346
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Recent Advances in Polyoxometalates with Enzyme-like Characteristics for Analytical Applications

, , , , , , & show all
Pages 315-332 | Published online: 12 May 2022

References

  • Kuah, E.; Toh, S.; Yee, J.; Ma, Q.; Gao, Z. Enzyme Mimics: Advances and Applications. Chem. Eur. J. 2016, 22, 8404–8430. DOI: 10.1002/chem.201504394.
  • Liang, M. M.; Yan, X. Y. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res. 2019, 52, 2190–2200.
  • Breslow, R. Artificial Enzymes; Wiley-VCH: Weinheim, Germany, 2005.
  • Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. DOI: 10.1021/acs.chemrev.8b00672.
  • Breslow, R. Centenary Lecture. biomimetic Chemistry. Chem. Soc. Rev. 1972, 1, 553–580. DOI: 10.1039/cs9720100553.
  • Dong, Z.; Luo, Q.; Liu, J. Artificial Enzymes Based on Supramolecular Scaffolds. Chem. Soc. Rev. 2012, 41, 7890–7908.
  • Wei, H.; Wang, E. Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. DOI: 10.1039/c3cs35486e.
  • Nath, I.; Chakraborty, J.; Verpoort, F. Metal Organic Frameworks Mimicking Natural Enzymes: A Structural and Functional Analogy. Chem. Soc. Rev. 2016, 45, 4127–4170.
  • Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer: Berlin, Heidelberg, New York, NY, 1983.
  • Hill, C. L. Introduction: Polyoxometalates-Multicomponent Molecular Vehicles to Probe Fundamental Issues and Practical Problems. Chem. Rev. 1998, 98, 1–389. DOI: 10.1021/cr960395y.
  • Cronin, L.; Müller, A. From Serendipity to Design of Polyoxometalates at the Nanoscale, Aesthetic Beauty and Applications. Chem. Soc. Rev. 2012, 41, 7333–7334. DOI: 10.1039/c2cs90087d.
  • Gumerova, N. I.; Rompel, A. Synthesis, Structures and Applications of Electron-Rich Polyoxometalates. Nat. Rev. Chem. 2018, 2, 0112.
  • Wang, S. S.; Yang, G. Y. Recent Advances in Polyoxometalate-Catalyzed Reactions. Chem. Rev. 2015, 115, 4893–4962.
  • Mialane, P.; Mellot-Draznieks, C.; Gairola, P.; Duguet, M.; Benseghir, Y.; Oms, O.; Dolbecq, A. Heterogenisation of Polyoxometalates and Other Metal-Based Complexes in Metal-Organic Frameworks: From Synthesis to Characterisation and Applications in Catalysis. Chem. Soc. Rev. 2021, 50, 6152–6220. DOI: 10.1039/D0CS00323A.
  • Yamase, T., Pope, M. T. Polyoxometalate Chemistry for Nano-Composite Design; Springer: Berlin, Heidelberg, 2002.
  • Chen, L.; Chen, W. L.; Wang, X. L.; Li, Y. G.; Su, Z. M.; Wang, E. B. Polyoxometalates in Dye-Sensitized Solar Cells. Chem. Soc. Rev. 2019, 48, 260–284.
  • Sadakane, M.; Steckhan, E. Electrochemical Properties of Polyoxometalates as Electrocatalysts. Chem. Rev. 1998, 98, 219–238.
  • Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as Potential Next-Generation Metallodrugs in the Combat Against Cancer. Angew. Chem. Int. Ed. 2019, 58, 2980–2999.
  • Omwoma, S.; Gore, C. T.; Ji, Y.; Hu, C.; Song, Y. F. Environmentally Benign Polyoxometalate Materials. Coord. Chem. Rev. 2015, 286, 17–29. DOI: 10.1016/j.ccr.2014.11.013.
  • Azambuja, F.; Moons, J.; Parac-Vogt, T. N. The Dawn of Metal-Oxo Clusters as Artificial Proteases: From Discovery to the Present and beyond. Acc. Chem. Res. 2021, 54, 1673–1684. DOI: 10.1021/acs.accounts.0c00666.
