487
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Biosensors Based on Bio-Functionalized Semiconducting Metal Oxides

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 549-564 | Published online: 17 Jun 2022

References

  • Ramanavicius, S.; Ramanavicius, A. Progress and Insights in the Application of MXenes as New 2D Nano-Materials Suitable for Biosensors and Biofuel Cell Design. IJMS. 2020, 21, 9224. DOI: 10.3390/ijms21239224.
  • Bakirhan, N. K.; Ozcelikay, G.; Ozkan, S. A. Recent Progress on the Sensitive Detection of Cardiovascular Disease Markers by Electrochemical-Based Biosensors. J. Pharm. Biomed. Anal. 2018, 159, 406–424. DOI: 10.1016/j.jpba.2018.07.021.
  • Ramanavicius, S.; Ramanavicius, A. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells. Nanomaterials 2021, 11, 371. DOI: 10.3390/nano11020371.
  • Ramanavicius, S.; Jagminas, A.; Ramanavicius, A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) 2021, 13, 974. DOI: 10.3390/polym13060974.
  • Ramanavicius, S.; Ramanavicius, A. Insights in the Application of Stoichiometric and Non-Stoichiometric Titanium Oxides for the Design of Sensors for the Determination of Gases and VOCs (TiO2−x and TinO2n−1 vs. TiO2). Sensors 2020, 20, 6833. DOI: 10.3390/s20236833.
  • Li, S. S. Metal-Oxide-Semiconductor Field-Effect Transistors. Semiconductor Physical Electronics; 2006, 567–612. DOI: 10.1007/0-387-37766-2_15.
  • Nguyen, N. K.; Nguyen, T.; Nguyen, T. K.; Yadav, S.; Dinh, T.; Masud, M. K.; Singha, P.; Do, T. N.; Barton, M. J.; Ta, H. T.; et al. Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Future Directions. ACS Appl. Electron. Mater. 2021, 3, 1959–1981. DOI: 10.1021/acsaelm.0c01122.
  • Avrutin, V.; Izyumskaya, N.; Morko, H. Semiconductor Solar Cells: Recent Progress in Terrestrial Applications. Superlattices Microstruct. 2011, 49, 337–364. DOI: 10.1016/j.spmi.2010.12.011.
  • Nikolic, M. V.; Milovanovic, V.; Vasiljevic, Z. Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors 2020, 20, 6694. DOI: 10.3390/s20226694.
  • Zhang, L.; Ran, J.; Qiao, S. Z.; Jaroniec, M. Characterization of Semiconductor Photocatalysts. Chem. Soc. Rev. 2019, 48, 5184–5206. DOI: 10.1039/c9cs00172g.
  • Wu, X.; Coutts, T. J.; Mulligan, W. P. Properties of Transparent Conducting Oxides Formed from CdO and ZnO Alloyed with SnO2 and In2O3. J. Vac. Sci. Technol. A Vacuum Surfaces Film 1997, 15, 1057–1062. DOI: 10.1116/1.580429.
  • Valincius, G.; Reipa, V.; Vilker, V.; Woodward, J. T.; Vaudin, M. Electrochemical Properties of Nanocrystalline Cadmium Stannate Films. J. Electrochem. Soc. 2001, 148, E341. DOI: 10.1149/1.1379742.
  • Nozik, A. J. Optical and Electrical Properties of Cd2 SnO4: A Defect Semiconductor. Phys. Rev. B 1972, 6, 453–459. DOI: 10.1103/PhysRevB.6.453.
  • Blackwood, O. H.; Oswald, H.; Kelly, W. C.; Bell, R. M. General Physics; Wiley: New Jersey, 1973.
  • Diefenderfer, A. J.; Holton, B. E. Principles of Electronic Instrumentation, 3rd ed.; Saunders College Pub.: Philadelphia, 1994.
  • Hamelmann, F. U. Transparent Conductive Oxides in Thin Film Photovoltaics. J. Phys.: Conf. Ser. 2014, 559, 012016. DOI: 10.1088/1742-6596/559/1/012016.
  • Wu, C. C. Highly Flexible Touch Screen Panel Fabricated with Silver-Inserted Transparent ITO Triple-Layer Structures. RSC Adv. 2018, 8, 11862–11870. DOI: 10.1039/c7ra13550e.
  • Gee Sung, C. Modified Transparent Conducting Oxide for Flat Panel Displays Only. Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 2001, 40, 1282–1286. DOI: 10.1143/JJAP.40.1282/XML.
  • Cheong, W. S.; Kim, Y. H.; Lee, J. M.; Hong, C. H.; Choi, H. Y.; Kwak, Y. J.; Kim, Y. J.; Kim, Y. S. High-Performance Transparent Electrodes for Automobile Windshield Heaters Prepared by Combining Metal Grids and Oxide/Metal/Oxide Transparent Electrodes. Adv. Mater. Technol. 2019, 4, 1800550. DOI: 10.1002/admt.201800550.
  • Hartnagel, H.; Hartnagel, A.; Dawar, A. L.; Jagadish, C.; Jain, A. K. Semiconducting Transparent Thin Films; CRC Press: Florida, 1995.
  • Way, A.; Luke, J.; Evans, A. D.; Li, Z.; Kim, J. S.; Durrant, J. R.; Hin Lee, H. K.; Tsoi, W. C. Fluorine Doped Tin Oxide as an Alternative of Indium Tin Oxide for Bottom Electrode of Semi-Transparent Organic Photovoltaic Devices. AIP Adv. 2019, 9, 085220. DOI: 10.1063/1.5104333.
  • Gabriunaite, I.; Valiūnienė, A.; Valincius, G. Formation and Properties of Phospholipid Bilayers on Fluorine Doped Tin Oxide Electrodes. Electrochim. Acta 2018, 283, 1351–1358. DOI: 10.1016/j.electacta.2018.04.160.
  • Valiūnienė, A.; Margarian, Ž.; Gabriūnaitė, I.; Matulevičiūtė, V.; Murauskas, T.; Valinčius, G. Cadmium Stannate Films for Immobilization of Phospholipid Bilayers. J. Electrochem. Soc. 2016, 163, H762–H767. DOI: 10.1149/2.0331609jes.
  • Suzuki, N.; Kamachi, Y.; Chiang, Y. D.; Wu, K. C. W.; Ishihara, S.; Sato, K.; Fukata, N.; Matsuura, M.; Maekawa, K.; Tanabe, H.; et al. Synthesis of Mesoporous Antimony-Doped Tin Oxide (ATO) Thin Films and Investigation of Their Electrical Conductivity. CrystEngComm 2013, 15, 4404–4407. DOI: 10.1039/c3ce40189h.
  • Petruleviciene, M.; Juodkazyte, J.; Parvin, M.; Tereshchenko, A.; Ramanavicius, S.; Karpicz, R.; Samukaite-Bubniene, U.; Ramanavicius, A. Tuning the Photo-Luminescence Properties of WO3 Layers by the Adjustment of Layer Formation Conditions. Materials (Basel) 2020, 13, 2814. DOI: 10.3390/ma13122814.
  • Viter, R.; Kunene, K.; Genys, P.; Jevdokimovs, D.; Erts, D.; Sutka, A.; Bisetty, K.; Viksna, A.; Ramanaviciene, A.; Ramanavicius, A. Photoelectrochemical Bisphenol S Sensor Based on ZnO-Nanoroads Modified by Molecularly Imprinted Polypyrrole. Macromol. Chem. Phys. 2020, 221, 1900232. DOI: 10.1002/macp.201900232.
