538
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review

, , , , &
Pages 269-314 | Published online: 16 May 2022

References

  • Drugs. Drug Definition. https://www.drugs.com/.
  • Drugs. https://www.dictionary.com/browse/drug.
  • Mahoney, A.; Evans, J. Comparing Drug Classification Systems. AMIA Annual Symposium Proceedings. AMIA Symposium, 2008:1039.
  • Bard, A. J.; Faulkner, L. R. Fundamentals and Applications. Electrochem. Methods 2001, 2, 580.
  • Amiri-Aref, M.; Raoof, J. B.; Ojani, R. Electrocatalytic Oxidation and Selective Determination of an Opioid Analgesic Methadone in the Presence of Acetaminophen at a Glassy Carbon Electrode Modified with Functionalized Multi-Walled Carbon Nanotubes: Application for Human Urine, Saliva and Pharmaceutical Samples Analysis. Colloids Surf. B Biointerfaces 2013, 109, 287–293. DOI: 10.1016/j.colsurfb.2013.03.055.
  • Laviron, E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. J. Electroanal. Chem. Interfacial Electrochem 1979, 101, 19–28. DOI: 10.1016/S0022-0728(79)80075-3.
  • Durst, R. A. Chemically Modified Electrodes: Recommended Terminology and Definitions (IUPAC Recommendations 1997). Pure Appl. Chem. 1997, 69, 1317–1324. DOI: 10.1351/pac199769061317.
  • Zen, J. M.; Kumar, A. S.; Tsai, D. M. Recent Updates of Chemically Modified Electrodes in Analytical Chemistry. Electroanalysis 2003, 15, 1073–1087. DOI: 10.1002/elan.200390130.
  • Sajid, M.; Nazal, M. K.; Mansha, M.; Alsharaa, A.; Jillani, S. M. S.; Basheer, C. Chemically Modified Electrodes for Electrochemical Detection of Dopamine in the Presence of Uric Acid and Ascorbic Acid: A Review. Trac-Trends Anal. Chem. 2016, 76, 15–29. DOI: 10.1016/j.trac.2015.09.006.
  • Sajid, M.; Baig, N.; Alhooshani, K. Chemically Modified Electrodes for Electrochemical Detection of Dopamine: Challenges and Opportunities. Trac-Trends Anal. Chem. 2019, 118, 368–385. DOI: 10.1016/j.trac.2019.05.042.
  • Dou, N. N.; Zhang, S. Y.; Qu, J. Y. Simultaneous Detection of Acetaminophen and 4-Aminophenol with an Electrochemical Sensor Based on Silver-Palladium Bimetal Nanoparticles and Reduced Graphene Oxide. RSC Adv. 2019, 9, 31440–31446. DOI: 10.1039/C9RA05987C.
  • Zhang, D. P.; Qian, J. J.; Yi, Y. H.; Kingsford, O. J.; Zhu, G. B. Nitrogen-Doped Hollow Carbon Nanospheres Wrapped with MoS2 Nanosheets for Simultaneous Electrochemical Determination of Acetaminophen and 4-Aminophenol. Electroanal. Chem. 2019, 847, 113229. DOI: 10.1016/j.jelechem.2019.113229.
  • Wang, L.; Meng, T. J.; Fan, Y. W.; Chen, C. X.; Guo, Z. W.; Wang, H.; Zhang, Y. F. Electrochemical Study of Acetaminophen Oxidation by Gold Nanoparticles Supported on a Leaf-like Zeolitic Imidazolate Framework. J. Colloid Interface Sci. 2018, 524, 1–7. DOI: 10.1016/j.jcis.2018.04.009.
  • Khoshhesab, Z. M. Simultaneous Electrochemical Determination of Acetaminophen, Caffeine and Ascorbic Acid Using a New Electrochemical Sensor Based on CuO-Graphene Nanocomposite. RSC Adv. 2015, 5, 95140–95148. DOI: 10.1039/C5RA14138A.
  • Fernandes, D. M.; Silva, N.; Pereira, C.; Moura, C.; Magalhaes, J. M. C. S.; Bachiller-Baeza, B.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A.; Delerue-Matos, C.; Freire, C. MnFe2O4@CNT-N as Novel Electrochemical Nanosensor for Determination of Caffeine, Acetaminophen and Ascorbic Acid. Sens. Actuat. B-Chem. 2015, 218, 128–136. DOI: 10.1016/j.snb.2015.05.003.
  • Ensafi, A. A.; Ahmadi, N.; Rezaei, B.; Abarghoui, M. M. A New Electrochemical Sensor for the Simultaneous Determination of Acetaminophen and Codeine Based on Porous Silicon/Palladium Nanostructure. Talanta 2015, 134, 745–753. DOI: 10.1016/j.talanta.2014.12.028.
  • Santos, A. M.; Vicentini, F. C.; Deroco, P. B.; Rocha, R. C.; Fatibello, O. Square-Wave Voltammetric Determination of Paracetamol and Codeine in Pharmaceutical and Human Body Fluid Samples Using a Cathodically Pretreated Boron-Doped Diamond Electrode. J. Braz. Chem. Soc. 2015, 26, 2159. DOI: 10.5935/0103-5053.20150203.
  • Afkhami, A.; Khoshsafar, H.; Bagheri, H.; Madrakian, T. Facile Simultaneous Electrochemical Determination of Codeine and Acetaminophen in Pharmaceutical Samples and Biological Fluids by Graphene CoFe2O4 Nancomposite Modified Carbon Paste Electrode. Sensors Actuat. B Chem. 2014, 203, 909–918. DOI: 10.1016/j.snb.2014.07.031.
  • Mashhadizadeh, M. H.; Rasouli, F. Design of a New Carbon Paste Electrode Modified with TiO2 Nanoparticles to Use in an Electrochemical Study of Codeine and Simultaneous Determination of Codeine and Acetaminophen in Human Plasma Serum Samples. Electroanalysis 2014, 26, 2033–2042. DOI: 10.1002/elan.201400141.
  • Garazhian, E.; Shishehbore, M. R. A New Sensitive Sensor for Simultaneous Differential Pulse Voltammetric Determination of Codeine and Acetaminophen Using a Hydroquinone Derivative and Multiwall Carbon Nanotubes Carbon Paste Electrode. Int. J. Anal. Chem. 2015, 2015, 1–11. DOI: 10.1155/2015/783157.
  • Hasanpour, F.; Taei, M.; Tahmasebi, S. Ultra-Sensitive Electrochemical Sensing of Acetaminophen and Codeine in Biological Fluids Using CuO/CuFe2O4 Nanoparticles as a Novel Electrocatalyst. J. Food Drug Anal. 2018, 26, 879–886. DOI: 10.1016/j.jfda.2017.10.001.
  • Santos, A. M.; Silva, T. A.; Vicentini, F. C.; Fatibello, O. Flow Injection Analysis System with Electrochemical Detection for the Simultaneous Determination of Nanomolar Levels of Acetaminophen and Codeine. Arabian J. Chem. 2020, 13, 335–345. DOI: 10.1016/j.arabjc.2017.04.012.
  • Bahadori, H.; Majidi, M. R.; Alipour, E. An Electrochemical Sensor for Simultaneous Determination of Some Pharmaceutical Compounds Using Ionic Liquid and Pd Nanoparticles Supported on Porous Silicon Doped Carbon-Ceramic Electrode as a Renewable Surface Composite Electrode. Microchem. J. 2021, 161, 105724. DOI: 10.1016/j.microc.2020.105724.
  • Yao, W. Q.; Guo, H.; Liu, H.; Li, Q.; Xue, R.; Wu, N.; Li, L.; Wang, M. Y.; Yang, W. Simultaneous Electrochemical Determination of Acetaminophen and Dopamine Based on Metal-Organic Framework/Multiwalled Carbon Nanotubes-Au@Ag Nanocomposites. J. Electrochem. Soc. 2019, 166, B1258–B1267. DOI: 10.1149/2.0101914jes.
  • Liu, X. Y.; Shangguan, E.; Li, J.; Ning, S. S.; Guo, L. T.; Li, Q. M. A Novel Electrochemical Sensor Based on FeS Anchored Reduced Graphene Oxide Nanosheets for Simultaneous Determination of Dopamine and Acetaminophen. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 628–636. DOI: 10.1016/j.msec.2016.09.034.
  • Beitollahi, H.; Sheikhshoaie, I. Novel Nanostructure-Based Electrochemical Sensor for Simultaneous Determination of Dopamine and Acetaminophen. Mater. Sci. Eng. C-Mater. Biol. Appl. 2012, 32, 375–380. DOI: 10.1016/j.msec.2011.11.009.
  • Lotfi, S.; Veisi, H. Pd Nanoparticles Decorated Poly-Methyldopa@GO/Fe3O4 Nanocomposite Modified Glassy Carbon Electrode as a New Electrochemical Sensor for Simultaneous Determination of Acetaminophen and Phenylephrine. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110112. DOI: 10.1016/j.msec.2019.110112.
  • Biswas, S.; Naskar, H.; Pradhan, S.; Chen, Y. L.; Wang, Y.; Bandyopadhyay, R.; Pramanik, P. Sm2O3 Nanorod-Modified Graphite Paste Electrode for Trace Level Voltammetric Determination of Acetaminophen and Ciprofloxacin. New J. Chem. 2020, 44, 1921–1930. DOI: 10.1039/C9NJ04446A.
  • Kingsley, M. P.; Kalambate, P. K.; Srivastava, A. K. Simultaneous Determination of Ciprofloxacin and Paracetamol by Adsorptive Stripping Voltammetry Using Copper Zinc Ferrite Nanoparticles Modified Carbon Paste Electrode. RSC Adv. 2016, 6, 15101–15111. DOI: 10.1039/C5RA19861E.
  • Santos, A. M.; Wong, A.; Almeida, A. A.; Fatibello, O. Simultaneous Determination of Paracetamol and Ciprofloxacin in Biological Fluid Samples Using a Glassy Carbon Electrode Modified with Graphene Oxide and Nickel Oxide Nanoparticles. Talanta 2017, 174, 610–618. DOI: 10.1016/j.talanta.2017.06.040.
  • Pollap, A.; Baran, K.; Kuszewska, N.; Kochana, J. Electrochemical Sensing of Ciprofloxacin and Paracetamol in Environmental Water Using Titanium Sol Based Sensor. Electroanal. Chem. 2020, 878, 114574. DOI: 10.1016/j.jelechem.2020.114574.
  • Bonyadi, S.; Ghanbari, K.; Ghiasi, M. All-Electrochemical Synthesis of a Three-Dimensional Mesoporous Polymeric g-C3N4/PANI/CdO Nanocomposite and Its Application as a Novel Sensor for the Simultaneous Determination of Epinephrine, Paracetamol, Mefenamic Acid, and Ciprofloxacin. New J. Chem. 2020, 44, 3412–3424. DOI: 10.1039/C9NJ05954G.
  • Wester, N.; Etula, J.; Lilius, T.; Sainio, S.; Laurila, T.; Koskinen, J. Selective Detection of Morphine in the Presence of Paracetamol with Anodically Pretreated Dual Layer Ti/Tetrahedral Amorphous Carbon Electrodes. Electrochem. Commun. 2018, 86, 166–170. DOI: 10.1016/j.elecom.2017.12.014.
  • Yuan, S.; Bo, X. J.; Guo, L. P. In-Situ Insertion of Multi-Walled Carbon Nanotubes in the Fe3O4/N/C Composite Derived from Iron-Based Metal-Organic Frameworks as a Catalyst for Effective Sensing Acetaminophen and Metronidazole. Talanta 2019, 193, 100–109. DOI: 10.1016/j.talanta.2018.09.065.
  • Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A. A. A Sensitive Nanocomposite-Based Electrochemical Sensor for Voltammetric Simultaneous Determination of Isoproterenol, Acetaminophen and Tryptophan. Measurement 2014, 51, 91–99. DOI: 10.1016/j.measurement.2014.01.028.
  • Atta, N. F.; Galal, A.; Ahmed, Y. M.; El-Ads, E. H. Design Strategy and Preparation of a Conductive Layered Electrochemical Sensor for Simultaneous Determination of Ascorbic Acid, Dobutamine, Acetaminophen and Amlodipine. Sens. Actuators, B 2019, 297, 126648. DOI: 10.1016/j.snb.2019.126648.
  • Karimi-Maleh, H.; Ganjali, M. R.; Norouzi, P.; Bananezhad, A. Amplified Nanostructure Electrochemical Sensor for Simultaneous Determination of Captopril, Acetaminophen, Tyrosine and Hydrochlorothiazide. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 73, 472–477. DOI: 10.1016/j.msec.2016.12.094.
  • Moraes, J. T.; Salamanca-Neto, C. A. R.; Svorc, L.; Sartori, E. R. Advanced Sensing Performance towards Simultaneous Determination of Quaternary Mixture of Antihypertensives Using Boron-Doped Diamond Electrode. Microchem. J. 2017, 134, 173–180. DOI: 10.1016/j.microc.2017.06.001.
  • Khorshed, A. A.; Khairy, M.; Banks, C. E. Electrochemical Determination of Antihypertensive Drugs by Employing Costless and Portable Unmodified Screen-Printed Electrodes. Talanta 2019, 198, 447–456. DOI: 10.1016/j.talanta.2019.01.117.
  • Pereira, P. F.; da Silva, W. P.; Marra, M. C.; Munoz, R. A. A.; Richter, E. M. A High-Throughput BIA-MPA Method for the Simultaneous Determination of Amiloride and Furosemide. Anal. Methods 2016, 8, 7959–7965. DOI: 10.1039/C6AY02506D.
  • Khoobi, A.; Ghoreishi, S. M.; Masoum, S.; Behpour, M. Multivariate Curve Resolution-Alternating Least Squares Assisted by Voltammetry for Simultaneous Determination of Betaxolol and Atenolol Using Carbon Nanotube Paste Electrode. Bioelectrochemistry 2013, 94, 100–107. DOI: 10.1016/j.bioelechem.2013.04.002.
  • Moraes, J. T.; Eisele, A. P. P.; Salamanca-Neto, C. A. R.; Scremin, J.; Sartori, E. R. Simultaneous Voltammetric Determination of Antihypertensive Drugs Amlodipine and Atenolol in Pharmaceuticals Using a Cathodically Pretreated Boron-Doped Diamond Electrode. J. Braz. Chem. Soc. 2016, 27, 1264. DOI: 10.5935/0103-5053.20160023.
  • Khairy, M.; Khorshed, A. A.; Rashwan, F. A.; Salah, G. A.; Abdel-Wadood, H. M.; Banks, C. E. Simultaneous Voltammetric Determination of Antihypertensive Drugs Nifedipine and Atenolol Utilizing MgO Nanoplatelet Modified Screen-Printed Electrodes in Pharmaceuticals and Human Fluids. Sens. Actuat. B Chem. 2017, 252, 1045–1054. DOI: 10.1016/j.snb.2017.06.105.
  • Scremin, J.; Sartori, E. R. Simultaneous Determination of Nifedipine and Atenolol in Combined Dosage Forms Using a Boron-Doped Diamond Electrode with Differential Pulse Voltammetry. Can. J. Chem. 2018, 96, 1–7. DOI: 10.1139/cjc-2017-0302.
  • Zhao, K.; Chen, H.; Yuan, Y.; Bao, Z.; Lu, F.; Li, S. Platinum Nanoparticle-Doped Multiwalled Carbon-Nanotube-Modified Glassy Carbon Electrode as a Sensor for Simultaneous Determination of Atenolol and Propranolol in Neutral Solution. Ionics 2015, 21, 1129.
  • Jahanbakhshi, M. In Situ Synthesis of Rhodium nanoparticles - Mesoporous Carbon Hybrid via a Novel and Facile Nanocasting Method for Simultaneous Determination of Morphine and Buprenorphine. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 479–485. DOI: 10.1016/j.msec.2018.12.019.
  • Zhai, H.; Liang, Z.; Chen, Z.; Wang, H.; Liu, Z.; Su, Z.; Zhou, Q. Simultaneous Detection of Metronidazole and Chloramphenicol by Differential Pulse Stripping Voltammetry Using a Silver Nanoparticles/Sulfonate Functionalized Graphene Modified Glassy Carbon Electrode. Electrochim. Acta 2015, 171, 105–113. DOI: 10.1016/j.electacta.2015.03.140.
  • Meenakshi, S.; Sophia, S. J.; Pandian, K. High Surface Graphene Nanoflakes as Sensitive Sensing Platform for Simultaneous Electrochemical Detection of Metronidazole and Chloramphenicol. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 407–419. DOI: 10.1016/j.msec.2018.04.064.
  • Baikeli, Y.; Mamat, X.; He, F.; Xin, X.; Li, Y.; Aisa, H. A.; Hu, G. Electrochemical Determination of Chloramphenicol and Metronidazole by Using a Glassy Carbon Electrode Modified with Iron, Nitrogen co-Doped Nanoporous Carbon Derived from a Metal-Organic Framework (Type Fe/ZIF-8). Ecotoxicol. Environ. Saf. 2020, 204, 111066. DOI: 10.1016/j.ecoenv.2020.111066.
  • Yuan, Y.; Zhang, F.; Wang, H.; Gao, L.; Wang, Z. A Sensor Based on Au Nanoparticles/Carbon Nitride/Graphene Composites for the Detection of Chloramphenicol and Ciprofloxacin. ECS J. Solid State Sci. Technol. 2018, 7, M201–M208. DOI: 10.1149/2.0111812jss.
  • Xia, Y.-M.; Zhang, W.; Li, M.-Y.; Xia, M.; Zou, L.-J.; Gao, W.-W. Effective Electrochemical Determination of Chloramphenicol and Florfenicol Based on Graphene/Copper Phthalocyanine Nanocomposites Modified Glassy Carbon Electrode. J. Electrochem. Soc. 2019, 166, B654–B663. DOI: 10.1149/2.0801908jes.
  • Hareesha, N.; Manjunatha, J. G. Surfactant and Polymer Layered Carbon Composite Electrochemical Sensor for the Analysis of Estriol with Ciprofloxacin. Mater. Res. Innovations 2020, 24, 349–362. DOI: 10.1080/14328917.2019.1684657.
  • Wu, C.; Sun, D.; Li, Q.; Wu, K. B. Electrochemical Sensor for Toxic Ractopamine and Clenbuterol Based on the Enhancement Effect of Graphene Oxide. Sens. Actuat. B Chem. 2012, 168, 178–184. DOI: 10.1016/j.snb.2012.03.084.
  • Ge, Y.; Qu, M. R.; Xu, L. J.; Wang, X. Q.; Xin, J. P.; Liao, X. N.; Li, M. F.; Li, M. F.; Wen, Y. P. Phosphorene Nanocomposite with High Environmental Stability and Antifouling Capability for Simultaneous Sensing of Clenbuterol and Ractopamine. Mikrochim. Acta. 2019, 186, 836. DOI: 10.1007/s00604-019-3908-5.
  • Zhang, L. H.; Wang, Q. W.; Qi, Y.; Li, L.; Wang, S. T.; Wang, X. H. An Ultrasensitive Sensor Based on Polyoxometalate and Zirconium Dioxide Nanocomposites Hybrids Material for Simultaneous Detection of Toxic Clenbuterol and Ractopamine. Sens. Actuat. B Chem. 2019, 288, 347–355. DOI: 10.1016/j.snb.2019.03.033.
  • Zhou, Y. L.; Zhang, H. Q.; Chang, Z.; Ye, B. X.; Xu, M. T, Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China Simultaneous Determination of Clenbuterol and Salbutamol with a Graphene-Nafion Nanocomposite Modified Electrode. Int. J. Electrochem. Sci. 2016, 11, 5154–5164. DOI: 10.20964/2016.06.72.
  • Gimenes, D. T.; Cunha, R. R.; Ribeiro, M. M. A. D.; Pereira, P. F.; Munoz, R. A. A.; Richter, E. M. Two New Electrochemical Methods for Fast and Simultaneous Determination of Codeine and Diclofenac. Talanta 2013, 116, 1026–1032. DOI: 10.1016/j.talanta.2013.08.020.
  • Nia, N. A.; Foroughi, M. M.; Jahani, S.; Zandi, M. S.; Rastakhiz, N. Fabrication of a New Electrochemical Sensor for Simultaneous Determination of Codeine and Diclofenac Using Synergic Effect of Feather-Type La3+-ZnO Nano-Flower. J. Electrochem. Soc. 2019, 166, B489–B497. DOI: 10.1149/2.1051906jes.
  • Habibi, B.; Abazari, M.; Pournaghi-Azar, M. H. Simultaneous Determination of Codeine and Caffeine Using Single-Walled Carbon Nanotubes Modified Carbon-Ceramic Electrode. Colloids Surf B Biointerfaces 2014, 114, 89–95. DOI: 10.1016/j.colsurfb.2013.09.026.
  • Afkhami, A.; Gomar, F.; Madrakian, T. CoFe2O4 Nanoparticles Modified Carbon Paste Electrode for Simultaneous Detection of Oxycodone and Codeine in Human Plasma and Urine. Sens. Actuat. B Chem. 2016, 233, 263–271. DOI: 10.1016/j.snb.2016.04.067.
  • Ensafi, A. A.; Abarghoui, M. M.; Rezaei, B. Simultaneous Determination of Morphine and Codeine Using Pt Nanoparticles Supported on Porous Silicon Flour Modified Ionic Liquid Carbon Paste Electrode. Sens. Actuat. B Chem. 2015, 219, 1–9. DOI: 10.1016/j.snb.2015.05.010.
  • Taei, M.; Hasanpour, F.; Hajhashemi, V.; Movahedi, M.; Baghlani, H. Simultaneous Detection of Morphine and Codeine in Urine Samples of Heroin Addicts Using Multi-Walled Carbon Nanotubes Modified SnO2-Zn2SnO4 Nanocomposites Paste Electrode. Appl. Surf. Sci. 2016, 363, 490–498. DOI: 10.1016/j.apsusc.2015.12.074.
  • Bagheri, H.; Khoshsafar, H.; Afkhami, A.; Amidi, S. Sensitive and Simple Simultaneous Determination of Morphine and Codeine Using a Zn2SnO4 Nanoparticle/Graphene Composite Modified Electrochemical Sensor. New J. Chem. 2016, 40, 7102–7112. DOI: 10.1039/C6NJ00505E.
  • Babaei, A.; Afrasiabi, M.; Shabanian, M. Application of Multivariate Optimization Method in Nanomolar Simultaneous Determination of Morphine and Codeine in the Presence of Uric Acid Using a Glassy Carbon Electrode Modified with a hydroxyapatite-Fe3O4 Nanoparticle/Multiwalled Carbon Nanotubes Composite. J. Iran. Chem. Soc. 2017, 14, 2305–2317. DOI: 10.1007/s13738-017-1167-0.
  • Wester, N.; Mynttinen, E.; Etula, J.; Lilius, T.; Kalso, E.; Kauppinen, E. I.; Laurila, T.; Koskinen, J. Simultaneous Detection of Morphine and Codeine in the Presence of Ascorbic Acid and Uric Acid and in Human Plasma at Nafion Single-Walled Carbon Nanotube Thin-Film Electrode. ACS Omega. 2019, 4, 17726–17734. DOI: 10.1021/acsomega.9b02147.
