560
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Vibrational Spectroscopy Combined with Chemometrics in Authentication of Functional Foods

, &
Pages 333-354 | Published online: 09 May 2022

References

  • Villaño, D.; Gironés-Vilapana, A.; García-Viguera, C.; Moreno.; D. A.; Chapter 10 - Development of Functional Foods, Galanakis, C. M., Ed.; Academic Press: Cambridge, MA, 2016, pp 191–210.
  • Hu, C.; Wong, W. T.; Wu, R.; Lai, W. F. Biochemistry and Use of Soybean Isoflavones in Functional Food Development. Crit. Rev. Food Sci. Nutr. 2020, 60, 2098–2112. DOI: 10.1080/10408398.2019.1630598.
  • Gul, K.; Singh, A. K.; Jabeen, R. Nutraceuticals and Functional Foods: The Foods for the Future World. Crit. Rev. Food Sci. Nutr. 2016, 56, 2617–2627. DOI: 10.1080/10408398.2014.903384.
  • Salama, A. A.; Ismael, N. M.; Bedewy, M. The Anti-inflammatory and Antiatherogenic In Vivo Effects of Pomegranate Peel Powder: From Waste to Medicinal Food. J. Med. Food. 2021, 24, 145–150. DOI: 10.1089/jmf.2019.0269.
  • Liu, S.; Lv, Y.; Tang, Z.; Zhang, Y.; Xu, H.; Zhang, D.; Cui, C.; Liu, H.; Sun, H.; Song, Z.; Wei, S. Ziziphus Jujuba Mill., a Plant Used as Medicinal Food: A Review of Its Phytochemistry, Pharmacology, Quality Control and Future Research. Phytochem Rev. 2020, 2020, 507–541. DOI: 10.1007/s11101-020-09709-1.
  • He, T.; Ung, C. O. L.; Hu, H.; Wang, Y. Good Manufacturing Practice (GMP) Regulation of Herbal Medicine in Comparative Research: China GMP, cGMP, WHO-GMP, PIC/S and EU-GMP. Eur. J. Integr. Med. 2015, 7, 55–66. DOI: 10.1016/j.eujim.2014.11.007.
  • Liang, Y.; Xie, P.; Chan, K. Quality Control of Herbal Medicines. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2004, 812, 53–70. DOI: 10.1016/j.jchromb.2004.08.041.
  • Li, Y.; Kong, D.; Wu, H. Comprehensive Chemical Analysis of the Flower Buds of Five Lonicera Species by ATR-FTIR, HPLC-DAD, and Chemometric Methods. Braz. J. Pharma.: Rev. Bras. Farma. 2018, 28, 533–541. DOI: 10.1016/j.bjp.2018.06.007.
  • Li, P.; Qi, L.; Liu, E.; Zhou, J.; Wen, X. Analysis of Chinese Herbal Medicines with Holistic Approaches and Integrated Evaluation Models. TrAC - Trends Anal. Chem. 2008, 27, 66–77. DOI: 10.1016/j.trac.2007.11.005.
  • Lohumi, S.; Lee, S.; Lee, H.; Cho, B.-K. A Review of Vibrational Spectroscopic Techniques for the Detection of Food Authenticity and Adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. DOI: 10.1016/j.tifs.2015.08.003.
  • Hashimoto, K.; Badarla, V. R.; Kawai, A.; Ideguchi, T. Complementary Vibrational Spectroscopy. Nat. Commun. 2019, 10, 4411. DOI: 10.1038/s41467-019-12442-9.
  • Gomez-Caravaca, A. M.; Maggio, R. M.; Cerretani, L. Chemometric Applications to Assess Quality and Critical Parameters of Virgin and Extra-Virgin Olive Oil. A Review. Anal. Chim. Acta 2016, 913, 1–21. DOI: 10.1016/j.aca.2016.01.025.
  • Wold, S.; Sjostrom, M. Chemometrics, Present and Future Success. Chemometr. Intell. Lab. Sys. 1998, 44, 3–14. DOI: 10.1016/S0169-7439(98)00075-6.
  • Li, Y.; Shen, Y.; Yao, C.; Guo, D. a. Quality Assessment of Herbal Medicines Based on Chemical Fingerprints Combined with Chemometrics Approach: A Review. J. Pharm. Biomed. Anal. 2020, 185, 113215. DOI: 10.1016/j.jpba.2020.113215.
  • Mantsch, H. H. Biomedical Vibrational Spectroscopy in the Era of Artificial Intelligence. Molecules 2021, 26,1439. DOI: 10.3390/molecules2605.
  • Song, Z.; Liu, X.; Ochani, A.; Shen, S.; Li, Q.; Sun, Y.; Ruggiero, M. T. Low-Frequency Vibrational Spectroscopy: A New Tool for Revealing Crystalline Magnetic Structures in Iron Phosphate Crystals. Phys. Chem. Chem. Phys. 2021, 23, 22241–22245. DOI: 10.1039/d1cp03424c.
  • Yu, H.; Du, W.; Lang, Z.; Wang, K.; Long, J. A Novel Integrated Approach to Characterization of Petroleum Naphtha Properties from near-Infrared Spectroscopy. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. DOI: 10.1109/tim.2021.3077659.
  • Yao, S.; Aykas, D. P.; Rodriguez-Saona, L. Rapid Authentication of Potato Chip Oil by Vibrational Spectroscopy Combined with Pattern Recognition Analysis. Foods 2020, 10,42. DOI: 10.3390/foods100100.