  • Ali, M. M.; Mitchell, J. J.; Burwell, G.; Rejnhard, K.; Jenkins, C. A.; Daghigh Ahmadi, E.; Sharma, S.; Guy, O. J. Application of Molecular Vapour Deposited Al2O3 for Graphene-Based Biosensor Passivation and Improvements in Graphene Device Homogeneity. Nanomaterials 2021, 11, 2121. DOI: 10.3390/nano11082121.
  • Bertel, L.; Miranda, D. A.; García-Martín, J. M. Nanostructured Titanium Dioxide Surfaces for Electrochemical Biosensing. Sensors 2021, 21, 6167. DOI: 10.3390/s21186167.
  • Gu, P. Y.; Wang, Z.; Zhang, Q. Azaacenes as Active Elements for Sensing and Bio Applications. J. Mater. Chem. B 2016, 4, 7060–7074. DOI: 10.1039/c6tb02052f.
  • Abo Dena, A. S.; El-Sherbiny, I. M. Biological Macromolecules for Nucleic Acid Delivery. In Biological Macromolecules, Chapter 21; Nayak, A. K., Dhara, A. K., Pal, D., Eds.; Academic Press: Massachusetts, 2022; pp 479–490. DOI: 10.1016/B978-0-323-85759-8.00021-X.
  • Babadi, A. A.; Bagheri, S.; Hamid, S. B. A. Progress on Implantable Biofuel Cell: Nano-Carbon Functionalization for Enzyme Immobilization Enhancement. Biosens. Bioelectron. 2016, 79, 850–860. DOI: 10.1016/j.bios.2016.01.016.
  • Han, Y.; Yu, C.; Liu, H. A Microbial Fuel Cell as Power Supply for Implantable Medical Devices. Biosens. Bioelectron. 2010, 25, 2156–2160. DOI: 10.1016/j.bios.2010.02.014.
  • Dong, K.; Jia, B.; Yu, C.; Dong, W.; Du, F.; Liu, H. Microbial Fuel Cell as Power Supply for Implantable Medical Devices: A Novel Configuration Design for Simulating Colonic Environment. Biosens. Bioelectron. 2013, 41, 916–919. DOI: 10.1016/j.bios.2012.10.028.
  • Gilligan, B. J.; Shults, M. C.; Rhodes, R. K.; Jacobs, P. G.; Brauker, J. H.; Pintar, T. J.; Updike, S. J. Feasibility of Continuous Long-Term Glucose Monitoring from a Subcutaneous Glucose Sensor in Humans. Diabetes Technol. Ther. 2004, 6, 378–386. DOI: 10.1089/152091504774198089.
  • Ramanavicius, S.; Ramanavicius, A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers (Basel) 2020, 13, 49. DOI: 10.3390/polym13010049.
  • Gorton, L. Special Issue on Sugar Oxidising Enzymes. Bioelectrochemistry 2020, 135, 107577. DOI: 10.1016/j.bioelechem.2020.107577.
  • Oztekin, Y.; Ramanaviciene, A.; Yazicigil, Z.; Solak, A. O.; Ramanavicius, A. Direct Electron Transfer from Glucose Oxidase Immobilized on Polyphenanthroline-Modified Glassy Carbon Electrode. Biosens. Bioelectron. 2011, 26, 2541–2546. DOI: 10.1016/j.bios.2010.11.001.
  • Treu, B. L.; Minteer, S. D. Isolation and Purification of PQQ-Dependent Lactate Dehydrogenase from Gluconobacter and Use for Direct Electron Transfer at Carbon and Gold Electrodes. Bioelectrochemistry 2008, 74, 73–77. DOI: 10.1016/j.bioelechem.2008.07.005.
  • Zafar, M. N.; Beden, N.; Leech, D.; Sygmund, C.; Ludwig, R.; Gorton, L. Characterization of Different FAD-Dependent Glucose Dehydrogenases for Possible Use in Glucose-Based Biosensors and Biofuel Cells. Anal. Bioanal. Chem. 2012, 402, 2069–2077. DOI:10.1007/S00216-011-5650-7/FIGURES/4.[22222911]
  • Akers, N. L.; Moore, C. M.; Minteer, S. D. Development of Alcohol/O2 Biofuel Cells Using Salt-Extracted Tetrabutylammonium Bromide/Nafion Membranes to Immobilize Dehydrogenase Enzymes. Electrochim. Acta 2005, 50, 2521–2525. DOI: 10.1016/j.electacta.2004.10.080.
  • Campbell, E.; Meredith, M.; Banta, S.; Minteer, S. D. Enzymatic Biofuel Cells Utilizing a Biomimetic Cofactor. Chem. Commun. (Camb.) 2012, 48, 1898–1900. DOI: 10.1039/c2cc16156g.
  • Miyake, T.; Oike, M.; Yoshino, S.; Yatagawa, Y.; Haneda, K.; Kaji, H.; Nishizawa, M. Biofuel Cell Anode: NAD+/Glucose Dehydrogenase-Coimmobilized Ketjenblack Electrode. Chem. Phys. Lett. 2009, 480, 123–126. DOI: 10.1016/j.cplett.2009.08.075.
  • Topoglidis, E.; Astuti, Y.; Duriaux, F.; Grätzel, M.; Durrant, J. R. Direct Electrochemistry and Nitric Oxide Interaction of Heme Proteins Adsorbed on Nanocrystalline Tin Oxide Electrodes. Langmuir 2003, 19, 6894–6900. DOI: 10.1021/la034466h.
  • Yang, L.; Li, Y. AFM and Impedance Spectroscopy Characterization of the Immobilization of Antibodies on Indium-Tin Oxide Electrode through Self-Assembled Monolayer of Epoxysilane and Their Capture of Escherichia Coli O157:H7. Biosens. Bioelectron. 2005, 20, 1407–1416. DOI: 10.1016/j.bios.2004.06.024.
  • Sabirovas, T.; Valiūnienė, A.; Gabriunaite, I.; Valincius, G. Mixed Hybrid Bilayer Lipid Membranes on Mechanically Polished Titanium Surface. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183232. DOI: 10.1016/j.bbamem.2020.183232.
  • Gabriunaite, I.; Valiūnienė, A.; Sabirovas, T.; Valincius, G. Mixed Silane-Based Self-Assembled Monolayers Deposited on Fluorine Doped Tin Oxide as Model System for Development of Biosensors for Toxin Detection. Electroanalysis 2021, 33, 1315–1324. DOI: 10.1002/elan.202060578.
  • Sabirovas, T.; Valiūnienė, A.; Valincius, G. Hybrid Bilayer Membranes on Metallurgical Polished Aluminum. Sci. Rep. 2021, 11, 1–11. DOI: 10.1038/s41598-021-89150-2.
  • Stoica, L.; Dimcheva, N.; Ackermann, Y.; Karnicka, K.; Guschin, D. A.; Kulesza, P. J.; Rogalski, J.; Haltrich, D.; Ludwig, R.; Gorton, L.; et al. Membrane-Less Biofuel Cell Based on Cellobiose Dehydrogenase (Anode)/Laccase (Cathode) Wired via Specific Os-Redox Polymers. Fuel Cells 2009, 9, 53–62. DOI: 10.1002/fuce.200800033.
  • Yuan, M.; Minteer, S. D. Redox Polymers in Electrochemical Systems: From Methods of Mediation to Energy Storage. Curr. Opin. Electrochem. 2019, 15, 1–6. DOI: 10.1016/j.coelec.2019.03.003.
