1,123
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Progress in Nanomaterials-Based Enzyme and Aptamer Biosensor for the Detection of Organophosphorus Pesticides

, , , ORCID Icon, ORCID Icon &
Pages 247-268 | Published online: 12 May 2022

References

  • Andrade, N. A.; Centofanti, T.; McConnell, L. L.; Hapeman, C. J.; Torrents, A.; Nguyen, A.; Beyer, W. N.; Chaney, R. L.; Novak, J. M.; Anderson, M. O.; et al. Utilizing Thin-Film Solid-Phase Extraction to Assess the Effect of Organic Carbon Amendments on the Bioavailability of DDT and Dieldrin to Earthworms. Environ. Pollut. 2014, 185, 307–313. DOI: 10.1016/j.envpol.2013.11.008..
  • Beyer, W. N.; Gale, R. W. Persistence and Changes in Bioavailability of Dieldrin, DDE, and Heptachlor Epoxide in Earthworms Over 45 Years. Ambio 2013, 42, 83–89. DOI: 10.1007/s13280-012-0340-z.
  • Hioki, K.; Ito, Y.; Oya, N.; Nakayama, S. F.; Isobe, T.; Ebara, T.; Shibata, K.; Nishikawa, N.; Nakai, K.; Kamida, T.; et al. Intra-Individual Variations of Organophosphate Pesticide Metabolite Concentrations in Repeatedly Collected Urine Samples from Pregnant Women in Japan. Environ Health Prev. Med. 2019, 24, 7. DOI: 10.1186/s12199-019-0761-4.
  • Ghasemnejad-Berenji, M.; Nemati, M.; Pourheydar, B.; Gholizadeh, S.; Karimipour, M.; Mohebbi, I.; Jafari, A. Neurological Effects of Long-Term Exposure to Low Doses of Pesticides Mixtures in Male Rats: Biochemical, Histological, and Neurobehavioral Evaluations. Chemosphere 2021, 264, 128464. DOI: 10.1016/j.chemosphere.2020.128464.
  • Anco, D. J.; Thomas, J. S.; Wright, D. L.; Dufault, N. S.; Small, I. M. Sixty-One Years following Registration, Phorate Applied in-Furrow at Planting Suppresses Development of Late Leaf Spot on Peanut. Plant Dis. 2020, 104, 2885–2890. DOI: 10.1094/PDIS-03-20-0547-RE.
  • Soltani, S.; Sereshti, H.; Nouri, N. Deep Eutectic Solvent-Based Clean-up/Vortex-Assisted Emulsification Liquid-Liquid Microextraction: Application for Multi-Residue Analysis of 16 Pesticides in Olive Oils. Talanta 2021, 225, 121983. DOI: 10.1016/j.talanta.2020.121983.
  • Yuan, Y.; Han, Y.; Han, D.; Yang, C.; Yan, H. Ultrasound-Assisted Dispersive-Filter Extraction Coupled with High-Performance Liquid Chromatography: A Rapid Miniaturized Method for the Determination of Phenylurea Pesticides in Vegetables and Fruits. Food Control 2020, 118, 107417. DOI: 10.1016/j.foodcont.2020.107417.
  • Kiljanek, T.; Niewiadowska, A.; Semeniuk, S.; Gaweł, M.; Borzęcka, M.; Posyniak, A. Multi-Residue Method for the Determination of Pesticides and Pesticide Metabolites in Honeybees by Liquid and Gas Chromatography Coupled with Tandem Mass Spectrometry – Honeybee Poisoning Incidents. J. Chromatogr. A. 2016, 1435, 100–114. DOI: 10.1016/j.chroma.2016.01.045.
  • Lobato, A.; Pereira, E. A.; Gonçalves, L. M. Combining Capillary Electromigration with Molecular Imprinting Techniques Towards an Optimal Separation and Determination. Talanta 2021, 221, 121546. DOI: 10.1016/j.talanta.2020.121546.
  • Songa, E. A.; Okonkwo, J. O. Recent Approaches to Improving Selectivity and Sensitivity of Enzyme-Based Biosensors for Organophosphorus Pesticides: A Review. Talanta 2016, 155, 289–304. DOI: 10.1016/j.talanta.2016.04.046.
  • Arjmand, M.; Saghafifar, H.; Alijanianzadeh, M.; Soltanolkotabi, M. A Sensitive Tapered-Fiber Optic Biosensor for the Label-Free Detection of Organophosphate Pesticides. Sens. Actuat. B: Chem. 2017, 249, 523–532. DOI: 10.1016/j.snb.2017.04.121.
  • Hassani, S.; Momtaz, S.; Vakhshiteh, F.; Maghsoudi, A. S.; Ganjali, M. R.; Norouzi, P.; Abdollahi, M. Biosensors and Their Applications in Detection of Organophosphorus Pesticides in the Environment. Arch. Toxicol. 2017, 91, 109–130. DOI: 10.1007/s00204-016-1875-8.
  • Munyemana, J. C.; Chen, J.; Wei, X.; Ali, M. C.; Han, Y.; Qiu, H. Deep Eutectic Solvent-Assisted Facile Synthesis of Copper Hydroxide Nitrate Nanosheets as Recyclable Enzyme-Mimicking Colorimetric Sensor of Biothiols. Anal. Bioanal. Chem. 2020, 412, 4629–4638. DOI: 10.1007/s00216-020-02712-7.
  • Munyemana, J. C.; Chen, J.; Han, Y.; Zhang, S.; Qiu, H. A Review on Optical Sensors Based on Layered Double Hydroxides Nanoplatforms. Microchim. Acta 2021, 188, 80. DOI: 10.1007/s00604-021-04739-8.