  • Kozhevnikov, I. V. Heteropoly Acids and Related Compounds as Catalysts for Fine Chemical Synthesis. Catal. Rev. 1995, 37, 311–352. DOI: 10.1080/01614949508007097.
  • Liu, S.; Tian, J. Q.; Wang, L.; Zhang, Y. W.; Luo, Y. G.; Li, H. Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Fast and Sensitive Colorimetric Detection of H2O2 and Glucose: A Strategy Based on Polyoxometalate Clusters. ChemPlusChem. 2012, 77, 541–544. DOI: 10.1002/cplu.201200051.
  • Wang, J. J.; Han, D. X.; Wang, X. H.; Qi, B.; Zhao, M. S. Polyoxometalates as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection. Biosens. Bioelectron. 2012, 36, 18–21.
  • Zeb, A.; Sahar, S.; Qazi, U. Y.; Odda, A. H.; Ullah, N.; Liu, Y. N.; Qazi, I. A.; Xu, A. W. Intrinsic Peroxidase-like Activity and Enhanced photo-Fenton Reactivity of Iron-Substituted Polyoxometallate Nanostructures. Dalton Trans. 2018, 7, 7344–7352.
  • Zhang, B. Y.; Zhao, M. M.; Qi, Y. F.; Tian, R.; Carter, B. B.; Zou, H. J.; Zhang, C. H.; Wang, C. Y. The Intrinsic Enzyme Activities of the Classic Polyoxometalates. Sci. Rep. 2019, 9, 9, 14832.
  • Dawson, B. The Structure of the 9(18)-Heteropoly Anion in Potassium 9(18)-Tungstophosphate. Acta Cryst. 1953, 6, 113–126. DOI: 10.1107/S0365110X53000466.
  • Van Rompuy, L. S.; Parac-Vogt, T. N. Polyoxometalates as Sialidase Mimics: Selective and Non-Destructive Removal of Sialic Acid from a Glycoprotein Promoted by Phosphotungstic Acid. Chem. Commun. (Camb.) 2017, 53, 10600–10603. DOI: 10.1039/c7cc05888h.
  • He, Y. F.; Li, X.; Xu, X. C.; Pan, J. M.; Niu, X. H. A Cobalt-Based Polyoxometalate Nanozyme with High Peroxidase-Mimicking Activity at Neutral pH for One-Pot Colorimetric Analysis of Glucose. J. Mater. Chem. B. 2018, 6, 5750–5755. DOI: 10.1039/c8tb01853g.
  • Ji, Y.; Xu, J.; Chen, X. L.; Han, L.; Wang, X. H.; Chai, F.; Zhao, M. S. Inorganic-Bimolecular Hybrids Based on Polyoxometalates: Intrinsic Oxidase Catalytic Activity and Their Application to Cancer Immunoassay. Sens. Actuators B. Chem. 2015, 208, 497–504. DOI: 10.1016/j.snb.2014.11.058.
  • Li, Q.; Tian, A. X.; Chen, C. Y.; Jiao, T. Y.; Wang, T.; Zhu, S. Y.; Sha, J. Q. Anderson Polyoxometalates with Intrinsic Oxidase-Mimic Activity for “Turn On” Fluorescence Sensing of Dopamine. Anal. Bioanal. Chem. 2021, 413, 4255–4265. DOI: 10.1007/s00216-021-03376-7.
  • Lokeren, L. V.; Cartuyvels, E.; Absillis, G.; Willem, R.; Parac-Vogt, T. N. Phosphoesterase Activity of Polyoxomolybdates: Diffusion Ordered NMR Spectroscopy as a Tool for Obtaining Insights into the Reactivity of Polyoxometalate Clusters. Chem. Commun. 2008, 2774–2776. DOI: 10.1039/b802671h.
  • Cartuyvels, E.; Absillis, G.; Parac-Vogt, T.N. Questioning the Paradigm of Metal Complex Promoted Phosphodiester Hydrolysis: [Mo7O24]6− Polyoxometalate Cluster as an Unlikely Catalyst for the Hydrolysis of a DNA Model Substrate. Chem. Commun. 2008, 1, 85–87.