  • Taei, M.; Salavati, H.; Hasanpour, F.; Habibollahi, S.; Baghlani, H. Simultaneous Determination of Ascorbic Acid, Acetaminophen and Codeine Based on Multi-Walled Carbon Nanotubes Modified with Magnetic Nanoparticles Paste Electrode. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 1–11. DOI: 10.1016/j.msec.2016.06.014.
  • Silva, T. A.; Zanin, H.; Corat, E. J.; Fatibello, O. Simultaneous Voltammetric Determination of Paracetamol, Codeine and Caffeine on Diamond-like Carbon Porous Electrodes. Electroanalysis 2017, 29, 907–916. DOI: 10.1002/elan.201600665.
  • Khairy, M.; Mahmoud, B. G.; Banks, C. E. Simultaneous Determination of Codeine and Its co-Formulated Drugs Acetaminophen and Caffeine by Utilising Cerium Oxide Nanoparticles Modified Screen-Printed Electrodes. Sens. Actuat. B Chem. 2018, 259, 142–154. DOI: 10.1016/j.snb.2017.12.054.
  • Mokhtari, B.; Nematollahi, D.; Salehzadeh, H. Electrochemical Simultaneous Determination of Nifedipine and Its Main Metabolite Dehydronifedipine Using MWCNT Modified Glassy Carbon Electrode. J. Mol. Liq. 2018, 264, 543–549. DOI: 10.1016/j.molliq.2018.05.082.
  • Winiarski, J. P.; de Barros, M. R.; Wecker, G. S.; Nagurniak, G. R.; Parreira, R. L. T.; Affeldt, R. F.; Peralta, R. A.; Jost, C. L. A Novel Hybrid Organic-Inorganic Silsesquioxane and Cobalt(ii) Tetrasulphophthalocyanine Material as an Efficient Electrochemical Sensor for the Simultaneous Determination of the anti-Hypertensive Nifedipine and Its Metabolite. J. Mater. Chem. C 2020, 8, 6839–6850. DOI: 10.1039/D0TC00429D.
  • Balamurugan, M.; Alagumalai, K.; Chen, T. W.; Chen, S. M.; Liu, X. H.; Selvaganapathy, M. Simultaneous Electrochemical Determination of Nitrofurantoin and Nifedipine with Assistance of Needle-Shaped Perovskite Structure: barium Stannate Fabricated Glassy Carbon Electrode. Mikrochim. Acta. 2021, 188, 19. DOI: 10.1007/s00604-020-04645-5.
  • Yousefi, N.; Irandoust, M.; Haghighi, M. New and Sensitive Magnetic Carbon Paste Electrode for Voltammetry Determination of Morphine and Methadone. J. Iran. Chem. Soc. 2020, 17, 2909–2922. DOI: 10.1007/s13738-020-01962-7.
  • Akbari, S.; Jahani, S.; Foroughi, M. M.; Nadiki, H. H. Simultaneous Determination of Methadone and Morphine at a Modified Electrode with 3D beta-MnO2 Nanoflowers: application for Pharmaceutical Sample Analysis. RSC Adv. 2020, 10, 38532–38545. DOI: 10.1039/D0RA06480G.
  • Salamanca-Neto, C. A. R.; Eisele, A. P. P.; Resta, V. G.; Scremin, J.; Sartori, E. R. Differential Pulse Voltammetric Method for the Individual and Simultaneous Determination of Antihypertensive Drug Metoprolol and Its Association with Hydrochlorothiazide in Pharmaceutical Dosage Forms. Sens. Actuat. B Chem. 2016, 230, 630–638. DOI: 10.1016/j.snb.2016.02.071.
  • Silva, M.; Morante-Zarcero, S.; Perez-Quintanilla, D.; Sierra, I. Simultaneous Determination of Pindolol, Acebutolol and Metoprolol in Waters by Differential-Pulse Voltammetry Using an Efficient Sensor Based on Carbon Paste Electrode Modified with Amino-Functionalized Mesostructured Silica. Sens. Actuat. B Chem. 2019, 283, 434–442. DOI: 10.1016/j.snb.2018.12.058.
  • Rahman, M. M.; Li, X. B.; Jeon, Y. D.; Lee, H. J.; Lee, S. J.; Lee, J. J. Simultaneous Determination of Ranitidine and Metronidazole at Poly(Thionine) Modified Anodized Glassy Carbon Electrode. J. Electrochem. Sci. Technol. 2012, 3, 90–94. DOI: 10.5229/JECST.2012.3.2.90.
  • Li, X. B.; Xu, G. R. Simultaneous Determination of Ranitidine and Metronidazole in Pharmaceutical Formulations at Poly(Chromotrope 2B) Modified Activated Glassy Carbon Electrodes. J. Food Drug Anal. 2014, 22, 345–349. DOI: 10.1016/j.jfda.2013.09.050.
  • Ranganathan, P.; Mutharani, B.; Chen, S.-M.; Sireesha, P. Biocompatible Chitosan-Pectin Polyelectrolyte Complex for Simultaneous Electrochemical Determination of Metronidazole and Metribuzin. Carbohydr. Polym. 2019, 214, 317–327. DOI: 10.1016/j.carbpol.2019.03.053.
  • Babaei, A.; Babazadeh, M. Multi-Walled Carbon Nanotubes/Chitosan Polymer Composite Modified Glassy Carbon Electrode for Sensitive Simultaneous Determination of Levodopa and Morphine. Anal. Methods 2011, 3, 2400. DOI: 10.1039/c1ay05241a.
  • Babaei, A.; Babazadeh, M.; Momeni, H. R. A Sensor for Simultaneous Determination of Dopamine and Morphine in Biological Samples Using a Multi-Walled Carbon Nanotube/Chitosan Composite Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2011, 6, 1382.
  • Atta, N. F.; Galal, A.; El-Ads, E. H.; Hassan, S. H. Cobalt Oxide Nanoparticles/Graphene/Ionic Liquid Crystal Modified Carbon Paste Electrochemical Sensor for Ultra-Sensitive Determination of a Narcotic Drug. Adv. Pharm. Bull. 2019, 9, 110–121. DOI: 10.15171/apb.2019.014.
  • Mokhtari, A.; Karimi-Maleh, H.; Ensafi, A. A.; Beitollahi, H. Application of Modified Multiwall Carbon Nanotubes Paste Electrode for Simultaneous Voltammetric Determination of Morphine and Diclofenac in Biological and Pharmaceutical Samples. Sens. Actuat. B Chem. 2012, 169, 96–105. DOI: 10.1016/j.snb.2012.03.059.
  • Sanati, A. L.; Karimi-Maleh, H.; Badiei, A.; Biparva, P.; Ensafi, A. A. A Voltammetric Sensor Based on NiO/CNTs Ionic Liquid Carbon Paste Electrode for Determination of Morphine in the Presence of Diclofenac. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 35, 379–385. DOI: 10.1016/j.msec.2013.11.031.
  • Basiri, F.; Taei, M. Application of Spinel-Structured MgFe2O4 Nanoparticles for Simultaneous Electrochemical Determination Diclofenac and Morphine. Microchim. Acta 2017, 184, 155–162. DOI: 10.1007/s00604-016-1995-0.
  • Razmi, E. D.; Beitollahi, H.; Mahani, M. T.; Anjomshoa, M. TiO2/Fe3O4/Multiwalled Carbon Nanotubes Nanocomposite as Sensing Platform for Simultaneous Determination of Morphine and Diclofenac at a Carbon Paste Electrode. Russ. J. Electrochem. 2018, 54, 1132–1140. DOI: 10.1134/S1023193518140057.
  • Akbarian, Y.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Fabrication of a New Electrocatalytic Sensor for Determination of Diclofenac, Morphine and Mefenamic Acid Using Synergic Effect of NiO-SWCNT and 2, 4-dimethyl-N/[1-(2, 3-Dihydroxy Phenyl) Methylidene] Aniline. Sens. Actuat. B Chem. 2018, 273, 228–233. DOI: 10.1016/j.snb.2018.06.049.
  • Jahani, P. M.; Mohammadi, S. Z.; Khodabakhshzadeh, A.; Cha, J. H.; Asl, M. S.; Shokouhimehr, M.; Zhang, K. Q.; Le, Q. V.; Peng, W. X. Simultaneous Detection of Morphine and Diclofenac Using Graphene Nanoribbon Modified Screen-Printed Electrode. Int. J. Electrochem. Sci. 2020, 15, 9037–9048. DOI: 10.20964/2020.09.14.
  • Atta, N. F.; Galal, A.; El-Ads, E. H. Smart Electrochemical Morphine Sensor Using Poly(3,4-Ethylene-Dioxythiophene)/Gold-Nanoparticles Composite in Presence of Surfactant. Int. J. Electrochem. Sci. 2014, 9, 2113.
  • Nigovic, B.; Sadikovic, M.; Sertic, M. Multi-Walled Carbon Nanotubes/Nafion Composite Film Modified Electrode as a Sensor for Simultaneous Determination of Ondansetron and Morphine. Talanta 2014, 122, 187.
  • Zhang, R. L.; Fu, K. X.; Zou, F. Y.; Bai, H. P.; Zhang, G. L.; Liang, F.; Liu, Q. J. Highly Sensitive Electrochemical Sensor Based on Pt Nanoparticles/Carbon Nanohorns for Simultaneous Determination of Morphine and MDMA in Biological Samples. Electrochim. Acta 2021, 370, 137803. DOI: 10.1016/j.electacta.2021.137803.
  • Mohammadi, S.; Taher, M. A.; Beitollahi, H. A Hierarchical 3D Camellia-like Molybdenum Tungsten Disulfide Architectures for the Determination of Morphine and Tramadol. Mikrochim. Acta. 2020, 187, 312. DOI: 10.1007/s00604-020-4134-x.
  • Navaee, A.; Salimi, A.; Teymourian, H. Graphene Nanosheets Modified Glassy Carbon Electrode for Simultaneous Detection of Heroine, Morphine and Noscapine. Biosens. Bioelectron. 2012, 31, 205–211. DOI: 10.1016/j.bios.2011.10.018.
  • Wang, H.; Zhang, Y.; Li, H.; Du, B.; Ma, H. M.; Wu, D.; Wei, Q. A Silver-Palladium Alloy Nanoparticle-Based Electrochemical Biosensor for Simultaneous Detection of Ractopamine, Clenbuterol and Salbutamol. Biosens. Bioelectron. 2013, 49, 14–19. DOI: 10.1016/j.bios.2013.04.041.
  • Rajkumar, M.; Li, Y. S.; Chen, S. M. Electrochemical Detection of Toxic Ractopamine and Salbutamol in Pig Meat and Human Urine Samples by Using Poly Taurine/Zirconia Nanoparticles Modified Electrodes. Colloids Surf B Biointerfaces 2013, 110, 242–247. DOI: 10.1016/j.colsurfb.2013.03.038.
  • Lin, K. C.; Hong, C. P.; Chen, S. M. Simultaneous Determination for Toxic Ractopamine and Salbutamol in Pork Sample Using Hybrid Carbon Nanotubes. Sens. Actuat. B Chem. 2013, 177, 428–436. DOI: 10.1016/j.snb.2012.11.052.
  • Wang, M. Y.; Zhu, W.; Ma, L.; Ma, J. J.; Zhang, D. E.; Tong, Z. W.; Chen, J. Enhanced Simultaneous Detection of Ractopamine and salbutamol-Via Electrochemical-Facial Deposition of MnO2 Nanoflowers onto 3D RGO/Ni Foam Templates. Biosens. Bioelectron. 2016, 78, 259–266. DOI: 10.1016/j.bios.2015.11.062.
  • Duan, J. H.; He, D. W.; Wang, W. S.; Liu, Y. C.; Wu, H. P.; Wang, Y. S.; Fu, M. Glassy Carbon Electrode Modified with Gold Nanoparticles for Ractopamine and Metaproterenol Sensing. Chem. Phys. Lett. 2013, 574, 83–88. DOI: 10.1016/j.cplett.2013.04.057.
  • Karimi-Maleh, H.; Moazampour, M.; Yoosefian, M.; Sanati, A. L.; Tahernejad-Javazmi, F.; Mahani, M. An Electrochemical Nanosensor for Simultaneous Voltammetric Determination of Ascorbic Acid and Sudan I in Food Samples. Food Anal. Methods 2014, 7, 2169–2176. DOI: 10.1007/s12161-014-9867-x.
  • Raoof, J. B.; Teymoori, N.; Khalilzadeh, M. A. ZnO Nanoparticle Ionic Liquids Carbon Paste Electrode as a Voltammetric Sensor for Determination of Sudan I in the Presence of Vitamin B-6 in Food Samples. Food Anal. Methods 2015, 8, 885–892. DOI: 10.1007/s12161-014-9962-z.
  • Ebrahimi-Tazangi, F.; Beitollahi, H.; Hekmatara, H.; Seyed-Yazdi, J. Design of a New Electrochemical Sensor Based on the CuO/GO Nanocomposites: Simultaneous Determination of Sudan I and Bisphenol A. J. Iran. Chem. Soc. 2021, 18, 191–199. DOI: 10.1007/s13738-020-02016-8.
  • Babaei, A.; Taheri, A. R.; Afrasiabi, M. A Multi-Walled Carbon Nanotube-Modified Glassy Carbon Electrode as a New Sensor for the Sensitive Simultaneous Determination of Paracetamol and Tramadol in Pharmaceutical Preparations and Biological Fluids. J. Braz. Chem. Soc. 2011, 22, 1549–1558. DOI: 10.1590/S0103-50532011000800020.
  • Afkhami, A.; Khoshsafar, H.; Bagheri, H.; Madrakian, T. Preparation of NiFe2O4/Graphene Nanocomposite and Its Application as a Modifier for the Fabrication of an Electrochemical Sensor for the Simultaneous Determination of Tramadol and Acetaminophen. Anal. Chim. Acta. 2014, 831, 50–59. DOI: 10.1016/j.aca.2014.04.061.
  • Rokhsefid, N.; Shishehbore, M. R. Synthesis and Characterization of an Au Nanoparticles/Graphene Nanosheet Nanocomposite and Its Application for the Simultaneous Determination of Tramadol and Acetaminophen. Anal. Methods 2019, 11, 5150–5159. DOI: 10.1039/C9AY01497G.
  • Mynttinen, E.; Wester, N.; Lilius, T.; Kalso, E.; Koskinen, J.; Laurila, T. Simultaneous Electrochemical Detection of Tramadol and O-Desmethyltramadol with Nafion-Coated Tetrahedral Amorphous Carbon Electrode. Electrochim. Acta 2019, 295, 347–353. DOI: 10.1016/j.electacta.2018.10.148.
  • Atta, N. F.; Galal, A.; Hassan, S. H. Ultrasensitive Determination of Nalbuphine and Tramadol Narcotic Analgesic Drugs for Postoperative Pain Relief Using Nano-Cobalt Oxide/Ionic Liquid Crystal/Carbon Nanotubes-Based Electrochemical Sensor. Electroanal. Chem. 2019, 839, 48–58. DOI: 10.1016/j.jelechem.2019.03.002.
  • Dehdashti, A.; Babaei, A. Designing and Characterization of a Novel Sensing Platform Based on Pt Doped NiO/MWCNTs Nanocomposite for Enhanced Electrochemical Determination of Epinephrine and Tramadol Simultaneously. Electroanal. Chem. 2020, 862, 113949. DOI: 10.1016/j.jelechem.2020.113949.
  • Chitravathi, S.; Munichandraiah, N. Voltammetric Determination of Paracetamol, Tramadol and Caffeine Using Poly(Nile Blue) Modified Glassy Carbon Electrode. Electroanal. Chem. 2016, 764, 93–103. DOI: 10.1016/j.jelechem.2016.01.021.
  • Hulme, S.; Bright, D.; Nielsen, S. The Source and Diversion of Pharmaceutical Drugs for Non-Medical Use: A Systematic Review and Meta-Analysis. Drug Alcohol Depend. 2018, 186, 242–256. DOI: 10.1016/j.drugalcdep.2018.02.010.
  • Khan, A. H.; Aziz, H. A.; Khan, N. A.; Hasan, M. A.; Ahmed, S.; Farooqi, I. H.; Dhingra, A.; Vambol, V.; Changani, F.; Yousefi, M.; et al. Impact, Disease Outbreak and the Eco-Hazards Associated with Pharmaceutical Residues: A Critical Review. Int. J. Environ. Sci. Technol. 2022, 19, 677–688. :DOI: 10.1007/s13762-021-03158-9.
  • Siddiqui, M. R.; AlOthman, Z. A.; Rahman, N. Analytical Techniques in Pharmaceutical Analysis: A Review. Arabian J. Chem. 2017, 10, S1409–S1421. DOI: 10.1016/j.arabjc.2013.04.016.
  • Cailletaud, J.; De Bleye, C.; Dumont, E.; Sacré, P. Y.; Netchacovitch, L.; Gut, Y.; Boiret, M.; Ginot, Y. M.; Hubert, P.; Ziemons, E. Critical Review of Surface-Enhanced Raman Spectroscopy Applications in the Pharmaceutical Field. J. Pharm. Biomed. Anal. 2018, 147, 458–472. DOI: 10.1016/j.jpba.2017.06.056.
  • Cui, P.; Wang, S. Application of Microfluidic Chip Technology in Pharmaceutical Analysis: A Review. J. Pharm. Anal. 2019, 9, 238–247. DOI: 10.1016/j.jpha.2018.12.001.
  • Swales, J. G.; Hamm, G.; Clench, M. R.; Goodwin, R. J. A. Mass Spectrometry Imaging and Its Application in Pharmaceutical Research and Development: A Concise Review. Int. J. Mass Spectrom. 2019, 437, 99–112. DOI: 10.1016/j.ijms.2018.02.007.
  • Hodgman, M. J.; Garrard, A. R. A Review of Acetaminophen Poisoning. Crit. Care Clin. 2012, 28, 499–516. DOI: 10.1016/j.ccc.2012.07.006.
  • Li, Y.; Chen, S. M. The Electrochemical Properties of Acetaminophen on Bare Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2012, 7, 2175.
  • Wudarska, E.; Chrzescijanska, E.; Kusmierek, E.; Rynkowski, J. Voltammetric Study of the Behaviour of N-Acetyl-p-Aminophenol in Aqueous Solutions at a Platinum Electrode. CR Chim. 2015, 18, 993–1000. DOI: 10.1016/j.crci.2015.06.017.
  • Wang, K. D.; Wu, C.; Wang, F.; Jing, N.; Jiang, G. Q. Co/Co3O4 Nanoparticles Coupled with Hollow Nanoporous Carbon Polyhedrons for the Enhanced Electrochemical Sensing of Acetaminophen. ACS Sustainable Chem. Eng. 2019, 7, 18582–18592. DOI: 10.1021/acssuschemeng.9b04813.
  • Keerthi, M.; Boopathy, G.; Chen, S. M.; Chen, T. W.; Rwei, S. P.; Liu, X. H. An Efficient Electrochemical Sensor Based on Ag Nanoparticle Decorated MnO2/Reduced Graphene Oxide Ternary Nanocomposite for Detection of Acetaminophen in Human Urine Sample. Int. J. Electrochem. Sci. 2019, 14, 346–358. DOI: 10.20964/2019.01.59.
  • Liang, W. C.; Liu, L. L.; Li, Y. G.; Ren, H. L.; Zhu, T. T.; Xu, Y. W.; Ye, B. C. Nitrogen-Rich Porous Carbon Modified Electrochemical Sensor for the Detection of Acetaminophen. Electroanal. Chem 2019, 855, 113496. DOI: 10.1016/j.jelechem.2019.113496.
  • Shetti, N. P.; Malode, S. J.; Nayak, D. S.; Reddy, K. R.; Reddy, C. V.; Ravindranadh, K. Silica Gel-Modified Electrode as an Electrochemical Sensor for the Detection of Acetaminophen. Microchem. J. 2019, 150, 104206. DOI: 10.1016/j.microc.2019.104206.
  • Kenarkob, M.; Pourghobadi, Z. Electrochemical Sensor for Acetaminophen Based on a Glassy Carbon Electrode Modified with ZnO/Au Nanoparticles on Functionalized Multi-Walled Carbon Nano-Tubes. Microchem. J. 2019, 146, 1019–1025. DOI: 10.1016/j.microc.2019.02.038.
  • Wang, P.; Yuan, X.; Cui, Z.; Xu, C.; Sun, Z.; Li, J.; Liu, J.; Tian, Y.; Li, H. A Nanometer-Sized Graphite/Boron-Doped Diamond Electrochemical Sensor for Sensitive Detection of Acetaminophen. ACS Omega. 2021, 6, ):6326–6334. DOI: 10.1021/acsomega.0c06141.
  • Khairy, M.; Banks, C. E. A Screen-Printed Electrochemical Sensing Platform Surface Modified with Nanostructured Ytterbium Oxide Nanoplates Facilitating the Electroanalytical Sensing of the Analgesic Drugs Acetaminophen and Tramadol. Mikrochim. Acta. 2020, 187, 126. DOI: 10.1007/s00604-020-4118-x.
  • Sohouli, E.; Shahdost-Fard, F.; Rahimi-Nasrabadi, M.; Plonska-Brzezinska, M. E.; Ahmadi, F. Introducing a Novel Nanocomposite Consisting of Nitrogen-Doped Carbon Nano-Onions and Gold Nanoparticles for the Electrochemical Sensor to Measure Acetaminophen. Electroanal. Chem 2020, 871, 114309. DOI: 10.1016/j.jelechem.2020.114309.
  • Shaikshavali, P.; Madhusudana Reddy, T.; Palakollu, V. N.; Karpoormath, R.; Subba Rao, Y.; Venkataprasad, G.; Gopal, T. V.; Gopal, P. Multi Walled Carbon Nanotubes Supported CuO-Au Hybrid Nanocomposite for the Effective Application towards the Electrochemical Determination of Acetaminophen and 4-Aminophenol. Synth. Met. 2019, 252, 29–39. DOI: 10.1016/j.synthmet.2019.04.009.
  • Xu, Y. J.; Lei, W.; Su, J.; Hu, J. J.; Yu, X. D.; Zhou, T.; Yang, Y.; Mandler, D.; Hao, Q. L. A High-Performance Electrochemical Sensor Based on g-C3N4-E-PEDOT for the Determination of Acetaminophen. Electrochim. Acta 2018, 259, 994–1003. DOI: 10.1016/j.electacta.2017.11.034.
  • Adhikari, B. R.; Govindhan, M.; Chen, A. C. Sensitive Detection of Acetaminophen with Graphene-Based Electrochemical Sensor. Electrochim. Acta 2015, 162, 198–204. DOI: 10.1016/j.electacta.2014.10.028.