  • Bala, R.; Kumar, M.; Bansal, K.; Sharma, R. K.; Wangoo, N. Ultrasensitive Aptamer Biosensor for Malathion Detection Based on Cationic Polymer and Gold Nanoparticles. Biosens. Bioelectron. 2016, 85, 445–449. DOI: 10.1016/j.bios.2016.05.042.
  • Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D. Nanomaterials in Electrochemical Biosensors for Pesticide Detection: Advances and Challenges in Food Analysis. Microchim. Acta 2016, 183, 2063–2083. DOI: 10.1007/s00604-016-1858-8.
  • Mahmoudpour, M.; Torbati, M.; Mousavi, M. M.; de la Guardia, M.; Ezzati Nazhad Dolatabadi, J. Nanomaterial-Based Molecularly Imprinted Polymers for Pesticides Detection: Recent Trends and Future Prospects. TrAC: Trends Anal. Chem. 2020, 129, 115943. DOI: 10.1016/j.trac.2020.115943.
  • Zhang, W.; Guo, Z.; Chen, Y.; Cao, Y. Nanomaterial Based Biosensors for Detection of Biomarkers of Exposure to OP Pesticides and Nerve Agents: A Review. Electroanalysis 2017, 29, 1206–1213. DOI: 10.1002/elan.201600748.
  • Chen, J.; Liu, J.; Chen, X.; Qiu, H. Recent Progress in Nanomaterial-Enhanced Fluorescence Polarization/Anisotropy Sensors. Chinese Chem. Lett. 2019, 30, 1575–1580. DOI: 10.1016/j.cclet.2019.06.005.
  • Hu, H.; Yang, L. Development of Enzymatic Electrochemical Biosensors for Organophosphorus Pesticide Detection. J. Environ. Sci. Health. B. 2021, 56, 168–180. DOI: 10.1080/03601234.2020.1853460.
  • Kaur, J.; Singh, P. K. Enzyme-Based Optical Biosensors for Organophosphate Class of Pesticide Detection. Phys. Chem. Chem. Phys. 2020, 22, 15105–15119. DOI: 10.1039/D0CP01647K.
  • Periasamy, A. P.; Umasankar, Y.; Chen, S. M. Nanomaterials – Acetylcholinesterase Enzyme Matrices for Organophosphorus Pesticides Electrochemical Sensors: A Review. Sensors (Basel) 2009, 9, 4034–4055. DOI: 10.3390/s90604034.
  • Xie, M.; Zhao, F.; Zhang, Y.; Xiong, Y.; Han, S. Recent Advances in Aptamer-Based Optical and Electrochemical Biosensors for Detection of Pesticides and Veterinary Drugs. Food Control. 2022, 131, 108399. DOI: 10.1016/j.foodcont.2021.108399.
  • Xiong, S.; Deng, Y.; Zhou, Y.; Gong, D.; Xu, Y.; Yang, L.; Chen, H.; Chen, L.; Song, T.; Luo, A.; et al. Current Progress in Biosensors for Organophosphorus Pesticides Based on Enzyme Functionalized Nanostructures: A Review. Anal. Methods. 2018, 10, 5468–5479. DOI: 10.1039/C8AY01851K.
  • Pundir, C. S.; Malik, A. Preety Bio-Sensing of Organophosphorus Pesticides: A Review. Biosens. Bioelectron. 2019, 140, 1–13. DOI: 10.1016/j.bios.2019.111348.
  • Mishra, A.; Kumar, J.; Melo, J. S. An Optical Microplate Biosensor for the Detection of Methyl Parathion Pesticide Using a Biohybrid of Sphingomonas Sp. Cells–Silica Nanoparticles. Biosens. Bioelectron. 2017, 87, 332–338. DOI: 10.1016/j.bios.2016.08.048.
  • Hagstrom, D.; Hirokawa, H.; Zhang, L.; Radic, Z.; Taylor, P.; Collins, E. M. S. Planarian Cholinesterase: In Vitro Characterization of an Evolutionarily Ancient Enzyme to Study Organophosphorus Pesticide Toxicity and Reactivation. Arch. Toxicol. 2017, 91, 2837–2847. DOI: 10.1007/s00204-016-1908-3.
  • Wu, J.; Lv, W.; Yang, Q.; Li, H.; Li, F. Label-Free Homogeneous Electrochemical Detection of MicroRNA Based on Target-Induced Anti-Shielding against the Catalytic Activity of Two-Dimension Nanozyme. Biosens. Bioelectron. 2021, 171, 112707. DOI: 10.1016/j.bios.2020.112707.
  • Chang, J.; Li, H.; Hou, T.; Li, F. Paper-Based Fluorescent Sensor for Rapid Naked-Eye Detection of Acetylcholinesterase Activity and Organophosphorus Pesticides with High Sensitivity and Selectivity. Biosens. Bioelectron. 2016, 86, 971–977. DOI: 10.1016/j.bios.2016.07.022.
  • Jiang, Y.; Zhang, X.; Pei, L.; Yue, S.; Ma, L.; Zhou, L.; Huang, Z.; He, Y.; Gao, J. Silver Nanoparticles Modified Two-Dimensional Transition Metal Carbides as Nanocarriers to Fabricate Acetycholinesterase-Based Electrochemical Biosensor. Chem. Eng. J. 2018, 339, 547–556. DOI: 10.1016/j.cej.2018.01.111.
  • Solé, S.; Merkoçi, A.; Alegret, S. Determination of Toxic Substances Based on Enzyme Inhibition. Part I. Electrochemical Biosensors for the Determination of Pesticides Using Batch Procedures. Crit. Rev. Anal. Chem. 2003, 33, 89–126. DOI: 10.1080/727072334.