  • Absillis, G.; Cartuyvels, E.; Van Deun, R.; Parac-Vogt, T. N. Hydrolytic Cleavage of an RNA-Model Phosphodiester Catalyzed by a Highly Negatively Charged Polyoxomolybdate [Mo7O24]6− Cluster. J. Am. Chem. Soc. 2008, 130, 17400–17408. DOI: 10.1021/ja804823g.
  • Steens, N.; Ramadan, A. M.; Absillis, G.; Parac-Vogt, T. N. Hydrolytic Cleavage of DNA-Model Substrates Promoted by Polyoxovanadates. Dalton Trans. 2010, 39, 585–592. DOI: 10.1039/B913471A.
  • Steens, N.; Ramadan, A. M.; Parac-Vogt, T. N. When Structural and Electronic Analogy Leads to Reactivity: The Unprecedented Phosphodiesterase Activity of Vanadates. Chem. Commun. 2009, 965–967. DOI: 10.1039/B816785K.
  • Ho, P. H.; Breynaert, E.; Kirschhock, C. E. A.; Parac-Vogt, T. N. Hydrolysis of Carboxyesters Promoted by Vanadium(V) oxyanions. Dalton Trans. 2011, 40, 295–300.
  • Zheng, S.-T.; Yang, G.-Y. Recent Advances in paramagnetic-TM-Substituted Polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646. DOI: 10.1039/c2cs35133a.
  • Efremenko, I.; Neumann, R. Protonation of Phosphovanadomolybdates H3+xPVxMo12-xO40: Computational Insight into Reactivity. J. Phys. Chem. A. 2011, 115, 4811–4826. DOI: 10.1021/jp201420z.
  • Duan, X. X.; Bai, Z. X.; Shao, X. T.; Xu, J.; Yan, N.; Shi, J. Y.; Wang, X. H. Fabrication of Metal-Substituted Polyoxometalates for Colorimetric Detection of Dopamine and Ractopamine. Materials (Basel) 2018, 11, 674. DOI: 10.3390/ma11050674.
  • Li, Y. M.; Wang, S. T.; Tang, Z. J.; Bawa, M.; Ji, Y.; Wang, X. H.; K. Z. Visual, Z. Detection of H2O2 and Melamine Based on PW11MO39n− (M = Cu2+, Co2+, Mn2+, Fe3+) and PW9M3O34n− (M = Cu2+, Co2+, Mn2+, Fe3+). New J. Chem. 2019, 43, 18018–18026.
  • Saeed, A.; Umer, M.; Yamasaki, N.; Azuma, S.; Ueda, T.; Shiddiky, M. J. A. Vanadium-Substituted Tungstosulfate Polyoxometalates as Peroxidase Mimetics and Their Potential Application in Biosensing. ChemElectroChem. 2020, 7, 3943–3950.
  • Canny, J.; Tézé, A.; Thouvenot, R.; Hervé, G. Disubstituted Tungstosilicates. 1. synthesis, Stability, and Structure of the Lacunary Precursor Polyanion γ-SiW10O368. Inorg. Chem. 1986, 25, 2114–2119. DOI: 10.1021/ic00233a003.
  • Kikukawa, Y.; Yamaguchi, S.; Tsuchida, K.; Nakagawa, Y.; Uehara, K.; Yamaguchi, K.; Mizuno, N. Synthesis and Catalysis of di- and Tetranuclear Metal Sandwich-Type Silicotungstates [(γ-SiW10O36)2M2(μ-OH)2]10− and [(γ-SiW10O36)2M4(μ4-O)(μ-OH)6]8− (M = Zr or Hf). J. Am. Chem. Soc. 2008, 130, 5472–5478. DOI: 10.1021/ja078313i.
  • Saku, Y.; Sakai, Y.; Shinohara, A.; Hayashi, K.; Yoshida, S.; Kato, C. N.; Yoza, K.; Nomiya, K. Sandwich-Type HfIV and ZrIV Complexes Composed of Tri-Lacunary Keggin Polyoxometalates: Structure of [M3(μ-OH)3(A-α-PW9O34)2]9− (M = Hf and Zr). Dalton Trans. 2009, 805–813. DOI: 10.1039/B813710M.