  • Veera Manohara Reddy, Y.; Bathinapatla, S.; Łuczak, T.; Osińska, M.; Maseed, H.; Ragavendra, P.; Subramanyam Sarma, L.; Srikanth, V. V. S. S.; Madhavi, G. An Ultra-Sensitive Electrochemical Sensor for the Detection of Acetaminophen in the Presence of Etilefrine Using Bimetallic Pd-Ag/Reduced Graphene Oxide Nanocomposites. New J. Chem. 2018, 42, 3137–3146. DOI: 10.1039/C7NJ04775D.
  • Haghshenas, E.; Madrakian, T.; Afkhami, A. A Novel Electrochemical Sensor Based on Magneto Au Nanoparticles/Carbon Paste Electrode for Voltammetric Determination of Acetaminophen in Real Samples. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 57, 205–214. DOI: 10.1016/j.msec.2015.07.054.
  • Filik, H.; Cetintas, G.; Avan, A. A.; Koc, S. N.; Boz, I. Electrochemical Sensing of Acetaminophen on Electrochemically Reduced Graphene Oxide-Nafion Composite Film Modified Electrode. Int. J. Electrochem. Sci. 2013, 8, 5724.
  • Wu, Y.; Wu, Y.; Lv, X.; Lei, W.; Ding, Y.; Chen, C.; Lv, J.; Feng, S.; Chen, S.-M.; Hao, Q. A Sensitive Sensing Platform for Acetaminophen Based on Palladium and Multi-Walled Carbon Nanotube Composites and Electrochemical Detection Mechanism. Mater. Chem. Phys. 2020, 239, 121977. DOI: 10.1016/j.matchemphys.2019.121977.
  • Sun, Q.; Sever, P. Amiloride: A Review. J. Renin Angiotensin Aldosterone Syst. 2020, 21, 1470320320975893. DOI: 10.1177/1470320320975893.
  • World Anti-Doping Agency. The World Anti-Doping Code. Prohibited list January 2021. https://www.wada-ama.org/.
  • Desai, P. B.; Srivastava, A. K. Determination of Amiloride at Nafion-CNT-Nano-Composite Film Sensor Employing Adsorptive Stripping Differential Pulse Voltammetry. Sens. Actuat. B Chem. 2012, 169, 341–348. DOI: 10.1016/j.snb.2012.05.007.
  • Nascimento, T. O.; Leite, F. R. F.; Mourao, H. A. J. L.; Malagutti, A. R. Development of an Electroanalytical Methodology Using Differential Pulse Voltammetry for Amiloride Determination. J. Solid State Electrochem. 2020, 24, 1735–1741. DOI: 10.1007/s10008-020-04559-5.
  • Souza, K. A. O.; Nunes, A. M. F.; Pimentel, D. M.; Verly, R. M.; Gil, E. S.; Malagutti, A. R.; dos Santos, W. T. P. Altered Electrochemistry of Amiloride Drug on Boron-Doped Diamond Electrode: Rapid and Selective Detection in Urine by Square-Wave Cathodic Stripping Voltammetry for Application in Doping Control. Electrochim. Acta 2021, 373, 137891. DOI: 10.1016/j.electacta.2021.137891.
  • Kuyper, L. M.; Khan, N. A. Atenolol vs Nonatenolol Beta-Blockers for the Treatment of Hypertension: A Meta-Analysis. Can. J. Cardiol. 2014, 30, S47–S53. DOI: 10.1016/j.cjca.2014.01.006.
  • Pruneanu, S.; Pogacean, F.; Grosan, C.; Pica, E. M.; Bolundut, L. C.; Biris, A. S. Electrochemical Investigation of Atenolol Oxidation and Detection by Using a Multicomponent Nanostructural Assembly of Amino Acids and Gold Nanoparticles. Chem. Phys. Lett. 2011, 504, 56–61. DOI: 10.1016/j.cplett.2011.01.051.
  • Shadjou, N.; Hasanzadeh, M.; Saghatforoush, L.; Mehdizadeh, R.; Jouyban, A. Electrochemical Behavior of Atenolol, Carvedilol and Propranolol on Copper-Oxide Nanoparticles. Electrochim. Acta 2011, 58, 336–347. DOI: 10.1016/j.electacta.2011.09.055.
  • Gupta, P.; Goyal, R. N. Amino Functionalized Graphene Oxide and Polymer Nanocomposite Based Electrochemical Platform for Sensitive Assay of anti-Doping Drug Atenolol in Biological Fluids. J. Electrochem. Soc. 2016, 163, B601–B608. DOI: 10.1149/2.0281613jes.
  • Purushothama, H. T.; Arthoba Nayaka, Y.; Basavarajappa, K. V.; Yathisha, R. O.; Manjunatha, P.; Vinay, M. M. An Electrochemical Study of Atenolol Using Patton and Reeder’s Modified Pencil Graphite Electrode as an Electrochemical Sensor. Int. J. Environ. Anal. Chem. 2021, 101, 450–463. DOI: 10.1080/03067319.2019.1667989.
  • Valian, M.; Khoobi, A.; Salavati-Niasari, M. Green Synthesis and Characterization of DyMnO3-ZnO Ceramic Nanocomposites for the Electrochemical Ultratrace Detection of Atenolol. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 111, 110854. DOI: 10.1016/j.msec.2020.110854.
  • Shamsipur, M.; Saber, R.; Emami, M. A Highly Sensitive Electrochemical Sensor Based on Gold Nanoparticles/Multiwall Carbon Nanotubes-Modified Glassy Carbon Electrode for Selective Determination of Traces of Atenolol. Anal. Methods 2014, 6, 7038. DOI: 10.1039/C4AY01538J.
  • Ayan, E. M.; Karabiberoğlu, ŞU.; Dursun, Z. A Practical Electrochemical Sensor for Atenolol Detection Based on a Graphene Oxide Composite Film Doped with Zinc Oxide Nanoparticles. Chemistryselect 2020, 5, 8846–8852. DOI: 10.1002/slct.202001019.
  • Zhu, S.; Dong, B.; Zhou, S. Degradation of Atenolol with Electrochemical Oxidation at Mixed Metal Oxide Electrodes Assisted by UV Photolysis. Clean Soil Air Water 2018, 46, 1700077. DOI: 10.1002/clen.201700077.
  • da Silva, S. W.; do Prado, J. M.; Arenhart Heberle, A. N.; Schneider, D. E.; Siqueira Rodrigues, M. A.; Bernardes, A. M. Electrochemical Advanced Oxidation of Atenolol at Nb/BDD Thin Film Anode. Electroanal. Chem. 2019, 844, 27–33. DOI: 10.1016/j.jelechem.2019.05.011.
  • Mora-Gómez, J.; García-Gabaldón, M.; Carrillo-Abad, J.; Montañés, M. T.; Mestre, S.; Pérez-Herranz, V. Influence of the Reactor Configuration and the Supporting Electrolyte Concentration on the Electrochemical Oxidation of Atenolol Using BDD and SnO2 Ceramic Electrodes. Sep. Purif. Technol. 2020, 241, 116684. DOI: 10.1016/j.seppur.2020.116684.
  • Mendelson, J.; Upton, R. A.; Everhart, E. T.; Jacob, P.; 3rd.; Jones, R. T. Bioavailability of Sublingual Buprenorphine. J. Clin. Pharmacol. 1997, 37, 31–37. DOI: 10.1177/009127009703700106.
  • Lange, W. R.; Fudala, P. J.; Dax, E. M.; Johnson, R. E. Safety and Side-Effects of Buprenorphine in the Clinical Management of Heroin Addiction. Drug Alcohol Depend 1990, 26, 19–28. DOI: 10.1016/0376-8716(90)90078-S.
  • Drug Enforcement Administration. Buprenorphine. https://www.deadiversion.usdoj.gov/drug_chem_info/buprenorphine.pdf.
  • Fakhari, A. R.; Sahragard, A.; Ahmar, H. Development of an Electrochemical Sensor Based on Reduced Graphene Oxide Modified Screen-Printed Carbon Electrode for the Determination of Buprenorphine. Electroanalysis 2014, 26, 2474–2483. DOI: 10.1002/elan.201400196.
  • Behpour, M.; Valipour, A.; Keshavarz, M. Determination of Buprenorphine by Differential Pulse Voltammetry on Carbon Paste Electrode Using SDS as an Enhancement Factor. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 42, 500–505. DOI: 10.1016/j.msec.2014.05.067.
  • Alizadeh, T.; Atashi, F.; Akhoundian, M.; Ganjali, M. R. Highly Selective Extraction and Voltammetric Determination of the Opioid Drug Buprenorphine via a Carbon Paste Electrode Impregnated with Nano-Sized Molecularly Imprinted Polymer. Mikrochim. Acta. 2019, 186, 654. DOI: 10.1007/s00604-019-3736-7.
  • Reeds, P. J.; Hay, S. M.; Dorwood, P. M.; Palmer, R. M. Stimulation of Muscle Growth by Clenbuterol: lack of Effect on Muscle Protein Biosynthesis. Br. J. Nutr. 1986, 56, 249–258. DOI: 10.1079/bjn19860104.
  • Brambilla, G.; Cenci, T.; Franconi, F.; Galarini, R.; Macri, A.; Rondoni, F.; Strozzi, M.; Loizzo, A. Clinical and Pharmacological Profile in a Clenbuterol Epidemic Poisoning of Contaminated Beef Meat in Italy. Toxicol. Lett. 2000, 114, 47–53. DOI: 10.1016/S0378-4274(99)00270-2.
  • Gaichore, R. R.; Srivastava, A. K. Multiwalled Carbon Nanotube-4-Tert-butyl calix[6]Arene Composite Electrochemical Sensor for Clenbuterol Hydrochloride Determination by Means of Differential Pulse Adsorptive Stripping Voltammetry. J. Appl. Electrochem. 2012, 42, 979–987. DOI: 10.1007/s10800-012-0466-5.
  • Wong, C. S.; Chen, Y. D.; Chang, J. L.; Zen, J. M. Biomolecule-Free, Selective Detection of Clenbuterol Based on Disposable Screen-Printed Carbon Electrode. Electrochem. Commun. 2015, 60, 163–167. DOI: 10.1016/j.elecom.2015.09.007.
  • Lv, C. Z.; Xun, Y.; Cao, Z.; Xie, J. L.; Li, D.; Liu, G.; Yu, L.; Feng, Z. M.; Yin, Y. L.; Tan, S. Z. Sensitive Determination of Toxic Clenbuterol in Pig Meat and Pig Liver Based on a Carbon Nanopolymer Composite. Food Anal. Methods 2017, 10, 2252–2261. DOI: 10.1007/s12161-017-0796-3.
  • Xiao, X.; Wang, Y. H.; Tan, W.; Liu, H. J.; Duan, Y. Y.; Zhang, X. B.; Zhang, D. E.; Jiang, Y. X.; Wang, J.; Gong, J. Y.; et al. Simple Synthesis of Multilayer-Shaped CeO2 Nanomaterial and Its Electrochemical Detection of Clenbuterol. Electroanalysis 2018, 30, 2744–2749. DOI: 10.1002/elan.201800507.
  • Wang, L.; Yang, R.; Chen, J.; Li, J. J.; Qu, L. B.; Harrington, P. D. B. Sensitive Voltammetric Sensor Based on Isopropanol-Nafion-PSS-GR Nanocomposite Modified Glassy Carbon Electrode for Determination of Clenbuterol in Pork. Food Chem. 2014, 164, 113–118. DOI: 10.1016/j.foodchem.2014.04.052.
  • Miao, P.; Han, K.; Sun, H. X.; Yin, J.; Zhao, J.; Wang, B. D.; Tang, Y. G. Melamine Functionalized Silver Nanoparticles as the Probe for Electrochemical Sensing of Clenbuterol. ACS Appl Mater Interfaces. 2014, 6, 8667–8672. DOI: 10.1021/am501473m.
  • Drugs. Metoprolol. https://www.drugs.com/metoprolol.html.
  • Zorluoğlu, S. L.; Taşdemir, İH.; Ece, A.; Kiliç, E. A Cooperative Computational and Experimental Investigation on Electrochemical Behavior of Metoprolol and Its Voltammetric Determination. Can. J. Chem. 2013, 91, 951–959. DOI: 10.1139/cjc-2012-0531.
  • Er, E.; Celikkan, H.; Erk, N. A Novel Electrochemical Nano-Platform Based on Graphene/Platinum Nanoparticles/Nafion Composites for the Electrochemical Sensing of Metoprolol. Sens. Actuat. B Chem. 2017, 238, 779–787. DOI: 10.1016/j.snb.2016.07.108.
  • Desai, P. B.; Srivastava, A. K. Adsorptive Stripping Differential Pulse Voltammetric Determination of Metoprolol at Nafion-CNT-Nano-Composite Film Sensor. Sens. Actuat. B Chem. 2013, 176, 632–638. DOI: 10.1016/j.snb.2012.10.073.
  • Drugs. Nifedipine. https://www.drugs.com/nifedipine.html.
  • Lam, Y.-M.; Tse, H.-F.; Lau, C.-P. J. C. Continuous Calcium Chloride Infusion for Massive Nifedipine Overdose. Chest 2001, 119, 1280–1282. DOI: 10.1378/chest.119.4.1280.
  • Kor, K.; Zarei, K. beta-Cyclodextrin Incorporated Carbon Nanotube Paste Electrode as Electrochemical Sensor for Nifedipine. Electroanalysis 2013, 25, 1497–1504. DOI: 10.1002/elan.201200652.
  • Baghayeri, M.; Namadchian, M.; Karimi-Maleh, H.; Beitollahi, H. Determination of Nifedipine Using Nanostructured Electrochemical Sensor Based on Simple Synthesis of Ag Nanoparticles at the Surface of Glassy Carbon Electrode: Application to the Analysis of Some Real Samples. Electroanal. Chem. 2013, 697, 53–59. DOI: 10.1016/j.jelechem.2013.03.011.
  • Shang, L.; Zhao, F. Q.; Zeng, B. Z. Highly Dispersive Hollow PdAg Alloy Nanoparticles Modified Ionic Liquid Functionalized Graphene Nanoribbons for Electrochemical Sensing of Nifedipine. Electrochim. Acta 2015, 168, 330–336. DOI: 10.1016/j.electacta.2015.04.024.
  • Wirzal, M. D. H.; Yusoff, A. R. M.; Zima, J.; Barek, J. Voltammetric Determination of Nifedipine at a Hanging Mercury Drop Electrode and a Mercury Meniscus Modified Silver Amalgam Electrode. Int. J. Electrochem. Sci. 2015, 10, 4571.
  • Sundaresan, P.; Karthik, R.; Chen, S. M.; Kumar, J. V.; Muthuraj, V.; Nagarajan, E. R. Ultrasonication-Assisted Synthesis of Sphere-like Strontium Cerate Nanoparticles (SrCeO3 NPs) for the Selective Electrochemical Detection of Calcium Channel Antagonists Nifedipine. Ultrason. Sonochem. 2019, 53, 44–54. DOI: 10.1016/j.ultsonch.2018.12.013.
  • Zeng, Q.; Wei, T. Y.; Wang, M.; Huang, X. J.; Fang, Y. S.; Wang, L. S. Polyfurfural Film Modified Glassy Carbon Electrode for Highly Sensitive Nifedipine Determination. Electrochim. Acta 2015, 186, 465–470. DOI: 10.1016/j.electacta.2015.10.141.
  • Propranolol. https://www.nhs.uk/medicines.
  • dos Santos, S. X.; Cavalheiro, E. T. G. The Potentialities of Using a Graphite-Silicone Rubber Composite Electrode in the Determination of Propranolol. Anal. Lett. 2011, 44, 850–862. DOI: 10.1080/00032711003789991.
  • Zhao, K.; He, Y.; Zhu, C. Y.; Yuan, Y.; Zang, S. L.; Zhang, Y. Y. Electrochemical Behavior of Propranolol Hydrochloride in Neutral Solution on Platinum Nanoparticles Doped Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode. Electrochim. Acta 2012, 80, 405.
  • Zhao, K.; Yue, S.; Tian, D. M.; Zhang, Y. Y. Electrochemical Behavior of Propranolol Hydrochloride in Neutral Solution on Calixarene/Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode. Electroanal. Chem. 2013, 709, 99.
  • Gaichore, R. R.; Srivastava, A. K. Electrocatalytic Determination of Propranolol Hydrochloride at Carbon Paste Electrode Based on Multiwalled Carbon-Nanotubes and Gamma-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2014, 78, 195–206. DOI: 10.1007/s10847-013-0288-z.
  • Gupta, P.; Yadav, S. K.; Agrawal, B.; Goyal, R. N. A Novel Graphene and Conductive Polymer Modified Pyrolytic Graphite Sensor for Determination of Propranolol in Biological Fluids. Sens. Actuat. B Chem. 2014, 204, 791–798. DOI: 10.1016/j.snb.2014.08.040.
  • Raj, M.; Gupta, P.; Goyal, R. N. Poly-Melamine Film Modified Sensor for the Sensitive and Selective Determination of Propranolol, a Beta-Blocker in Biological Fluids. J. Electrochem. Soc. 2016, 163, H388–H394. DOI: 10.1149/2.0411606jes.
  • Haghighi, M.; Shahlaei, M.; Bahrami, K.; Targhan, H. Reduced Graphene Oxide Supported Ti-Based Metal-Organic Framework as a Novel Electrochemical Sensor for Electro-Oxidation of Propranolol. J. Mater. Sci: Mater. Electron. 2021, 32, 8396–8409. DOI: 10.1007/s10854-021-05439-y.
  • Santhy, A.; Beena, S.; Krishnanunni Namboothiri, U. S.; Anupriya, S.; Sreeranjini, C. V. A Pencil Graphite Electrode Modified with Poly Nicotinamide as a Framework for the Electrochemical Detection of Propranolol Hydrochloride. IOP Conf. Ser: Mater. Sci. Eng. 2020, 872, 012125. DOI: 10.1088/1757-899X/872/1/012125.
  • Luczak, T. A Nanogold Supported Inorganic/Organic Hybrid 3D Sensor for Electrochemical Quantification of Propranolol-Effective Antagonist of Beta-Adrenergic Receptors. Ionics 2019, 25, 5515.
  • Goyal, R. N.; Bishnoi, S.; Agrawal, B. Single-Walled-Carbon-Nanotube-Modified Pyrolytic Graphite Electrode Used as a Simple Sensor for the Determination of Salbutamol in Urine. Int. J. Electrochem 2011, 2011, 1–8. DOI: 10.4061/2011/373498.
  • Li, Y. F.; Ye, Z.; Luo, P. L.; Li, Y.; Ye, B. X. A Sensitive Voltammetric Sensor for Salbutamol Based on MWNTs Composite nano-Au Film Modified Electrode. Anal. Methods 2014, 6, 1928. DOI: 10.1039/c3ay41758a.
  • Zhu, X. F.; Duan, X. M.; Xu, J. K.; Lu, L. M.; Zhang, K. X.; Xing, H. K.; Gao, Y. S.; Yang, T. T.; Wang, W. M. A Universal Strategy for the Facile Synthesis of a Sandwich-Structured Pt-graphene-Pt Nanocomposite for Salbutamol Sensing. New J. Chem. 2016, 40, 302–309. DOI: 10.1039/C5NJ02278A.
  • Ghoreishi, S. M.; Behpour, M.; Khoobi, A. Central Composite Rotatable Design in the Development of a New Method for Optimization, Voltammetric Determination and Electrochemical Behavior of Betaxolol in the Presence of Acetaminophen Based on a Gold Nanoparticle Modified Electrode. Anal. Methods 2012, 4, 2475. DOI: 10.1039/c2ay25268f.
  • Rofouei, M. K.; Khoshsafar, H.; Kalbasi, R. J.; Bagheri, H. A Sensitive Electrochemical Sensor for the Determination of Carvedilol Based on a Modified Glassy Carbon Electrode with Ordered Mesoporous Carbon. RSC Adv. 2016, 6, 13160–13167. DOI: 10.1039/C5RA22267B.
  • Drugs. Furosemide. https://www.drugs.com/tramadol.html.
  • Heidarimoghadam, R.; Farmany, A. Rapid Determination of Furosemide in Drug and Blood Plasma of Wrestlers by a carboxyl-MWCNT Sensor. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 1242–1245. DOI: 10.1016/j.msec.2015.09.062.
  • Silva, E. F.; Tanaka, A. A.; Fernandes, R. N.; Munoz, R. A. A.; da Silva, I. S. Batch Injection Analysis with Electrochemical Detection for the Simultaneous Determination of the Diuretics Furosemide and Hydrochlorothiazide in Synthetic Urine and Pharmaceutical Samples. Microchem. J. 2020, 157, 105027. DOI: 10.1016/j.microc.2020.105027.
  • Vasconcelos, S. C.; Rodrigues, E. M.; de Almeida, L. G.; Lepri, F. G.; Pacheco, W. F.; Semaan, F. S.; Dornellas, R. M. An Improved Drop Casting Electrochemical Strategy for Furosemide Quantification in Natural Waters Exploiting Chemically Reduced Graphene Oxide on Glassy Carbon Electrodes. Anal. Bioanal. Chem. 2020, 412, 7123–7130. DOI: 10.1007/s00216-020-02845-9.
  • Martins, T. S.; Bott-Neto, J. L.; Raymundo-Pereira, P. A.; Ticianelli, E. A.; Machado, S. A. S. An Electrochemical Furosemide Sensor Based on Pencil Graphite Surface Modified with Polymer Film Ni-Salen and Ni(OH)(2)/C Nanoparticles. Sens. Actuat. B Chem. 2018, 276, 378–387. DOI: 10.1016/j.snb.2018.08.131.
  • Svorc, L.; Stankovic, D. M.; Mehmeti, E.; Kalcher, K. Sensitive Electrochemical Determination of Yohimbine in Primary Bark of Natural Aphrodisiacs Using Boron-Doped Diamond Electrode. Anal. Methods 2014, 6, 4853–4859. DOI: 10.1039/C4AY00704B.
  • Svorc, L.; Kalcher, K. Flow-Injection Amperometric Determination of Yohimbine Alkaloid in Dietary Supplements Using a Boron-Doped Diamond Electrode. Sens. Actuat. B Chem. 2014, 205, 215–218. DOI: 10.1016/j.snb.2014.08.071.
  • Rodsud, S.; Limbut, W. A Simple Electrochemical Sensor Based on Graphene Nanoplatelets Modified Glassy Carbon Electrode (GrNPs/GCE) for Highly Sensitive Detection of Yohimbine (YOH). J. Electrochem. Soc. 2019, 166, B771–B779. DOI: 10.1149/2.0751910jes.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 1983, Acetaminophen. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Acetaminophen.
  • Song, J. C.; Yang, J.; Zeng, J. F.; Tan, J.; Zhang, L. Graphite Oxide Film-Modified Electrode as an Electrochemical Sensor for Acetaminophen. Sens. Actuat. B Chem. 2011, 155, 220–225. DOI: 10.1016/j.snb.2010.11.051.
  • Chen, X.; Zhu, J. N.; Xi, Q.; Yang, W. S. A High Performance Electrochemical Sensor for Acetaminophen Based on Single-Walled Carbon Nanotube-Graphene Nanosheet Hybrid Films. Sens. Actuat. B Chem. 2012, 161, 648–654. DOI: 10.1016/j.snb.2011.10.085.