  • Liu, M.; Wei, J.; Wang, Y.; Ouyang, H.; Fu, Z. Dopamine-Functionalized Upconversion Nanoparticles as Fluorescent Sensors for Organophosphorus Pesticide Analysis. Talanta 2019, 195, 706–712. DOI: 10.1016/j.talanta.2018.11.105.
  • Chen, J.; Wei, X.; Tang, H.; Ali, M. C.; Han, Y.; Li, Z.; Qiu, H. Highly Discriminative Fluorometric Sensor Based on Luminescent Covalent Organic Nanospheres for Tyrosinase Activity Monitoring and Inhibitor Screening. Sens. Actuat. B: Chem. 2020, 305, 127386. DOI: 10.1016/j.snb.2019.127386.
  • Wu, Y. X.; Kwon, Y. J. Aptamers: The “Evolution” of SELEX. Methods 2016, 106, 21–28. DOI: 10.1016/j.ymeth.2016.04.020.
  • Fan, C.; Wang, S.; Schanze, K.; Fernandez, L. E. Materials Applications of Aptamers. ACS Appl. Mater. Interfaces 2021, 13, 9289–9290. doi:10.1021/acsami.1c02475.
  • Yu, H.; Alkhamis, O.; Canoura, J.; Liu, Y.; Xiao, Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew. Chem. Int. Ed. 2021, 13, 9289–9290. DOI: 10.1021/acsami.1c02475.
  • Qu, H.; Csordas, A. T.; Wang, J.; Oh, S. S.; Eisenstein, M. S.; Soh, H. T. Rapid and Label-Free Strategy to Isolate Aptamers for Metal Ions. ACS Nano. 2016, 10, 7558–7565. DOI: 10.1021/acsnano.6b02558.
  • Zhang, B.; Zhang, H.; Zhong, M.; Wang, S.; Xu, Q.; Cho, D. H.; Qiu, H. A Novel off-on Fluorescent Probe for Specific Detection and Imaging of Cysteine in Live Cells and In Vivo. Chin. Chem. Lett. 2020, 31, 133–135. DOI: 10.1016/j.cclet.2019.05.061.
  • Chatterjee, B.; Kalyani, N.; Anand, A.; Khan, E.; Das, S.; Bansal, V.; Kumar, A.; Sharma, T. K. GOLD SELEX: A Novel SELEX Approach for the Development of High-Affinity Aptamers against Small Molecules without Residual Activity. Mikrochim. Acta. 2020, 187, 618. DOI: 10.1007/s00604-020-04577-0.
  • Wang, L.; Liu, X.; Zhang, Q.; Zhang, C.; Liu, Y.; Tu, K.; Tu, J. Selection of DNA Aptamers That Bind to Four Organophosphorus Pesticides. Biotechnol. Lett. 2012, 34, 869–874. DOI: 10.1007/s10529-012-0850-6.
  • Csordas, A. T.; Jørgensen, A.; Wang, J.; Gruber, E.; Gong, Q.; Bagley, E. R.; Nakamoto, M. A.; Eisenstein, M.; Soh, H. T. High-Throughput Discovery of Aptamers for Sandwich Assays. Anal. Chem. 2016, 88, 10842–10847. DOI: 10.1021/acs.analchem.6b03450.
  • Li, W.; Rong, Y.; Wang, J.; Li, T.; Wang, Z. MnO2 Switch-Bridged DNA Walker for Ultrasensitive Sensing of Cholinesterase Activity and Organophosphorus Pesticides. Biosens. Bioelectron. 2020, 169, 112605. DOI: 10.1016/j.bios.2020.112605.
  • Dou, X.; Chu, X.; Kong, W.; Luo, J.; Yang, M. A Gold-Based Nanobeacon Probe for Fluorescence Sensing of Organophosphorus Pesticides. Anal. Chim. Acta. 2015, 891, 291–297. DOI: 10.1016/j.aca.2015.08.012.
  • Zhang, H.; Han, Y.; Yang, Y.; Chen, J.; Qiu, H. Construction of a Carbon Dots/Cobalt Oxyhydroxide Nanoflakes Biosensing Platform for Detection of Acid Phosphatase. Langmuir 2021, 37, 10529–10537. DOI: 10.1021/acs.langmuir.1c01512.
  • Qing, Z.; Li, Y.; Li, Y.; Luo, G.; Hu, J.; Zou, Z.; Lei, Y.; Liu, J.; Yang, R. Thiol-Suppressed I2-Etching of AuNRs: Acetylcholinesterase-Mediated Colorimetric Detection of Organophosphorus Pesticides. Microchim. Acta 2020, 187, 1–9. DOI: 10.1007/s00604-020-04486-2.
  • He, L.; Jiang, Z. W.; Li, W.; Li, C. M.; Huang, C. Z.; Li, Y. F. In Situ Synthesis of Gold Nanoparticles/Metal–Organic Gels Hybrids with Excellent Peroxidase-Like Activity for Sensitive Chemiluminescence Detection of Organophosphorus Pesticides. ACS Appl. Mater. Interfaces 2018, 10, 28868–28876. DOI: 10.1021/acsami.8b08768.
  • Kan, M. X.; Wang, X. J.; Zhang, H. M. Detection of H2O2 at a Composite Film Modified Electrode with Highly Dispersed Ag Nanoparticles in Nafion. Chinese Chem. Lett. 2011, 22, 458–460. DOI: 10.1016/j.cclet.2010.12.009.
  • Zhang, P.; Sun, T.; Rong, S.; Zeng, D.; Yu, H.; Zhang, Z.; Chang, D.; Pan, H. A Sensitive Amperometric AChE-Biosensor for Organophosphate Pesticides Detection Based on Conjugated Polymer and Ag-RGO-NH2 Nanocomposite. Bioelectrochemistry 2019, 127, 163–170. DOI: 10.1016/j.bioelechem.2019.02.003.