  • Li, D.; Han, H. Y.; Wang, Y. H.; Wang, X.; Li, Y. G.; Wang, E. B. Modification of Tetranuclear Zirconium-Substituted Polyoxom Etalates - Syntheses, Structures, and Peroxidase-like Catalytic Activities. Eur. J. Inorg. Chem. 1926, 10, 1926–1934.
  • Ly, H. T.; Absillis, G.; Parac-Vogt, T. N. Amide Bond Hydrolysis in Peptides and Cyclic Peptides Catalyzed by a Dimeric Zr(IV)-Substituted Keggin Type Polyoxometalate. Dalton Trans. 2013, 42, 10929–10938.
  • Sap, A.; Absillis, G.; Parac-Vogt, T. N. Selective Hydrolysis of Oxidized Insulin Chain B by a Zr(IV)-Substituted Wells-Dawson Polyoxometalate. Dalton Trans. 2015, 44, 1539–1548. DOI: 10.1039/C4DT01477D.
  • Ly, H. G.; Absillis, T. G.; Janssens, R.; Proost, P.; Parac-Vogt, T. N. Highly Amino Acid Selective Hydrolysis of Myoglobin at Aspartate Residues as Promoted by Zirconium(IV)-Substituted Polyoxometalates. Angew. Chem. Int. Ed. Engl. 2015, 54, 7391–7394. DOI: 10.1002/anie.201502006.
  • Ly, H. G.; Parac-Vogt, T. N. Spectroscopic Study of the Interaction between Horse Heart Myoglobin and Zirconium(IV)-Substituted Polyoxometalates as Artificial Proteases. Chemphyschem. 2017, 18, 2451–2458. DOI: 10.1002/cphc.201700680.
  • Sap, A.; Van Tichelen, L.; Mortier, A.; Proost, P.; Parac-Vogt, T. N. Tuning the Selectivity and Reactivity of Metal-Substituted Polyoxometalates as Artificial Proteases by Varying the Nature of the Embedded Lewis Acid Metal Ion. Eur. J. Inorg. Chem. 2016, 32, 5098–5105.
  • Stroobants, K.; Absillis, G.; Moelants, E.; Proost, P.; Parac-Vogt, T. N. Regioselective Hydrolysis of Human Serum Albumin by ZrIV-Substituted Polyoxotungstates at the Interface of Positively Charged Protein Surface Patches and Negatively Charged Amino Acid Residues. Chem. Eur. J. 2014, 20, 3894–3897. DOI: 10.1002/chem.201303622.
  • Quanten, T.; Shestakova, P.; Van Den Bulck, D.; Kirschhock, C.; Parac-Vogt, T. N. Interaction Study and Reactivity of ZrIV-Substituted Wells-Dawson Polyoxometalate towards Hydrolysis of Peptide Bonds in Surfactant Solutions. Chem. Eur. J. 2016, 22, 3775–3784. DOI: 10.1002/chem.201503976.
  • Vilà-Nadal, L.; Cronin, L. Design and Synthesis of Polyoxometalate-Framework Materials from Cluster Precursors. Nat. Rev. Mater. 2017, 10, 17054.
  • Li, D. D.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Recent Advances in Transition-Metal-Containing Keggin-Type Polyoxometalate-Based Coordination Polymers. Coord. Chem. Rev. 2019, 392, 49–80. DOI: 10.1016/j.ccr.2019.04.008.
  • Chai, D. F.; Ma, Z.; Yan, H.; Qiu, Y. F.; Liu, H.; Guo, H. D.; Gao, G. G. Synergistic Effect of Sandwich Polyoxometalates and Copper-Imidazole Complexes for Enhancing the Peroxidase-like Activity. RSC Adv. 2015, 5, 78771–78779. DOI: 10.1039/C5RA13265G.
  • Li, X.; Zhou, K. F.; Tong, Z. B.; Yang, J. B.; Sheng, N.; Li, J. S.; Sha, J. Q. Keggin Polyoxometalates Based Hybrid Compounds Containing Helix/Nanocages for Colorimetric Biosensing. Solid State Chem. 2018, 265, 372–380. DOI: 10.1016/j.jssc.2018.06.020.
  • Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673–674.
  • Li, S. Q.; Liu, X. D.; Chai, H. X.; Huang, Y. M. Recent Advances in the Construction and Analytical Applications of Metal-Organic Frameworks-Based Nanozymes. Trends Analyt. Chem. 2018, 105, 391–403. DOI: 10.1016/j.trac.2018.06.001.
  • Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate Functionalized Architectures. Coord. Chem. Rev. 2020, 414, 213260. DOI: 10.1016/j.ccr.2020.213260.
  • Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Recent Advances in Porous Polyoxometalate-Based Metal-Organic Framework Materials. Chem. Soc. Rev. 2014, 43, 4615–4632.
  • Zhou, E. L.; Qin, C.; Huang, P.; Wang, X. L.; Chen, W. C.; Shao, K. Z.; Su, Z. M. A Stable Polyoxometalate-Pillared Metal-Organic Framework for Proton-Conducting and Colorimetric Biosensing. Chemistry 2015, 21, 11894–11898.
  • Li, X.; Li, S. X.; Wang, Y. L.; Zhou, K. F.; Li, P. P.; Sha, J. Q. Synthesis, Structure and Effective Peroxidase-like Activity of a Stable Polyoxometalate-Pillared Metal-Organic Framework with Multinuclear Cycles. Polyhedron 2018, 151, 206–212. DOI: 10.1016/j.poly.2018.05.046.
  • Wang, J. N.; Zhou, H. R.; Ge, M. K.; Wang, Y. L.; Zhang, Y. Y.; Lu, H. J. Synthesis and Peroxidase-like Mimic Study in H2O2 Detection of a Stable Polyoxometalate-Pillared Coordination Polymer. J. Coord. Chem. 2018, 71, 3127–3138. DOI: 10.1080/00958972.2018.1514117.
  • Li, Q.; Xu, M. Q.; Li, X.; Li, S. X.; Hou, L. R.; Chen, Y. H.; Sha, J. Q. A Polypyrrole-Coated Eightfold-Helical Wells-Dawson POM-Based Cu-FKZ Framework for Enhanced Colorimetric Sensing. Analyst 2020, 145, 4021–4030. DOI: 10.1039/D0AN00402B.
  • Sang, X. J.; Li, J. S.; Zhang, L. C.; Wang, Z. J.; Chen, W. L.; Zhu, Z. M.; Su, Z. M.; Wang, E. B. A Novel Carboxyethyltin Functionalized Sandwich-Type Germanotungstate: Synthesis, Crystal Structure, Photosensitivity, and Application in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 7876–7884. DOI: 10.1021/am501192f.
  • Ji, L. P.; Du, J.; Li, J. S.; Zhang, L. C.; Sang, X. J.; Yang, H.; Cui, H. J.; Zhu, Z. M. A New Boat-like Tungstoarsenate Functionalized by Carboxyethyltin and Its Catalytic Properties. RSC Adv. 2016, 6, 28956–28959. DOI: 10.1039/C5RA27781G.
  • Yin, P. C.; Wu, P. F.; Xiao, Z. C.; Li, D.; Zhang, E. J, B.; Cheng, P.; Vezenov, D. V.; Liu, T. B.; Wei, Y. G. A Double-Tailed Fluorescent Surfactant with a Hexavanadate Cluster as the Head Group. Angew. Chem. Intern. Ed. 2011, 50, 2521–2525.
  • Chen, K.; Bayaguud, A.; Li, H.; Chu, Y.; Zhang, H. C.; Jia, H. L.; Zhang, B.; Xiao, Z. C.; Wu, P. F.; Liu, T. B.; Wei, Y. G. Improved Peroxidase-Mimic Property: Sustainable, High-Efficiency Interfacial Catalysis with H2O2 on the Surface of Vesicles of Hexavanadate-Organic Hybrid Surfactants. Nano Res. 2018, 11, 1313–1321. DOI: 10.1007/s12274-017-1746-5.
  • Narkhede, N.; Uttam, B.; Rao, C. P. Inorganic-Organic Covalent Hybrid of Polyoxometalate-Calixarene: Synthesis, Characterization and Enzyme Mimetic Activity. Inorg. Chim. Acta 2018, 483, 337–342. DOI: 10.1016/j.ica.2018.08.034.