  • Moros, J.; Garrigues, S.; Guardia, M. d. l. Vibrational Spectroscopy Provides a Green Tool for Multi-Component Analysis. TrAC - Trends Anal. Chem. 2010, 29, 578–591. DOI: 10.1016/j.trac.2009.12.012.
  • Mathanker, S. K.; Weckle, P. R.; Wang, N. Terahertz (THz) Applications in Food and Agriculture: A Review. Trans. ASABE 2013, 56, 1213–1226. DOI: 10.13031/trans.56.9390.
  • Yang, Y.; Tong, H.; Yang, L.; Wu, M. Application of near-Infrared Spectroscopy and Chemometrics for the Rapid Quality Assessment of Sargassum Fusiforme. Postharvest Biol. Technol. 2021, 173, 111431. DOI: 10.1016/j.postharvbio.2020.111431.
  • Devos, O.; Ruckebusch, C.; Durand, A.; Duponchel, L.; Huvenne, J.-P. Support Vector Machines (SVM) in near Infrared (NIR) Spectroscopy: Focus on Parameters Optimization and Model Interpretation. Chemometr. Intell. Lab. Syst. 2009, 96, 27–33. DOI: 10.1016/j.chemolab.2008.11.005.
  • Cortés, V.; Cubero, S.; Aleixos, N.; Blasco, J.; Talens, P. Sweet and Nonsweet Taste Discrimination of Nectarines Using Visible and near-Infrared Spectroscopy. Postharvest Biol. Technol. 2017, 133, 113–120. DOI: 10.1016/j.postharvbio.2017.07.015.
  • Yang, Y.; Liu, X.; Li, W.; Jin, Y.; Wu, Y.; Zheng, J.; Zhang, W.; Chen, Y. Rapid Measurement of Epimedin A, Epimedin B, Epimedin C, Icariin, and Moisture in Herba Epimedii Using near Infrared Spectroscopy. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2017, 171, 351–360. DOI: 10.1016/j.saa.2016.08.033.
  • Bosco, G. L.; James, L. Waters Symposium 2009 on near-Infrared Spectroscopy. TrAC - Trends Anal. Chem. 2010, 29, 197–208. DOI: 10.1016/j.trac.2010.01.003.
  • Fu, X.; Ying, Y. Food Safety Evaluation Based on near Infrared Spectroscopy and Imaging: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1913–1924. DOI: 10.1080/10408398.2013.807418.
  • Blanco, M.; Villarroya, I. NIR Spectroscopy: A Rapid-Response Analytical Tool. TrAC - Trends Anal. Chem. 2002, 21, 240–250. DOI: 10.1016/S0165-9936(02)00404-1.
  • Furedi, H.; Walton, A. G. Transmission and Attenuated Total Reflection (ATR) Infrared Spectra of Bone and Collagen. Appl. Spectrosc. 1968, 22, 23–26. DOI: 10.1366/000370268774383679.
  • Deconinck, E.; Djiogo, C. A. S.; Bothy, J. L.; Courselle, P. Detection of Regulated Herbs and Plants in Plant Food Supplements and Traditional Medicines Using Infrared Spectroscopy. J. Pharm. Biomed. Anal. 2017, 142, 210–217. DOI: 10.1016/j.jpba.2017.04.051.
  • Cheng, S.; Wang, L.; Du, A. Asymmetric Coordinate Attention Spectral-Spatial Feature Fusion Network for Hyperspectral Image Classification. Sci. Rep. 2021, 11, 17408. DOI: 10.1038/s41598-021-97029-5.
  • Yue, J.; Huang, H.; Wang, Y. A Practical Method Superior to Traditional Spectral Identification: Two-Dimensional Correlation Spectroscopy Combined with Deep Learning to Identify Paris Species. Microchem. J. 2021, 160, 105731. DOI: 10.1016/j.microc.2020.105731.
  • Cudahy, T. J.; Hewson, R.; Huntington, J. F.; Quigley, M. A.; Barry, P. S. The Performance of the Satellite-Borne Hyperion Hyperspectral VNIR-SWIR Imaging System for Mineral Mapping at Mount Fitton, South Australia. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), 2001; pp 314–316.
  • Vermaak, I.; Viljoen, A.; Lindström, S. W. Hyperspectral Imaging in the Quality Control of Herbal Medicines - the Case of Neurotoxic Japanese Star Anise. J. Pharm. Biomed. Anal. 2013, 75, 207–213. DOI: 10.1016/j.jpba.2012.11.039.
  • Zhang, H.; Wu, T.; Zhang, L.; Zhang, P. Development of a Portable Field Imaging Spectrometer: Application for the Identification of Sun-Dried and Sulfur-Fumigated Chinese Herbals. Appl. Spectrosc. 2016, 70, 879–887. DOI: 10.1177/0003702816638293.
  • Moshtaghpour, A.; Bioucas-Dias, J. M.; Jacques, L. Compressive Hyperspectral Imaging- Fourier Transform Interferometry meets Single Pixel Camera; 2018.
  • Tao, Y.; Chen, L.; Jiang, E.; Yan, J. Application and Prospects of Hyperspectral Imaging and Deep Learning in Traditional Chinese Medicine in Context of AI and Industry 4.0, China. J. Chin. Mater. Med. 2020, 45, 5438–5442. DOI: 10.19540/j.cnki.cjcmm.20200630.603.
  • Datt, J. D. FTIR Spectroscopy: Herbal Drugs and Fingerprints; Springer: Berlin, Heidelberg, 2012; pp 121–146.
  • Sun, D. Infrared Spectroscopy for Food Quality Analysis and Control; Elsevier: New York, NY, 2009.