  • Bui, M. P. N.; Li, C. A.; Han, K. N.; Pham, X. H.; Seong, G. H. Determination of Acetaminophen by Electrochemical co-Deposition of Glutamic Acid and Gold Nanoparticles. Sens. Actuat. B Chem. 2012, 174, 318–324. DOI: 10.1016/j.snb.2012.08.012.
  • Huang, T. Y.; Kung, C. W.; Wei, H. Y.; Boopathi, K. M.; Chu, C. W.; Ho, K. C. A High Performance Electrochemical Sensor for Acetaminophen Based on a rGO-PEDOT Nanotube Composite Modified Electrode. J. Mater. Chem. A 2014, 2, 7229–7237. DOI: 10.1039/C4TA00309H.
  • Si, W. M.; Lei, W.; Han, Z.; Zhang, Y. H.; Hao, Q. L.; Xia, M. Z. Electrochemical Sensing of Acetaminophen Based on Poly(3,4-Ethylenedioxythiophene)/Graphene Oxide Composites. Sens. Actuat. B Chem. 2014, 193, 823–829. DOI: 10.1016/j.snb.2013.12.052.
  • Zhang, X.; Wang, K. P.; Zhang, L. N.; Zhang, Y. C.; Shen, L. Phosphorus-Doped Graphene-Based Electrochemical Sensor for Sensitive Detection of Acetaminophen. Anal. Chim. Acta. 2018, 1036, 26–32. DOI: 10.1016/j.aca.2018.06.079.
  • Gomes, R. N.; Sousa, C. P.; Casciano, P. N. S.; Ribeiro, F. W. P.; Morais, S.; de Lima-Neto, P.; Correia, A. N. Dispersion of Multi-Walled Carbon Nanotubes in [BMIM]PF6 for Electrochemical Sensing of Acetaminophen. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 88, 148–156. DOI: 10.1016/j.msec.2018.03.016.
  • Cao, F.; Dong, Q. C.; Li, C. L.; Chen, J.; Ma, X. Y.; Huang, Y. K.; Song, D. H.; Ji, C. H.; Lei, Y. Electrochemical Sensor for Detecting Pain Reliever/Fever Reducer Drug Acetaminophen Based on Electrospun CeBiOx Nanofibers Modified Screen-Printed Electrode. Sens. Actuat. B Chem. 2018, 256, 143–150. DOI: 10.1016/j.snb.2017.09.204.
  • Anuar, N. S.; Basirun, W. J.; Ladan, M.; Shalauddin, M.; Mehmood, M. S. Fabrication of Platinum Nitrogen-Doped Graphene Nanocomposite Modified Electrode for the Electrochemical Detection of Acetaminophen. Sens. Actuat. B Chem. 2018, 266, 375–383. DOI: 10.1016/j.snb.2018.03.138.
  • Kim, D.; Kim, J. M.; Jeon, Y.; Lee, J.; Oh, J.; Antink, W. H.; Kim, D.; Piao, Y. Novel Two-Step Activation of Biomass-Derived Carbon for Highly Sensitive Electrochemical Determination of Acetaminophen. Sens. Actuat. B Chem. 2018, 259, 50–58. DOI: 10.1016/j.snb.2017.12.066.
  • Yu, S. M.; Li, H. F.; Li, G. E.; Niu, L. T.; Liu, W. L.; Di, X. Reduced Graphene Oxide-Supported Gold Dendrite for Electrochemical Sensing of Acetaminophen. Talanta 2018, 184, 244–250. DOI: 10.1016/j.talanta.2018.03.011.
  • Wang, L.; Meng, T. J.; Sun, J. J.; Wu, S. S.; Zhang, M. Z.; Wang, H.; Zhang, Y. F. Development of Pd/Polyoxometalate/Nitrogen-Doping Hollow Carbon Spheres Tricomponent Nanohybrids: A Selective Electrochemical Sensor for Acetaminophen. Anal. Chim. Acta. 2019, 1047, 28–35. DOI: 10.1016/j.aca.2018.09.042.
  • P. K.; Kalambate, Dhanjai, A.; Sinha, Y.; Li, Y.; Shen.;Y.; Huang. An Electrochemical Sensor for Ifosfamide, Acetaminophen, Domperidone, and Sumatriptan Based on Self-Assembled MXene/MWCNT/Chitosan Nanocomposite Thin Film. Mikrochim Acta 2020, 187, 402.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 16231, Amiloride.
  • Zayed, S. I. M.; Arida, H. A. M. Preparation of Carbon Paste Electrodes and Its Using in Voltammetric Determination of Amiloride Hydrochloride Using in the Treatment of High Blood Pressure. Int. J. Electrochem. Sci. 2013, 8, 1340.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 2249, Atenolol. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Atenolol.
  • Amiri, M.; Amali, E.; Nematollahzadeh, A. Poly-Dopamine Thin Film for Voltammetric Sensing of Atenolol. Sens. Actuat. B Chem. 2015, 216, 551–557. DOI: 10.1016/j.snb.2015.04.082.
  • Shaterian, M.; Aghaei, A.; Koohi, M.; Teymouri, M.; Mohammadi-Ganjgah, A. Synthesis, Characterization and Electrochemical Sensing Application of CoFe2O4/Graphene Magnetic Nanocomposite for Analysis of Atenolol. Polyhedron 2020, 182, 114479. DOI: 10.1016/j.poly.2020.114479.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 644073, Buprenorphine. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Buprenorphine.
  • Farmany, A.; Shamsara, M.; Mahdavi, H. Enhanced Electrochemical Biosensing of Buprenorphine Opioid Drug by Highly Stabilized Magnetic Nanocrystals. Sens. Actuat. B Chem. 2017, 239, 279–285. DOI: 10.1016/j.snb.2016.08.007.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 2783, Clenbuterol. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Clenbuterol.
  • Fan, G. H.; Huang, J.; Fan, X. H.; Xie, S. P.; Zheng, Z. S.; Cheng, Q.; Wang, P. Enhanced Oxidation and Detection of Toxic Clenbuterol on the Surface of Acetylene Black Nanoparticle-Modified Electrode. J. Mol. Liq. 2012, 169, 102–105. DOI: 10.1016/j.molliq.2012.02.013.
  • Zhai, H. Y.; Liu, Z. P.; Chen, Z. G.; Liang, Z. X.; Su, Z. H.; Wang, S. M. A Sensitive Electrochemical Sensor with Sulfonated Graphene Sheets/Oxygen-Functionalized Multi-Walled Carbon Nanotubes Modified Electrode for the Detection of Clenbuterol. Sens. Actuat. B Chem. 2015, 210, 483–490. DOI: 10.1016/j.snb.2014.12.121.
  • Yang, Y. Y.; Zhang, H.; Huang, C. S.; Yang, D. P.; Jia, N. Q. Electrochemical Non-Enzyme Sensor for Detecting Clenbuterol (CLB) Based on MoS2-Au-PEI-Hemin Layered Nanocomposites. Biosens. Bioelectron. 2017, 89, 461–467. DOI: 10.1016/j.bios.2016.04.019.
  • Ge, Y.; Camarada, M. B.; Xu, L. J.; Qu, M. R.; Liang, H.; Zhao, E. L.; Li, M. F.; Wen, Y. P. A Highly Stable Black Phosphorene Nanocomposite for Voltammetric Detection of Clenbuterol. Mikrochim. Acta. 2018, 185, 566. DOI: 10.1007/s00604-018-3084-z.
  • Wang, M. J.; Zhu, M. D.; Wang, Y.; Fan, Z. C.; Wu, S. N.; Zhang, X. B.; Tong, Z. W. In Situ Preparation of HNbMoO6/C Nanocomposite for Sensitive Detection of Clenbuterol. Appl. Biochem. Biotechnol. 2019, 189, 960–971. DOI: 10.1007/s12010-019-03054-6.
  • Zhang, K.; Ge, Y.; He, S. L.; Ge, F.; Huang, Q. R.; Huang, Z.; Wang, X. Y.; Wen, Y. P.; Wang, B. Q. Development of New Electrochemical Sensor Based on Kudzu Vine Biochar Modified Flexible Carbon Electrode for Portable Wireless Intelligent Analysis of Clenbuterol. Int. J. Electrochem. Sci. 2020, 15, 7326–7336. DOI: 10.20964/2020.08.92.
  • Ma, Z. C.; Wang, Q. L.; Gao, N.; Li, H. D. Electrochemical Detection of Clenbuterol with Gold-Nanoparticles-Modified Porous Boron-Doped Diamond Electrode. Microchem. J. 2020, 157, 104911. DOI: 10.1016/j.microc.2020.104911.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 4171, Metoprolol. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Metoprolol.
  • Friedrich, H.; Nada, R.; Fau - Bodmeier, A.; Bodmeier, R. Solid State and Dissolution Rate Characterization of co-Ground Mixtures of Nifedipine and Hydrophilic Carriers. Drug Dev. Ind. Pharm. 2005, 31, 719–728.
  • Wang, Q. G.; Zhao, R. N.; Wang, S. M.; Guo, H.; Li, J. H.; Zhou, H. W.; Wang, X. H.; Wu, X. M.; Wang, Y.; Chen, W. X.; Zhang, W. Z. A Highly Selective Electrochemical Sensor for Nifedipine Based on Layer-by-Layer Assembly Films from Polyaniline and Multiwalled Carbon Nanotube. J. Appl. Polym. Sci. 2016, 133, n/a–n/a. DOI: 10.1002/app.43452.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 4946, Propranolol. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Propranolol.
  • Mohammadizadeh, N.; Mohammadi, S. Z.; Kaykhaii, M. Highly Sensitive Amperometric Detection of Propranolol Using Graphite Screen Printed Electrode Modified with Zirconium Dioxide Nanoparticles. Anal. Bioanal. Electrochem. 2017, 9, 277.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 2083, Salbutamol. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Salbutamol.
  • Guo, X. C.; Wang, H. H.; Chen, X. J.; Xia, Z. Y.; Kang, W. Y.; Zhou, W. H. One Step Electrodeposition of Graphene-Au Nanocomposites for Highly Sensitive Electrochemical Detection of Salbutamol. Int. J. Electrochem. Sci. 2017, 12, 861–875. DOI: 10.20964/2017.02.29.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 2369, Betaxolol. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Betaxolol.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 2585, Carvedilol. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Carvedilol.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 3440, Furosemide. https://pubchem.ncbi.nlm.nih.gov/compound/Furosemide
  • Prankerd, R. J. Appendix A. In Profiles of Drug Substances, Excipients and Related Methodology; Academic Press: Washington, DC, 2007, vol. 35.
  • Peacock, A.; Bruno, R.; Gisev, N.; Degenhardt, L.; Hall, W.; Sedefov, R.; White, J.; Thomas, K. V.; Farrell, M.; Griffiths, P. New Psychoactive Substances: challenges for Drug Surveillance, Control, and Public Health Responses. Lancet 2019, 394, 1668–1684. DOI: 10.1016/S0140-6736(19)32231-7.
  • Kraemer, M.; Boehmer, A.; Madea, B.; Maas, A. Death Cases Involving Certain New Psychoactive Substances: A Review of the Literature. Forensic Sci. Int. . 2019, 298, 186–267. DOI: 10.1016/j.forsciint.2019.02.021.
  • Li, Y. F.; Li, K. J.; Song, G.; Liu, J.; Zhang, K.; Ye, B. X. Electrochemical Behavior of Codeine and Its Sensitive Determination on Graphene-Based Modified Electrode. Sens. Actuat. B Chem. 2013, 182, 401–407. DOI: 10.1016/j.snb.2013.03.023.
  • Mashadizadeh, M. H.; Abdollahi, G.; Yousefi, T. SmHCF/Multiwalled Carbon Nanotube Modified Glassy Carbon Electrode for the Determination of Codeine. Electroanal. Chem. 2016, 780, 68–74. DOI: 10.1016/j.jelechem.2016.09.001.
  • Simioni, N. B.; Oliveira, G. G.; Vicentini, F. C.; Lanza, M. R. V.; Janegitz, B. C.; Fatibello, O. Nanodiamonds Stabilized in Dihexadecyl Phosphate Film for Electrochemical Study and Quantification of Codeine in Biological and Pharmaceutical Samples. Diamond Relat. Mater. 2017, 74, 191–196. DOI: 10.1016/j.diamond.2017.03.007.
  • Svorc, L.; Sochr, J.; Svitkova, J.; Rievaj, M.; Bustin, D. Rapid and Sensitive Electrochemical Determination of Codeine in Pharmaceutical Formulations and Human Urine Using a Boron-Doped Diamond Film Electrode. Electrochim. Acta 2013, 87, 503–510. DOI: 10.1016/j.electacta.2012.09.111.
  • Mohamed, M. A.; El-Gendy, D. M.; Ahmed, N.; Banks, C. E.; Allam, N. K. 3D Spongy Graphene-Modified Screen-Printed Sensors for the Voltammetric Determination of the Narcotic Drug Codeine. Biosens. Bioelectron. 2018, 101, 90–95. DOI: 10.1016/j.bios.2017.10.020.
  • Wu, Y. J.; Liu, Z. J.; Zhou, S. H.; Wang, F.; Zhang, C.; Lu, K. Langmuir-Blodgett Assembly of Carboxylic Multiwalled Carbon Nanotubes-Nafion for Amperometric Sensing of Codeine. J. Electrochem. Soc. 2019, 166, H592–H597. DOI: 10.1149/2.0371913jes.
  • Drugs. Clonazepam. https://www.drugs.com/Clonazepam.html.
  • Habibi, B.; Jahanbakhshi, M. Silver Nanoparticles/Multi Walled Carbon Nanotubes Nanocomposite Modified Electrode: Voltammetric Determination of Clonazepam. Electrochim. Acta 2014, 118, 10–17. DOI: 10.1016/j.electacta.2013.11.169.
  • Shahrokhian, S.; Balotf, H.; Ghalkhani, M. Nano Composite Coating Based on Cellulose Nanofibers/Carbon Nanoparticles: application to Voltammetric Determination of Clonazepam. J. Solid State Electrochem. 2015, 19, 251–260. DOI: 10.1007/s10008-014-2597-6.
  • Honeychurch, K. C.; Brooks, J.; Hart, J. P. Development of a Voltammetric Assay, Using Screen-Printed Electrodes, for Clonazepam and Its Application to Beverage and Serum Samples. Talanta 2016, 147, 510–515. DOI: 10.1016/j.talanta.2015.10.032.
  • Lotfi, S.; Veisi, H. Electrochemical Determination of Clonazepam Drug Based on Glassy Carbon Electrode Modified with Fe3O4/R-SH/Pd Nanocomposite. Mater. Sci. Eng. C Mater. Biol. Appl. . 2019, 103, 109754. DOI: 10.1016/j.msec.2019.109754.
  • Ghalkhani, M.; Khaloo, S. S.; Mirzaie, R. A. Klonopin Assay Using Modified Electrode with Multiwalled Carbon Nanotubes and Poly Melamine Nanocomposite. Mater. Sci. Eng. C Mater. Biol. Appl. . 2019, 99, 121–128. DOI: 10.1016/j.msec.2019.01.102.
  • Chen, T. W.; Rajaji, U.; Chen, S. M.; Ramalingam, R. J. A Relative Study on Sonochemically Synthesized Mesoporous WS2 Nanorods & Hydrothermally Synthesized WS2 Nanoballs towards Electrochemical Sensing of Psychoactive Drug (Clonazepam). Ultrason. Sonochem. 2019, 54, 79–89. DOI: 10.1016/j.ultsonch.2019.02.012.
  • Russo, M. J.; Quigley, A. F.; Kapsa, R. M. I.; Moulton, S. E.; Guijt, R.; Silva, S. M.; Greene, G. W. A Simple Electrochemical Swab Assay for the Rapid Quantification of Clonazepam in Unprocessed Saliva Enabled by Lubricin Antifouling Coatings. Chemelectrochem 2020, 7, 2851–2858. DOI: 10.1002/celc.202000393.
  • Sriram, B.; Govindasamy, M.; Wang, S. F.; Joseph, X. B. A Ternary Nanocomposite Based on Nickel(Iii) Oxide@f-CNF/rGO for Efficient Electrochemical Detection of an Antipsychotic Drug (Klonopin) in Biological Samples. New J. Chem. 2020, 44, 10250–10257. DOI: 10.1039/D0NJ01360A.
  • Khoka, S.; Samoson, K.; Yodrak, J.; Thiagchanya, A.; Phonchai, A.; Limbut, W. A Simply Fabricated Electrochemically Pretreated Glassy Carbon Electrode for Highly Sensitive Determination of Clonazepam by Adsorptive Cathodic Stripping Voltammetry. J. Electrochem. Soc. 2021, 168, 057513. DOI: 10.1149/1945-7111/abfe45.
  • Allahnouri, F.; Farhadi, K.; Eskandari, H.; Molaei, R. Screen Printed Carbon Electrode Modified with a Copper@Porous Silicon Nanocomposite for Voltammetric Sensing of Clonazepam. Mikrochim. Acta. 2019, 186, 676. DOI: 10.1007/s00604-019-3784-z.
  • Jain, R.; Sinha, A.; Kumari, N.; Khan, A. L. A Polyaniline/Graphene Oxide Nanocomposite as a Voltammetric Sensor for Electroanalytical Detection of Clonazepam. Anal. Methods 2016, 8, 3034–3045. DOI: 10.1039/C6AY00424E.
  • Glasscott, M. W.; Vannoy, K. J.; Fernando, P. U. A. I.; Kosgei, G. K.; Moores, L. C.; Dick, J. E. Electrochemical Sensors for the Detection of Fentanyl and Its Analogs: Foundations and Recent Advances. Trac-Trends Anal. Chem. 2020, 132, 116037. DOI: 10.1016/j.trac.2020.116037.
  • Goodchild, S. A.; Hubble, L. J.; Mishra, R. K.; Li, Z.; Goud, K. Y.; Barfidokht, A.; Shah, R.; Bagot, K. S.; McIntosh, A. J.; Wang, J. Ionic Liquid-Modified Disposable Electrochemical Sensor Strip for Analysis of Fentanyl. Anal. Chem. 2019, 91, 3747–3753. DOI: 10.1021/acs.analchem.9b00176.
  • Barfidokht, A.; Mishra, R. K.; Seenivasan, R.; Liu, S. Y.; Hubble, L. J.; Wang, J.; Hall, D. A. Wearable Electrochemical Glove-Based Sensor for Rapid and on-Site Detection of Fentanyl. Sens. Actuat. B Chem. 2019, 296, 126422. DOI: 10.1016/j.snb.2019.04.053.
  • Mishra, R. K.; Goud, K. Y.; Li, Z.; Moonla, C.; Mohamed, M. A.; Tehrani, F.; Teymourian, H.; Wang, J. Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array. J. Am. Chem. Soc. 2020, 142, 5991–5995. DOI: 10.1021/jacs.0c01883.
  • Ott, C. E.; Cunha-Silva, H.; Kuberski, S. L.; Cox, J. A.; Arcos-Martinez, M. J.; Arroyo-Mora, L. E. Electrochemical Detection of Fentanyl with Screen-Printed Carbon Electrodes Using Square-Wave Adsorptive Stripping Voltammetry for Forensic Applications. Electroanal. Chem 2020, 873, 114425. DOI: 10.1016/j.jelechem.2020.114425.
  • Wester, N.; Mynttinen, E.; Etula, J.; Lilius, T.; Kalso, E.; Mikladal, B. F.; Zhang, Q.; Jiang, H.; Sainio, S.; Nordlund, D.; et al. Single-Walled Carbon Nanotube Network Electrodes for the Detection of Fentanyl Citrate. ACS Appl. Nano Mater. 2020, 3, 1203–1212. DOI: 10.1021/acsanm.9b01951.
  • Najafi, M.; Sohouli, E.; Mousavi, F. An Electrochemical Sensor for Fentanyl Detection Based on Multi-Walled Carbon Nanotubes as Electrocatalyst and the Electrooxidation Mechanism. J. Anal. Chem. 2020, 75, 1209. DOI: 10.1134/S1061934820090130.
  • Naghian, E.; Khosrowshahi, E. M.; Sohouli, E.; Ahmadi, F.; Rahimi-Nasrabadi, M.; Safarifard, V. A New Electrochemical Sensor for the Detection of Fentanyl Lethal Drug by a Screen-Printed Carbon Electrode Modified with the Open-Ended Channels of Zn(ii)-MOF. New J. Chem. 2020, 44, 9271–9277. DOI: 10.1039/D0NJ01322F.
  • Sohouli, E.; Keihan, A. H.; Shahdost-fard, F.; Naghian, E.; Plonska-Brzezinska, M. E.; Rahimi-Nasrabadi, M.; Ahmadi, F. A Glassy Carbon Electrode Modified with Carbon Nanoonions for Electrochemical Determination of Fentanyl. Mater. Sci. Eng. C Mater. Biol. Appl. . 2020, 110, 110684. DOI: 10.1016/j.msec.2020.110684.
  • Schram, J.; Parrilla, M.; Sleegers, N.; Samyn, N.; Bijvoets, S. M.; Heerschop, M. W. J.; van Nuijs, A. L. N.; De Wael, K. Identifying Electrochemical Fingerprints of Ketamine with Voltammetry and Liquid Chromatography-Mass Spectrometry for Its Detection in Seized Samples. Anal. Chem. 2020, 92, 13485–13492. DOI: 10.1021/acs.analchem.0c02810.
  • Fu, K. X.; Zhang, R. L.; He, J. C.; Bai, H. P.; Zhang, G. L. Sensitive Detection of Ketamine with an Electrochemical Sensor Based on UV-Induced Polymerized Molecularly Imprinted Membranes at Graphene and MOFs Modified Electrode. Biosens. Bioelectron. 2019, 143, 111636. DOI: 10.1016/j.bios.2019.111636.
  • Drugs. Methadone. https://www.drugs.com/Methadone.html.
  • Alipour, E.; Majidi, M. R.; Hoseindokht, O. Development of Simple Electrochemical Sensor for Selective Determination of Methadone in Biological Samples Using Multi-Walled Carbon Nanotubes Modified Pencil Graphite Electrode. Jnl. Chinese Chemical Soc. 2015, 62, 461–468. DOI: 10.1002/jccs.201400391.
  • Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T. A Sensitive Electrochemical Sensor for Rapid Determination of Methadone in Biological Fluids Using Carbon Paste Electrode Modified with Gold Nanofilm. Talanta 2014, 128, 203–210. DOI: 10.1016/j.talanta.2014.03.003.
  • Rezaei, B.; Tajaddodi, A.; Ensafi, A. A. An Innovative Highly Sensitive Electrochemical Sensor Based on Modified Electrode with Carbon Quantum Dots and Multiwall Carbon Nanotubes for Determination of Methadone Hydrochloride in Real Samples. Anal. Methods 2020, 12, 5210–5218. DOI: 10.1039/d0ay01374a.
  • Khorablou, Z.; Shahdost-Fard, F.; Razmi, H. Flexible and Highly Sensitive Methadone Sensor Based on Gold Nanoparticles/Polythiophene Modified Carbon Cloth Platform. Sens. Actuat. B 2021, 344, 130284. DOI: 10.1016/j.snb.2021.130284.