  • He, Y.; Xu, B.; Li, W.; Yu, H. Silver Nanoparticle-Based Chemiluminescent Sensor Array for Pesticide Discrimination. J. Agric Food Chem. 2015, 63, 2930–2934. DOI: 10.1021/acs.jafc.5b00671.
  • Wu, Y.; Jiao, L.; Xu, W.; Gu, W.; Zhu, C.; Du, D.; Lin, Y. Polydopamine-Capped Bimetallic AuPt Hydrogels Enable Robust Biosensor for Organophosphorus Pesticide Detection. Small 2019, 15, 1900632. DOI: 10.1002/smll.201900632.
  • Chen, Q.; Sheng, R.; Wang, P.; Ouyang, Q.; Wang, A.; Ali, S.; Zareef, M.; Hassan, M. M. Ultra-Sensitive Detection of Malathion Residues Using FRET-Based Upconversion Fluorescence Sensor in Food. Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 2020, 241, 118654. DOI: 10.1016/j.saa.2020.118654.
  • Wang, P.; Wan, Y.; Ali, A.; Deng, S.; Su, Y.; Fan, C.; Yang, S. Aptamer-Wrapped Gold Nanoparticles for the Colorimetric Detection of Omethoate. Sci. China Chem. 2016, 59, 237–242. DOI: 10.1007/s11426-015-5488-5.
  • Qi, Y.; Xiu, F. R.; Zheng, M.; Li, B. A Simple and Rapid Chemiluminescence Aptasensor for Acetamiprid in Contaminated Samples: Sensitivity, Selectivity and Mechanism. Biosens. Bioelectron. 2016, 83, 243–249. DOI: 10.1016/j.bios.2016.04.074.
  • Weerathunge, P.; Behera, B. K.; Zihara, S.; Singh, M.; Prasad, S. N.; Hashmi, S.; Mariathomas, P. R. D.; Bansal, V.; Ramanathan, R. Dynamic Interactions between Peroxidase-Mimic Silver NanoZymes and Chlorpyrifos-Specific Aptamers Enable Highly-Specific Pesticide Sensing in River Water. Anal. Chim. Acta. 2019, 1083, 157–165. DOI: 10.1016/j.aca.2019.07.066.
  • Lu, Y.; Tan, Y.; Xiao, Y.; Li, Z.; Sheng, E.; Dai, Z. A Silver@Gold Nanoparticle Tetrahedron Biosensor for Multiple Pesticides Detection Based on Surface-Enhanced Raman Scattering. Talanta 2021, 234, 122585. DOI: 10.1016/j.talanta.2021.122585.
  • Huang, J.; Xiang, Y.; Li, J.; Kong, Q.; Zhai, H.; Xu, R.; Yang, F.; Sun, X.; Guo, Y. A Novel Electrochemiluminescence Aptasensor Based on Copper–Gold Bimetallic Nanoparticles and its Applications. Biosens. Bioelectron. 2021, 194, 113601. DOI: 10.1016/j.bios.2021.113601.
  • Mehmood, S.; Ciancio, R.; Carlino, E.; Bhatti, A. S. Role of Au(NPs) in the Enhanced Response of Au(NPs)-Decorated MWCNT Electrochemical Biosensor. Int. J. Nanomed. 2018, 13, 2093–2106. DOI: 10.2147/IJN.S155388.
  • Ichiji, M.; Akiba, H.; Hirasawa, I. Size Control of Au NPs Supported by PH Operation. J. Cryst. Growth 2017, 469, 168–171. DOI: 10.1016/j.jcrysgro.2016.09.044.
  • Wei, X.; Chen, J.; Ali, M. C.; Munyemana, J. C.; Qiu, H. Cadmium Cobaltite Nanosheets Synthesized in Basic Deep Eutectic Solvents with Oxidase-like, Peroxidase-like, and Catalase-like Activities and Application in the Colorimetric Assay of Glucose. Microchim. Acta 2020, 187, 1–9. DOI: 10.1007/s00604-020-04298-4.
  • Yan, X.; Li, H.; Su, X. Review of Optical Sensors for Pesticides. TrAC: Trends Anal. Chem. 2018, 103, 1–20. DOI: 10.1016/j.trac.2018.03.004.
  • Siregar, J.; Septiani, N. L. W.; Abrori, S. A.; Sebayang, K.; Irzaman; Fahmi, M. Z.; Humaidi, S.; Sembiring, T.; Sembiring, K.; Yuliarto, B. Review—A Pollutant Gas Sensor Based on Fe3O4 Nanostructures: A Review. J. Electrochem. Soc. 2021, 168, 027510. DOI: 10.1149/1945-7111/abd928.
  • Singh, A. P.; Balayan, S.; Hooda, V.; Sarin, R. K.; Chauhan, N. Nano-Interface Driven Electrochemical Sensor for Pesticides Detection Based on the Acetylcholinesterase Enzyme Inhibition. Int. J. Biol. Macromol. 2020, 164, 3943–3952. DOI: 10.1016/j.ijbiomac.2020.08.215.
  • Liang, X.; Han, L. White Peroxidase-Mimicking Nanozymes: Colorimetric Pesticide Assay without Interferences of O2 and Color. Adv. Funct. Mater. 2020, 30, 2001933. DOI: 10.1002/adfm.202001933.
  • Fan, K.; Yang, R.; Zhao, Y.; Zang, C.; Miao, X.; Qu, B.; Lu, L. A Fluorescent Aptasensor for Sensitive Detection of Isocarbophos Based on at-Rich Three-Way Junctions DNA Templated Copper Nanoparticles and Fe3O4@GO. Sens. Actuat. B: Chem. 2020, 321, 128515. DOI: 10.1016/j.snb.2020.128515.