  • Hammoudeh, A. Y.; Obeidat, S. M.; Abboushi, E. K.; Mahmoud, A. M. FT-IR Spectroscopy for the Detection of Diethylene Glycol (DEG) Contaminant in Glycerin-Based Pharmaceutical Products and Food Supplements. Acta Chim. Slov. 2020, 67, 530–536. DOI: 10.17344/acsi.2019.5553.
  • Walkowiak, A.; Ledziński, Ł.; Zapadka, M.; Kupcewicz, B. Detection of Adulterants in Dietary Supplements with Ginkgo Biloba Extract by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and Multivariate Methods PLS-DA and PCA. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2019, 208, 222–228. DOI: 10.1016/j.saa.2018.10.008.
  • Dong, J. E.; Zhang, J.; Zuo, Z. T.; Wang, Y. Z. Deep Learning for Species Identification of Bolete Mushrooms with Two-Dimensional Correlation Spectral (2DCOS) Images. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2021, 249, 119211. DOI: 10.1016/j.saa.2020.119211.
  • Bunaciu, A. A.; Aboul-Enein, H. Y.; Fleschin, S. Recent Applications of Fourier Transform Infrared Spectrophotometry in Herbal Medicine Analysis. Appl. Spectrosc. Rev. 2011, 46, 251–260. DOI: 10.1080/05704928.2011.565532.
  • Raman, C. V.; Krishnan, K. S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. DOI: 10.1038/121501c0.
  • Tao, Y.; Chen, L.; Zhu, F.; Pan, M. Integrated Raman Spectroscopy and Deep Learning Algorithm for Quality Control of Manufacturing Process of Traditional Chinese Medicine in Context of Intelligent Manufacturing. Modern Chin. Med. 2021. DOI: 10.13313/j.issn.1673-4890.20201106003.
  • Leal, L. B.; Nogueira, M. S.; Canevari, R. A.; Carvalho, L. F. C. S. Vibration Spectroscopy and Body Biofluids: Literature Review for Clinical Applications. Photodiagnosis Photodyn. Ther. 2018, 24, 237–244. DOI: 10.1016/j.pdpdt.2018.09.008.
  • DD, L. P. NIR FT-Raman. Chiralabs Ltd.: Oxford, UK, 2017; pp 98–109
  • Zhao, J.; Liu, Y.; Fales, A. M.; Register, J.; Yuan, H.; Vo-Dinh, T. Direct Analysis of Traditional Chinese Medicines Using Surface-Enhanced Raman Scattering (SERS). Drug Test Anal. 2014, 6, 1063–1068. DOI: 10.1002/dta.1612.
  • Alula, M. T.; Mengesha, Z. T.; Mwenesongole, E. Advances in Surface-Enhanced Raman Spectroscopy for Analysis of Pharmaceuticals: A Review. Vib. Spectrosc. 2018, 98, 50–63. DOI: 10.1016/j.vibspec.2018.06.013.
  • Liang, J.; Mu, T. Recognition of Big Data Mixed Raman Spectra Based on Deep Learning with Smartphone as Raman Analyzer. Electrophoresis 2020, 41, 1413–1417. DOI: 10.1002/elps.201900302.
  • Nallappan, K.; Dash, J.; Ray, S.; Pesala, B. Identification of Adulterants in Turmeric Powder Using Terahertz Spectroscopy. 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013; pp 1–2.
  • Siegel, P. H. Terahertz Technology, Vol. 50 IEEE Transactions On Microwave Theory And Techniques; IEEE, 2002. DOI: 10.1109/22.989974.
  • Jepsen, P. U.; Cooke, D. G.; Koch, M. Terahertz Spectroscopy and imaging - Modern Techniques and Applications. Laser & Photon. Rev. 2011, 5, 124–166. DOI: 10.1002/lpor.201000011.
  • Wiltse, J. C. History of Millimeter and Submillimeter. IEEE Transact. 1984, MTT-3, 1118–1127. DOI: 10.1109/TMTT.1984.1132823.
  • Bai, S. S.; Yang, H. Y. New Proposals for Application of Terahertz Imaging Technique in Chinese Medicine. Chin. J. Integr. Med. 2022, 28, 366–373. DOI: 10.1007/s11655-022-2886-3.
  • Yadav, N. P.; Hu, G.-Z.; Yao, Z.-P.; Kumar, A. Diagnosis of Dental Problem by Using Terahertz Technology. J. Electron. Sci. Technol. 2021, 19, 100082. DOI: 10.1016/j.jnlest.2021.100082.
  • Redo-Sanchez, A.; Laman, N.; Schulkin, B.; Tongue, T. Review of Terahertz Technology Readiness Assessment and Applications. J. Infrared. Milli. Terahz. Waves 2013, 34, 500–518. DOI: 10.1007/s10762-013-9998-y.
  • Qin, B.; Li, Z.; Luo, Z.; Li, Y.; Zhang, H. Terahertz Time-Domain Spectroscopy Combined with PCA-CFSFDP Applied for Pesticide Detection. Opt. Quant. Electron. 2017, 49, 244. DOI: 10.1007/s11082-017-1080-x.
  • Feng, J.; Meng, T.; Lu, Y.; Ren, J.; Zhao, G.; Liu, H.; Yang, J.; Huang, R. Nondestructive Testing of Hollowing Deterioration of the Yungang Grottoes Based on THz-TDS. Electronics 2020, 9,625. DOI: 10.3390/electronics9040.