  • Drugs. Morphine. https://www.drugs.com/morphine.html.
  • Atta, N. F.; Galal, A.; Azab, S. M. Electrochemical Morphine Sensing Using Gold Nanoparticles Modified Carbon Paste Electrode. Int. J. Electrochem. Sci. 2011, 6, 5066.
  • Atta, N. F.; Galal, A.; Azab, S. M. Determination of Morphine at Gold Nanoparticles/Nafion® Carbon Paste Modified Sensor Electrode. Analyst 2011, 136, 4682–4691. DOI: 10.1039/c1an15423k.
  • Atta, N. F.; Galal, A.; Ahmed, R. A. Direct and Simple Electrochemical Determination of Morphine at PEDOT Modified Pt Electrode. Electroanalysis 2011, 23, n/a–n/a. DOI: 10.1002/elan.201000600.
  • Alipour, E.; Gasemlou, S. Easy Modification of Pencil Graphite Electrode for Discrimination and Determination of Morphine in Biological and Street Samples. Anal. Methods 2012, 4, 2962. DOI: 10.1039/c2ay25455g.
  • Atta, N. F.; Galal, A.; Wassel, A. A.; Ibrahim, A. H. Sensitive Electrochemical Determination of Morphine Using Gold Nanoparticles-Ferrocene Modified Carbon Paste Electrode. Int. J. Electrochem. Sci. 2012, 7, 10501.
  • Ensafi, A. A.; Izadi, M.; Rezaei, B.; Karimi-Maleh, H. N-Hexyl-3-Methylimidazolium Hexafluoro Phosphate/Multiwall Carbon Nanotubes Paste Electrode as a Biosensor for Voltammetric Detection of Morphine. J. Mol. Liq. 2012, 174, 42–47. DOI: 10.1016/j.molliq.2012.07.027.
  • Hong, Y. P.; Hu, J. M.; Zhang, J. Q.; Cao, C. N. Enhanced Electrocatalytic Activity for Morphine Oxidation at 2-Aminoethanethiol Self-Assembled Monolayer (SAM)-Modified Gold Electrode. Electrocatalysis 2013, 4, 302–305. DOI: 10.1007/s12678-013-0160-3.
  • Arabali, V.; Sadeghi, R. Surface Properties of nano-Al2O3 Film and Its Application in the Preparation of Morphine Electrochemical Sensor. Ionics 2013, 19, 1775–1782. DOI: 10.1007/s11581-013-0929-7.
  • Afsharmanesh, E.; Karimi-Maleh, H.; Pahlavan, A.; Vahedi, J. Electrochemical Behavior of Morphine at ZnO/CNT Nanocomposite Room Temperature Ionic Liquid Modified Carbon Paste Electrode and Its Determination in Real Samples. J. Mol. Liq. 2013, 181, 8–13. DOI: 10.1016/j.molliq.2013.02.002.
  • Atta, N. F.; Hassan, H. K.; Galal, A. Rapid and Simple Electrochemical Detection of Morphine on Graphene-Palladium-Hybrid-Modified Glassy Carbon Electrode. Anal. Bioanal. Chem. 2014, 406, 6933–6942. DOI: 10.1007/s00216-014-7999-x.
  • Atta, N. F.; Galal, A.; Abdel-Gawad, F. M.; Mohamed, E. F. Electrochemical Morphine Sensor Based on Gold Nanoparticles Metalphthalocyanine Modified Carbon Paste Electrode. Electroanalysis 2015, 27, 415–428. DOI: 10.1002/elan.201400464.
  • Li, Y. F.; Zou, L. N.; Li, Y.; Li, K. J.; Ye, B. X. A New Voltammetric Sensor for Morphine Detection Based on Electrochemically Reduced MWNTs-Doped Graphene Oxide Composite Film. Sens. Actuat. B Chem. 2014, 201, 511–519. DOI: 10.1016/j.snb.2014.05.034.
  • Atta, N. F.; Galal, A.; Hassan, S. H. Electrochemical Sensor for Morphine Based on Gold Nanoparticles/Ferrocene Carboxylic Acid/Poly (3,4-Ethylene-Dioxythiophene) Composite. Int. J. Electrochem. Sci. 2015, 10, 2265.
  • Talemi, R. P.; Mashhadizadeh, M. H. A Novel Morphine Electrochemical Biosensor Based on Intercalative and Electrostatic Interaction of Morphine with Double Strand DNA Immobilized onto a Modified Au Electrode. Talanta 2015, 131, 460–466. DOI: 10.1016/j.talanta.2014.08.009.
  • Dehdashtian, S.; Gholivand, M. B.; Shamsipur, M.; Kariminia, S. Construction of a Sensitive and Selective Sensor for Morphine Using Chitosan Coated Fe3O4 Magnetic Nanoparticle as a Modifier. Mater. Sci. Eng. C Mater. Biol. Appl. . 2016, 58, 53–59. DOI: 10.1016/j.msec.2015.07.049.
  • Aliabadi, A.; Rounaghi, G. H. A Novel Electrochemical Sensor for Determination of Morphine in a Sub Microliter of Human Urine Sample. Electroanal. Chem. 2019, 832, 204–208. DOI: 10.1016/j.jelechem.2018.10.052.
  • Rajaei, M.; Foroughi, M. M.; Jahani, S.; Zandi, M. S.; Nadiki, H. H. Sensitive Detection of Morphine in the Presence of Dopamine with La3+ Doped Fern-like CuO Nanoleaves/MWCNTs Modified Carbon Paste Electrode. J. Mol. Liq. 2019, 284, 462–472. DOI: 10.1016/j.molliq.2019.03.135.
  • Abraham, P.; Renjini, S.; Nancy, T. E. M.; Kumary, V. A. Electrochemical Synthesis of Thin-Layered Graphene Oxide-Poly(CTAB) Composite for Detection of Morphine. J. Appl. Electrochem. 2020, 50, 41–50. DOI: 10.1007/s10800-019-01367-2.
  • Bahrami, G.; Ehzari, H.; Mirzabeigy, S.; Mohammadi, B.; Arkan, E. Fabrication of a Sensitive Electrochemical Sensor Based on Electrospun Magnetic Nanofibers for Morphine Analysis in Biological Samples. Mater. Sci. Eng. C Mater. Biol. Appl. . 2020, 106, 110183. DOI: 10.1016/j.msec.2019.110183.
  • Zare, S. J.; Masomi, M.; Baei, M. S.; Raeisi, S. N.; Shahidi, S. A. Amplified Electrochemical Sensor for Nano-Molar Detection of Morphine in Drug Samples. Int. J. Electrochem. Sci. 2021, 16, 150966. DOI: 10.20964/2021.01.41.
  • Yang, G. M.; Chen, Y. Q.; Li, L.; Yang, Y. H. Direct Electrochemical Determination of Morphine on a Novel Gold Nanotube Arrays Electrode. Clin. Chim. Acta. 2011, 412, 1544–1549. DOI: 10.1016/j.cca.2011.04.037.
  • Ahmar, H.; Tabani, H.; Koruni, M. H.; Davarani, S. S. H.; Fakhari, A. R. A New Platform for Sensing Urinary Morphine Based on Carrier Assisted Electromembrane Extraction Followed by Adsorptive Stripping Voltammetric Detection on Screen-Printed Electrode. Biosens. Bioelectron. 2014, 54, 189–194. DOI: 10.1016/j.bios.2013.10.035.
  • Salajegheh, M.; Kazemipour, M.; Foroghi, M. M.; Ansari, M. Morphine Sensing by a Green Modified Molecularly Imprinted Poly L-Lysine/Sodium Alginate-Activated Carbon/Glassy Carbon Electrode Based on Computational Design. Electroanalysis 2019, 31, 468–476. DOI: 10.1002/elan.201800395.
  • Aizpurua-Olaizola, O.; Omar, J.; Navarro, P.; Olivares, M.; Etxebarria, N.; Usobiaga, A. Identification and Quantification of Cannabinoids in Cannabis Sativa L. plants by High Performance Liquid Chromatography-Mass Spectrometry. Anal. Bioanal. Chem. 2014, 406, 7549–7560. DOI: 10.1007/s00216-014-8177-x.
  • Grotenhermen, F. Pharmacokinetics and Pharmacodynamics of Cannabinoids. Clin. Pharmacokinet. 2003, 42, 327–360. DOI: 10.2165/00003088-200342040-00003.
  • Zgair, A.; Wong, J. C. M.; Lee, J. B.; Mistry, J.; Sivak, O.; Wasan, K. M.; Hennig, I. M.; Barrett, D. A.; Constantinescu, C. S.; Fischer, P. M.; Gershkovich, P. Dietary Fats and Pharmaceutical Lipid Excipients Increase Systemic Exposure to Orally Administered Cannabis and Cannabis-Based Medicines. Am. J. Transl. Res. 2016, 8, 3448–3459.
  • United Nations. Global Overview of Drug Demand and Supply. In World Drug Report 2017: United Nations, 2017. https://www.un-ilibrary.org/content/books/9789210606233c003
  • Hall, W.; Degenhardt, L. Adverse Health Effects of Non-Medical Cannabis Use. Lancet 2009, 374, 1383–1391. DOI: 10.1016/S0140-6736(09)61037-0.
  • Makriyannis, A. 2012 Division of Medicinal Chemistry Award Address. Trekking the Cannabinoid Road: A Personal Perspective. J. Med. Chem. 2014, 57, 3891–3911. DOI: 10.1021/jm500220s.
  • Balbino, M. A.; de Menezes, M. M. T.; Eleoterio, I. C.; Saczk, A. A.; Okumura, L. L.; Tristao, H. M.; de Oliveira, M. F. Voltammetric Determination of Δ9-THC in Glassy Carbon Electrode: An Important Contribution to Forensic Electroanalysis. Forensic Sci. Int. . 2012, 221, 29–32. DOI: 10.1016/j.forsciint.2012.03.020.
  • Renaud-Young, M.; Mayall, R. M.; Salehi, V.; Goledzinowski, M.; Comeau, F. J. E.; MacCallum, J. L.; Birss, V. I. Development of an Ultra-Sensitive Electrochemical Sensor for Delta(9)- Tetrahydrocannabinol (THC) and Its Metabolites Using Carbon Paper Electrodes. Electrochim. Acta 2019, 307, 351–359. DOI: 10.1016/j.electacta.2019.02.117.
  • Zhang, M.; Ye, J.; Fang, P. P.; Zhang, Z. Y.; Wang, C. Q.; Wu, G. Y. Facile Electrochemical Preparation of NaOH Nanorods on Glassy Carbon Electrode for Ultrasensitive and Simultaneous Sensing of Hydroquinone, Catechol and Resorcinol. Electrochim. Acta 2019, 317, 618–627. DOI: 10.1016/j.electacta.2019.06.006.
  • Nissim, R.; Compton, R. G. Absorptive Stripping Voltammetry for Cannabis Detection. Chem. Cent. J. 2015, 9, 41. DOI: 10.1186/s13065-015-0117-0.
  • Mishra, R. K.; Sempionatto, J. R.; Li, Z. H.; Brown, C.; Galdino, N. M.; Shah, R.; Liu, S. Y.; Hubble, L. J.; Bagot, K.; Tapert, S.; Wang, J. Simultaneous Detection of Salivary Δ9-Tetrahydrocannabinol and Alcohol Using a Wearable Electrochemical Ring Sensor. Talanta 2020, 211, 120757. DOI: 10.1016/j.talanta.2020.120757.
  • Drugs. Tramadol. https://www.drugs.com/tramadol.html.
  • Afkhami, A.; Ghaedi, H.; Madrakian, T.; Ahmadi, M.; Mahmood-Kashani, H. Fabrication of a New Electrochemical Sensor Based on a New Nano-Molecularly Imprinted Polymer for Highly Selective and Sensitive Determination of Tramadol in Human Urine Samples. Biosens. Bioelectron. 2013, 44, 34–40. DOI: 10.1016/j.bios.2012.11.030.
  • Tarley, C. R. T.; Mendonca, J. D.; da Rocha, L. R.; Capelari, T. B.; Prete, M. C.; Fonseca, M. C.; de Oliveira, F. M.; Pereira, A. C.; Scheel, G. L.; Borges, K. B.; Segatelli, M. G. Development of a Molecularly Imprinted Poly(Acrylic Acid)-MWCNT Nanocomposite Electrochemical Sensor for Tramadol Determination in Pharmaceutical Samples. Electroanalysis 2020, 32, 1130.
  • Fakhari, A. R.; Sahragard, A.; Ahmar, H.; Tabani, H. A Novel Platform Sensing Based on Combination of Electromembrane-Assisted Solid Phase Microextraction with Linear Sweep Voltammetry for the Determination of Tramadol. Electroanal. Chem. 2015, 747, 12–19. DOI: 10.1016/j.jelechem.2015.01.032.
  • Sanghavi, B. J.; Srivastava, A. K. Simultaneous Voltammetric Determination of Acetaminophen and Tramadol Using Dowex50wx2 and Gold Nanoparticles Modified Glassy Carbon Paste Electrode. Anal. Chim. Acta. 2011, 706, 246–254. DOI: 10.1016/j.aca.2011.08.040.
  • Madrakian, T.; Alizadeh, S.; Bahram, M.; Afkhami, A. A Novel Electrochemical Sensor Based on Magneto LDH/Fe3O4 Nanoparticles @ Glassy Carbon Electrode for Voltammetric Determination of Tramadol in Real Samples. Ionics 2017, 23, 1005–1015. DOI: 10.1007/s11581-016-1871-2.
  • Hassannezhad, M.; Hosseini, M.; Ganjali, M. R.; Arvan, M. A Graphitic Carbon Nitride (g-C3N4/Fe3O4) Nanocomposite: An Efficient Electrode Material for the Electrochemical Determination of Tramadol in Human Biological Fluids. Anal. Methods 2019, 11, 2064–2071. DOI: 10.1039/C9AY00146H.
  • Afrasiabi, M.; Zad, Z. R.; Kianipour, S.; Babaei, A.; Taheri, A. R. A Sensor for Determination of Tramadol in Pharmaceutical Preparations and Biological Fluids Based on Multi-Walled Carbon Nanotubes-Modified Glassy Carbon Electrode. J. Chem. Soc. Pak. 2013, 35, 1106.
  • Mohamed, M. A.; Atty, S. A.; Salama, N. N.; Banks, C. E. Highly Selective Sensing Platform Utilizing Graphene Oxide and Multiwalled Carbon Nanotubes for the Sensitive Determination of Tramadol in the Presence of Co-Formulated Drugs. Electroanalysis 2017, 29, 1038–1048. DOI: 10.1002/elan.201600668.
  • S.; Amin, A.; Hameed, N.; Memon, A. R.; Solangi, M.; Aslam, Sirajuddin.; M. T.; Soomro. The Efficacy of the Nafion (R) blended CTAB Protected Au Nanoparticles for the Electrochemical Detection of Tramadol in Wastewater: A Parametric Investigation. J. Environ. Chem. Eng. 2016, 4, 3825. DOI: 10.1016/j.jece.2016.08.010.
  • Atta, N. F.; Ahmed, R. A.; Amin, H. M. A.; Galal, A. Monodispersed Gold Nanoparticles Decorated Carbon Nanotubes as an Enhanced Sensing Platform for Nanomolar Detection of Tramadol. Electroanalysis 2012, 24, 2135–2146. DOI: 10.1002/elan.201200344.
  • Cidem, E.; Teker, T.; Aslanoglu, M. A Sensitive Determination of Tramadol Using a Voltammetric Platform Based on Antimony Oxide Nanoparticles. Microchem. J. 2019, 147, 879–885. DOI: 10.1016/j.microc.2019.04.018.
  • Kolahi-Ahari, S.; Deiminiat, B.; Rounaghi, G. H. Modification of a Pencil Graphite Electrode with Multiwalled Carbon Nanotubes Capped Gold Nanoparticles for Electrochemical Determination of Tramadol. Electroanal. Chem. 2020, 862, 113996. DOI: 10.1016/j.jelechem.2020.113996.
  • Jahromi, Z.; Mirzaei, E.; Savardashtaki, A.; Afzali, M.; Afzali, Z. A Rapid and Selective Electrochemical Sensor Based on Electrospun Carbon Nanofibers for Tramadol Detection. Microchem. J. 2020, 157, 104942. DOI: 10.1016/j.microc.2020.104942.
  • Atta, N. F.; Abdo, G. G.; Elzatahry, A.; Galal, A.; Hassan, S. H. Designed Electrochemical Sensor Based on Metallocene Modified Conducting Polymer Composite for Effective Determination of Tramadol in Real Samples. Can. J. Chem. 2021, 99, 437–446. DOI: 10.1139/cjc-2020-0199.
  • Patil, D. G.; Gokavi, N. M.; Bagoji, A. M.; Nandibewoor, S. T. Electrochemical Characterization and Determination of Tramadol Drug Using Graphite Pencil Electrode. Anal. Bioanal. Electrochem. 2016, 8, 78.
  • Arabali, V.; Malekmohammadi, S.; Karimi, F. Surface Amplification of Pencil Graphite Electrode Using CuO Nanoparticle/Polypyrrole Nanocomposite; a Powerful Electrochemical Strategy for Determination of Tramadol. Microchem. J. 2020, 158, 105179. DOI: 10.1016/j.microc.2020.105179.
  • Smith, J. P.; Metters, J. P.; Khreit, O. I. G.; Sutcliffe, O. B.; Banks, C. E. Forensic Electrochemistry Applied to the Sensing of New Psychoactive Substances: Electroanalytical Sensing of Synthetic Cathinones and Analytical Validation in the Quantification of Seized Street Samples. Anal. Chem. 2014, 86, 9985–9992. DOI: 10.1021/ac502991g.
  • Smith, J. P.; Metters, J. P.; Irving, C.; Sutcliffe, O. B.; Banks, C. E. Forensic Electrochemistry: The Electroanalytical Sensing of Synthetic Cathinone-Derivatives and Their Accompanying Adulterants in "Legal High" Products. Analyst 2014, 139, 389–400. DOI: 10.1039/c3an01985c.
  • Tan, F.; Smith, J. P.; Sutcliffe, O. B.; Banks, C. E. Regal Electrochemistry: sensing of the Synthetic Cathinone Class of New Psychoactive Substances (NPSs). Anal. Methods 2015, 7, 6470–6474. DOI: 10.1039/C5AY01820J.
  • Lima, C. D.; Couto, R. A. S.; Arantes, L. C.; Marinho, P. A.; Pimentel, D. M.; Quinaz, M. B.; da Silva, R. A. B.; Richter, E. M.; Barbosa, S. L.; dos Santos, W. T. P. Electrochemical Detection of the Synthetic Cathinone 3,4-Methylenedioxypyrovalerone Using Carbon Screen-Printed Electrodes: A Fast, Simple and Sensitive Screening Method for Forensic Samples. Electrochim. Acta 2020, 354, 136728. DOI: 10.1016/j.electacta.2020.136728.
  • Schram, J.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van den Berg, J.; van Nuijs, A. L. N.; De Wael, K. Electrochemical Profiling and Liquid Chromatography-Mass Spectrometry Characterization of Synthetic Cathinones: From Methodology to Detection in Forensic Samples. Drug Test Anal. . 2021, 13, 1282–1294. DOI: 10.1002/dta.3018.
  • Yu, Q.; Yang, X. H.; Chen, Y. Electrochemical Detection of Codeine in Pharmaceutical Tablets Using a Tungsten Oxide Nanoparticles and Carbon Nanotubes Modified Electrode. Int. J. Electrochem. Sci. 2016, 11, 6862–6872. DOI: 10.20964/2016.08.13.
  • Prankerd, R. J. Appendix B. In Profiles of Drug Substances, Excipients and Related Methodology; Academic Press: Washington, DC., 2007, p. 425
  • Khoshroo, A.; Hosseinzadeh, L.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F. Silver Nanofibers/Ionic Liquid Nanocomposite Based Electrochemical Sensor for Detection of Clonazepam via Electrochemically Amplified Detection. Microchem. J. 2019, 145, 1185–1190. DOI: 10.1016/j.microc.2018.12.049.
  • Zhou, J.; Xu, Y.; Wang, L.; Liu, J.; Li, Y. M.; Ye, B. X. Electrochemical Behavior and Voltammetric Determination of Ketamine at Pulse Plating Gold Film Modified Platinum Electrode. Jnl. Chinese Chem. Soc. 2012, 59, 879–883. DOI: 10.1002/jccs.201100659.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 4095, Methadone. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Methadone.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 5288826, Morphine. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Morphine.
  • Barthwal, S.; Singh, B.; Singh, N. B. A Novel Electrochemical Sensor Fabricated by Embedding ZnO Nano Particles on MWCNT for Morphine Detection. Mater. Today-Proc. 2018, 5, 9061–9066. DOI: 10.1016/j.matpr.2017.10.021.
  • Maccaferri, G.; Terzi, F.; Xia, Z.; Vulcano, F.; Liscio, A.; Palermo, V.; Zanardi, C. Highly Sensitive Amperometric Sensor for Morphine Detection Based on Electrochemically Exfoliated Graphene Oxide. Application in Screening Tests of Urine Samples. Sens. Actuat. B Chem. 2019, 281, 739–745. DOI: 10.1016/j.snb.2018.10.163.
  • Beitollahi, H.; Nejad, F. G. Magnetic Core-Shell Graphene Oxide/Fe3O4@SiO2 Nanocomposite for Sensitive and Selective Electrochemical Detection of Morphine Using Modified Graphite Screen Printed Electrode. J. Anal. Chem. 2020, 75, 127.
  • Bagherinasab, Z.; Beitollahi, H.; Yousefi, M.; Bagherzadeh, M.; Hekmati, M. A Sensitive Voltammetric Morphine Nanosensor Based on BaFe12O19 Nanoparticle-Modified Screen-Printed Electrodes. J. Iran. Chem. Soc. 2020, 17, 717–724. DOI: 10.1007/s13738-019-01808-x.
  • Verrinder, E.; Wester, N.; Leppanen, E.; Lilius, T.; Kalso, E.; Mikladal, B.; Varjos, I.; Koskinen, J.; Laurila, T. Electrochemical Detection of Morphine in Untreated Human Capillary Whole Blood. ACS Omega 2021, 6, 11563–11569. DOI: 10.1021/acsomega.1c00773.
  • Ren, S. F.; Feng, R. Y.; Cheng, S. N.; Wang, Q. T.; Zheng, Z. X. Synergistic Catalytic Acceleration of MXene/MWCNTs as Decorating Materials for Ultrasensitive Detection of Morphine. Electroanalysis 2021, 33, 1471–1483. DOI: 10.1002/elan.202100039.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 33741, Tramadol. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Tramadol.
  • Fathirad, F.; Mostafavi, A.; Afzali, D. Electrospun Pd Nanoparticles Loaded on Vulcan Carbon/ Conductive Polymeric Ionic Liquid Nanofibers for Selective and Sensitive Determination of Tramadol. Anal. Chim. Acta. 2016, 940, 65–72. DOI: 10.1016/j.aca.2016.08.051.