  • Chen, H.; Simoska, O.; Lim, K.; Grattieri, M.; Yuan, M.; Dong, F.; Lee, Y. S.; Beaver, K.; Weliwatte, S.; Gaffney, E. M.; et al. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem. Rev. 2020, 120, 12903–12993. DOI: 10.1021/acs.chemrev.0c00472.
  • Lee, Y. S.; Ruff, A.; Cai, R.; Lim, K.; Schuhmann, W.; Minteer, S. D. Electroenzymatic Nitrogen Fixation Using a MoFe Protein System Immobilized in an Organic Redox Polymer. Angew. Chem. Int. Ed. Engl. 2020, 59, 16511–16516. DOI: 10.1002/anie.202007198.
  • Ratautaite, V.; Plausinaitis, D.; Baleviciute, I.; Mikoliunaite, L.; Ramanaviciene, A.; Ramanavicius, A. Characterization of Caffeine-Imprinted Polypyrrole by a Quartz Crystal Microbalance and Electrochemical Impedance Spectroscopy. Sens. Actuators B Chem. 2015, 212, 63–71. DOI: 10.1016/j.snb.2015.01.109.
  • Emir, G.; Dilgin, Y.; Ramanaviciene, A.; Ramanavicius, A. Amperometric Nonenzymatic Glucose Biosensor Based on Graphite Rod Electrode Modified by Ni-Nanoparticle/Polypyrrole Composite. Microchem. J. 2021, 161, 105751. DOI: 10.1016/j.microc.2020.105751.
  • Białek, R.; Thakur, K.; Ruff, A.; Jones, M. R.; Schuhmann, W.; Ramanan, C.; Gibasiewicz, K. Insight into Electron Transfer from a Redox Polymer to a Photoactive Protein. J. Phys. Chem. B 2020, 124, 11123–11132. DOI:10.1021/ACS.JPCB.0C08714/SUPPL_FILE/JP0C08714_SI_001.PDF[33236901
  • Lakard, B. Electrochemical Biosensors Based on Conducting Polymers: A Review. Appl. Sci. 2020, 10, 6614. DOI: 10.3390/app10186614.
  • Ramanavicius, A.; Kausaite, A.; Ramanaviciene, A. Self-Encapsulation of Oxidases as a Basic Approach to Tune the Upper Detection Limit of Amperometric Biosensors. Analyst 2008, 133, 1083–1089. DOI: 10.1039/b801501e.
  • Ramanavicius, A.; Oztekin, Y.; Ramanaviciene, A. Electrochemical Formation of Polypyrrole-Based Layer for Immunosensor Design. Sens. Actuators B Chem. 2014, 197, 237–243. DOI: 10.1016/j.snb.2014.02.072.
  • Ratautaite, V.; Ramanaviciene, A.; Oztekin, Y.; Voronovic, J.; Balevicius, Z.; Mikoliunaite, L.; Ramanavicius, A. Electrochemical Stability and Repulsion of Polypyrrole Film. Colloids Surf. A Physicochem. Eng. Asp. 2013, 418, 16–21. DOI: 10.1016/j.colsurfa.2012.10.052.
  • Samukaite-Bubniene, U.; Valiūnienė, A.; Bucinskas, V.; Genys, P.; Ratautaite, V.; Ramanaviciene, A.; Aksun, E.; Tereshchenko, A.; Zeybek, B.; Ramanavicius, A. Towards Supercapacitors: Cyclic Voltammetry and Fast Fourier Transform Electrochemical Impedance Spectroscopy Based Evaluation of Polypyrrole Electrochemically Deposited on the Pencil Graphite Electrode. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125750. DOI: 10.1016/j.colsurfa.2020.125750.
  • Wang, Y.; Chen, Y.; Liu, Y.; Liu, W.; Zhao, P.; Li, Y.; Dong, Y.; Wang, H.; Yang, J. Urchin-like Ni1/3Co2/3(CO3)0.5OH·0.11H2O Anchoring on Polypyrrole Nanotubes for Supercapacitor Electrodes. Electrochim. Acta 2019, 295, 989–996. DOI: 10.1016/j.electacta.2018.11.116.
  • Ramanaviciene, A.; Kausaite, A.; Tautkus, S.; Ramanavicius, A. Biocompatibility of Polypyrrole Particles: An In-Vivo Study in Mice. J. Pharm. Pharmacol. 2007, 59, 311–315. DOI: 10.1211/jpp.59.2.0017.
  • Song, R. B.; Wu, Y. C.; Lin, Z. Q.; Xie, J.; Tan, C. H.; Loo, J. S. C.; Cao, B.; Zhang, J. R.; Zhu, J. J.; Zhang, Q. Living and Conducting: Coating Individual Bacterial Cells with In Situ Formed Polypyrrole. Angew. Chem. Int. Ed. Engl. 2017, 56, 10516–10520. DOI: 10.1002/anie.201704729.
  • Xie, J.; Zhao, C. E.; Lin, Z. Q.; Gu, P. Y.; Zhang, Q. Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells. Chem. Asian J. 2016, 11, 1489–1511. DOI: 10.1002/asia.201600293.
  • Yao, C. J.; Zhang, H. L.; Zhang, Q. Recent Progress in Thermoelectric Materials Based on Conjugated Polymers. Polymers 2019, 11, 107. DOI: 10.3390/polym11010107.
  • Wu, S.; Su, F.; Dong, X.; Ma, C.; Pang, L.; Peng, D.; Wang, M.; He, L.; Zhang, Z. Development of Glucose Biosensors Based on Plasma Polymerization-Assisted Nanocomposites of Polyaniline, Tin Oxide, and Three-Dimensional Reduced Graphene Oxide. Appl. Surf. Sci. 2017, 401, 262–270. DOI: 10.1016/j.apsusc.2017.01.024.
  • Reddy, K. R.; Jeong, H. M.; Lee, Y.; Raghu, A. V. Synthesis of MWCNTs-Core/Thiophene Polymer-Sheath Composite Nanocables by a Cationic Surfactant-Assisted Chemical Oxidative Polymerization and Their Structural Properties. J. Polym. Sci. A Polym. Chem. 2010, 48, 1477–1484. DOI: 10.1002/pola.23883.
  • Ahuja, T.; Mir, I. A.; Kumar, D.; Rajesh. Biomolecular Immobilization on Conducting Polymers for Biosensing Applications. Biomaterials 2007, 28, 791–805. DOI: 10.1016/j.biomaterials.2006.09.046.
  • Yang, Z.; Zhang, C.; Zhang, J.; Bai, W. Potentiometric Glucose Biosensor Based on Core-Shell Fe3O4-Enzyme-Polypyrrole Nanoparticles. Biosens. Bioelectron. 2014, 51, 268–273. DOI: 10.1016/j.bios.2013.07.054.
  • Ramanavičius, S.; Morkvėnaitė‐vilkončienė, I.; Samukaitė‐bubnienė, U.; Ratautaitė, V.; Plikusienė, I.; Viter, R.; Ramanavičius, A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. Sensors 2022, 22, 1282. DOI: 10.3390/s22031282.
  • Zhang, C.; Bai, W.; Yang, Z. A Novel Photoelectrochemical Sensor for Bilirubin Based on Porous Transparent TiO2 and Molecularly Imprinted Polypyrrole. Electrochim. Acta 2016, 187, 451–456. DOI: 10.1016/j.electacta.2015.11.098.