  • Boruah, P. K.; Das, M. R. Dual Responsive Magnetic Fe3O4–TiO2/Graphene Nanocomposite as an Artificial Nanozyme for the Colorimetric Detection and Photodegradation of Pesticide in an Aqueous Medium. J. Hazard. Mater. 2020, 385, 1–17. DOI: 10.1016/j.jhazmat.2019.121516.
  • Fan, K.; Yang, R.; Zhao, Y.; Zang, C.; Miao, X.; Qu, B.; Lu, L. A Fluorescent Aptasensor for Sensitive Detection of Isocarbophos Based on at-Rich Three-Way Junctions DNA Templated Copper Nanoparticles and Fe3O4@GO. Sens. Actuat. B: Chem. 2020, 321, 1–8. DOI: 10.1016/j.snb.2020.128515.
  • Wang, L.; Huang, X.; Wang, C.; Tian, X.; Chang, X.; Ren, Y.; Yu, S. Applications of Surface Functionalized Fe3O4 NPs-Based Detection Methods in Food Safety. Food Chem. 2021, 342, 128343. DOI: 10.1016/j.foodchem.2020.128343.
  • Chen, Y. C.; Hsu, J. H.; Chen, Z. B.; Lin, Y. G.; Hsu, Y. K. Fabrication of Fe3O4 Nanotube Arrays for High-Performance Non-Enzymatic Detection of Glucose. J. Electroanal. Chem. 2017, 788, 144–149. DOI: 10.1016/j.jelechem.2017.02.007.
  • Zheng, M. Sorting Carbon Nanotubes. Top. Curr. Chem. 2017, 375, 1–36. DOI: 10.1007/s41061-016-0098-z.
  • Dai, W.; Wang, D. Cutting Methods and Perspectives of Carbon Nanotubes. J. Phys. Chem. C. 2021, 125, 9593–9617. DOI: 10.1021/acs.jpcc.1c01756.
  • Singh, R. S.; Chauhan, K.; Kennedy, J. F. A Panorama of Bacterial Inulinases: Production, Purification, Characterization and Industrial Applications. Int. J. Biol. Macromol. 2017, 96, 312–322. DOI: 10.1016/j.ijbiomac.2016.12.004.
  • Wang, G. J.; Cai, Y. P.; Ma, Y. J.; Tang, S. C.; Syed, J. A.; Cao, Z. H.; Meng, X. K. Ultrastrong and Stiff Carbon Nanotube/Aluminum-Copper Nanocomposite via Enhancing Friction between Carbon Nanotubes. Nano Lett. 2019, 19, 6255–6262. DOI: 10.1021/acs.nanolett.9b02332.
  • Thakkar, J. B.; Gupta, S.; Prabha, C. R. Acetylcholine Esterase Enzyme Doped Multiwalled Carbon Nanotubes for the Detection of Organophosphorus Pesticide Using Cyclic Voltammetry. Int. J. Biol. Macromol. 2019, 137, 895–903. DOI: 10.1016/j.ijbiomac.2019.06.162.
  • Xu, G.; Huo, D.; Hou, C.; Zhao, Y.; Bao, J.; Yang, M.; Fa, H. A Regenerative and Selective Electrochemical Aptasensor Based on Copper Oxide Nanoflowers-Single Walled Carbon Nanotubes Nanocomposite for Chlorpyrifos Detection. Talanta 2018, 178, 1046–1052. DOI: 10.1016/j.talanta.2017.08.086.
  • Lei, J.; Ju, H. Nanotubes in Biosensing. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 496–509. DOI: 10.1002/wnan.94.
  • Richard, C.; Balavoine, F.; Schultz, P.; Ebbesen, T. W.; Mioskowski, C. Supramolecular Self-Assembly of lipid derivatives on carbon nanotubes . Science 2003, 300, 775–778. DOI: 10.1126/science.1080848.
  • Arnold, M. S.; Guler, M. O.; Hersam, M. C.; Stupp, S. I. Encapsulation of Carbon Nanotubes by Self-Assembling Peptide Amphiphiles. Langmuir 2005, 21, 4705–4709. DOI: 10.1021/la0469452.
  • Zhang, H.; Zhang, H.; Aldalbahi, A.; Zuo, X.; Fan, C.; Mi, X. Fluorescent Biosensors Enabled by Graphene and Graphene Oxide. Biosens. Bioelectron. 2017, 89, 96–106. DOI: 10.1016/j.bios.2016.07.030.
  • Wang, H.; Hu, B.; Gao, Z.; Zhang, F.; Wang, J. Emerging Role of Graphene Oxide as Sorbent for Pesticides Adsorption: Experimental Observations Analyzed by Molecular Modeling. J. Mater. Sci. Technol. 2021, 63, 192–202. DOI: 10.1016/j.jmst.2020.02.033.
  • Chu, S.; Huang, W.; Shen, F.; Li, T.; Li, S.; Xu, W.; Lv, C.; Luo, Q.; Liu, J. Graphene Oxide-Based Colorimetric Detection of Organophosphorus Pesticides via a Multi-Enzyme Cascade Reaction . Nanoscale 2020, 12, 5829–5833. DOI: 10.1039/c9nr10862a.
  • Alfano, B.; Polichetti, T.; Miglietta, M. L.; Massera, E.; Schiattarella, C.; Ricciardella, F.; di Francia, G. Fully Eco-Friendly H2 Sensing Device Based on Pd-Decorated Graphene. Sens. Actuat. B: Chem. 2017, 239, 1144–1152. DOI: 10.1016/j.snb.2016.08.039.