  • Aflatoonian, M. R.; Tajik, S.; Aflatoonian, B.; Beitollahi, H.; Zhang, K. Q.; Van Le, Q.; Cha, J. H.; Jang, H. W.; Shokouhimehr, M.; Peng, W. X. A Screen-Printed Electrode Modified with Graphene/Co3O4 Nanocomposite for Electrochemical Detection of Tramadol. Front. Chem. 2020, 8, 562308. DOI: 10.3389/fchem.2020.562308.
  • Memon, S. A.; Hassan, D.; Buledi, J. A.; Solangi, A. R.; Memon, S. Q.; Palabiyik, I. M. Plant Material Protected Cobalt Oxide Nanoparticles: Sensitive Electro-Catalyst for Tramadol Detection. Microchem. J. 2020, 159, 105480. DOI: 10.1016/j.microc.2020.105480.
  • Kovalakova, P.; Cizmas, L.; McDonald, T. J.; Marsalek, B.; Feng, M. B.; Sharma, V. K. Occurrence and Toxicity of Antibiotics in the Aquatic Environment: A Review. Chemosphere 2020, 251, 126351. DOI: 10.1016/j.chemosphere.2020.126351.
  • Auta, A.; Hadi, M. A.; Oga, E.; Adewuyi, E. O.; Abdu-Aguye, S. N.; Adeloye, D.; Strickland-Hodge, B.; Morgan, D. J. Global Access to Antibiotics without Prescription in Community Pharmacies: A Systematic Review and Meta-Analysis. J. Infect. 2019, 78, 8–18. DOI: 10.1016/j.jinf.2018.07.001.
  • Phoon, B. L.; Ong, C. C.; Saheed, M. S. M.; Show, P. L.; Chang, J. S.; Ling, T. C.; Lam, S. S.; Juan, J. C. Conventional and Emerging Technologies for Removal of Antibiotics from Wastewater. J. Hazard. Mater. 2020, 400, 122961. DOI: 10.1016/j.jhazmat.2020.122961.
  • Zhang, F.; Gu, S.; Ding, Y.; Zhou, L.; Zhang, Z.; Li, L. Electrooxidation and Determination of Cefotaxime on Au Nanoparticles/Poly (L-Arginine) Modified Carbon Paste Electrode. Electroanal. Chem. 2013, 698, 25–30. DOI: 10.1016/j.jelechem.2013.03.010.
  • Dehdashtian, S.; Behbahani, M.; Noghrehabadi, A. Fabrication of a Novel, Sensitive and Selective Electrochemical Sensor for Antibiotic Cefotaxime Based on Sodium Montmorillonite Nonoclay/Electroreduced Graphene Oxide Composite Modified Carbon Paste Electrode. Electroanal. Chem. 2017, 801, 450–458. DOI: 10.1016/j.jelechem.2017.08.033.
  • Gupta, S.; Prakash, R. Ninety Second Electrosynthesis of Palladium Nanocubes on ITO Surface and Its Application in Electrosensing of Cefotaxime. Electroanalysis 2014, 26, 2337–2341. DOI: 10.1002/elan.201400200.
  • Gupta, S.; Prakash, R. Photochemically Assisted Formation of Silver Nanoparticles by Dithizone, and Its Application in Amperometric Sensing of Cefotaxime. J. Mater. Chem. C 2014, 2, 6859–6866. DOI: 10.1039/C4TC01090F.
  • Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular Basis of Bacterial Resistance to Chloramphenicol and Florfenicol. FEMS Microbiol. Rev. . 2004, 28, 519–542. DOI: 10.1016/j.femsre.2004.04.001.
  • Borowiec, J.; Wang, R.; Zhu, L.; Zhang, J. Synthesis of Nitrogen-Doped Graphene Nanosheets Decorated with Gold Nanoparticles as an Improved Sensor for Electrochemical Determination of Chloramphenicol. Electrochim. Acta 2013, 99, 138–144. DOI: 10.1016/j.electacta.2013.03.092.
  • Kor, K.; Zarei, K. Electrochemical Determination of Chloramphenicol on Glassy Carbon Electrode Modified with Multi-Walled Carbon Nanotube-Cetyltrimethylammonium Bromide-Poly(Diphenylamine). Electroanal. Chem. 2014, 733, 39–46. DOI: 10.1016/j.jelechem.2014.09.013.
  • Yang, R.; Zhao, J.; Chen, M.; Yang, T.; Luo, S.; Jiao, K. Electrocatalytic Determination of Chloramphenicol Based on Molybdenum Disulfide Nanosheets and Self-Doped Polyaniline. Talanta 2015, 131, 619–623. DOI: 10.1016/j.talanta.2014.08.035.
  • Tassew, A.; Assefa, S. Electrochemical Behaviour of Chloramphenicol and Its Determination by Using Cyclic Voltammetry. Int. J. Innov. Sci. Res. 2014, 8, 159.
  • Jakubec, P.; Urbanová, V.; Medříková, Z.; Zbořil, R. Advanced Sensing of Antibiotics with Magnetic Gold Nanocomposite: Electrochemical Detection of Chloramphenicol. Chemistry 2016, 22, 14279–14284. DOI: 10.1002/chem.201602434.
  • Karthik, R.; Govindasamy, M.; Chen, S.-M.; Mani, V.; Lou, B.-S.; Devasenathipathy, R.; Hou, Y.-S.; Elangovan, A. Green Synthesized Gold Nanoparticles Decorated Graphene Oxide for Sensitive Determination of Chloramphenicol in Milk, Powdered Milk, Honey and Eye Drops. J. Colloid Interface Sci. . 2016, 475, 46–56. DOI: 10.1016/j.jcis.2016.04.044.
  • Govindasamy, M.; Chen, S.-M.; Mani, V.; Devasenathipathy, R.; Umamaheswari, R.; Santhanaraj, K. J.; Sathiyan, A. Molybdenum Disulfide Nanosheets Coated Multiwalled Carbon Nanotubes Composite for Highly Sensitive Determination of Chloramphenicol in Food Samples Milk, Honey and Powdered Milk. J. Colloid Interface Sci. . 2017, 485, 129–136. DOI: 10.1016/j.jcis.2016.09.029.
  • Sakthivel, M.; Sukanya, R.; Chen, S.-M.; Ho, K.-C. Synthesis and Characterization of Samarium-Substituted Molybdenum Diselenide and Its Graphene Oxide Nanohybrid for Enhancing the Selective Sensing of Chloramphenicol in a Milk Sample. ACS Appl. Mater. Interfaces 2018, 10, 29712–29723. DOI: 10.1021/acsami.8b12006.
  • Sakthivel, R.; Kubendhiran, S.; Chen, S.-M.; Ranganathan, P.; Rwei, S.-P. Functionalized Carbon Black Nanospheres Hybrid with MoS2 Nanoclusters for the Effective Electrocatalytic Reduction of Chloramphenicol. Electroanalysis 2018, 30, 1828–1836. DOI: 10.1002/elan.201800070.
  • Kokulnathan, T.; Sharma, T. S. K.; Chen, S.-M.; Han-Yu, Y. Synthesis and Characterization of Zirconium Dioxide Anchored Carbon Nanofiber Composite for Enhanced Electrochemical Determination of Chloramphenicol in Food Samples. J. Electrochem. Soc. 2018, 165, B281–B288. DOI: 10.1149/2.0861807jes.
  • Kokulnathan, T.; Sharma, T. S. K.; Chen, S.-M.; Chen, T.-W.; Dinesh, B. Ex-Situ Decoration of Graphene Oxide with Palladium Nanoparticles for the Highly Sensitive and Selective Electrochemical Determination of Chloramphenicol in Food and Biological Samples. J. Taiwan Inst. Chem. Eng. 2018, 89, 26–38. DOI: 10.1016/j.jtice.2018.04.030.
  • Sun, Y.; Wei, T.; Jiang, M.; Xu, L.; Xu, Z. Voltammetric Sensor for Chloramphenicol Determination Based on a Dual Signal Enhancement Strategy with Ordered Mesoporous Carbon@Polydopamine and Beta-Cyclodextrin. Sens. Actuat. B Chem. 2018, 255, 2155–2162. DOI: 10.1016/j.snb.2017.09.016.
  • Sebastian, N.; Yu, W.-C.; Balram, D. Electrochemical Detection of an Antibiotic Drug Chloramphenicol Based on a Graphene Oxide/Hierarchical Zinc Oxide Nanocomposite. Inorg. Chem. Front. 2019, 6, 82–93. DOI: 10.1039/C8QI01000E.
  • Sun, T.; Pan, H.; Mei, Y.; Zhang, P.; Zeng, D.; Liu, X.; Rong, S.; Chang, D. Electrochemical Sensor Sensitive Detection of Chloramphenicol Based on Ionic-Liquid-Assisted Synthesis of de-Layered Molybdenum Disulfide/Graphene Oxide Nanocomposites. J. Appl. Electrochem. 2019, 49, 261–270. DOI: 10.1007/s10800-018-1271-6.
  • Yadav, M.; Ganesan, V.; Gupta, R.; Yadav, D. K.; Sonkar, P. K. Cobalt Oxide Nanocrystals Anchored on Graphene Sheets for Electrochemical Determination of Chloramphenicol. Microchem. J. 2019, 146, 881–887. DOI: 10.1016/j.microc.2019.02.025.
  • Yi, W.; Li, Z.; Dong, C.; Li, H.-W.; Li, J. Electrochemical Detection of Chloramphenicol Using Palladium Nanoparticles Decorated Reduced Graphene Oxide. Microchem. J. 2019, 148, 774–783. DOI: 10.1016/j.microc.2019.05.049.
  • Rajaji, U.; Muthumariappan, A.; Chen, S.-M.; Chen, T.-W.; Tseng, T.-W.; Wang, K.; Qi, D.; Jiang, J. Facile Sonochemical Synthesis of Porous and Hierarchical Manganese(III) Oxide Tiny Nanostructures for Super Sensitive Electrocatalytic Detection of Antibiotic (Chloramphenicol) in Fresh Milk. Ultrason. Sonochem. 2019, 58, 104648. DOI: 10.1016/j.ultsonch.2019.104648.
  • Jaysiva, G.; Manavalan, S.; Chen, S.-M.; Veerakumar, P.; Keerthi, M.; Tu, H.-S. Mon Nanorod/Sulfur-Doped Graphitic Carbon Nitride for Electrochemical Determination of Chloramphenicol. ACS Sustainable Chem. Eng. 2020, 8, 11088–11098. DOI: 10.1021/acssuschemeng.0c00502.
  • Vilian, A. T. E.; Oh, S. Y.; Rethinasabapathy, M.; Umapathi, R.; Hwang, S.-K.; Oh, C. W.; Park, B.; Huh, Y. S.; Han, Y.-K. Improved Conductivity of Flower-like MnWO4 on Defect Engineered Graphitic Carbon Nitride as an Efficient Electrocatalyst for Ultrasensitive Sensing of Chloramphenicol. J. Hazard. Mater. 2020, 399, 122868. DOI: 10.1016/j.jhazmat.2020.122868.
  • Kesavan, G.; Chen, S.-M. Manganese Oxide Anchored on Carbon Modified Halloysite Nanotubes: An Electrochemical Platform for the Determination of Chloramphenicol. Colloids Surf. A Physicochem. Eng. Aspects 2021, 615, 126243. DOI: 10.1016/j.colsurfa.2021.126243.
  • Wang, W.; Sun, D. Electrochemical Determination of Chloramphenicol Based on ZnO-NPs/SWCNTS Composite Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2021, 16, 210216. DOI: 10.20964/2021.02.49.
  • Umesh, N.; Sathiyan, A.; Wang, S.-F.; Elanthamilan, E.; Merlin, J. P.; Jesila, J. A. A Simple Chemical Approach for Synthesis of Sr2Co2O5 Nanoparticles and Its Application in the Detection of Chloramphenicol and in Energy Storage Systems. Electroanal. Chem. 2021, 880, 114911. DOI: 10.1016/j.jelechem.2020.114911.
  • Zhang, X.; Zhang, Y.-C.; Zhang, J.-W. A Highly Selective Electrochemical Sensor for Chloramphenicol Based on Three-Dimensional Reduced Graphene Oxide Architectures. Talanta 2016, 161, 567–573. DOI: 10.1016/j.talanta.2016.09.013.
  • Chen, J.; Xia, Y.; Dai, Q. Electrochemical Degradation of Chloramphenicol with a Novel Al Doped PbO2 Electrode: Performance, Kinetics and Degradation Mechanism. Electrochim. Acta 2015, 165, 277–287. DOI: 10.1016/j.electacta.2015.02.029.
  • Sun, Y.; Li, P.; Zheng, H.; Zhao, C.; Xiao, X.; Xu, Y.; Sun, W.; Wu, H.; Ren, M. Electrochemical Treatment of Chloramphenicol Using Ti-Sn/gamma-Al2O3 Particle Electrodes with a Three-Dimensional Reactor. Chem. Eng. J. 2017, 308, 1233–1242. DOI: 10.1016/j.cej.2016.10.072.
  • Zheng, W.; Tsang, C.-S.; So, L. Y.; Liu, M.; Leung, Y.-C.; Lee, L. Y. S. Highly Efficient Stepwise Electrochemical Degradation of Antibiotics in Water by in Situ Formed Cu(OH)(2) Nanowires. Appl. Catal. B Environ. 2019, 256, 117824. DOI: 10.1016/j.apcatb.2019.117824.
  • Gormez, F.; Gormez, O.; Gozmen, B.; Kalderis, D. Degradation of Chloramphenicol and Metronidazole by electro-Fenton Process Using Graphene oxide-Fe3O4 as Heterogeneous Catalyst. J. Environ. Chem. Eng. 2019, 7, 102990. DOI: 10.1016/j.jece.2019.102990.
  • Song, X.; Huang, D.; Zhang, L.; Wang, H.; Wang, L.; Bian, Z. Electrochemical Degradation of the Antibiotic Chloramphenicol via the Combined Reduction-Oxidation Process with Cu-Ni/Graphene Cathode. Electrochim. Acta 2020, 330, 135187. DOI: 10.1016/j.electacta.2019.135187.
  • Hu, X. B.; Goud, K. Y.; Kumar, V. S.; Catanante, G.; Li, Z. H.; Zhu, Z. G.; Marty, J. L. Disposable Electrochemical Aptasensor Based on Carbon nanotubes-V2O5-Chitosan Nanocomposite for Detection of Ciprofloxacin. Sens. Actuat. B Chem. 2018, 268, 278–286. DOI: 10.1016/j.snb.2018.03.155.
  • Zhang, X.; Wei, Y.; Ding, Y. Electrocatalytic Oxidation and Voltammetric Determination of Ciprofloxacin Employing Poly(Alizarin Red)/Graphene Composite Film in the Presence of Ascorbic Acid, Uric Acid and Dopamine. Anal. Chim. Acta. 2014, 835, 29–36. DOI: 10.1016/j.aca.2014.05.020.
  • Osman, N. S. E.; Thapliyal, N.; Alwan, W. S.; Karpoormath, R.; Moyo, T. Synthesis and Characterization of Ba0.5Co0.5Fe2O4 Nanoparticle Ferrites: application as Electrochemical Sensor for Ciprofloxacin. J. Mater. Sci: Mater. Electron. 2015, 26, 5097–5105. DOI: 10.1007/s10854-015-3036-x.
  • Xie, A. J.; Chen, Y.; Luo, S. P.; Tao, Y. W.; Jin, Y. S.; Li, W. W. Electrochemical Detection of Ciprofloxacin Based on Graphene Modified Glassy Carbon Electrode. Mater. Technol. 2015, 30, 362–367. DOI: 10.1179/1753555715Y.0000000011.
  • Bagheri, H.; Khoshsafar, H.; Amidi, S.; Ardakani, Y. H. Fabrication of an Electrochemical Sensor Based on Magnetic Multi-Walled Carbon Nanotubes for the Determination of Ciprofloxacin. Anal. Methods 2016, 8, 3383–3390. DOI: 10.1039/C5AY03410H.
  • Radičová, M.; Behúl, M.; Marton, M.; Vojs, M.; Bodor, R.; Redhammer, R.; Vojs Staňová, A. Heavily Boron Doped Diamond Electrodes for Ultra Sensitive Determination of Ciprofloxacin in Human Urine. Electroanalysis 2017, 29, 1612–1617. DOI: 10.1002/elan.201600769.
  • Garrido, J. M. P. J.; Melle-Franco, M.; Strutyński, K.; Borges, F.; Brett, C. M. A.; Garrido, E. M. P. J. β-Cyclodextrin Carbon Nanotube-Enhanced Sensor for Ciprofloxacin Detection. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. . 2017, 52, 313–319. DOI: 10.1080/10934529.2016.1258864.
  • Pham, T. S. H.; Mahon, P. J.; Lai, G. S.; Yu, A. M. Reduced Graphene Oxide Nanocomposite Modified Electrodes for Sensitive Detection of Ciprofloxacin. Electroanalysis 2018, 30, 2185–2194. DOI: 10.1002/elan.201700738.
  • Reddy, K. R.; Brahman, P. K.; Suresh, L. Fabrication of High Performance Disposable Screen Printed Electrochemical Sensor for Ciprofloxacin Sensing in Biological Samples. Measurement 2018, 127, 175–186. DOI: 10.1016/j.measurement.2018.05.078.
  • Faria, L. V.; Pereira, J. F. S.; Azevedo, G. C.; Matos, M. A. C.; Munoz, R. A. A.; Matos, R. C. Square-Wave Voltammetry Determination of Ciprofloxacin in Pharmaceutical Formulations and Milk Using a Reduced Graphene Oxide Sensor. J. Braz. Chem. Soc. 2019, 30, 1947. DOI: 10.21577/0103-5053.20190108.
  • Fang, X.; Chen, X. Y.; Liu, Y.; Li, Q. J.; Zeng, Z. R.; Maiyalagan, T.; Mao, S. Nanocomposites of Zr(IV)-Based Metal-Organic Frameworks and Reduced Graphene Oxide for Electrochemically Sensing Ciprofloxacin in Water. ACS Appl. Nano Mater. 2019, 2, 2367–2376. DOI: 10.1021/acsanm.9b00243.
  • Shan, J.; Li, R. Z.; Yan, K.; Zhu, Y. H.; Zhang, J. D. In Situ Anodic Stripping of Cd(II) from CdS Quantum Dots for Electrochemical Sensing of Ciprofloxacin. Sens. Actuat. B Chem. 2016, 237, 75–80. DOI: 10.1016/j.snb.2016.06.066.
  • George, J. M.; Priyanka, R. N.; Mathew, B. Bimetallic Ag-Au Nanoparticles as pH Dependent Dual Sensing Probe for Mn (II) Ion and Ciprofloxacin. Microchem. J. 2020, 155, 104686. DOI: 10.1016/j.microc.2020.104686.
  • Wang, Y.; Shen, C. C.; Zhang, M. M.; Zhang, B. T.; Yu, Y. G. The Electrochemical Degradation of Ciprofloxacin Using a SnO2-Sb/Ti Anode: Influencing Factors, Reaction Pathways and Energy Demand. Chem. Eng. J. 2016, 296, 79–89. DOI: 10.1016/j.cej.2016.03.093.
  • Bueno, F.; Borba, F. H.; Pellenz, L.; Schmitz, M.; Godoi, B.; Espinoza-Quinones, F. R.; de Pauli, A. R.; Modenes, A. N. Degradation of Ciprofloxacin by the Electrochemical Peroxidation Process Using Stainless Steel Electrodes. J. Environ. Chem. Eng. 2018, 6, 2855–2864. DOI: 10.1016/j.jece.2018.04.033.
  • Esmaelian, M.; Chianeh, F. N.; Asghari, A. Degradation of Ciprofloxacin Using Electrochemical Oxidation by Ti/nanoSnO(2)-MWCNT Electrode: Optimization and Modelling through Central Composite Design. J. Ind. Eng. Chem. 2019, 78, 97–105. DOI: 10.1016/j.jiec.2019.06.032.
  • Drugs. Metronidazole. https://www.drugs.com/metronidazole.html.
  • Gholivand, M. B.; Torkashvand, M. A Novel High Selective and Sensitive Metronidazole Voltammetric Sensor Based on a Molecularly Imprinted Polymer-Carbon Paste Electrode. Talanta 2011, 84, 905–912. DOI: 10.1016/j.talanta.2011.02.022.
  • Yang, G. M.; Zhao, F. Q.; Zeng, B. Z. Magnetic Entrapment for Fast and Sensitive Determination of Metronidazole with a Novel Magnet-Controlled Glassy Carbon Electrode. Electrochim. Acta 2014, 135, 154–160. DOI: 10.1016/j.electacta.2014.04.162.
  • Peng, J. Y.; Hou, C. T.; Hu, X. Y. Determination of Metronidazole in Pharmaceutical Dosage Forms Based on Reduction at Graphene and Ionic Liquid Composite Film Modified Electrode. Sens. Actuat. B Chem. 2012, 169, 81–87. DOI: 10.1016/j.snb.2012.03.040.
  • Mollamahale, Y. B.; Ghorbani, M.; Ghalkhani, M.; Vossoughi, M.; Dolati, A. Highly Sensitive 3D Gold Nanotube Ensembles: Application to Electrochemical Determination of Metronidazole. Electrochim. Acta 2013, 106, 288–292. DOI: 10.1016/j.electacta.2013.05.084.
  • Nejati, K.; Asadpour-Zeynali, K. Electrochemical Synthesis of Nickel-Iron Layered Double Hydroxide: Application as a Novel Modified Electrode in Electrocatalytic Reduction of Metronidazole. Mater. Sci. Eng. C Mater. Biol. Appl. . 2014, 35, 179–184. DOI: 10.1016/j.msec.2013.11.003.
  • Gu, Y.; Yan, X. Y.; Liu, W. L.; Li, C.; Chen, R. X.; Tang, L.; Zhang, Z. Q.; Yang, M. Biomimetic Sensor Based on Copper-Poly(Cysteine) Film for the Determination of Metronidazole. Electrochim. Acta 2015, 152, 108–116. DOI: 10.1016/j.electacta.2014.11.097.
  • Nikodimos, Y.; Amare, M. Electrochemical Determination of Metronidazole in Tablet Samples Using Carbon Paste Electrode. J Anal Methods Chem . 2016, 2016, 3612943. DOI: 10.1155/2016/3612943.
  • Ammar, H. B.; Ben Brahim, M.; Abdelhedi, R.; Samet, Y. Boron Doped Diamond Sensor for Sensitive Determination of Metronidazole: Mechanistic and Analytical Study by Cyclic Voltammetry and Square Wave Voltammetry. Mater. Sci. Eng. C Mater. Biol. Appl. . 2016, 59, 604–610. DOI: 10.1016/j.msec.2015.10.025.
  • Mao, A. R.; Li, H. B.; Yu, L. Y.; Hu, X. Y. Electrochemical Sensor Based on Multi-Walled Carbon Nanotubes and Chitosan-Nickel Complex for Sensitive Determination of Metronidazole. Electroanal. Chem. 2017, 799, 257–262. DOI: 10.1016/j.jelechem.2017.05.049.