  • Ye, C.; Chen, X.; Xu, J.; Xi, H.; Wu, T.; Deng, D.; Zhang, J.; Huang, G. Highly Sensitive Detection to Gallic Acid by Polypyrrole-Based MIES Supported by MOFs-Co2+@Fe3O4. J. Electroanal. Chem. 2020, 859, 113839. DOI: 10.1016/j.jelechem.2020.113839.
  • Wang, Y.; Liu, X.; Lu, Z.; Liu, T.; Zhao, L.; Ding, F.; Zou, P.; Wang, X.; Zhao, Q.; Rao, H. Molecularly Imprinted Polydopamine Modified with Nickel Nanoparticles Wrapped with Carbon: Fabrication, Characterization and Electrochemical Detection of Uric Acid. Microchim. Acta 2019, 186, 1–9. DOI: 10.1007/S00604-019-3521-7/FIGURES/6.
  • Radi, A. E.; El-Naggar, A. E.; Nassef, H. M. Determination of Coccidiostat Clopidol on an Electropolymerized-Molecularly Imprinted Polypyrrole Polymer Modified Screen Printed Carbon Electrode. Anal. Methods 2014, 6, 7967–7972. DOI: 10.1039/C4AY01320D.
  • Zaidi, S. A. Utilization of an Environmentally-Friendly Monomer for an Efficient and Sustainable Adrenaline Imprinted Electrochemical Sensor Using Graphene. Electrochim. Acta 2018, 274, 370–377. DOI: 10.1016/j.electacta.2018.04.119.
  • Tian, Y.; Deng, P.; Wu, Y.; Ding, Z.; Li, G.; Liu, J.; He, Q. A Simple and Efficient Molecularly Imprinted Electrochemical Sensor for the Selective Determination of Tryptophan. Biomolecules 2019, 9, 294. DOI: 10.3390/biom9070294.
  • Ratautaite, V.; Boguzaite, R.; Brazys, E.; Ramanaviciene, A.; Ciplys, E.; Juozapaitis, M.; Slibinskas, R.; Bechelany, M.; Ramanavicius, A. Molecularly Imprinted Polypyrrole Based Sensor for the Detection of SARS-CoV-2 Spike Glycoprotein. Electrochim. Acta 2022, 403, 139581. DOI: 10.1016/j.electacta.2021.139581.
  • Ramanavicius, S.; Ramanavicius, A. Development of Molecularly Imprinted Polymer Based Phase Boundaries for Sensors Design (Review). Adv. Colloid Interface Sci. 2022, 305, 102693. DOI: 10.1016/j.cis.2022.102693.
  • Turemis, M.; Zappi, D.; Giardi, M. T.; Basile, G.; Ramanaviciene, A.; Kapralovs, A.; Ramanavicius, A.; Viter, R. ZnO/Polyaniline Composite Based Photoluminescence Sensor for the Determination of Acetic Acid Vapor. Talanta 2020, 211, 120658. DOI: 10.1016/j.talanta.2019.120658.
  • Ashur, I.; Jones, A. K. Immobilization of Azurin with Retention of Its Native Electrochemical Properties at Alkylsilane Self-Assembled Monolayer Modified Indium Tin Oxide. Electrochim. Acta 2012, 85, 169–174. DOI: 10.1016/j.electacta.2012.08.044.
  • Kwan, P.; Schmitt, D.; Volosin, A. M.; McIntosh, C. L.; Seo, D. K.; Jones, A. K. Spectroelectrochemistry of Cytochrome c and Azurin Immobilized in Nanoporous Antimony-Doped Tin Oxide. Chem. Commun. (Camb.) 2011, 47, 12367–12369. DOI: 10.1039/c1cc14881h.
  • Bancroft, E. E.; Sidwell, J. S.; Blount, H. N. Derivative Linear Sweep and Derivative Cyclic Voltabsorptometry. Anal. Chem. 1981, 53, 1390–1394. DOI: 10.1021/ac00232a021.
  • Astuti, Y.; Topoglidis, E.; Gilardi, G.; Durrant, J. R. Cyclic Voltammetry and Voltabsorptometry Studies of Redox Proteins Immobilised on Nanocrystalline Tin Dioxide Electrodes. Bioelectrochemistry 2004, 63, 55–59. DOI: 10.1016/j.bioelechem.2003.09.014.
  • Ramanavicius, A.; Ramanaviciene, A. Hemoproteins in Design of Biofuel Cells. Fuel Cells 2009, 9, 25–36. DOI: 10.1002/fuce.200800052.
  • Sarkar, A.; Carter, E. L.; Harland, J. B.; Speelman, A. L.; Lehnert, N.; Ragsdale, S. W. Ferric Heme as a CO/NO Sensor in the Nuclear Receptor Rev-Erbß by Coupling Gas Binding to Electron Transfer. Proc. Natl. Acad. Sci. USA. 2021, 118, DOI: 10.1073/PNAS.2016717118.
  • Gu, B.; Zhang, Q. Recent Advances on Functionalized Upconversion Nanoparticles for Detection of Small Molecules and Ions in Biosystems. Adv. Sci. (Weinh.) 2018, 5, 1700609. DOI: 10.1002/advs.201700609.
  • Zhou, Y.; Pei, W.; Wang, C.; Zhu, J.; Wu, J.; Yan, Q.; Huang, L.; Huang, W.; Yao, C.; Loo, J. S. C.; et al. Rhodamine-Modified Upconversion Nanophosphors for Ratiometric Detection of Hypochlorous Acid in Aqueous Solution and Living Cells. Small 2014, 10, 3560–3567. DOI: 10.1002/smll.201303127.
  • Astuti, Y.; Topoglidis, E.; Durrant, J. R. Use of Microperoxidase-11 to Functionalize Tin Dioxide Electrodes for the Optical and Electrochemical Sensing of Hydrogen Peroxide. Anal. Chim. Acta 2011, 686, 126–132. DOI: 10.1016/j.aca.2010.11.045.
  • Hulko, M.; Hospach, I.; Krasteva, N.; Nelles, G. Cytochrome C Biosensor-A Model for Gas Sensing. Sensors (Basel) 2011, 11, 5968–5980. DOI: 10.3390/s110605968.
  • Akanda, M. R.; Aziz, M. A.; Jo, K.; Tamilavan, V.; Hyun, M. H.; Kim, S.; Yang, H. Optimization of Phosphatase- and Redox Cycling-Based Immunosensors and Its Application to Ultrasensitive Detection of Troponin I. Anal. Chem. 2011, 83, 3926–3933. DOI: 10.1021/ac200447b.
  • McCord, J.; Hana, A.; Cook, B.; Hudson, M. P.; Miller, J.; Akoegbe, G.; Mueller, C.; Moyer, M.; Jacobsen, G.; Nowak, R. The Role of Cardiac Testing with the 0/1-Hour High-Sensitivity Cardiac Troponin Algorithm Evaluating for Acute Myocardial Infarction. Am. Heart J. 2021, 233, 68–77. DOI: 10.1016/j.ahj.2020.12.015.
  • Mahajan, V. S.; Jarolim, P. How to Interpret Elevated Cardiac Troponin Levels. Circulation 2011, 124, 2350–2354. DOI: 10.1161/CIRCULATIONAHA.111.023697.
  • Park, S.; Singh, A.; Kim, S.; Yang, H. Electroreduction-Based Electrochemical-Enzymatic Redox Cycling for the Detection of Cancer Antigen 15-3 Using Graphene Oxide-Modified Indium-Tin Oxide Electrodes. Anal. Chem. 2014, 86, 1560–1566. DOI: 10.1021/ac403912d.