  • Alfano, B.; Polichetti, T.; Mauriello, M.; Miglietta, M. L.; Ricciardella, F.; Massera, E.; di Francia, G. Modulating the Sensing Properties of Graphene through an Eco-Friendly Metal-Decoration Process. Sens. Actuat. B: Chem. 2016, 222, 1032–1042. DOI: 10.1016/j.snb.2015.09.008.
  • Bianco, G. V.; Sacchetti, A.; Ingrosso, C.; Giangregorio, M. M.; Losurdo, M.; Capezzuto, P.; Bruno, G. Engineering Graphene Properties by Modulated Plasma Treatments. Carbon 2018, 129, 869–877. DOI: 10.1016/j.carbon.2017.11.015.
  • Wang, R.; Guo, W.; Li, X.; Liu, Z.; Liu, H.; Ding, S. Microfluidic Generation of 3D Graphene Microspheres for High-Efficiency Adsorption. J. Mater. Sci. 2017, 52, 13930–13939. DOI: 10.1007/s10853-017-1487-6.
  • Bao, J.; Huang, T.; Wang, Z.; Yang, H.; Geng, X.; Xu, G.; Samalo, M.; Sakinati, M.; Huo, D.; Hou, C. 3D Graphene/Copper Oxide Nano-Flowers Based Acetylcholinesterase Biosensor for Sensitive Detection of Organophosphate Pesticides. Sens. Actuat. B: Chem. 2019, 279, 95–101. DOI: 10.1016/j.snb.2018.09.118.
  • Fu, J.; An, X.; Yao, Y.; Guo, Y.; Sun, X. Electrochemical Aptasensor Based on One Step Co-Electrodeposition of Aptamer and GO-CuNPs Nanocomposite for Organophosphorus Pesticide Detection. Sens. Actuat. B: Chem. 2019, 287, 503–509. DOI: 10.1016/j.snb.2019.02.057.
  • Sun, L.; Wang, G.; Hao, R.; Han, D.; Cao, S. Solvothermal Fabrication and Enhanced Visible Light Photocatalytic Activity of Cu2O-Reduced Graphene Oxide Composite Microspheres for Photodegradation of Rhodamine B. Appl. Surf. Sci. 2015, 358, 91–99. DOI: 10.1016/j.apsusc.2015.08.128.
  • Li, Q.; Hai, P. Rapid Microwave-Assisted Synthesis of Silver Decorated-Reduced Graphene Oxide Nanoparticles with Enhanced Photocatalytic Activity under Visible Light. Mater. Sci. Semicond. Process 2014, 22, 16–20. DOI: 10.1016/j.mssp.2014.02.013.
  • Xiong, J.; Li, S.; Li, Y.; Chen, Y.; Liu, Y.; Gan, J.; Ju, J.; Xian, Y.; Xiong, X. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food. Chem. Res. Chin. Univ. 2020, 36, 787–794. DOI: 10.1007/s40242-019-9257-4.
  • Xie, H.; Dong, J.; Duan, J.; Hou, J.; Ai, S.; Li, X. Magnetic Nanoparticles-Based Immunoassay for Aflatoxin B1 Using Porous g-C3N4 Nanosheets as Fluorescence Probes. Sens. Actuat. B: Chem. 2019, 278, 147–152. DOI: 10.1016/j.snb.2018.09.089.
  • Shen, C.; Chen, C.; Wen, T.; Zhao, Z.; Wang, X.; Xu, A. Superior Adsorption Capacity of g-C3N4 for Heavy Metal Ions from Aqueous Solutions. J. Colloid Interface Sci. 2015, 456, 7–14. DOI: 10.1016/j.jcis.2015.06.004.
  • Zhao, X. F.; Panda, P. K.; Singh, D.; Yang, X. Y.; Mishra, Y. K.; Ahuja, R. 2D G-C3N4 Monolayer for Amino Acids Sequencing. Appl. Surf. Sci. 2020, 528, 146609. DOI: 10.1016/j.apsusc.2020.146609.
  • Kang, S.; Fang, Z.; He, M.; Chen, M.; Gao, Y.; Sun, D.; Liu, Y.; Chen, M.; Dong, M.; Liu, P.; et al. An Instant, Biocompatible and Biodegradable High-Performance Graphitic Carbon Nitride. J. Colloid Interface Sci. 2020, 563, 336–346. DOI: 10.1016/j.jcis.2019.12.021.
  • Zhang, X.; Jiang, S. P.; Yang, P. Bright and Tunable Photoluminescence from the Assembly of Red g-C3N4 Nanosheets. J. Lumin. 2021, 235, 118055. DOI: 10.1016/j.jlumin.2021.118055.
  • Zheng, M.; Xie, Z.; Qu, D.; Li, D.; Du, P.; Jing, X.; Sun, Z. On–Off–On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Appl. Mater. Interfaces 2013, 5, 13242–13247. DOI: 10.1021/am4042355.
  • Xie, H.; Bei, F.; Hou, J.; Ai, S. A Highly Sensitive Dual-Signaling Assay via Inner Filter Effect between g-C3N4 and Gold Nanoparticles for Organophosphorus Pesticides. Sens. Actuat. B: Chem. 2018, 255, 2232–2239. DOI: 10.1016/j.snb.2017.09.024.
  • Chen, Y.; Zhu, Y.; Zhao, Y.; Wang, J. Fluorescent and Colorimetric Dual-Response Sensor Based on Copper (II)-Decorated Graphitic Carbon Nitride Nanosheets for Detection of Toxic Organophosphorus. Food Chem. 2021, 345, 128560. DOI: 10.1016/j.foodchem.2020.128560.
  • Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal Organic Frameworks (MOFs) and Ultrasound: A Review. Ultrason. Sonochem. 2019, 52, 106–119.
  • He, H.; Li, R.; Yang, Z.; Chai, L.; Jin, L.; Alhassan, S. I.; Ren, L.; Wang, H.; Huang, L. Preparation of MOFs and MOFs Derived Materials and Their Catalytic Application in Air Pollution: A Review. Catal. Today 2021, 375, 10–29. DOI: 10.1016/j.cattod.2020.02.033.
  • Gao, C.; Zhu, H.; Chen, J.; Qiu, H. Facile Synthesis of Enzyme Functional Metal–Organic Framework for Colorimetric Detecting H2O2 and Ascorbic Acid. Chinese Chem. Lett. 2017, 28, 1006–1012. DOI: 10.1016/j.cclet.2017.02.011.
  • Ma, L.; He, Y.; Wang, Y.; Wang, Y.; Li, R.; Huang, Z.; Jiang, Y.; Gao, J. Nanocomposites of Pt Nanoparticles Anchored on UiO66–NH2 as Carriers to Construct Acetylcholinesterase Biosensors for Organophosphorus Pesticide Detection. Electrochim. Acta 2019, 318, 525–533. DOI: 10.1016/j.electacta.2019.06.110.
  • Dong, S.; Peng, L.; Wei, W.; Huang, T. Three MOF-Templated Carbon Nanocomposites for Potential Platforms of Enzyme Immobilization with Improved Electrochemical Performance. ACS Appl Mater Interfaces 2018, 10, 14665–14672. DOI: 10.1021/acsami.8b00702.
  • Bagheri, N.; Khataee, A.; Hassanzadeh, J.; Habibi, B. Sensitive Biosensing of Organophosphate Pesticides Using Enzyme Mimics of Magnetic ZIF-8. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2019, 209, 118–125. DOI: 10.1016/j.saa.2018.10.039.
  • Lv, M.; Zhou, W.; Tavakoli, H.; Bautista, C.; Xia, J.; Wang, Z.; Li, X. J. Aptamer-Functionalized Metal–Organic Frameworks (MOFs) for Biosensing. Biosens. Bioelectron. 2021, 176, 112947. DOI: 10.1016/j.bios.2020.112947.
  • Liu, Q.; He, Z.; Wang, H.; Feng, X.; Han, P. Magnetically Controlled Colorimetric Aptasensor for Chlorpyrifos Based on Copper-Based Metal–Organic Framework Nanoparticles with Peroxidase Mimetic Property. Microchim. Acta 2020, 187, 1–9. DOI: 10.1007/s00604-020-04499-x.
  • Zhou, W.; Coleman, J. J. Semiconductor Quantum Dots. Curr. Opin. Solid State Mater. Sci. 2016, 20, 352–360. DOI: 10.1016/j.cossms.2016.06.006.
  • Drbohlavova, J.; Adam, V.; Kizek, R.; Hubalek, J. Quantum Dots – Characterization, Preparation and Usage in Biological Systems. IJMS. 2009, 10, 656–673. DOI: 10.3390/ijms10020656.
  • Li, H.; Su, D.; Gao, H.; Yan, X.; Kong, D.; Jin, R.; Liu, X.; Wang, C.; Lu, G. Design of Red Emissive Carbon Dots: Robust Performance for Analytical Applications in Pesticide Monitoring. Anal. Chem. 2020, 92, 3198–3205. DOI: 10.1021/acs.analchem.9b04917.
  • Hou, J.; Dong, J.; Zhu, H.; Teng, X.; Ai, S.; Mang, M. A Simple and Sensitive Fluorescent Sensor for Methyl Parathion Based on l-Tyrosine Methyl Ester Functionalized Carbon Dots. Biosens. Bioelectron. 2015, 68, 20–26. DOI: 10.1016/j.bios.2014.12.037.
  • Wang, J.; Wu, Y.; Zhou, P.; Yang, W.; Tao, H.; Qiu, S.; Feng, C. A Novel Fluorescent Aptasensor for Ultrasensitive and Selective Detection of Acetamiprid Pesticide Based on the Inner Filter Effect between Gold Nanoparticles and Carbon Dots. Analyst 2018, 143, 5151–5160. DOI: 10.1039/c8an01166d.
  • Korram, J.; Dewangan, L.; Karbhal, I.; Nagwanshi, R.; Vaishanav, S. K.; Ghosh, K. K.; Satnami, M. L. CdTe QD-Based Inhibition and Reactivation Assay of Acetylcholinesterase for the Detection of Organophosphorus Pesticides. RSC Adv. 2020, 10, 24190–24202. DOI: 10.1039/D0RA03055D.
  • Meng, X.; Wei, J.; Ren, X.; Ren, J.; Tang, F. A Simple and Sensitive Fluorescence Biosensor for Detection of Organophosphorus Pesticides Using H2O2-Sensitive Quantum Dots/Bi-Enzyme. Biosens. Bioelectron. 2013, 47, 402–407. DOI: 10.1016/j.bios.2013.03.053.
  • He, Y.; Hu, F.; Zhao, J.; Yang, G.; Zhang, Y.; Chen, S.; Yuan, R. Bifunctional Moderator-Powered Ratiometric Electrochemiluminescence Enzymatic Biosensors for Detecting Organophosphorus Pesticides Based on Dual-Signal Combined Nanoprobes. Anal. Chem. 2021, 93, 8783–8790. DOI: 10.1021/acs.analchem.1c00179.
  • Arvand, M.; Mirroshandel, A. A. An Efficient Fluorescence Resonance Energy Transfer System from Quantum Dots to Graphene Oxide Nano Sheets: Application in a Photoluminescence Aptasensing Probe for the Sensitive Detection of Diazinon. Food Chem. 2019, 280, 115–122. DOI: 10.1016/j.foodchem.2018.12.069.