  • Yang, M.; Guo, M. L.; Feng, Y. L.; Lei, Y. M.; Cao, Y. J.; Zhu, D. B.; Yu, Y.; Ding, L. Sensitive Voltammetric Detection of Metronidazole Based on Three-Dimensional Graphene-Like Carbon Architecture/Polythionine Modified Glassy Carbon Electrode. J. Electrochem. Soc. 2018, 165, B530–B535. DOI: 10.1149/2.1311811jes.
  • Kalaiyarasi, J.; Pandian, K. Egg-Shell like Hollow Alumina Sphere Modified Electrode for Enhanced Electrochemical Determination of Metronidazole. J. Electrochem. Soc. 2019, 166, B1151–B1160. DOI: 10.1149/2.1211912jes.
  • Kesavan, G.; Vinothkumar, V.; Chen, S. M.; Thangadurai, T. D. Construction of Metal-Free Oxygen-Doped Graphitic Carbon Nitride as an Electrochemical Sensing Platform for Determination of Antimicrobial Drug Metronidazole. Appl. Surf. Sci. 2021, 556, 149814. DOI: 10.1016/j.apsusc.2021.149814.
  • Kesavan, G.; Chen, S. M. Sonochemical-Assisted Synthesis of Zinc Vanadate Microstructure for Electrochemical Determination of Metronidazole. J. Mater. Sci: Mater. Electron. 2021, 32, 9377–9391. DOI: 10.1007/s10854-021-05601-6.
  • Saghravanian, M.; Ebrahimi, M.; Es'haghi, Z.; Beyramabadi, S. A. Experimental Sensing and Density Functional Theory Study of an Ionic Liquid Mediated Carbon Nanotube Modified Carbon-Paste Electrode for Electrochemical Detection of Metronidazole. SAfrjchem 2017, 70, 29. DOI: 10.17159/0379-4350/2017/v70a5.
  • Zhu, M. F.; Ye, H. Q.; Lai, M. S.; Ye, J. S.; Kuang, J. M.; Chen, Y. P.; Wang, J. Y.; Mei, Q. Y. Differential Pulse Stripping Voltammetric Determination of Metronidazole with Graphene-Sodium Dodecyl Sulfate Modified Carbon Paste Electrode. Int. J. Electrochem. Sci. 2018, 13, 4100–4114. DOI: 10.20964/2018.05.73.
  • Zoubir, J.; Radaa, C.; Bougdour, N.; Idlahcen, A.; Bakas, I.; Assabbane, A. Electro-Detection of the Antibacterial Metronidazole Using Zinc Oxide Nanoparticles Formed on Graphitic Carbon Sheets. Analytical Application: Human Serum and Urine. Mater. Sci. Energy Technol. 2021, 4, 177–188. DOI: 10.1016/j.mset.2021.06.001.
  • Huang, J. Z.; Shen, X. L.; Wang, R. L.; Zeng, Q.; Wang, L. S. A Highly Sensitive Metronidazole Sensor Based on a Pt Nanospheres/Polyfurfural Film Modified Electrode. RSC Adv. 2017, 7, 535–542. DOI: 10.1039/C6RA25106D.
  • Tursynbolat, S.; Bakytkarim, Y.; Huang, J. Z.; Wang, L. S. Ultrasensitive Electrochemical Determination of Metronidazole Based on Polydopamine/Carboxylic Multi-Walled Carbon Nanotubes Nanocomposites Modified GCE. J. Pharm. Anal. 2018, 8, 124–130. DOI: 10.1016/j.jpha.2017.11.001.
  • Meenakshi, S.; Rama, R.; Pandian, K.; Gopinath, S. C. B. Modified Electrodes for Electrochemical Determination of Metronidazole in Drug Formulations and Biological Samples: An Overview. Microchem. J. 2021, 165, 106151. DOI: 10.1016/j.microc.2021.106151.
  • Rahi, A.; Sattarahmady, N.; Vais, R. D.; Heli, H. Sonoelectrodeposition of Gold Nanorods at a Gold surface - Application for Electrocatalytic Reduction and Determination of Nitrofurazone. Sens. Actuat. B Chem. 2015, 210, 96–102. DOI: 10.1016/j.snb.2014.12.090.
  • Ye, F.; Huang, J. Z.; Xu, Y. Q.; Zeng, Q.; Nan, J. M.; Wang, L. S. Polyfurfural-Electrochemically Reduced Graphene Oxide Modified Glassy Carbon Electrode for the Direct Determination of Nitrofurazone. Anal. Lett. 2018, 51, 728–741. DOI: 10.1080/00032719.2017.1360898.
  • Brito, C. L.; Ferreira, E. I.; La-Scalea, M. A. Multi-Walled Carbon Nanotube Functionalization and the Dispersing Agents Study Applied for the Glassy Carbon Electrode Modification and Voltammetric Reduction of Nitrofurazone. J. Solid State Electrochem. 2020, 24, 1969–1980. DOI: 10.1007/s10008-020-04621-2.
  • Lu, Y. S.; Pan, W. Y.; Hung, T. C.; Hsieh, Y. T. Electrodeposition of Silver in a Ternary Deep Eutectic Solvent and the Electrochemical Sensing Ability of the Ag-Modified Electrode for Nitrofurazone. Langmuir 2020, 36, 11358–11365. DOI: 10.1021/acs.langmuir.0c02213.
  • Rajakumaran, R.; Sukanya, R.; Chen, S. M.; Karthik, R.; Breslin, C. B.; Shafi, P. M. Synthesis and Characterization of Pyrochlore-Type Praseodymium Stannate Nanoparticles: An Effective Electrocatalyst for Detection of Nitrofurazone Drug in Biological Samples. Inorg. Chem. 2021, 60, 2464–2476. DOI: 10.1021/acs.inorgchem.0c03377.
  • Chen, T. W.; Tamilalagan, E.; Al Farraj, D. A.; Chen, S. M.; Muthumariappan, A.; Maheshwaran, S.; Elshikh, M. S. Improving Sensitivity of Antimicrobial Drug Nitrofurazone Detection in Food and Biological Samples Based on Nanostructured Anatase-Titania Sheathed Reduced Graphene Oxide. Nanotechnology 2020, 31, 445502. DOI: 10.1088/1361-6528/aba784.
  • Gan, T.; Li, J. B.; Xu, L. P.; Yao, Y. X.; Liu, Y. M. Construction of a Voltammetric Sensor Based on MIL-101 Hollow Cages for Electrocatalytic Oxidation and Sensitive Determination of Nitrofurazone. Electroanal. Chem. 2019, 848, 113287. DOI: 10.1016/j.jelechem.2019.113287.
  • Wang, H. J.; Qian, D.; Xiao, X. L.; He, B.; Gao, S. Q.; Shi, H.; Liao, L. F.; Deng, J. Enantioselective Determination of S-Ornidazole by Using Carbon Paste Electrode Modified with Boron-Embedded Conductive Copolymer-Polysiloxane-Based Molecularly Imprinted Hybrid Film. Electrochim. Acta 2017, 246, 338–347. DOI: 10.1016/j.electacta.2017.06.064.
  • Wang, H. X.; Bo, X. J.; Zhou, M.; Guo, L. P. DUT-67 and Tubular Polypyrrole Formed a Cross-Linked Network for Electrochemical Detection of Nitrofurazone and Ornidazole. Anal. Chim. Acta. 2020, 1109, 1–8. DOI: 10.1016/j.aca.2020.03.002.
  • Venkatesh, K.; Rajakumaran, R.; Chen, S. M.; Karuppiah, C.; Yang, C. C.; Ramaraj, S. K.; Ali, M. A.; Al-Hemaid, F. M. A.; El-Shikh, M. S.; Almunqedhi, B. M. A. A Novel Hybrid Construction of MnMoO4 Nanorods Anchored Graphene Nanosheets; an Efficient Electrocatalyst for the Picomolar Detection of Ecological Pollutant Ornidazole in Water and Urine Samples. Chemosphere 2021, 273, 129665. DOI: 10.1016/j.chemosphere.2021.129665.
  • Kesavan, G.; Vinothkumar, V.; Chen, S. M. Sonochemical Synthesis of Copper Vanadate Nanoparticles for the Highly Selective Voltammetric Detection of Antibiotic Drug Ornidazole. J. Alloys Compd. 2021, 867, 159019. DOI: 10.1016/j.jallcom.2021.159019.
  • Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified Electrochemical Sensor Employing CuO/SWCNTs and 1-Butyl-3-Methylimidazolium Hexafluorophosphate for Selective Analysis of Sulfisoxazole in the Presence of Folic Acid. J. Colloid Interface Sci. . 2017, 495, 61–67. DOI: 10.1016/j.jcis.2017.01.119.
  • Bavandpour, R.; Rajabi, M.; Karimi-Maleh, H. Ultrasensitive Electroanalytical Sulfisoxazole Sensors Amplified with Pd-Doped ZnO Nanoparticles and Modified with 1-Hexyl-3-Methyl Imidazolium Bis(Trifluoromethylsulfonyl)Imide. New J. Chem. 2020, 44, 11125–11130. DOI: 10.1039/D0NJ01461C.
  • Khan, M. Z. H.; Daizy, M.; Tarafder, C.; Liu, X. Au-PDA (R) SiO2 Core-Shell Nanospheres Decorated rGO Modified Electrode for Electrochemical Sensing of Cefotaxime. Sci. Rep. 2019, 9, 19041. DOI: 10.1038/s41598-019-55517-9.
  • Cuypers, E.; Flanagan, R. J.; Maurer, H. H.; Whelpton, R. 2020. 52. Basic Laboratory Operations. In Fundamentals of Analytical Toxicology. John Wiley & Sons, Ltd: Hoboken, NJ.
  • Yang, T.; Chen, H.; Ge, T.; Wang, J.; Li, W.; Jiao, K. Highly Sensitive Determination of Chloramphenicol Based on Thin-Layered MoS2/Polyaniline Nanocomposite. Talanta 2015, 144, 1324–1328. DOI: 10.1016/j.talanta.2015.08.004.
  • Chen, H.-Y.; Wang, J.; Meng, L.; Yang, T.; Jiao, K. Thin-Layered MoS2/Polyaniline Nanocomposite for Highly, Sensitive Electrochemical Detection of Chloramphenicol. Chin. Chem. Lett. 2016, 27, 231–234. DOI: 10.1016/j.cclet.2015.09.018.
  • Kong, F.-Y.; Luo, Y.; Zhang, J.-W.; Wang, J.-Y.; Li, W.-W.; Wang, W. Facile Synthesis of Reduced Graphene Oxide Supported Pt-Pd Nanocubes with Enhanced Electrocatalytic Activity for Chloramphenicol Determination. Electroanal. Chem. 2016, 781, 389–394. DOI: 10.1016/j.jelechem.2016.06.018.
  • Bai, X.; Qin, C.; Huang, X. Voltammetric Determination of Chloramphenicol Using a Carbon Fiber Microelectrode Modified with Fe3O4 Nanoparticles. Microchim. Acta 2016, 183, 2973–2981. DOI: 10.1007/s00604-016-1945-x.
  • Kong, F.-Y.; Chen, T.-T.; Wang, J.-Y.; Fang, H.-L.; Fan, D.-H.; Wang, W. UV-Assisted Synthesis of Tetrapods-like Titanium Nitride-Reduced Graphene Oxide Nanohybrids for Electrochemical Determination of Chloramphenicol. Sens. Actuat. B Chem. 2016, 225, 298–304. DOI: 10.1016/j.snb.2015.11.041.
  • Giribabu, K.; Sung-Chan, J.; Haldorai, Y.; Rethinasabapathy, M.; Yeong, O. S.; Rengaraj, A.; Han, Y.-K.; Cho, W.-S.; Roh, C.; Huh, Y. S. Electrochemical Determination of Chloramphenicol Using a Glassy Carbon Electrode Modified with Dendrite-like Fe3O4 Nanoparticles. Carbon Lett. 2017, 23, 38.
  • Xiao, L.; Xu, R.; Yuan, Q.; Wang, F. Highly Sensitive Electrochemical Sensor for Chloramphenicol Based on MOF Derived Exfoliated Porous Carbon. Talanta 2017, 167, 39–43. DOI: 10.1016/j.talanta.2017.01.078.
  • Yalikun, N.; Mamat, X.; Li, Y.; Hu, X.; Wagberg, T.; Dong, Y.; Hu, G. Synthesis of an Iron-Nitrogen co-Doped Ordered Mesoporous Carbon-Silicon Nanocomposite as an Enhanced Electrochemical Sensor for Sensitive and Selective Determination of Chloramphenicol. Colloids Surf. B Biointerfaces 2018, 172, 98–104. DOI: 10.1016/j.colsurfb.2018.08.011.
  • Mao, Y.; Guo, L.; Ning, X.; Li, J.; Zheng, J. The Signal Amplification in Electrochemical Detection of Chloramphenicol Using Sulfonated Polyaniline-Chitosan Composite as Redox Capacitor. Electroanalysis 2018, 30, 2085–2093. DOI: 10.1002/elan.201800218.
  • Wu, X.; Lao, C.; Li, Y.; Yuan, Q.; Gan, W. Tunable Synthesis of CoP and CoP2 Decorated 3D Carbon Nanohybrids and the Application of CoP2 Decorated One in Electrochemical Detection of Chloramphenicol in Milk and Honey. J. Electrochem. Soc. 2018, 165, B916–B923. DOI: 10.1149/2.1011816jes.
  • Zhang, P.; Zhang, N.; Jing, L.; Hu, B.; Yang, X.; Ma, X. Silver Nanoparticles/Carboxylic Short-Chain Multi-Wall Carbon Nanotubes as Electrochemical Sensor for Ultrasensitive Detection of Chloramphenicol in Food. Int. J. Electrochem. Sci. 2019, 14, 9337–9346. DOI: 10.20964/2019.09.69.
  • Shad, N. A.; Bajwa, S. Z.; Amin, N.; Taj, A.; Hameed, S.; Khan, Y.; Dai, Z.; Cao, C.; Khan, W. S. Solution Growth of 1D Zinc Tungstate (ZnWO4) Nanowires; Design, Morphology, and Electrochemical Sensor Fabrication for Selective Detection of Chloramphenicol. J. Hazard. Mater. 2019, 367, 205–214. DOI: 10.1016/j.jhazmat.2018.12.072.
  • Kaewnu, K.; Promsuwan, K.; Kanatharana, P.; Thavarungkul, P.; Limbut, W. A Simple and Sensitive Electrochemical Sensor for Chloramphenicol Detection in Pharmaceutical Samples. J. Electrochem. Soc. 2020, 167, 087506. DOI: 10.1149/1945-7111/ab8ce5.
  • Talebizadehsardari, P.; Aramesh-Boroujeni, Z.; Foroughi, M. M.; Eyvazian, A.; Jahani, S.; Faramarzpour, H. R.; Borhani, F.; Ghazanfarabadi, M.; Shabani, M.; Nazari, A. H. Synthesis of Carnation-like Ho3+/Co3O4 Nanoflowers as a Modifier for Electrochemical Determination of Chloramphenicol in Eye Drop. Microchem. J. 2020, 159, 105535. DOI: 10.1016/j.microc.2020.105535.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 2764, Ciprofloxacin. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Ciprofloxacin.
  • Kawde, A. N.; Aziz, M. A.; Odewunmi, N.; Hassan, N.; AlSharaa, A. Electroanalytical Determination of Antibacterial Ciprofloxacin in Pure Form and in Drug Formulations. Arab. J. Sci. Eng. 2014, 39, 131–138. DOI: 10.1007/s13369-013-0851-3.
  • Garbellini, G. S.; Rocha, R. C.; Fatibello, O. Voltammetric Determination of Ciprofloxacin in Urine Samples and Its Interaction with dsDNA on a Cathodically Pretreated Boron-Doped Diamond Electrode. Anal. Methods 2015, 7, 3411–3418. DOI: 10.1039/C5AY00625B.
  • Gayen, P.; Chaplin, B. P. Selective Electrochemical Detection of Ciprofloxacin with a Porous Nafion/Multiwalled Carbon Nanotube Composite Film Electrode. ACS Appl. Mater. Interfaces . 2016, 8, 1615–1626. DOI: 10.1021/acsami.5b07337.
  • Cinkova, K.; Andrejcakova, D.; Svorc, L. Electrochemical Method for Point-of-Care Determination of Ciprofloxacin Using Boron-Doped Diamond Electrode. Acta Chim. Slovaca 2016, 9, 146.
  • Ipte, P. R.; Kuma, S.; Satpati, A. K. Electrochemical Synthesis of Carbon Nano Spheres and Its Application for Detection of Ciprofloxacin. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. . 2020, 55, 142–150. DOI: 10.1080/10934529.2019.1674591.
  • Chen, T.; Liu, Y. R.; Lu, J. H.; Xing, J.; Li, J. W.; Liu, T.; Xue, Q. Highly Efficient Detection of Ciprofloxacin in Water Using a Nitrogen-Doped Carbon Electrode Fabricated through Plasma Modification. New J. Chem. 2019, 43, 15169–15176. DOI: 10.1039/C9NJ03511G.
  • Matsunaga, T.; Kondo, T.; Osasa, T.; Kotsugai, A.; Shitanda, I.; Hoshi, Y.; Itagaki, M.; Aikawa, T.; Tojo, T.; Yuasa, M. Sensitive Electrochemical Detection of Ciprofloxacin at Screen-Printed Diamond Electrodes. Carbon 2020, 159, 247–254. DOI: 10.1016/j.carbon.2019.12.051.
  • Alves, G. F.; Lisboa, T. P.; Faria, L. V.; Farias, D. M.; Matos, M. A. C.; Matos, R. C. Disposable Pencil Graphite Electrode for Ciprofloxacin Determination in Pharmaceutical Formulations by Square Wave Voltammetry. Electroanalysis 2021, 33, 543–549. DOI: 10.1002/elan.202060432.
  • Chauhan, R.; Gill, A. A. S.; Nate, Z.; Karpoormath, R. Highly Selective Electrochemical Detection of Ciprofloxacin Using Reduced Graphene Oxide/Poly(Phenol Red) Modified Glassy Carbon Electrode. Electroanal. Chem. 2020, 871, 114254. DOI: 10.1016/j.jelechem.2020.114254.
  • Sadeghi, S.; Hemmati, M.; Garmroodi, A. Preparation of Ag-Nanoparticles/Ionic-Liquid Modified Screen-Printed Electrode and Its Application in the Determination of Metronidazole. Electroanalysis 2013, 25, 316–322. DOI: 10.1002/elan.201200412.
  • Gu, Y.; Liu, W. L.; Chen, R. X.; Zhang, L.; Zhang, Z. Q. beta-Cyclodextrin-Functionalized Gold Nanoparticles/Poly(L-Cysteine) Modified Glassy Carbon Electrode for Sensitive Determination of Metronidazole. Electroanalysis 2013, 25, 1209–1216. DOI: 10.1002/elan.201200529.
  • Liu, W. L.; Zhang, J. F.; Li, C.; Tang, L.; Zhang, Z. Q.; Yang, M. A Novel Composite Film Derived from Cysteic Acid and PDDA-Functionalized Graphene: Enhanced Sensing Material for Electrochemical Determination of Metronidazole. Talanta 2013, 104, 204–211. DOI: 10.1016/j.talanta.2012.11.013.
  • Huayhuas-Chipana, B. C.; Gomero, J. C. M.; Sotomayor, M. D. P. T. Nanostructured Screen-Printed Electrodes Modified with Self-Assembled Monolayers for Determination of Metronidazole in Different Matrices. J. Braz. Chem. Soc. 2014, 25, 1737. DOI: 10.5935/0103-5053.20140170.
  • Hernandez-Jimenez, A.; Roa-Morales, G.; Reyes-Perez, H.; Balderas-Hernandez, P.; Barrera-Diaz, C. E.; Bernabe-Pineda, M. Voltammetric Determination of Metronidazole Using a Sensor Based on Electropolymerization of alpha-Cyclodextrin over a Carbon Paste Electrode. Electroanalysis 2016, 28, 704–710. DOI: 10.1002/elan.201500452.
  • Meenakshi, S.; Pandian, K.; Jayakumari, L. S.; Inbasekaran, S. Enhanced Amperometric Detection of Metronidazole in Drug Formulations and Urine Samples Based on Chitosan Protected Tetrasulfonated Copper Phthalocyanine Thin-Film Modified Glassy Carbon Electrode. Mater. Sci. Eng. C Mater. Biol. Appl. . 2016, 59, 136–144. DOI: 10.1016/j.msec.2015.08.063.
  • Li, C.; Zheng, B.; Zhang, T. T.; Zhao, J. Y.; Gu, Y.; Yan, X. Y.; Li, Y. R.; Liu, W. L.; Feng, G. D.; Zhang, Z. Q. Petal-like graphene-Ag Composites with Highly Exposed Active Edge Sites Were Designed and Constructed for Electrochemical Determination of Metronidazole. RSC Adv. 2016, 6, 45202–45209. DOI: 10.1039/C6RA01334A.
  • Wang, J.; Du, W.; Huang, X. Q.; Hu, J. L.; Xia, W. W.; Jin, D. Q.; Shu, Y.; Xu, Q.; Hu, X. Y. A Novel Metronidazole Electrochemical Sensor Based on Surface Imprinted Vertically Cross-Linked Two-Dimensional Sn3O4 Nanoplates. Anal. Methods 2018, 10, 4985–4994. DOI: 10.1039/C8AY01824C.
  • Sundaresan, P.; Chen, T. W.; Chen, S. M.; Tseng, T. W.; Liu, X. H. Electrochemical Activation of Screen Printed Carbon Electrode for the Determination of Antibiotic Drug Metronidazole. Int. J. Electrochem. Sci. 2018, 13, 1441–1451. DOI: 10.20964/2018.02.05.
  • Velusamy, V.; Palanisamy, S.; Kokulnathan, T.; Chen, S. W.; Yang, T. C. K.; Banks, C. E.; Pramanik, S. K. Novel Electrochemical Synthesis of Copper Oxide Nanoparticles Decorated Graphene-β-Cyclodextrin Composite for Trace-Level Detection of Antibiotic Drug Metronidazole. J. Colloid Interface Sci . 2018, 530, 37–45. DOI: 10.1016/j.jcis.2018.06.056.
  • Sakthivel, M.; Sukanya, R.; Chen, S. M.; Dinesh, B. Synthesis of Two-Dimensional Sr-Doped MoSe2 Nanosheets and Their Application for Efficient Electrochemical Reduction of Metronidazole. J. Phys. Chem. C 2018, 122, 12474–12484. DOI: 10.1021/acs.jpcc.8b02188.
  • Kokulnathan, T.; Chen, S. M. Praseodymium Vanadate-Decorated Sulfur-Doped Carbon Nitride Hybrid Nanocomposite: The Role of a Synergistic Electrocatalyst for the Detection of Metronidazole. ACS Appl. Mater. Interfaces . 2019, 11, 7893–7905. DOI: 10.1021/acsami.8b09204.