  • Im, K.-H.; Kim, S.-K.; Jung, J.-A.; Cho, Y.-T.; Woo, Y.-D.; Chiou, C.-P. NDE Terahertz Wave Techniques for Measurement of Defect Detection on Composite Panels of Honeycomb Sandwiches. Electronics 2020, 9, 1360. DOI: 10.3390/electronics9091360.
  • Sirsi, S.; Takashima, Y.; Palisocc, A.; Choib, H.; Arenberge, J. W.; Kima, D.; Walker, C. Optical Design of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS). 2022. DOI: 10.48550/arXiv.2203.05633.
  • Bawuah, P.; Zeitler, J. A. Advances in Terahertz Time-Domain Spectroscopy of Pharmaceutical Solids: A Review. TrAC - Trends Anal. Chem. 2021, 139, 116272. DOI: 10.1016/j.trac.2021.116272.
  • Yang, F.; Pitchappa, P.; Wang, N. Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links. Micromachines (Basel )2022, 13,285. DOI: 10.3390/mi13020.
  • Jiang, W.; Schotten, H. Initial Beamforming for Millimeter-Wave and Terahertz Communications in 6G Mobile Systems. 2022.
  • Hunsche, S.; Nuss, M. C. Terahertz “T-Ray” Tomography. Part of the 4th International Conference on Millimeter and Submillimeter Waves and Aoølication, San Diego, CA, 1998; pp 426–433.
  • Arnone, D.; Ciesla, C.; Corchia, A.; Egusa, S.; Pepper, M. 1999 Applications of Terahertz (THz) Technology to Medical Imaging. Part of the EUROPTO Conference on Terahertz Spectroscopy and Applications II Munich, Germany, pp 209–219. DOI: 10.1117/12.361037.
  • Hu, B. B.; Nuss, M. C. Imaging with Terahertz Waves. Opt Lett. 1995, 20, 1716–1718.
  • Mittleman, D. M.; Jacobsen, R. H.; Nuss, M. C. T-Ray Imaging. IEEE J. Select. Topics Quantum Electron. 1996, 2, 679–692. DOI: 10.1109/2944.571768.
  • Ruggiero, M. T. Invited Review: Modern Methods for Accurately Simulating the Terahertz Spectra of Solids. J. Infrared Milli. Terahz. Waves 2020, 41, 491–528. DOI: 10.1007/s10762-019-00648-3.
  • Zhao, Y.; Gouda, M.; Yu, G.; Zhang, C.; Lin, L.; Nie, P.; Huang, W.; Ye, H.; Ye, Y.; Zhou, C.; He, Y. Analyzing Cadmium-phytochelatin2 Complexes in Plant Using Terahertz and Circular Dichroism Information. Ecotoxicol. Environ. Saf. 2021, 225, 112800. DOI: 10.1016/j.ecoenv.2021.112800.
  • Bin, L.; Bing, L.; Yan-de, L.; Jian, W. Detection of Adulteration of Kudzu Powder by Terahertz Time-Domain Spectroscopy. Food Measure 2021, 15, 4380–4387. DOI: 10.1007/s11694-021-01023-4.
  • Du, H.; Chen, W.; Lei, Y.; Li, F.; Li, H.; Deng, W.; Jiang, G. Discrimination of Authenticity of Fritillariae Cirrhosae Bulbus Based on Terahertz Spectroscopy and Chemometric Analysis. Microchem. J. 2021, 168, 106440. DOI: 10.1016/j.microc.2021.106440.
  • Afsah-Hejri, L.; Hajeb, P.; Ara, P.; Ehsani, R. J. A Comprehensive Review on Food Applications of Terahertz Spectroscopy and Imaging. Compr. Rev. Food. Sci. Food. Saf. 2019, 18, 1563–1621. DOI: 10.1111/1541-4337.12490.
  • Chen, D.; Xie, X.; Ao, H.; Liu, J.; Peng, C. Raman Spectroscopy in Quality Control of Chinese Herbal Medicine. J. Chin. Med. Assoc. 2017, 80, 288–296. DOI: 10.1016/j.jcma.2016.11.009.
  • Mishra, P.; Biancolillo, A.; Roger, J. M.; Marini, F.; Rutledge, D. N. New Data Preprocessing Trends Based on Ensemble of Multiple Preprocessing Techniques. TrAC - Trends Anal. Chem. 2020, 132, 116045. DOI: 10.1016/j.trac.2020.116045.
  • Thekkudan, D. F.; Rutan, S. C. 3.07 Denoising and Signal-to-Noise Ratio Enhancement: Classical Filtering; Elsevier: New York, NY, 2009; pp 9–24.
  • Breoman, L. Random Forests. Machine Learing 2001, 45, 5–32. DOI: 10.1023/A:1010933404324.
  • Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random Forests and Decision Trees. Int. J. Comput. Sci. Issues 2012, 9, 272–278.
  • Pei, Y.; Zuo, Z.; Zhang, Q.; Wang, Y. Data Fusion of Fourier Transform Mid-Infrared (MIR) and near-Infrared (NIR) Spectroscopies to Identify Geographical Origin of Wild Paris Polyphylla Var. yunnanensis. Molecules 2019, 24,2559. DOI: 10.3390/molecules2414.
  • Małyjurek, Z.; de Beer, D.; van Schoor, H.; Colling, J.; Joubert, E.; Walczak, B. Class-Modelling of Overlapping Classes. A Two-Step Authentication Approach. Anal. Chim. Acta 2022, 1191, 339284. DOI: 10.1016/j.aca.2021.339284.
  • Arteaga, F. 3.06 - Missing Data, Brown, S. D.; Tauler, R.; Walczak, B., Eds.; Elsevier: New York, NY, 2009, pp 615–639.