  • Wu, Q.; Chen, H.; Fang, A.; Wu, X.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Universal Multifunctional Nanoplatform Based on Target-Induced In Situ Promoting Au Seeds Growth to Quench Fluorescence of Upconversion Nanoparticles. ACS Sens. 2017, 2, 1805–1813. DOI: 10.1021/acssensors.7b00616.
  • Lin, X.; Yu, Q.; Yang, W.; He, C.; Zhou, Y.; Duan, N.; Wu, S. Double-Enzymes-Mediated Fluorescent Assay for Sensitive Determination of Organophosphorus Pesticides Based on the Quenching of Upconversion Nanoparticles by Fe3+. Food Chem. 2021, 345, 128809. DOI: 10.1016/j.foodchem.2020.128809.
  • Rong, Y.; Li, H.; Ouyang, Q.; Ali, S.; Chen, Q. Rapid and Sensitive Detection of Diazinon in Food Based on the FRET between Rare-Earth Doped Upconversion Nanoparticles and Graphene Oxide. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc 2020, 239, 118500. DOI: 10.1016/j.saa.2020.118500.
  • Cheng, N.; Song, Y.; Fu, Q.; Du, D.; Luo, Y.; Wang, Y.; Xu, W.; Lin, Y. Aptasensor Based on Fluorophore-Quencher Nano-Pair and Smartphone Spectrum Reader for On-Site Quantification of Multi-Pesticides. Biosens. Bioelectron. 2018, 117, 75–83. DOI: 10.1016/j.bios.2018.06.002.
  • Jin, R.; Wang, F.; Li, Q.; Yan, X.; Liu, M.; Chen, Y.; Zhou, W.; Gao, H.; Sun, P.; Lu, G. Construction of Multienzyme-Hydrogel Sensor with Smartphone Detector for On-Site Monitoring of Organophosphorus Pesticide. Sens. Actuat. B: Chem. 2021, 327, 128922. DOI: 10.1016/j.snb.2020.128922.
  • Montali, L.; Calabretta, M. M.; Lopreside, A.; D'Elia, M.; Guardigli, M.; Michelini, E. Multienzyme Chemiluminescent Foldable Biosensor for On-Site Detection of Acetylcholinesterase Inhibitors. Biosens. Bioelectron. 2020, 162, 112232. DOI: 10.1016/j.bios.2020.112232.
  • Jin, R.; Kong, D.; Yan, X.; Zhao, X.; Li, H.; Liu, F.; Sun, P.; Lin, Y.; Lu, G. Integrating Target-Responsive Hydrogels with Smartphone for On-Site Ppb-Level Quantitation of Organophosphate Pesticides. ACS Appl. Mater. Interfaces 2019, 11, 27605–27614. DOI: 10.1021/acsami.9b09849.
  • Zhao, F.; He, J.; Li, X.; Bai, Y.; Ying, Y.; Ping, J. Smart Plant-Wearable Biosensor for In-Situ Pesticide Analysis. Biosens. Bioelectron. 2020, 170, 112636. DOI: 10.1016/j.bios.2020.112636.
  • Nouanthavong, S.; Nacapricha, D.; Henry, C. S.; Sameenoi, Y. Pesticide Analysis Using Nanoceria-Coated Paper-Based Devices as a Detection Platform. Analyst 2016, 141, 1837–1846. DOI: 10.1039/c5an02403j.
  • Wang, Q.; Yin, Q.; Fan, Y.; Zhang, L.; Xu, Y.; Hu, O.; Guo, X.; Shi, Q.; Fu, H.; She, Y. Double Quantum Dots-Nanoporphyrin Fluorescence-Visualized Paper-Based Sensors for Detecting Organophosphorus Pesticides. Talanta 2019, 199, 46–53. DOI: 10.1016/j.talanta.2019.02.023.
  • Hua, Q. T.; Ruecha, N.; Hiruta, Y.; Citterio, D. Disposable Electrochemical Biosensor Based on Surface-Modified Screen-Printed Electrodes for Organophosphorus Pesticide Analysis. Anal. Methods 2019, 11, 3439–3445. DOI: 10.1039/c9ay00852g.
  • Ibáñez, D.; González-García, M. B.; Hernández-Santos, D.; Fanjul-Bolado, P. Detection of Dithiocarbamate, Chloronicotinyl and Organophosphate Pesticides by Electrochemical Activation of SERS Features of Screen-Printed Electrodes. Spectrochim. Acta: Part A: Mol. Biomol. Spectrosc. 2021, 248, 119174. DOI: 10.1016/j.saa.2020.119174.
  • Tang, W.; Yang, J.; Wang, F.; Wang, J.; Li, Z. Thiocholine-Triggered Reaction in Personal Glucose Meters for Portable Quantitative Detection of Organophosphorus Pesticide. Anal. Chim. Acta. 2019, 1060, 97–102. DOI: 10.1016/j.aca.2019.01.051.
  • Meng, X.; Schultz, C. W.; Cui, C.; Li, X.; Yu, H. Z. On-Site Chip-Based Colorimetric Quantitation of Organophosphorus Pesticides Using an Office Scanner. Sens. Actuat. B: Chem. 2015, 215, 577–583. DOI: 10.1016/j.snb.2015.04.011.
  • Li, C.; Zhang, G.; Wu, S.; Zhang, Q. Aptamer-Based Microcantilever-Array Biosensor for Profenofos Detection. Anal. Chim. Acta. 2018, 1020, 116–122. DOI: 10.1016/j.aca.2018.02.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.