, V. T.; Kim, J.; Jeong, K.-J.; Park, T. J.; Kim, H.-J.; Lee, J. Electrochemical Immunosensor Using Nanotriplex of Graphene Quantum Dots, Fe3O4, and Ag Nanoparticles for Tuberculosis. Electrochim. Acta 2018, 290, 369–377. DOI: 10.1016/j.electacta.2018.09.108.
  • García-Mendiola, T.; Bravo, I.; López-Moreno, J. M.; Pariente, F.; Wannemacher, R.; Weber, K.; Popp, J.; Lorenzo, E. Carbon Nanodots Based Biosensors for Gene Mutation Detection. Sensors Actuators B Chem. 2018, 256, 226–233. DOI: 10.1016/j.snb.2017.10.105.
  • Li, M.; Chen, T.; Gooding, J. J.; Liu, J. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens. 2019, 4, 1732–1748. DOI: 10.1021/acssensors.9b00514.
  • Chunduri, L. A. A.; Haleyurgirisetty, M. K.; Patnaik, S.; Bulagonda, P. E.; Kurdekar, A.; Liu, J.; Hewlett, I. K.; Kamisetti, V. Development of Carbon Dot Based Microplate and Microfluidic Chip Immunoassay for Rapid and Sensitive Detection of HIV-1 P24 Antigen. Microfluid. Nanofluidics 2016, 20, 167. DOI: 10.1007/s10404-016-1825-z.
  • Morales-Narváez, E.; Naghdi, T.; Zor, E.; Merkoçi, A. Photoluminescent Lateral-Flow Immunoassay Revealed by Graphene Oxide: Highly Sensitive Paper-Based Pathogen Detection. Anal. Chem. 2015, 87, 8573–8577. DOI: 10.1021/acs.analchem.5b02383.
  • Zor, E.; Morales-Narváez, E.; Alpaydin, S.; Bingol, H.; Ersoz, M.; Merkoçi, A. Graphene-Based Hybrid for Enantioselective Sensing Applications. Biosens. Bioelectron. 2017, 87, 410–416. DOI: 10.1016/j.bios.2016.08.074.
  • Morales-Narváez, E.; Pérez-López, B.; Pires, L. B.; Merkoçi, A. Simple Förster Resonance Energy Transfer Evidence for the Ultrahigh Quantum Dot Quenching Efficiency by Graphene Oxide Compared to Other Carbon Structures. Carbon N. Y. 2012, 50, 2987–2993. DOI: 10.1016/j.carbon.2012.02.081.
  • Ye, Y.-D.; Xia, L.; Xu, D.-D.; Xing, X.-J.; Pang, D.-W.; Tang, H.-W. DNA-Stabilized Silver Nanoclusters and Carbon Nanoparticles Oxide: A Sensitive Platform for Label-Free Fluorescence Turn-on Detection of HIV-DNA Sequences. Biosens. Bioelectron. 2016, 85, 837–843. DOI: 10.1016/j.bios.2016.06.001.
  • Yang, D.; Guo, Z.; Wang, J.; Jin, Y.; Mei, Q.; Miao, P. Carbon Nanodot–Based Fluorescent Method for Virus DNA Analysis with Isothermal Strand Displacement Amplification. Part. Part. Syst. Charact. 2019, 36, 1900273. DOI: 10.1002/ppsc.201900273.
  • Mollarasouli, F.; Zor, E.; Ozcelikay, G.; Ozkan, S. A. Magnetic Nanoparticles in Developing Electrochemical Sensors for Pharmaceutical and Biomedical Applications. Talanta 2021, 226, 122108. DOI: 10.1016/j.talanta.2021.122108.
  • Zarei-Ghobadi, M.; Mozhgani, S.-H.; Dashtestani, F.; Yadegari, A.; Hakimian, F.; Norouzi, M.; Ghourchian, H. A Genosensor for Detection of HTLV-I Based on Photoluminescence Quenching of Fluorescent Carbon Dots in Presence of Iron Magnetic Nanoparticle-Capped Au. Sci. Rep. 2018, 8, 15593. DOI: 10.1038/s41598-018-32756-w.
  • Achadu, O. J.; Takemura, K.; Khoris, I. M.; Park, E. Y. Plasmonic/Magnetic Molybdenum Trioxide and Graphitic Carbon Nitride Quantum Dots-Based Fluoroimmunosensing System for Influenza Virus. Sens Actuators B Chem. 2020, 321, 128494. DOI: 10.1016/j.snb.2020.128494.
  • Achadu, O. J.; Lioe, D. X.; Kagawa, K.; Kawahito, S.; Park, E. Y. Fluoroimmunoassay of Influenza Virus Using Sulfur-Doped Graphitic Carbon Nitride Quantum Dots Coupled with Ag2S Nanocrystals. Microchim. Acta 2020, 187, 3–5. DOI: 10.1007/s00604-020-04433-1.