  • Xia, Z.; Zhang, C.; Weng, H.; Nie, P.; He, Y. Sensitive Wavelengths Selection in Identification of Ophiopogon Japonicus Based on near-Infrared Hyperspectral Imaging Technology. Int. J. Anal. Chem. 2017, 2017, 6018769. DOI: 10.1155/2017/6018769.
  • Roger, J.-M.; Biancolillo, A.; Marini, F. Sequential Preprocessing through ORThogonalization (SPORT) and Its Application to near Infrared Spectroscopy. Chemometr. Intell. Lab. Syst. 2020, 199, 103975. DOI: 10.1016/j.chemolab.2020.103975.
  • Menichelli, E.; Almøy, T.; Tomic, O.; Olsen, N. V.; Naes, T. So-PLS as an Exploratory Tool for Path Modelling. Food Qual. Preference 2014, 36, 122–134. DOI: 10.1016/j.foodqual.2014.03.008.
  • Zeaiter, M. 3.04 - Preprocessing Methods, Brown, S. D.; Tauler, R.; Walczak, B., Eds.; Elsevier: New York, NY, 2009; pp 121–231.
  • Vijendra, S.; Shivani, P. Robust Outlier Detection Technique in Data Mining: A Univariate Approach. arXiv 2014. DOI: 10.48550/arXiv.1406.5074.
  • Chikodili, N. B.; Abdulmalik, M. D.; Abisoye, O. A.; Bashir, S. A. Outlier Detection in Multivariate Time Series Data Using a Fusion of K-Medoid, Standardized Euclidean Distance and Z-Score; Springer: Berlin, Heidelberg, 2021; pp 259–271.
  • Trygg, J.; Gabrielsson, J.; Lundstedt.; T.; S. 3.06 - Background Estimation, Denoising, and Preprocessing, Brown, S. D.; Tauler, R.; Walczak, B., Eds.; Elsevier: New York, NY, 2009; pp 137–141.
  • Azcarate, S. M.; Ríos-Reina, R.; Amigo, J. M.; Goicoechea, H. C. Data Handling in Data Fusion: Methodologies and Applications. TrAC - Trends Anal. Chem. 2021, 143, 116355. DOI: 10.1016/j.trac.2021.116355.
  • Liu, Z.; Yang, M.; Zuo, Y.; Wang, Y.; Zhang, J. Fraud Detection of Herbal Medicines Based on Modern Analytical Technologies Combine with Chemometrics Approach: A Review. Crit. Rev. Anal. Chem. 2021, 2021, 1–18. DOI: 10.1080/10408347.2021.1905503.
  • Pearson, K. L. III. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. DOI: 10.1080/14786440109462720.
  • Rios-Reina, R.; Callejon, R. M.; Savorani, F.; Amigo, J. M.; Cocchi, M. Data Fusion Approaches in Spectroscopic Characterization and Classification of PDO Wine Vinegars. Talanta 2019, 198, 560–572. DOI: 10.1016/j.talanta.2019.01.100.
  • Borras, E.; Ferre, J.; Boque, R.; Mestres, M.; Acena, L.; Busto, O. Data Fusion Methodologies for Food and Beverage Authentication and Quality assessment - A Review. Anal. Chim. Acta 2015, 891, 1–14. DOI: 10.1016/j.aca.2015.04.042.
  • Marquez, C.; Lopez, M. I.; Ruisanchez, I.; Callao, M. P. FT-Raman and NIR Spectroscopy Data Fusion Strategy for Multivariate Qualitative Analysis of Food Fraud. Talanta 2016, 161, 80–86. DOI: 10.1016/j.talanta.2016.08.003.
  • Bevilacqua, M.; Bro, R.; Marini, F.; Rinnan, Å.; Rasmussen, M. A.; Skov, T. Recent Chemometrics Advances for Foodomics. TrAC - Trends Anal. Chem. 2017, 96, 42–51. DOI: 10.1016/j.trac.2017.08.011.
  • Kuncheva, L. I. Combining Pattern Classifiers: Methods and Algorithms. 2nd Ed.; John Wiley & Sons: Hoboken, NJ, 2014.
  • Naes, T.; Romano, R.; Tomic, O.; Måge, I.; Smilde, A.; Liland, K. H. Sequential and Orthogonalized PLS (so‐PLS) Regression for Path Analysis: Order of Blocks and Relations between Effects. J. Chemom. 2021, 35, 3243. DOI: 10.1002/cem.3243.
  • Liu, Z.; Yang, S.; Wang, Y.; Zhang, J. Multi-Platform Integration Based on NIR and UV-Vis Spectroscopies for the Geographical Traceability of the Fruits of Amomum Tsao-ko. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2021, 258, 119872. DOI: 10.1016/j.saa.2021.119872.
  • Biancolillo, A.; Di Donato, F.; Merola, F.; Marini, F.; D’Archivio, A. A. Sequential Data Fusion Techniques for the Authentication of the P.G.I. Senise (“Crusco”) Bell Pepper. Appl. Sci. 2021, 11, 1709. DOI: 10.3390/app11041709.
  • Andersen, A. H.; Rayens, W. S.; Liu, Y.; Smith, C. D. Partial Least Squares for Discrimination in fMRI Data. Magn. Reson. Imaging 2012, 30, 446–452. DOI: 10.1016/j.mri.2011.11.001.
  • Kumar, N.; Bansal, A.; Sarma, G. S.; Rawal, R. K. Chemometrics Tools Used in Analytical Chemistry: An Overview. Talanta 2014, 123, 186–199. DOI: 10.1016/j.talanta.2014.02.003.