  • Wang, J. J.; Mi, X. G.; Guan, H. Y.; Wang, X. H.; Wu, Y. Assembly of Folate-Polyoxometalate Hybrid Spheres for Colorimetric Immunoassay like Oxidase. Chem. Commun. (Camb.) 2011, 47, 2940–2942.
  • Sun, C. L.; Chen, X. L.; Xu, J.; Wei, M. J.; Wang, J. J.; Mi, X. G.; Wang, X. H.; Wu, Y.; Liu, Y. Fabrication of an Inorganic-Organic Hybrid Based on an Iron-Substituted Polyoxotungstate as a Peroxidase for Colorimetric Immunoassays of H2O2 and Cancer Cells. J. Mater. Chem. A. 2013, 1, 4699–4705. DOI: 10.1039/c3ta01255g.
  • Mbage, B.; Li, Y. M.; Si, H. P.; Zhang, X. Y.; Li, Y.; Wang, X. H.; Salah, A.; Zhang, K. Z. Fabrication of Folate Functionalized Polyoxometalate Nanoparticle to Simultaneously Detect H2O2 and Sarcosine in Colorimetry. Sens. Actuators B. Chem. 2020, 304, 127429. DOI: 10.1016/j.snb.2019.127429.
  • Misson, M.; Zhang, H.; Jin, B. Nanobiocatalyst Advancements and Bioprocessing Applications. J. R. Soc. Interface 2015, 12, 20140891. DOI: 10.1098/rsif.2014.0891.
  • Duan, L. L.; Wang, H. X.; Liu, J. D.; Zhang, Y. T. Three-Dimensional Self-Assembled Graphene Oxide/Enzyme in the Presence of Copper Phosphate. Biomed. Phys. Eng. Express 2015, 1, 045101. DOI: 10.1088/2057-1976/1/4/045101.
  • Zhu, J.; Wang, J.; Hou, J.; Zhang, Y.; Liu, J.; Van der Bruggen, B. Van Der Bruggen, B. Graphene-Based Antimicrobial Polymeric Membranes: A Review. J. Mater. Chem. A. 2017, 5, 6776–6793. DOI: 10.1039/C7TA00009J.
  • Soozanipour, A.; Taheri-Kafrani, A. Enzyme Immobilization on Functionalized Graphene Oxide Nanosheets: Efficient and Robust Biocatalysts. In Methods in Enzymology, Kumar, C. V., Ed.; Academic Press: Cambridge, MA, 2018; pp 371–403.
  • Zhang, J. L.; Zhang, F.; Yang, H. J.; Huang, X. L.; Liu, H.; Zhang, J. Y.; Guo, S. W. Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir 2010, 26, 6083–6085. DOI: 10.1021/la904014z.
  • Ma, Z.; Qiu, Y. F.; Yang, H. H.; Huang, Y. M.; Liu, J. J.; Lu, Y.; Zhang, C.; Hu, P. A. Effective Synergistic Effect of Dipeptide-Polyoxometalate-Graphene Oxide Ternary Hybrid Materials on Peroxidase-like Mimics with Enhanced Performance. ACS Appl. Mater. Interfaces 2015, 7, 22036–22045. DOI: 10.1021/acsami.5b07046.
  • Li, X.; Yang, X. Y.; Sha, J. Q.; Han, T.; Du, C. J.; Sun, Y. J.; Lan, Y. Q. POMOF/SWNT Nanocomposites with Prominent Peroxidase-Mimicking Activity for L-Cysteine "on off Switch" Colorimetric Biosensing. ACS Appl. Mater. Interfaces 2019, 11, 16896–16904. DOI: 10.1021/acsami.9b00872.
  • Qi, W.; Wu, L. X. Polyoxometalate/Polymer Hybrid Materials: Fabrication and Properties. Polym. Int. 2009, 58, 1217–1225. DOI: 10.1002/pi.2654.
  • Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114, 5057–5115.
  • Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430. DOI: 10.1126/science.1147241.