  • Yalikun, N.; Mamat, X.; Li, Y. T.; Hu, X.; Wang, P.; Hu, G. Z. N, S, P-Triple Doped Porous Carbon as an Improved Electrochemical Sensor for Metronidazole Determination. J. Electrochem. Soc. 2019, 166, B1131–B1137. DOI: 10.1149/2.0321913jes.
  • Chen, H.; Wu, X. X.; Zhao, R.; Zheng, Z.; Yuan, Q. H.; Dong, Z. J.; Gan, W. Preparation of Reduced Graphite Oxide Loaded with Cobalt(II) and Nitrogen co-Doped Carbon Polyhedrons from a Metal-Organic Framework (Type ZIF-67), and Its Application to Electrochemical Determination of Metronidazole. Mikrochim. Acta. 2019, 186, 623. DOI: 10.1007/s00604-019-3737-6.
  • Vilian, A. T. E.; Ranjith, K. S.; Lee, S. J.; Umapathi, R.; Hwang, S. K.; Oh, C. W.; Huh, Y. S.; Han, Y. K. Hierarchical Dense Ni-Co Layered Double Hydroxide Supported Carbon Nanofibers for the Electrochemical Determination of Metronidazole in Biological Samples. Electrochim. Acta 2020, 354, 136723. DOI: 10.1016/j.electacta.2020.136723.
  • Baikeli, Y.; Mamat, X.; Wumaer, M.; Muhetaer, M.; Aisa, H. A.; Hu, G. Z. Electrochemical Determination of Metronidazole Using a Glassy Carbon Electrode Modified with Nanoporous Bimetallic Carbon Derived from a ZnCo-Based Metal-Organic Framework. J. Electrochem. Soc. 2020, 167, 116513. DOI: 10.1149/1945-7111/ab9d94.
  • Veerakumar, P.; Sangili, A.; Chen, S. M.; Lin, K. C. Ultrafine Gold Nanoparticle Embedded Poly(Diallyldimethylammonium Chloride)-Graphene Oxide Hydrogels for Voltammetric Determination of an Antimicrobial Drug (Metronidazole). J. Mater. Chem. C 2020, 8, 7575–7590. DOI: 10.1039/C9TC06690J.
  • Vivekanandan, A. K.; Subash, V.; Chen, S. M.; Chen, S. H. Sonochemical Synthesis of Nickel-Manganous Oxide Nanocrumbs Decorated Partially Reduced Graphene Oxide for Efficient Electrochemical Reduction of Metronidazole. Ultrason. Sonochem. 2020, 68, 105176. DOI: 10.1016/j.ultsonch.2020.105176.
  • Xia, Y. M.; Ou, X.; Zhao, Y.; Xia, M.; Chen, D.; Gao, W. W. Facile Synthesis of Reduced Graphene Oxide-Octahedral Mn3O4 Nanocomposites as a Platform for the Electrochemical Determination of Metronidazole and Sulfamonomethoxine. Electroanalysis 2021, 33, 1646–1656. DOI: 10.1002/elan.202100015.
  • Saedi, H.; Fat'hi, M. R.; Zargar, B. Synthesis of AgNPs Functionalized CuMOF/PPy-rGO Nanocomposite and Its Use as an Electrochemical Sensor for Metronidazole Determination. J. Chin. Chem. Soc. 2021, 68, 1954–1964. DOI: 10.1002/jccs.202100081.
  • Muthukutty, B.; Arumugam, B.; Chen, S. M.; Ramaraj, S. K. Low Potential Detection of Antiprotozoal Drug Metronidazole with Aid of Novel Dysprosium Vanadate Incorporated Oxidized Carbon Nanofiber Modified Disposable Screen-Printed Electrode. J. Hazard. Mater. 2021, 407, 124745. DOI: 10.1016/j.jhazmat.2020.124745.
  • Vinothkumar, V.; Abinaya, M.; Chen, S.-M.; Sethupathi, V.; Muthuraj, V. Ultrasound Assisted Synthesis of Silver Titanate for the Differential Pulse Voltammetric Determination of Antibiotic Drug Metronidazole. Physica E 2021, 134, 114865. DOI: 10.1016/j.physe.2021.114865.
  • Chinnaraj, S.; Palani, V.; Yadav, S.; Arumugam, M.; Sivakumar, M.; Maluventhen, V.; Singh, M. Green Synthesis of Silver Nanoparticle Using Goniothalamus Wightii on Graphene Oxide Nanocomposite for Effective Voltammetric Determination of Metronidazole. Sens. Bio-Sens. Res. 2021, 32, 100425. DOI: 10.1016/j.sbsr.2021.100425.
  • Wang, Y. F.; Guo, Y.; Pan, K. M.; Lin, X. Y.; Ni, Y. N. Electrochemical Reaction Mechanism of Nitrofurazone at Poly-ACBK/GCE and Its Analytic Application. Chem. Africa-A J. Tunisian Chem. Soc. 2020, 3, 727–734. DOI: 10.1007/s42250-020-00150-7.
  • Cheng, J.; Li, Y. F.; Zhong, J.; Lu, Z. W.; Wang, G. T.; Sun, M. M.; Jiang, Y. Y.; Zou, P.; Wang, X. X.; Zhao, Q. B.; et al. Molecularly Imprinted Electrochemical Sensor Based on Biomass Carbon Decorated with MOF-Derived Cr2O3 and Silver Nanoparticles for Selective and Sensitive Detection of Nitrofurazone. Chem. Eng. J. 2020, 398, 125664. DOI: 10.1016/j.cej.2020.125664.
  • Liu, Z. A.; Zhou, Y. K.; Wang, Y. Y.; Cheng, Q.; Wu, K. B. Enhanced Oxidation and Detection of Toxic Ractopamine Using Carbon Nanotube Film-Modified Electrode. Electrochim. Acta 2012, 74, 139–144. DOI: 10.1016/j.electacta.2012.04.041.
  • Yang, X.; Feng, B.; Yang, P.; Ding, Y. L.; Chen, Y.; Fei, J. J. Electrochemical Determination of Toxic Ractopamine at an Ordered Mesoporous Carbon Modified Electrode. Food Chem. 2014, 145, 619–624. DOI: 10.1016/j.foodchem.2013.08.093.
  • Wang, R.; Wu, K. B.; Wu, C. Highly Sensitive Electrochemical Sensor for Toxic Ractopamine Based on the Enhancement Effect of Acetylene Black Nanoparticles. Anal. Methods 2015, 7, 8069–8077. DOI: 10.1039/C5AY01625H.
  • Baytak, A. K.; Teker, T.; Duzmen, S.; Aslanoglu, M. A Novel Voltammetric Sensor Based on Carbon Nanotubes and Nanoparticles of Antimony Tin Oxide for the Determination of Ractopamine. Mater. Sci. Eng. C Mater. Biol. Appl. . 2016, 59, 368–374. DOI: 10.1016/j.msec.2015.10.030.
  • Xie, L. P.; Ya, Y.; Wei, L. Mesopores Cellular Foam-Based Electrochemical Sensor for Sensitive Determination of Ractopamine. Int. J. Electrochem. Sci. 2017, 12, 9714–9724. DOI: 10.20964/2017.10.34.
  • Mert, S.; Bankoğlu, B.; Özkan, A.; Atar, N.; Yola, M. L. Electrochemical Sensing of Ractopamine by Carbon Nitride Nanotubes/Ionic Liquid Nanohybrid in Presence of Other Beta-Agonists. J. Mol. Liq. 2018, 254, 8–11. DOI: 10.1016/j.molliq.2018.01.066.
  • Chen, C.; Zhang, M. X.; Li, C. Y.; Xie, Y. X.; Fei, J. J. Switched Voltammetric Determination of Ractopamine by Using a Temperature-Responsive Sensing Film. Mikrochim. Acta. 2018, 185, 155. DOI: 10.1007/s00604-018-2680-2.
  • Poo-arporn, Y.; Pakapongpan, S.; Chanlek, N.; Poo-arporn, R. P. The Development of Disposable Electrochemical Sensor Based on Fe3O4-Doped Reduced Graphene Oxide Modified Magnetic Screen-Printed Electrode for Ractopamine Determination in Pork Sample. Sens. Actuat. B Chem. 2019, 284, 164–171. DOI: 10.1016/j.snb.2018.12.121.
  • Muthumariyappan, A.; Rajaji, U.; Chen, S. M.; Baskaran, N.; Chen, T. W.; Ramalingam, R. J. Sonochemical Synthesis of Perovskite-Type Barium Titanate Nanoparticles Decorated on Reduced Graphene Oxide Nanosheets as an Effective Electrode Material for the Rapid Determination of Ractopamine in Meat Samples. Ultrason. Sonochem. 2019, 56, 318–326. DOI: 10.1016/j.ultsonch.2019.04.005.
  • Cao, L. P.; Ding, Q.; Liu, M. H.; Lin, H. T.; Yang, D. P. Biochar-Supported Cu2+/Cu + Composite as an Electrochemical Ultrasensitive Interface for Ractopamine Detection. ACS Appl. Bio. Mater. . 2021, 4, 1424–1431. DOI: 10.1021/acsabm.0c01314.
  • Orooji, Y.; Asrami, P. N.; Beitollahi, H.; Tajik, S.; Alizadeh, M.; Salmanpour, S.; Baghayeri, M.; Rouhi, J.; Sanati, A. L.; Karimi, F. An Electrochemical Strategy for Toxic Ractopamine Sensing in Pork Samples; Twofold Amplified Nano-Based Structure Analytical Tool. Food Measure 2021, 15, ):4098–4104. DOI: 10.1007/s11694-021-00982-y.
  • IARC Monographs-Classifications. https://monographs.iarc.who.int/agents-classified-by-the-iarc/.
  • Yin, H. S.; Zhou, Y. L.; Meng, X. M.; Tang, T. T.; Ai, S. Y.; Zhu, L. S. Electrochemical Behaviour of Sudan I at Fe3O4 Nanoparticles Modified Glassy Carbon Electrode and Its Determination in Food Samples. Food Chem. 2011, 127, 1348–1353. DOI: 10.1016/j.foodchem.2011.01.097.
  • Gan, T.; Sun, J. Y.; He, M. M.; Wang, L. L. Highly Sensitive Electrochemical Sensor for Sudan I Based on Graphene Decorated with Mesoporous TiO2. Ionics 2014, 20, 89–95. DOI: 10.1007/s11581-013-0951-9.
  • Yu, L. L.; Mao, Y. X.; Gao, Y.; Qu, L. B. Sensitive and Simple Voltammetric Detection of Sudan I by Using Platinum Nanoparticle-Modified Glassy Carbon Electrode in Food Samples. Food Anal. Methods 2014, 7, 1179–1185. DOI: 10.1007/s12161-013-9731-4.
  • Li, L.; Liu, X. H.; Lu, J. J.; Liu, Y. L.; Lu, X. Q. A Green Electrochemical Sensor Based on a Poly(Ionic Liquid)-Graphene Nanocomposite Modified Electrode for Sudan I Determination. Anal. Methods 2015, 7, 6595–6601. DOI: 10.1039/C5AY01360G.
  • Li, J. H.; Feng, H. B.; Li, J.; Feng, Y. L.; Zhang, Y. Q.; Jiang, J. B.; Qian, D. Fabrication of Gold Nanoparticles-Decorated Reduced Graphene Oxide as a High Performance Electrochemical Sensing Platform for the Detection of Toxicant Sudan I. Electrochim. Acta 2015, 167, 226–236. DOI: 10.1016/j.electacta.2015.03.201.
  • Li, L.; Zhang, Y. J.; Shang, T. Y.; Guo, H. X.; Liu, X. H.; Lu, X. Q. Electrochemical Study of Sudan I at Ionic Liquid-Reduced Graphene Oxide Modified Electrode. Electroanal. Chem. 2016, 781, 218–222. DOI: 10.1016/j.jelechem.2016.10.028.
  • Palanisamy, S.; Kokulnathan, T.; Chen, S. M.; Velusamy, V.; Ramaraj, S. K. Voltammetric Determination of Sudan I in Food Samples Based on Platinum Nanoparticles Decorated on Graphene-Beta-Cyclodextrin Modified Electrode. Electroanal. Chem. 2017, 794, 64–70. DOI: 10.1016/j.jelechem.2017.03.041.
  • Vinothkumar, V.; Sangili, A.; Chen, S. M.; Chen, T. W.; Abinaya, M.; Sethupathi, V. Voltammetric Determination of Sudan I by Using Bi2WO6 Nanosheets Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2020, 15, 2414–2429. DOI: 10.20964/2020.03.08.
  • Chao, M. Y.; Ma, X. Y. Electrochemical Determination of Sudan I at a Silver Nanoparticles/Poly(Aminosulfonic Acid) Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2012, 7, 6331.
  • Ma, X. Y.; Chao, M. Y.; Wang, Z. X. Electrochemical Determination of Sudan I in Food Samples at Graphene Modified Glassy Carbon Electrode Based on the Enhancement Effect of Sodium Dodecyl Sulphonate. Food Chem. 2013, 138, 739–744. DOI: 10.1016/j.foodchem.2012.11.004.
  • Elyasi, M.; Khalilzadeh, M. A.; Karimi-Maleh, H. High Sensitive Voltammetric Sensor Based on Pt/CNTs Nanocomposite Modified Ionic Liquid Carbon Paste Electrode for Determination of Sudan I in Food Samples. Food Chem. 2013, 141, 4311–4317. DOI: 10.1016/j.foodchem.2013.07.020.
  • Thomas, D.; Vikraman, A. E.; Jos, T.; Kumar, K. G. Kinetic Approach in the Development of a Gold Nanoparticle Based Voltammetric Sensor for Sudan I. Lwt-Food Sci. Technol. 2015, 63, 1294–1300. DOI: 10.1016/j.lwt.2015.04.020.
  • Zhang, L.; Zhang, X. H.; Li, X. L.; Peng, Y.; Shen, H. J.; Zhang, Y. D. Determination of Sudan I Using Electrochemically Reduced Graphene Oxide. Anal. Lett. 2013, 46, 923–935. DOI: 10.1080/00032719.2012.747096.
  • Wang, M. L.; Chen, Z. N.; Chen, Y. M.; Zhan, C. J.; Zhao, J. W. New Synthesis of Self-Assembly Ionic Liquid Functionalized Reduced Graphene Oxide-Gold Nanoparticle Composites for Electrochemical Determination of Sudan I. Electroanal. Chem. 2015, 756, 49–55. DOI: 10.1016/j.jelechem.2015.08.007.
  • Li, X. Y.; Sun, X. X.; Zhou, A.; Zhu, Z. C.; Li, M. G. An Electrochemical Method for the Sensitive and Rapid Sensing of Sudan I in Food Based on Ni-Fe Bimetal Organic Frameworks. New J. Chem. 2021, 45, 13585–13591. DOI: 10.1039/D1NJ02730A.
  • Liu, B. Z.; Yin, C. T.; Wang, M. Electrochemical Determination of Sudan I in Food Products Using a Carbon Nanotube-Ionic Liquid Composite Modified Electrode. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess . 2014, 31, 1818–1825. DOI: 10.1080/19440049.2014.968809.
  • Wang, L.; Yang, R.; Li, J. J.; Qu, L. B.; Harrington, P. D. High-Sensitive Electrochemical Sensor of Sudan I Based on Template-Directed Self-Assembly of graphene-ZnSe Quantum Dots Hybrid Structure. Sens. Actuat. B Chem. 2015, 215, 181–187. DOI: 10.1016/j.snb.2015.03.034.
  • Pahlavan, A.; Rezanejad, N.; Karimi-Maleh, H.; Jamali, M. R.; Abbasghorbani, M.; Beitollahi, H.; Atar, N. Voltammetric Nanostructure Based Sensor for Determination of Sudan I in Food Samples. Int. J. Electrochem. Sci. 2015, 10, 3644.
  • Cao, Y.; Fang, Z. H.; Yang, D. G.; Gao, Y.; Li, H. M. Voltammetric Sensor for Sudan I Based on Glassy Carbon Electrode Modified by SWCNT/beta-Cyclodextrin Conjugate. NANO. 2015, 10, 1550026. DOI: 10.1142/S1793292015500265.
  • Tunesi, M. M.; Kalwar, N. H.; Soomro, R. A.; Karakus, S.; Jawaid, S.; Abro, M. I. Tartaric Acid Assisted in-Situ Growth of CuO Nanostructures over ITO Substrate for the Electrocatalytic Detection of Sudan I. Mater. Sci. Semicond. Process 2018, 75, 296–300. DOI: 10.1016/j.mssp.2017.12.001.
  • Ye, Q. M.; Chen, X. H.; Yang, J.; Wu, D. T.; Ma, J. F.; Kong, Y. Fabrication of CuO Nanoparticles-Decorated 3D N-Doped Porous Carbon as Electrochemical Sensing Platform for the Detection of Sudan I. Food Chem. 2019, 287, 375–381. DOI: 10.1016/j.foodchem.2019.02.108.
  • Prabakaran, E.; Pandian, K. Amperometric Detection of Sudan I in Red Chili Powder Samples Using Ag Nanoparticles Decorated Graphene Oxide Modified Glassy Carbon Electrode. Food Chem. 2015, 166, 198–205. DOI: 10.1016/j.foodchem.2014.05.143.
  • Gomez, M.; Arancibia, V.; Aliaga, M.; Nunez, C.; Rojas-Romo, C. Determination of Sudan I in Drinks Containing Sunset Yellow by Adsorptive Stripping Voltammetry. Food Chem. 2016, 212, 807–813. DOI: 10.1016/j.foodchem.2016.05.183.
  • Yao, Y. Z.; Liu, Y. C.; Yang, Z. S. Highly Sensitive Electrochemical Sensor for the Food Toxicant Sudan I Based on a Glassy Carbon Electrode Modified with Reduced Graphene Oxide Decorated with Ag-Cu Nanoparticles. Microchim. Acta 2016, 183, 3275–3283. DOI: 10.1007/s00604-016-1977-2.
  • Mohamed, M. A.; Atty, S. A.; Merey, H. A.; Fattah, T. A.; Foster, C. W.; Banks, C. E. J. A. Titanium Nanoparticles (TiO2)/Graphene Oxide Nanosheets (GO): An Electrochemical Sensing Platform for the Sensitive and Simultaneous Determination of Benzocaine in the Presence of Antipyrine. Analyst 2017, 142, 3674–3679. DOI: 10.1039/c7an01101f.
  • de Lima, R. M. F.; Silva, M. D. D. O.; Felix, F. S.; Angnes, L.; dos Santos, W. T. P.; Saczk, A. A. Determination of Benzocaine and Tricaine in Fish Fillets Using BIA with Amperometric Detection. Electroanalysis 2018, 30, 283–287. DOI: 10.1002/elan.201700554.
  • Pysarevska, S.; Dubenska, L.; Plotycya, S.; Svorc, L. A State-of-the-Art Approach for Facile and Reliable Determination of Benzocaine in Pharmaceuticals and Biological Samples Based on the Use of Miniaturized Boron-Doped Diamond Electrochemical Sensor. Sens. Actuat. B Chem. 2018, 270, 9–17. DOI: 10.1016/j.snb.2018.05.012.
  • National Center for Biotechnology Information. PubChem Compound Summary for CID 56052, Ractopamine. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Ractopamine.
  • Bai, W. Q.; Huang, H. Y.; Li, Y.; Zhang, H. Y.; Liang, B.; Guo, R.; Du, L. L.; Zhang, Z. W. Direct Preparation of Well-Dispersed Graphene/Gold Nanorod Composites and Their Application in Electrochemical Sensors for Determination of Ractopamine. Electrochim. Acta 2014, 117, 322–328. DOI: 10.1016/j.electacta.2013.11.175.
  • Zhang, J.; Shao, X. T.; Yue, J. L.; Li, D. H.; Chen, Z. H. Preparation of Ractopamine-Tetraphenylborate Complexed Nanoparticles Used as Sensors to Rapidly Determine Ractopamine Residues in Pork. Nanoscale Res. Lett. 2014, 9, 1. DOI: 10.1186/1556-276X-9-639.
  • Wei, Q. H.; Wang, Q.; Wang, H. Y.; Gu, H. W.; Zhang, Q. Q.; Gao, X.; Qi, B. Formation of Flowerlike Gold Nanostructure on Ordered Mesoporous Carbon Electrode and Its Application in Electrochemical Determination of Ractopamine. Mater. Lett. 2015, 147, 58–60. DOI: 10.1016/j.matlet.2015.02.028.
  • Ji, Y.; Du, Y. H.; Jia, L.; Li, H.; An, J. P.; Qi, B, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China A Ractopamine Electrochemical Sensor Based on a 3-Dimensional Macroporous Copper Electrode Modified with a Gold Coating. Int. J. Electrochem. Sci. 2020, 15, 3119–3126. DOI: 10.20964/2020.04.16.
  • Rebane, R.; Leito, I.; Yurchenko, S.; Herodes, K. A Review of Analytical Techniques for Determination of Sudan I-IV Dyes in Food Matrixes. J. Chromatogr. A 2010, 1217, 2747–2757. DOI: 10.1016/j.chroma.2010.02.038.
  • Zhang, J.; Wang, M. L.; Chao, S. T.; Wang, W. C.; He, Y.; Chen, Z. D. Electrochemical Detection of Sudan I by Using an Expanded Graphite Paste Electrode. Electroanal. Chem. 2012, 685, 47–52. DOI: 10.1016/j.jelechem.2012.08.041.
  • Wu, M.; Tang, W.; Guimar, J.; Wang, Q.; He, P.; Fang, Y. Electrochemical Detection of Sudan I Using a Multi-Walled Carbon Nanotube/Chitosan Composite Modified Glassy Carbon Electrode. AJAC. 2013, 04, 1–6. DOI: 10.4236/ajac.2013.46A001.
  • Mahmoudi-Moghaddam, H.; Tajik, S.; Beitollahi, H. Highly Sensitive Electrochemical Sensor Based on La3+-Doped Co3O4 Nanocubes for Determination of sudan I Content in Food Samples. Food Chem. 2019, 286, 191–196. DOI: 10.1016/j.foodchem.2019.01.143.
  • Tajik, S.; Aflatoonian, M. R.; Shabanzade, R.; Beitollahi, H.; Alizadeh, R. Amplified Electrochemical Sensor Employing ZnO-CuO Nanoplates for Sensitive Analysis of Sudan I. Int. J. Environ. Anal. Chem. 2020, 100, 109–120. DOI: 10.1080/03067319.2019.1631304.
  • Tajik, S.; Beitollahi, H.; Nejad, F. G.; Safaei, M.; Jahani, P. M. Electrochemical Sensing of Sudan I Using the Modified Graphite Screen-Printed Electrode. Int. J. Environ. Anal. Chem. 2020. DOI: 10.1080/03067319.2020.1738418.
  • Yang, L.; Wang, S. Y.; Zhang, L. Electrochemical Sensor Based on MWCNTs/AuNPs/GCE for Sensitive Determination of Sudan I Content in Food Samples. Int. J. Electrochem. Sci. 2020, 15, 11168–11179. DOI: 10.20964/2020.11.77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.