  • Xu, L.-D.; Du, F.-L.; Zhu, J.; Ding, S.-N. Luminous Silica Colloids with Carbon Dot Incorporation for Sensitive Immunochromatographic Assay of Zika Virus. Analyst 2021, 146, 706–713. DOI: 10.1039/D0AN02017F.
  • Li, R. S.; Yuan, B.; Liu, J. H.; Liu, M. L.; Gao, P. F.; Li, Y. F.; Li, M.; Huang, C. Z. Boron and Nitrogen Co-Doped Single-Layered Graphene Quantum Dots: A High-Affinity Platform for Visualizing the Dynamic Invasion of HIV DNA into Living Cells through Fluorescence Resonance Energy Transfer. J. Mater. Chem. B 2017, 5, 8719–8724. DOI: 10.1039/C7TB02356A.
  • Xu, L.-D.; Zhang, Q.; Ding, S.-N.; Xu, J.-J.; Chen, H.-Y. Ultrasensitive Detection of Severe Fever with Thrombocytopenia Syndrome Virus Based on Immunofluorescent Carbon Dots/SiO2 Nanosphere-Based Lateral Flow Assay. ACS Omega 2019, 4, 21431–21438. DOI: 10.1021/acsomega.9b03130.
  • Nekoueian, K.; Amiri, M.; Sillanpää, M.; Marken, F.; Boukherroub, R.; Szunerits, S. Carbon-Based Quantum Particles: An Electroanalytical and Biomedical Perspective. Chem. Soc. Rev. 2019, 48, 4281–4316. DOI: 10.1039/C8CS00445E.
  • Wang, X.; Chen, L.; Su, X.; Ai, S. Electrochemical Immunosensor with Graphene Quantum Dots and Apoferritin-Encapsulated Cu Nanoparticles Double-Assisted Signal Amplification for Detection of Avian Leukosis Virus Subgroup J. Biosens. Bioelectron. 2013, 47, 171–177. DOI: 10.1016/j.bios.2013.03.021.
  • Valipour, A.; Roushani, M. Using Silver Nanoparticle and Thiol Graphene Quantum Dots Nanocomposite as a Substratum to Load Antibody for Detection of Hepatitis C Virus Core Antigen: Electrochemical Oxidation of Riboflavin Was Used as Redox Probe. Biosens. Bioelectron. 2017, 89, 946–951. DOI: 10.1016/j.bios.2016.09.086.
  • Yan, Q.; Yang, Y.; Tan, Z.; Liu, Q.; Liu, H.; Wang, P.; Chen, L.; Zhang, D.; Li, Y.; Dong, Y. A Label-Free Electrochemical Immunosensor Based on the Novel Signal Amplification System of AuPdCu Ternary Nanoparticles Functionalized Polymer Nanospheres. Biosens. Bioelectron. 2018, 103, 151–157. DOI: 10.1016/j.bios.2017.12.040.
  • Ghanbari, K.; Roushani, M.; Azadbakht, A. Ultra-Sensitive Aptasensor Based on a GQD Nanocomposite for Detection of Hepatitis C Virus Core Antigen. Anal. Biochem. 2017, 534, 64–69. DOI: 10.1016/j.ab.2017.07.016.
  • Xiang, Q.; Huang, J.; Huang, H.; Mao, W.; Ye, Z. A Label-Free Electrochemical Platform for the Highly Sensitive Detection of Hepatitis B Virus DNA Using Graphene Quantum Dots. RSC Adv. 2018, 8, 1820–1825. DOI: 10.1039/C7RA11945C.
  • Salimian, R.; Shahrokhian, S.; Panahi, S. Enhanced Electrochemical Activity of a Hollow Carbon Sphere/Polyaniline-Based Electrochemical Biosensor for HBV DNA Marker Detection. ACS Biomater. Sci. Eng. 2019, 5, 2587–2594. DOI: 10.1021/acsbiomaterials.8b01520.
  • Ahmed, S. R.; Mogus, J.; Chand, R.; Nagy, E.; Neethirajan, S. Optoelectronic Fowl Adenovirus Detection Based on Local Electric Field Enhancement on Graphene Quantum Dots and Gold Nanobundle Hybrid. Biosens. Bioelectron. 2018, 103, 45–53. DOI: 10.1016/j.bios.2017.12.028.
  • Chowdhury, A. D.; Takemura, K.; Li, T.-C.; Suzuki, T.; Park, E. Y. Electrical Pulse-Induced Electrochemical Biosensor for Hepatitis E Virus Detection. Nat. Commun. 2019, 10, 3737. DOI: 10.1038/s41467-019-11644-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.