  • Li, H.; Jia, Y.; Wang, A. H.; Cui, W.; Ma, H. C.; Feng, X. Y.; Li, J. B. Self-Assembly of Hierarchical Nanostructures from Dopamine and Polyoxometalate for Oral Drug Delivery. Chemistry 2014, 20, 499–504.
  • Wang, M. M.; Chen, S.; Yu, Y. L.; Wang, J. H. Novel Ti4+-Chelated Polyoxometalate/Polydopamine Composite Microspheres for Highly Selective Isolation and Enrichment of Phosphoproteins. ACS Appl. Mater. Interfaces 2019, 11, 37471–37478. DOI: 10.1021/acsami.9b12872.
  • Zhang, H.; Guo, L. Y.; Jiao, J. M.; Xin, X.; Sun, D.; Yuan, S. L. Ionic Self-Assembly of Polyoxometalate Dopamine Hybrid Nanoflowers with Excellent Catalytic Activity for Dyes. ACS Sustainable Chem. Eng. 2017, 5, 1358–1367. DOI: 10.1021/acssuschemeng.6b01805.
  • Ding, Y. H.; Peng, J.; Khan, S. U.; Yuan, Y. A New Polyoxometalate (POM)-Based Composite: Fabrication through POM-Assisted Polymerization of Dopamine and Properties as Anode Materials for High-Performance Lithium-Ion Batteries. Chemistry 2017, 23, 10338–10343.
  • Zhang, B. Y.; Zou, H. J.; Qi, Y. F.; Zhang, X. M.; Sheng, R. T.; Zhang, Y.; Sun, R.; Chen, L. X.; Lv, R. J. Assembly of Polyoxometalates/Polydopamine Nanozymes as a Multifunctional Platform for Glutathione and Escherichia coli O157:H7 Detection. Microchem. J. 2021, 164, 106013. DOI: 10.1016/j.microc.2021.106013.
  • Lv, R. J.; Zhang, X. M.; Sun, R. M.; Chen, L. X.; Zhang, Y.; Sheng, R. T.; Du, T.; Li, Y. H.; Qi, Y. F. Hierarchical Micro-Nanostructures from Polyoxometalates and Polydopamine: Characterization, Electrochemical and Intrinsic Peroxidase-like Properties. Particuology 2022, 64, 178–185. DOI: 10.1016/j.partic.2021.07.004.
  • Li, X.; Sun, L. J.; Yang, X. K.; Zhou, K. F.; Zhang, G. G.; Tong, Z. B.; Wang, C.; Sha, J. Q. Enhancing the Colorimetric Detection of H2O2 and Ascorbic Acid on Polypyrrole Coated Fluconazole-Functionalized POMOFs. Analyst 2019, 144, 3347–3356. DOI: 10.1039/c9an00163h.
  • Wang, Y. Y.; Zhang, H. F.; Wang, D. H.; Sheng, N.; Zhang, G. G.; Yin, L.; Sha, J. Q. Development of a Uricase-Free Colorimetric Biosensor for Uric Acid Based on PPy-Coated Polyoxometalate-Encapsulated Fourfold Helical Metal-Organic Frameworks. ACS Biomater. Sci. Eng. 2020, 6, 1438–1448.
  • Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A Clear Definition with Fuzzy Edges. Nano Today 2021, 40, 101269. DOI: 10.1016/j.nantod.2021.101269.
  • Liu, B. W.; Liu, J. W. Sensors and Biosensors Based on Metal Oxide Nanomaterials. TrAC - Trend Anal. Chem. 2019, 121, 115690. DOI: 10.1016/j.trac.2019.115690.
  • Gao, N.; Dong, K.; Zhao, A. D.; Sun, H. J.; Wang, Y.; Ren, J. S.; Qu, X. G. Polyoxometalate-Based Nanozyme: Design of a Multifunctional Enzyme for Multi-Faceted Treatment of Alzheimer’s Disease. Nano Res. 2016, 9, 1079–1090. DOI: 10.1007/s12274-016-1000-6.