  • Sokol, K. P.; Mersch, D.; Hartmann, V.; Zhang, J. Z.; Nowaczyk, M. M.; Rögner, M.; Ruff, A.; Schuhmann, W.; Plumeré, N.; Reisner, E. Rational Wiring of Photosystem II to Hierarchical Indium Tin Oxide Electrodes Using Redox Polymers. Energy Environ. Sci. 2016, 9, 3698–3709. DOI: 10.1039/C6EE01363E.
  • Plikusiene, I.; Maciulis, V.; Graniel, O.; Bechelany, M.; Balevicius, S.; Vertelis, V.; Balevicius, Z.; Popov, A.; Ramanavicius, A.; Ramanaviciene, A. Total Internal Reflection Ellipsometry for Kinetics-Based Assessment of Bovine Serum Albumin Immobilization on ZnO Nanowires. J. Mater. Chem. C 2021, 9, 1345–1352. DOI: 10.1039/D0TC05193D.
  • Balevicius, Z.; Paulauskas, A.; Plikusiene, I.; Mikoliunaite, L.; Bechelany, M.; Popov, A.; Ramanavicius, A.; Ramanaviciene, A. Towards the Application of Al2O3/ZnO Nanolaminates in Immunosensors: Total Internal Reflection Spectroscopic Ellipsometry Based Evaluation of BSA Immobilization. J. Mater. Chem. C 2018, 6, 8778–8783. DOI: 10.1039/C8TC03091J.
  • Viter, R.; Savchuk, M.; Starodub, N.; Balevicius, Z.; Tumenas, S.; Ramanaviciene, A.; Jevdokimovs, D.; Erts, D.; Iatsunskyi, I.; Ramanavicius, A. Photoluminescence Immunosensor Based on Bovine Leukemia Virus Proteins Immobilized on the ZnO Nanorods. Sens. Actuators B Chem. 2019, 285, 601–606. DOI: 10.1016/j.snb.2019.01.054.
  • Viter, R.; Tereshchenko, A.; Smyntyna, V.; Ogorodniichuk, J.; Starodub, N.; Yakimova, R.; Khranovskyy, V.; Ramanavicius, A. Toward Development of Optical Biosensors Based on Photoluminescence of TiO2 Nanoparticles for the Detection of Salmonella. Sens. Actuators B Chem. 2017, 252, 95–102. DOI: 10.1016/j.snb.2017.05.139.
  • Wang, Y.; Wu, T.; Zhou, Y.; Meng, C.; Zhu, W.; Liu, L. TiO2-Based Nanoheterostructures for Promoting Gas Sensitivity Performance: Designs, Developments, and Prospects. Sensors (Basel) 2017, 17, 1971. DOI: 10.3390/s17091971.
  • Bai, J.; Zhou, B. Titanium Dioxide Nanomaterials for Sensor Applications. Chem. Rev. 2014, 114, 10131–10176. DOI: 10.1021/cr400625j.
  • Arif, A. F.; Balgis, R.; Ogi, T.; Iskandar, F.; Kinoshita, A.; Nakamura, K.; Okuyama, K. Highly Conductive Nano-Sized Magnéli Phases Titanium Oxide (TiOx). Sci. Rep. 2017, 7, 1–9. DOI: 10.1038/s41598-017-03509-y.
  • Kaur, G.; Adhikari, R.; Cass, P.; Bown, M.; Gunatillake, P. Electrically Conductive Polymers and Composites for Biomedical Applications. RSC Adv. 2015, 5, 37553–37567. DOI: 10.1039/C5RA01851J.
  • Wallace, G.; Spinks, G. Conducting Polymers - Bridging the Bionic Interface. Soft Matter 2007, 3, 665–671. DOI: 10.1039/b618204f.
  • Higgins, M. J.; Wallace, G. G. Surface and Biomolecular Forces of Conducting Polymers. Polym. Rev. 2013, 53, 506–526. DOI: 10.1080/15583724.2013.813856.
  • Beygisangchin, M.; Rashid, S. A.; Shafie, S.; Sadrolhosseini, A. R.; Lim, H. N. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review. Polymers (Basel) 2021, 13, 2003. DOI: 10.3390/polym13122003.
  • Olad, A.; Behboudi, S.; Entezami, A. A. Preparation, Characterization and Photocatalytic Activity of TiO 2/Polyaniline Core-Shell Nanocomposite. Bull. Mater. Sci. 2012, 35, 801–809. DOI: 10.1007/S12034-012-0358-7/TABLES/2.
  • Jangid, N. K.; Jadoun, S.; Yadav, A.; Srivastava, M.; Kaur, N. Polyaniline-TiO2-Based Photocatalysts for Dyes Degradation. Polym. Bull. 2021, 78, 4743–4777. DOI: 10.1007/s00289-020-03318-w.
  • Majumdar, S.; Mahanta, D. Deposition of an Ultra-Thin Polyaniline Coating on a TiO2 Surface by Vapor Phase Polymerization for Electrochemical Glucose Sensing and Photocatalytic Degradation. RSC Adv. 2020, 10, 17387–17395. DOI: 10.1039/D0RA01571G.
  • Rahman, K. H.; Kar, A. K. Effect of Band Gap Variation and Sensitization Process of Polyaniline (PANI)-TiO2 p-n Heterojunction Photocatalysts on the Enhancement of Photocatalytic Degradation of Toxic Methylene Blue with UV Irradiation. J. Environ. Chem. Eng. 2020, 8, 104181. DOI: 10.1016/j.jece.2020.104181.
  • Deng, X.; Chen, Y.; Wen, J.; Xu, Y.; Zhu, J.; Bian, Z. Polyaniline-TiO2 Composite Photocatalysts for Light-Driven Hexavalent Chromium Ions Reduction. Sci. Bull. 2020, 65, 105–112. DOI: 10.1016/j.scib.2019.10.020.
  • Maruthapandi, M.; Eswaran, L.; Luong, J. H. T.; Gedanken, A. Sonochemical Preparation of Polyaniline@TiO2 and Polyaniline@SiO2 for the Removal of Anionic and Cationic Dyes. Ultrason. Sonochem. 2020, 62, 104864. DOI: 10.1016/j.ultsonch.2019.104864.
  • Maldonado-Larios, L.; Mayen-Mondragón, R.; Martínez-Orozco, R. D.; Páramo-García, U.; Gallardo-Rivas, N. V.; García-Alamilla, R. Electrochemically-Assisted Fabrication of Titanium-Dioxide/Polyaniline Nanocomposite Films for the Electroremediation of Congo Red in Aqueous Effluents. Synth. Met. 2020, 268, 116464. DOI: 10.1016/j.synthmet.2020.116464.
  • Reddy, K. R.; Karthik, K. V.; Prasad, S. B. B.; Soni, S. K.; Jeong, H. M.; Raghu, A. V. Enhanced Photocatalytic Activity of Nanostructured Titanium Dioxide/Polyaniline Hybrid Photocatalysts. Polyhedron 2016, 120, 169–174. DOI: 10.1016/j.poly.2016.08.029.
  • Slama, H. B.; Bouket, A. C.; Pourhassan, Z.; Alenezi, F. N.; Silini, A.; Cherif-Silini, H.; Oszako, T.; Luptakova, L.; Golińska, P.; Belbahri, L. Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. Appl. Sci. 2021, 11, 6255. DOI: 10.3390/app11146255.