  • Mazivila, S. J.; Olivieri, A. C. Chemometrics Coupled to Vibrational Spectroscopy and Spectroscopic Imaging for the Analysis of Solid-Phase Pharmaceutical Products: A Brief Review on Non-Destructive Analytical Methods. TrAC - Trends Anal. Chem. 2018, 108, 74–87. DOI: 10.1016/j.trac.2018.08.013.
  • Greener, J. G.; Kandathil, S. M.; Moffat, L.; Jones, D. T. A Guide to Machine Learning for Biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. DOI: 10.1038/s41580-021-00407-0.
  • LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. DOI: 10.1038/nature14539.
  • LeCun, Y.; Boser, B.; Denker, J. S. H.; D.; Howard, R. E.; Hubbard, W.; Jackel, L. D. Backpropagation Applied to Handwritten Zip Code Recognition. 1989, 1, 541–551. DOI: 10.1162/neco.1989.1.4.541.
  • Morais, C. L. M.; Lima, K. M. G.; Singh, M.; Martin, F. L. Tutorial: Multivariate Classification for Vibrational Spectroscopy in Biological Samples. Nat. Protoc. 2020, 15, 2143–2162. DOI: 10.1038/s41596-020-0322-8.
  • Berrueta, L. A.; Alonso-Salces, R. M.; Héberger, K. Supervised Pattern Recognition in Food Analysis. J. Chromatogr. A. 2007, 1158, 196–214. DOI: 10.1016/j.chroma.2007.05.024.
  • Markoulidakis, I.; Kopsiaftis, G.; Rallis, I.; Georgoulas, I. 2021 Multi-Class Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem. The 14th PErvasive Technologies Related to Assistive Environments Conference, pp. 412–419. DOI: 10.1145/3453892.3461323.
  • Gobrecht, A.; Roger, J.-M.; V. in, B.-M. Major Issues of Diffuse Reflectance NIR Spectroscopy in the Specific Context of Soil Carbon Content Estimation: A Review. Adv. Agron. 2014, 123, 145–175.
  • Wold, S.; Sjostrom, M.; Eriksson, L. PLS-Regression - A Basic Tool of Chemometrics. Chemometr. Intell. Lab. Syst. 2001, 58, 109–130. DOI: 10.1016/S0169-7439(01)00155-1.
  • Ortiz, M. C.; Sarabia, L. A.; Herrero, A. Robust Regression Techniques a Useful Alternative for the Detection of Outlier Data in Chemical Analysis. Talanta 2006, 70, 499–512. DOI: 10.1016/j.talanta.2005.12.058.
  • Gad, H. A.; El-Ahmady, S. H.; Abou-Shoer, M. I.; Al-Azizi, M. M. Application of Chemometrics in Authentication of Herbal Medicines: A Review. Phytochem. Anal. 2013, 24, 1–24. DOI: 10.1002/pca.2378.
  • Kor, K.; Altun, G. Is Support Vector Regression Method Suitable for Predicting Rate of Penetration? J. Petrol. Sci. Eng. 2020, 194, 107542. DOI: 10.1016/j.petrol.2020.107542.
  • Boswell, D. Introduction to Support Vector Machines. 2002.
  • Mokhtar, A.; El-Ssawy, W.; He, H.; Al-Anasari, N.; Sammen, S. S.; Gyasi-Agyei, Y.; Abuarab, M. Using Machine Learning Models to Predict Hydroponically Grown Lettuce Yield. Front Plant Sci. 2022, 13, 706042. DOI: 10.3389/fpls.2022.706042.
  • Wu, X.; Zhang, Q.; Wang, Y. Traceability of Wild Paris Polyphylla Smith Var. yunnanensis Based on Data Fusion Strategy of FT-MIR and UV-Vis Combined with SVM and Random Forest. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2018, 205, 479–488. DOI: 10.1016/j.saa.2018.07.067.
  • Lang, C.; Almeida, D. R. A.; Costa, F. R. C. Discrimination of Taxonomic Identity at Species, Genus and Family Levels Using Fourier Transformed near-Infrared Spectroscopy (FT-NIR). For. Ecol. Manage. 2017, 406, 219–227. DOI: 10.1016/j.foreco.2017.09.003.
  • Kuang, L.; Li, C.; Cao, S.; Li, H.; Wang, Z.; Wu, S.; Fan, Y. Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing, China, 2020.
  • Liu, L.; Zuo, Z.; Wang, Y.; Xu, F. A Fast Multi-Source Information Fusion Strategy Based on FTIR Spectroscopy for Geographical Authentication of Wild Gentiana Rigescens. Microchem. J. 2020, 159, 105360. DOI: 10.1016/j.microc.2020.105360.
  • Edwards, H. G. M.; Munshi, T.; Page, K. Analytical Discrimination between Sources of Ginseng Using Raman Spectroscopy. Anal. Bioanal. Chem. 2007, 389, 2203–2215. DOI: 10.1007/s00216-007-1605-4.
  • Ru, C.; Li, Z.; Tang, R. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI). Sensors (Basel) 2019, 19, 2045. DOI: 10.3390/s19092045.
  • Cruz-Tirado, J. P.; Fernández Pierna, J. A.; Rogez, H.; Barbin, D. F.; Baeten, V. Authentication of Cocoa (Theobroma cacao) Bean Hybrids by NIR-Hyperspectral Imaging and Chemometrics. Food Control. 2020, 118, 107445. DOI: 10.1016/j.foodcont.2020.107445.