  • Guan, Y.; Li, M.; Dong, K.; Gao, N.; Ren, J.; Zheng, Y.; Qu, X. Ceria/POMs Hybrid Nanoparticles as a Mimicking Metallopeptidase for Treatment of Neurotoxicity of Amyloid-β Peptide. Biomaterials 2016, 98, 92–102. DOI: 10.1016/j.biomaterials.2016.05.005.
  • Yadav, N.; Singh, S. Polyoxometalate-Mediated Vacancy-Engineered Cerium Oxide Nanoparticles Exhibiting Controlled Biological Enzyme-Mimicking Activities. Inorg. Chem. 2021, 60, 7475–7489.
  • Qin, J.; Lin, C.; Cheruiyot, P.; Mkpanam, S.; Good-Mary Duma, N. Potential Effects of Rainwater-Borne Hydrogen Peroxide on Pollutants in Stagnant Water Environments. Chemosphere 2017, 174, 90–97. DOI: 10.1016/j.chemosphere.2017.01.111.
  • Tian, R.; Zhang, B. Y.; Zhao, M. M.; Ma, Q.; Qi, Y. F. Polyoxometalates as Promising Enzyme Mimics for the Sensitive Detection of Hydrogen Peroxide by Fluorometric Method. Talanta 2018, 188, 332–338. DOI: 10.1016/j.talanta.2018.05.085.
  • Tian, R.; Zhang, B. Y.; Zhao, M. M.; Zou, H. J.; Zhang, C. H.; Qi, Y. F.; Ma, Q. Fluorometric Enhancement of the Detection of H2O2 Using Different Organic Substrates and a Peroxidase-Mimicking Polyoxometalate. RSC Adv. 2019, 9, 12209–12217. DOI: 10.1039/C9RA00505F.
  • Jia, Y. X.; Sun, S. C.; Cui, X. J.; Wang, X. H.; Yang, L. Enzyme-like Catalysis of Polyoxometalates for Chemiluminescence: Application in Ultrasensitive Detection of H2O2 and Blood Glucose. Talanta 2019, 205, 120139. DOI: 10.1016/j.talanta.2019.120139.
  • Sreekumar, A.; Poisson, L. M.; Rajendiran, T. M.; Khan, A. P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R. J.; Li, Y.; et al. Metabolomic Profiles Delineate Potential Role for Sarcosine in Prostate Cancer Progression. Nature 2009, 457, 910–914. DOI: 10.1038/nature07762.
  • Sun, N. N.; Yan, B. A Fluorescent Probe Based on a Tb3+/Cu2+ co-Functionalized MOF for Urinary Sarcosine Detection. Analyst 2018, 143, 2349–2355. DOI: 10.1039/c8an00425k.
  • Tong, Z. B.; Xu, M. Q.; Li, Q.; Liu, C.; Wang, Y. L.; Sha, J. Q. Polyelectrolyte-Functionalized Reduced Graphene Oxide Wrapped Helical POMOF Nanocomposites for Bioenzyme-Free Colorimetric Biosensing. Talanta 2020, 220, 121373. DOI: 10.1016/j.talanta.2020.121373.
  • Kong, X. P.; Wan, G. F.; Li, B.; Wu, L. X. Recent Advances of Polyoxometalates in Multi-Functional Imaging and Photothermal Therapy. J. Mater. Chem. B. 2020, 8, 8189–8206. DOI: 10.1039/d0tb01375g.
  • Guo, L. Q.; Zhong, J. H.; Wu, J. M.; Fu, F. F.; Chen, G. N.; Chen, Y. X.; Zheng, X. Y.; Lin, S. Sensitive Turn-on Fluorescent Detection of Melamine Based on Fluorescence Resonance Energy Transfer. Analyst 2011, 136, 1659–1663. DOI: 10.1039/c0an00675k.
  • Tu, Y. Y. The Discovery of Artemisinin (Qinghaosu) and Gifts from Chinese Medicine. Nat. Med. 2011, 17, 1217–1220.
  • Gao, Y. L.; Tian, M. M.; Jia, Y. X.; Wang, X. H.; Yang, L. Polyoxometalates as Catalysts for Fluorescence Amplification in Rapid and Sensitive Detection of Artemisinin. Anal. Chim. Acta 2021, 1143, 101–108. DOI: 10.1016/j.aca.2020.11.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.