  • Ma, H. Y.; Zhao, L.; Guo, L. H.; Zhang, H.; Chen, F. J.; Yu, W. C. Roles of Reactive Oxygen Species (ROS) in the Photocatalytic Degradation of Pentachlorophenol and Its Main Toxic Intermediates by TiO2/UV. J. Hazard Mater. 2019, 369, 719–726. DOI: 10.1016/j.jhazmat.2019.02.080.
  • Ekande, O. S.; Kumar, M. Review on Polyaniline as Reductive Photocatalyst for the Construction of the Visible Light Active Heterojunction for the Generation of Reactive Oxygen Species. J. Environ. Chem. Eng. 2021, 9, 105725. DOI: 10.1016/j.jece.2021.105725.
  • Dinoop lal, S.; Sunil Jose, T.; Rajesh, C.; Anju Rose Puthukkara, P.; Savitha Unnikrishnan, K.; Arun, K. J. Accelerated Photodegradation of Polystyrene by TiO2-Polyaniline Photocatalyst under UV Radiation. Eur. Polym. J. 2021, 153, 110493. DOI: 10.1016/j.eurpolymj.2021.110493.
  • Gao, L.; Yin, C.; Luo, Y.; Duan, G. Facile Synthesis of the Composites of Polyaniline and TiO2 Nanoparticles Using Self-Assembly Method and Their Application in Gas Sensing. Nanomaterials 2019, 9, 493. DOI: 10.3390/nano9040493.
  • Ma, X.; Wang, M.; Li, G.; Chen, H.; Bai, R. Preparation of Polyaniline–TiO2 Composite Film with In Situ Polymerization Approach and Its Gas-Sensitivity at Room Temperature. Mater. Chem. Phys. 2006, 98, 241–247. DOI: 10.1016/j.matchemphys.2005.09.027.
  • Zhu, C.; Cheng, X.; Dong, X.; Xu, Y. m. Enhanced Sub-Ppm NH3 Gas Sensing Performance of PANI/TiO2 Nanocomposites at Room Temperature. Front. Chem. 2018, 6, 493. DOI:10.3389/FCHEM.2018.00493/BIBTEX.[30406078
  • Gong, J.; Li, Y.; Hu, Z.; Zhou, Z.; Deng, Y. Ultrasensitive NH3 Gas Sensor from Polyaniline Nanograin Enchased TiO2 Fibers. J. Phys. Chem. C 2010, 114, 9970–9974. DOI: 10.1021/jp100685r.
  • Huyen, D. N.; Tung, N. T.; Thien, N. D.; Le Thanh, H. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites. Sensors (Basel) 2011, 11, 1924–1931. DOI: 10.3390/s110201924.
  • Tai, H.; Jiang, Y.; Xie, G.; Yu, J.; Chen, X.; Ying, Z. Influence of Polymerization Temperature on NH3 Response of PANI/TiO2 Thin Film Gas Sensor. Sens. Actuators B Chem. 2008, 129, 319–326. DOI: 10.1016/j.snb.2007.08.013.
  • Bairi, V. G.; Bourdo, S. E.; Sacre, N.; Nair, D.; Berry, B. C.; Biris, A. S.; Viswanathan, T. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite. Sensors (Basel) 2015, 15, 26415–26429. DOI: 10.3390/s151026415.
  • Pawar, S. G.; Chougule, M. A.; Sen, S.; Patil, V. B. Development of Nanostructured Polyaniline–Titanium Dioxide Gas Sensors for Ammonia Recognition. J. Appl. Polym. Sci. 2012, 125, 1418–1424. DOI: 10.1002/app.35468.
  • Pawar, S. G.; Chougule, M. A.; Patil, S. L.; Raut, B. T.; Godse, P. R.; Sen, S.; Patil, V. B. Room Temperature Ammonia Gas Sensor Based on Polyaniline-TiO2 Nanocomposite. IEEE Sens. J. 2011, 11, 3417–3423. DOI: 10.1109/JSEN.2011.2160392.
  • Safe, A. M.; Nikfarjam, A.; Hajghassem, H. UV Enhanced Ammonia Gas Sensing Properties of PANI/TiO2 Core-Shell Nanofibers. Sens. Actuators B Chem. 2019, 298, 126906. DOI: 10.1016/j.snb.2019.126906.
  • Cui, S.; Wang, J.; Wang, X. Fabrication and Design of a Toxic Gas Sensor Based on Polyaniline/Titanium Dioxide Nanocomposite Film by Layer-by-Layer Self-Assembly. RSC Adv. 2015, 5, 58211–58219. DOI: 10.1039/C5RA06388D.
  • Tai, H.; Jiang, Y.; Xie, G.; Yu, J.; Chen, X. Fabrication and Gas Sensitivity of Polyaniline–Titanium Dioxide Nanocomposite Thin Film. Sens. Actuators B Chem. 2007, 125, 644–650. DOI: 10.1016/j.snb.2007.03.013.
  • Srivastava, S.; Kumar, S.; Singh, V. N.; Singh, M.; Vijay, Y. K. Synthesis and Characterization of TiO2 Doped Polyaniline Composites for Hydrogen Gas Sensing. Int. J. Hydrogen Energy 2011, 36, 6343–6355. DOI: 10.1016/j.ijhydene.2011.01.141.
  • Nasirian, S.; Milani Moghaddam, H. Effect of Different Titania Phases on the Hydrogen Gas Sensing Features of Polyaniline/TiO2 Nanocomposite. Polymer (Guildf) 2014, 55, 1866–1874. DOI: 10.1016/j.polymer.2014.02.030.
  • Dhawale, D. S.; Salunkhe, R. R.; Patil, U. M.; Gurav, K. V.; More, A. M.; Lokhande, C. D. Room Temperature Liquefied Petroleum Gas (LPG) Sensor Based on p-Polyaniline/n-TiO2 Heterojunction. Sens. Actuators B Chem. 2008, 134, 988–992. DOI: 10.1016/j.snb.2008.07.003.
  • Parveen, A.; Koppalkar, A.; Roy, A. S. Liquefied Petroleum Gas Sensing of Polyaniline-Titanium Dioxide Nanocomposites. Sen. Lett. 2013, 11, 242–248. DOI: 10.1166/sl.2013.2732.
  • Nimkar, S. H.; Agrawal, S. P.; Kondawar, S. B. Fabrication of Electrospun Nanofibers of Titanium Dioxide Intercalated Polyaniline Nanocomposites for CO2 Gas Sensor. Procedia Mater. Sci. 2015, 10, 572–579. DOI: 10.1016/j.mspro.2015.06.008.
  • Wang, Z.; Peng, X.; Huang, C.; Chen, X.; Dai, W.; Fu, X. CO Gas Sensitivity and Its Oxidation over TiO2 Modified by PANI under UV Irradiation at Room Temperature. Appl. Catal. B Environ. 2017, 219, 379–390. DOI: 10.1016/j.apcatb.2017.07.080.
  • Gawri, I.; Ridhi, R.; Singh, K. P.; Tripathi, S. K. Chemically Synthesized TiO2 and PANI/TiO2 Thin Films for Ethanol Sensing Applications. Mater. Res. Express 2018, 5, 025303. DOI: 10.1088/2053-1591/aaa9f1.
  • Venkatachalaiah, C.; Venkataraman, U.; Sellappan, R. PANI/TiO2 Nanocomposite-Based Chemiresistive Gas Sensor for the Detection of E. coli Bacteria. IET Nanobiotechnol. 2020, 14, 761–765. DOI: 10.1049/iet-nbt.2020.0046.