  • Yang, S.; Li, C.; Li, C.; Wang, Z.; Huang, L.; Ding, Q. The Differences in the Dried Tangerine Peels Stored for Different Years Revealed by Terahertz Spectroscopy and Imaging. Modern Food Sci. Technol. 2019, 35, 258–266. DOI: 10.13982/j.mfst.1673-9078.2019.12.033.
  • Dong, J.; Cai, L.; Wang, S.; Wang, Y.; Chen, X. Determination of Sulfite in Botanical Medicine Using Headspace Thin-Film Microextraction and Surface Enhanced Raman Spectrometry. Anal. Lett. 2019, 52, 1236–1246. DOI: 10.1080/00032719.2018.1529183.
  • Qin, H.; Yang, S.; Yang, M.; Wang, Y.; Yang, T.; Zhang, J. Effects on Volatile Oil and Volatile Compounds of Amomum Tsao-ko with Different Pre-Drying and Drying Methods. Ind. Crops Prod. 2021, 174, 114168. DOI: 10.1016/j.indcrop.2021.114168.
  • Farahmandfar, R.; Tirgarian, B.; Dehghan, B.; Nemati, A. Comparison of Different Drying Methods on Bitter Orange (Citrus aurantium L.) Peel Waste: Changes in Physical (Density and Color) and Essential Oil (Yield, Composition, Antioxidant and Antibacterial) Properties of Powders. Food Measure 2020, 14, 862–875. DOI: 10.1007/s11694-019-00334-x.
  • Fu, H.; Huang, D.; Yang, T.; She, Y.; Zhang, H. Rapid Recognition of Chinese Herbal Pieces of Areca Catechu by Different Concocted Processes Using Fourier Transform Mid-Infrared and near-Infrared Spectroscopy Combined with Partial Least-Squares Discriminant Analysis. Chin. Chem. Lett. 2013, 24, 639–642. DOI: 10.1016/j.cclet.2013.04.019.
  • Gukowsky, J. C.; Xie, T.; Gao, S.; Qu, Y.; He, L. Rapid Identification of Artificial and Natural Food Colorants with Surface Enhanced Raman Spectroscopy. Food Control 2018, 92, 267–275. DOI: 10.1016/j.foodcont.2018.04.058.
  • Liu, Y.; Wang, Q.; Xu, Q.; Feng, J.; Yu, H.; Yin, Y. Non-Destructive Detection of Flos Lonicerae Treated by Sulfur Fumigation Based on Hyperspectral Imaging. Food Measure 2018, 12, 2809–2818. DOI: 10.1007/s11694-018-9896-z.
  • Perret, C.; Tabin, R.; Marcoz, J. P.; Llor, J.; Cheseaux, J. J. Apparent Life-Threatening Event in Infants: Think About Star Anise Intoxication! Arch Pediatr. 2011, 18, 750–753. DOI: 10.1016/j.arcped.2011.03.024.
  • Booker, A.; Agapouda, A.; Frommenwiler, D. A.; Scotti, F.; Reich, E.; Heinrich, M. St John’s Wort (Hypericum Perforatum) Products - an Assessment of Their Authenticity and Quality. Phytomedicine 2018, 40, 158–164. DOI: 10.1016/j.phymed.2017.12.012.
  • Ahmed, M. K.; McLeod, M. P.; Nézivar, J.; Giuliani, A. W. Fourier Transform Infrared and near-Infrared Spectroscopic Methods for the Detection of Toxic Diethylene Glycol (DEG) Contaminant in Glycerin Based Cough Syrup. Spectroscopy 2010, 24, 601–608. DOI: 10.3233/SPE-2010-0482.
  • Khodabakhshian, R.; Bayati, M. R.; Emadi, B. An Evaluation of IR Spectroscopy for Authentication of Adulterated Turmeric Powder Using Pattern Recognition. Food Chem. 2021, 364, 130406. DOI: 10.1016/j.foodchem.2021.130406.
  • Kaufmann, K. C.; Sampaio, K. A.; García-Martín, J. F.; Barbin, D. F. Identification of Coriander Oil Adulteration Using a Portable NIR Spectrometer. Food Control 2022, 132, 108536. DOI: 10.1016/j.foodcont.2021.108536.
  • Yao, C.; Wang, J.; Li, Z.; Qu, H.; Pan, H.; Li, J.; Wei, W.; Zhang, J.; Bi, Q.; Guo, D. a. Characteristic Malonyl Ginsenosides from the Leaves of Panax Notoginseng as Potential Quality Markers for Adulteration Detection. J. Agric. Food Chem. 2021, 69, 4849–4857. DOI: 10.1021/acs.jafc.1c00382.
  • Tankeu, S.; Vermaak, I.; Chen, W.; Sandasi, M.; Viljoen, A. Differentiation between Two “Fang Ji” Herbal Medicines, Stephania Tetrandra and the Nephrotoxic Aristolochia Fangchi, Using Hyperspectral Imaging. Phytochemistry 2016, 122, 213–222. DOI: 10.1016/j.phytochem.2015.11.008.
  • Florián-Huamán, J.; Cruz-Tirado, J. P.; Fernandes Barbin, D.; Siche, R. Detection of Nutshells in Cumin Powder Using NIR Hyperspectral Imaging and Chemometrics Tools. J. Food Compos. Anal. 2022, 108, 104407. DOI: 10.1016/j.jfca.2022.104407.