  • Maoz, R.; Sagiv, J. On the Formation and Structure of Self-Assembling Monolayers. I. A Comparative Atr-Wettability Study of Langmuir—Blodgett and Adsorbed Films on Flat Substrates and Glass Microbeads. J. Colloid Interface Sci. 1984, 100, 465–496. DOI: 10.1016/0021-9797(84)90452-1.
  • Gun, J.; Iscovici, R.; Sagiv, J. On the Formation and Structure of Self-Assembling Monolayers: II. A Comparative Study of Langmuir—Blodgett and Adsorbed Films Using Ellipsometry and IR Reflection—Absorption Spectroscopy. J. Colloid Interface Sci. 1984, 101, 201–213. DOI: 10.1016/0021-9797(84)90020-1.
  • Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. DOI: 10.1021/cr9502357.
  • Barreiros dos Santos, M.; Azevedo, S.; Agusil, J. P.; Prieto-Simón, B.; Sporer, C.; Torrents, E.; Juárez, A.; Teixeira, V.; Samitier, J. Label-Free ITO-Based Immunosensor for the Detection of Very Low Concentrations of Pathogenic C Bacteria. Bioelectrochemistry 2015, 101, 146–152. DOI: 10.1016/j.bioelechem.2014.09.002.
  • Demirbakan, B.; Sezgintürk, M. K. A Sensitive and Disposable Indium Tin Oxide Based Electrochemical Immunosensor for Label-Free Detection of MAGE-1. Talanta 2017, 169, 163–169. DOI: 10.1016/j.talanta.2017.03.076.
  • Törer, H.; Aydın, E. B.; Sezgintürk, M. K. A Label-Free Electrochemical Biosensor for Direct Detection of RACK 1 by Using Disposable, Low-Cost and Reproducible ITO Based Electrode. Anal. Chim. Acta 2018, 1024, 65–72. DOI: 10.1016/j.aca.2018.04.031.
  • Park, M.; Song, Y.; Kim, K. J.; Oh, S. J.; Ahn, J. K.; Park, H.; Shin, H. B.; Kwon, S. J. Electrochemical Immunosensor for Human IgE Using Ferrocene Self-Assembled Monolayers Modified ITO Electrode. Biosensors 2020, 10, 38. DOI: 10.3390/bios10040038.
  • Ikebuchi, Y.; Ito, K.; Takada, T.; Anzai, N.; Kanai, Y.; Suzuki, H. Receptor for Activated C-Kinase 1 Regulates the Cell Surface Expression and Function of ATP Binding Cassette G2. Drug Metab. Dispos. 2010, 38, 2320–2328. DOI: 10.1124/dmd.110.034603.
  • Ren, Q.; Zhou, J.; Zhao, X. F.; Wang, J. X. Molecular Cloning and Characterization of a Receptor for Activated Protein Kinase C1 (RACK1) from Chinese White Shrimp; Fenneropenaeus Chinensis. Dev. Comp. Immunol. 2011, 35, 629–634. DOI: 10.1016/j.dci.2011.01.004.
  • Moore, E.; O'Connell, D.; Galvin, P. Surface Characterisation of Indium-Tin Oxide Thin Electrode Films for Use as a Conducting Substrate in DNA Sensor Development. Thin Solid Films 2006, 515, 2612–2617. DOI: 10.1016/j.tsf.2006.03.025.
  • Barreda-García, S.; Miranda-Castro, R.; De-Los-Santos-Álvarez, N.; Miranda-Ordieres, A. J.; Lobo-Castañón, M. J. Solid-Phase Helicase Dependent Amplification and Electrochemical Detection of Salmonella on Highly Stable Oligonucleotide-Modified ITO Electrodes. Chem. Commun. (Camb.) 2017, 53, 9721–9724. DOI: 10.1039/c7cc05128j.
  • Barreda-García, S.; Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M. J. Sequence-Specific Electrochemical Detection of Enzymatic Amplification Products of Salmonella Genome on ITO Electrodes Improves Pathogen Detection to the Single Copy Level. Sens. Actuators B Chem. 2018, 268, 438–445. DOI: 10.1016/j.snb.2018.04.133.
  • Civit, L.; Fragoso, A.; O'Sullivan, C. K. Thermal Stability of Diazonium Derived and Thiol-Derived Layers on Gold for Application in Genosensors. Electrochem. Commun. 2010, 12, 1045–1048. DOI: 10.1016/j.elecom.2010.05.020.
  • Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C. Self-Assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for a Well-Known System. Chem. Soc. Rev. 2010, 39, 1805–1834. DOI: 10.1039/b907301a.
  • Kuralay, F.; Campuzano, S.; Wang, J. Greatly Extended Storage Stability of Electrochemical DNA Biosensors Using Ternary Thiolated Self-Assembled Monolayers. Talanta 2012, 99, 155–160. DOI: 10.1016/j.talanta.2012.05.033.
  • Cornell, B. A.; Braach-Maksvytis, V. L. B.; King, L. G.; Osman, P. D. J.; Raguse, B.; Wieczorek, L.; Pace, R. J. A Biosensor That Uses Ion-Channel Switches. Nature 1997, 387, 580–583. DOI: 10.1038/42432.
  • Jeuken, L. J. C.; Connell, S. D.; Henderson, P. J. F.; Gennis, R. B.; Evans, S. D.; Bushby, R. J. Redox Enzymes in Tethered Membranes. J. Am. Chem. Soc. 2006, 128, 1711–1716. DOI: 10.1021/ja056972u.
  • Plant, A. L.; Brigham-Burke, M.; Petrella, E. C.; O'Shannessy, D. J. Phospholipid/Alkanethiol Bilayers for Cell-Surface Receptor Studies by Surface Plasmon Resonance. Anal. Biochem. 1995, 226, 342–348. DOI: 10.1006/abio.1995.1234.
  • Henderson, R.; Unwin, P. N. T. Three-Dimensional Model of Purple Membrane Obtained by Electron Microscopy. Nature 1975, 257, 28–32. DOI: 10.1038/257028a0.
  • Purrucker, O.; Hillebrandt, H.; Adlkofer, K.; Tanaka, M. Deposition of Highly Resistive Lipid Bilayer on Silicon–Silicon Dioxide Electrode and Incorporation of Gramicidin Studied by Ac Impedance Spectroscopy. Electrochim. Acta 2001, 47, 791–798. DOI: 10.1016/S0013-4686(01)00759-9.
  • Chaparro Sosa, A. F.; Kienle, D. F.; Falatach, R. M.; Flanagan, J.; Kaar, J. L.; Schwartz, D. K. Stabilization of Immobilized Enzymes via the Chaperone-Like Activity of Mixed Lipid Bilayers. ACS Appl. Mater. Interfaces 2018, 10, 19504–19513. DOI: 10.1021/acsami.8b05523.
  • Hartley, M. D.; Schneggenburger, P. E.; Imperiali, B. Lipid Bilayer Nanodisc Platform for Investigating Polyprenol-Dependent Enzyme Interactions and Activities. Proc. Natl. Acad. Sci. USA. 2013, 110, 20863–20870. DOI: 10.1073/pnas.1320852110.
  • Heath, G. R.; Li, M.; Rong, H.; Radu, V.; Frielingsdorf, S.; Lenz, O.; Butt, J. N.; Jeuken, L. J. C.; Heath, G. R.; Li, M. Multilayered Lipid Membrane Stacks for Biocatalysis Using Membrane Enzymes. Adv. Funct. Mater. 2017, 27, 1606265. DOI: 10.1002/adfm.201606265.