  • Li, C.; Wei, C.; Wang, Z.; Huang, L.; Yang, S. Authenticity Assessment of Cordyceps Sinensis Using Terahertz Spectroscopy. J. Shenzhen Univ. Sci. Eng. 2019, 36, 213–220. DOI: 10.3724/SP.J.1249.2019.02213.
  • Liao, Y.; Wang, C.; Tseng, C.; Chen, H.; Lin, L.; Chen, W. Compositional and Conformational Analysis of Yam Proteins by near Infrared Fourier Transform Raman Spectroscopy. J. Agric. Food Chem. 2004, 52, 8190–8196. DOI: 10.1021/jf049188m.
  • Metternich, S.; Fischmann, S.; Münster-Müller, S.; Pütz, M.; Westphal, F.; Schönberger, T.; Lyczkowski, M.; Zörntlein, S.; Huhn, C. Discrimination of Synthetic Cannabinoids in Herbal Matrices and of Cathinone Derivatives by Portable and Laboratory-Based Raman Spectroscopy. Forensic Chem. 2020, 19, 100241. DOI: 10.1016/j.forc.2020.100241.
  • Yan, H.; Han, B.; Wu, Q.; Jiang, M.; Gui, Z. Rapid Detection of Rosa Laevigata Polysaccharide Content by near-Infrared Spectroscopy. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2011, 79, 179–184. DOI: 10.1016/j.saa.2011.02.032.
  • Yang, Y.; Zhao, Y.; Zuo, Z.; Zhang, J.; Shi, Y.; Wang, Y. Investigation of a Medical Plant for Hepatic Diseases with Secoiridoids Using HPLC and FT-IR Spectroscopy for a Case of Gentiana Rigescens. Molecules 2020, 25,1219. DOI: 10.3390/molecules2505.
  • Zhang, X.; Zhang, Y.; Liang, H.; We, W.; Mao, Y.; Yu, G.; Wang, G.; Liu, Z.; He, F.; Liu, W.; Liu, R. Theory Analysis on Absorption of Exogenous Substances in Traditional Chinese Medicine. Chin. J. Exp. Tradit. Med. Form. 2020, 26, 716. DOI: 10.13422/j.cnki.syfjx.20200716.
  • Dias Soares, J. M.; de Oliveira, H. P. Silver-Based Surface Enhanced Raman Spectroscopy Devices for Detection of Organophosphorus Pesticides Traces. Biotechnol Prog. 2019, 35, e2809. DOI: 10.1002/btpr.2809.
  • Wang, T.; Wei, J.; Wang, Y.; Li, P. Recent Advances in Surface-Enhanced Raman Scattering Technique for Pollutant Detection in Chinese Medicinal Material. China J. Chin. Mater. Med. 2021, 2021, 46. DOI: 10.19540/j.cnki.cjcmm.20200602.202.
  • Huang, L.; Zhou, Y.; Meng, L.; Wu, D.; He, Y. Comparison of Different CCD Detectors and Chemometrics for Predicting Total Anthocyanin Content and Antioxidant Activity of Mulberry Fruit Using Visible and near Infrared Hyperspectral Imaging Technique. Food Chem. 2017, 224, 1–10. DOI: 10.1016/j.foodchem.2016.12.037.
  • Cruz-Tirado, J. P.; Oliveira, M.; de Jesus Filho, M.; Godoy, H. T.; Amigo, J. M.; Barbin, D. F. Shelf Life Estimation and Kinetic Degradation Modeling of Chia Seeds (Salvia Hispanica) Using Principal Component Analysis Based on NIR-Hyperspectral Imaging. Food Control 2021, 123, 107777. DOI: 10.1016/j.foodcont.2020.107777.
  • Zhang, C.; Wu, W.; Zhou, L.; Cheng, H.; Ye, X.; He, Y. Developing Deep Learning Based Regression Approaches for Determination of Chemical Compositions in Dry Black Goji Berries (Lycium Ruthenicum Murr.) Using near-Infrared Hyperspectral Imaging. Food Chem. 2020, 319, 126536. DOI: 10.1016/j.foodchem.2020.126536.
  • Gong, Z.; Deng, D.; Sun, X.; Liu, J.; Ouyang, Y. Non-Destructive Detection of Moisture Content for Ginkgo Biloba Fruit with Terahertz Spectrum and Image: A Preliminary Study. Infrared Phys. Technol. 2022, 120, 103997. DOI: 10.1016/j.infrared.2021.103997.
  • Dong, W.; Ni, Y.; Kokot, S. A near-Infrared Reflectance Spectroscopy Method for Direct Analysis of Several Chemical Components and Properties of Fruit, for Example, Chinese Hawthorn. J. Agric. Food Chem. 2013, 61, 540–546. DOI: 10.1021/jf305272s.
  • Sun, X.; Li, H.; Yi, Y.; Hua, H.; Guan, Y.; Chen, C. Rapid Detection and Quantification of Adulteration in Chinese Hawthorn Fruits Powder by near-Infrared Spectroscopy Combined with Chemometrics. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2021, 250, 119346. DOI: 10.1016/j.saa.2020.119346.
  • Li, Y.; Wang, Y. Differentiation and Comparison of Wolfiporia Cocos Raw Materials Based on Multi-Spectral Information Fusion and Chemometric Methods. Sci. Rep. 2018, 8, 13043. DOI: 10.1038/s41598-018-31264-1.
  • Wu, M.; Li, P.; Zhu, Q.; Wu, M.; Li, H.; Lu, F. Functional Paper-Based SERS Substrate for Rapid and Sensitive Detection of Sudan Dyes in Herbal Medicine. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2018, 196, 110–116. DOI: 10.1016/j.saa.2018.02.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.