  • Sabirovas, T.; Valiūnienė, A.; Valincius, G. Mechanically Polished Titanium Surface for Immobilization of Hybrid Bilayer Membrane. J. Electrochem. Soc. 2018, 165, G109–G115. DOI: 10.1149/2.0101810jes.
  • Preta, G.; Jankunec, M.; Heinrich, F.; Griffin, S.; Sheldon, I. M.; Valincius, G. Tethered Bilayer Membranes as a Complementary Tool for Functional and Structural Studies: The Pyolysin Case. Biochim. Biophys. Acta 2016, 1858, 2070–2080. DOI: 10.1016/j.bbamem.2016.05.016.
  • Kamiya, K.; Osaki, T.; Nakao, K.; Kawano, R.; Fujii, S.; Misawa, N.; Hayakawa, M.; Takeuchi, S. Electrophysiological Measurement of Ion Channels on Plasma/Organelle Membranes Using an on-Chip Lipid Bilayer System. Scientific 2018, 8, 1–9. DOI: 10.1038/s41598-018-35316-4.
  • Tawfik, H.; Puza, S.; Seemann, R.; Fleury, J. B. Transport Properties of Gramicidin a Ion Channel in a Free-Standing Lipid Bilayer Filled with Oil Inclusions. Front. Cell. Dev. Biol. 2020, 8, 531229. DOI: 10.3389/fcell.2020.531229.
  • Keizer, H. M.; Dorvel, B. R.; Andersson, M.; Fine, D.; Price, R. B.; Long, J. R.; Dodabalapur, A.; Köper, I.; Knoll, W.; Anderson, P. A. V.; Duran, R. S. Functional Ion Channels in Tethered Bilayer Membranes-Implications for Biosensors. ChemBioChem. 2007, 8, 1246–1250. DOI: 10.1002/cbic.200700094.
  • Budvytyte, R.; Pleckaityte, M.; Zvirbliene, A.; Vanderah, D. J.; Valincius, G. Reconstitution of Cholesterol-Dependent Vaginolysin into Tethered Phospholipid Bilayers: Implications for Bioanalysis. PLoS One 2013, 8, e82536–13. DOI: 10.1371/journal.pone.0082536.
  • Valincius, G.; Budvytyte, R.; Penkauskas, T.; Pleckaityte, M.; Zvirbliene, A. Phospholipid Sensors for Detection of Bacterial Pore-Forming Toxins. ECS Trans. 2014, 64, 117–124. DOI: 10.1149/06401.0117ecst.
  • Saem, S.; Shahid, O.; Khondker, A.; Moran-Hidalgo, C.; Rheinstädter, M. C.; Moran-Mirabal, J. Benchtop-Fabricated Lipid-Based Electrochemical Sensing Platform for the Detection of Membrane Disrupting Agents. Sci. Rep. 2020, 10, 1–12. DOI: 10.1038/s41598-020-61561-7.
  • Lin, W. C.; Blanchette, C. D.; Ratto, T. V.; Longo, M. L. Lipid Asymmetry in DLPC/DSPC-Supported Lipid Bilayers: A Combined AFM and Fluorescence Microscopy Study. Biophys. J. 2006, 90, 228–237. DOI: 10.1529/biophysj.105.067066.
  • Kalb, E.; Frey, S.; Tamm, L. K. Formation of Supported Planar Bilayers by Fusion of Vesicles to Supported Phospholipid Monolayers. BBA – Biomembr. 1992, 1103, 307–316. DOI: 10.1016/0005-2736(92)90101-Q.
  • Diao, P.; Jiang, D.; Cui, X.; Gu, D.; Tong, R.; Zhong, B. Cyclic Voltammetry and a.c. Impedance Studies of Ca2+-Induced Ion Channels on Pt-BLM. Bioelectrochem. Bioenerg. 1998, 45, 173–179. DOI: 10.1016/S0302-4598(98)00111-1.
  • Cremer, P. S.; Boxer, S. G. Formation and Spreading of Lipid Bilayers on Planar Glass Supports. J. Phys. Chem. B 1999, 103, 2554–2559. DOI: 10.1021/jp983996x.
  • Silin, V. I.; Wieder, H.; Woodward, J. T.; Valincius, G.; Offenhausser, A.; Plant, A. L. The Role of Surface Free Energy on the Formation of Hybrid Bilayer Membranes. J. Am. Chem. Soc. 2002, 124, 14676–14683. DOI:10.1021/ja026585.
  • Ragaliauskas, T.; Mickevicius, M.; Rakovska, B.; Penkauskas, T.; Vanderah, D. J.; Heinrich, F.; Valincius, G. Fast Formation of Low-Defect-Density Tethered Bilayers by Fusion of Multilamellar Vesicles. Biochim. Biophys. Acta – Biomembr. 2017, 1859, 669–678. DOI: 10.1016/j.bbamem.2017.01.015.
  • Valincius, G.; Mickevicius, M.; Penkauskas, T.; Jankunec, M. Electrochemical Impedance Spectroscopy of Tethered Bilayer Membranes: An Effect of Heterogeneous Distribution of Defects in Membranes. Electrochim. Acta 2016, 222, 904–913. DOI: 10.1016/j.electacta.2016.11.056.
  • Krishna, G.; Schulte, J.; Cornell, B. A.; Pace, R. J.; Osman, P. D. Tethered Bilayer Membranes Containing Ionic Reservoirs: Selectivity and Conductance. Langmuir 2003, 19, 2294–2305. DOI: 10.1021/la026238d.
  • Kendall, J. K. R.; Johnson, B. R. G.; Symonds, P. H.; Imperato, G.; Bushby, R. J.; Gwyer, J. D.; van Berkel, C.; Evans, S. D.; Jeuken, L. J. C. Effect of the Structure of Cholesterol-Based Tethered Bilayer Lipid Membranes on Ionophore Activity. ChemPhysChem. 2010, 11, 2191–2198. DOI: 10.1002/cphc.200900917.
  • Munro, J. C.; Frank, C. W. In Situ Formation and Characterization of Poly(Ethylene Glycol)-Supported Lipid Bilayers on Gold Surfaces. Langmuir 2004, 20, 10567–10575. DOI: 10.1021/la048378o.
  • Majewski, J.; Wong, J. Y.; Park, C. K.; Seitz, M.; Israelachvili, J. N.; Smith, G. S. Structural Studies of Polymer-Cushioned Lipid Bilayers. Biophys. J. 1998, 75, 2363–2367. DOI: 10.1016/S0006-3495(98)77680-5.
  • Lin, J.; Szymanski, J.; Searson, P. C.; Hristova, K. Effect of a Polymer Cushion on the Electrical Properties and Stability of Surface-Supported Lipid Bilayers. Langmuir 2010, 26, 3544–3548. DOI: 10.1021/la903232b.
  • Wong, J. Y.; Majewski, J.; Seitz, M.; Park, C. K.; Israelachvili, J. N.; Smith, G. S. Polymer-Cushioned Bilayers. I. A Structural Study of Various Preparation Methods Using Neutron Reflectometry. Biophys. J. 1999, 77, 1445–1457. DOI: 10.1016/S0006-3495(99)76992-4.
  • Jeong, D. W.; Jang, H.; Choi, S. Q.; Choi, M. C. Enhanced Stability of Freestanding Lipid Bilayer and Its Stability Criteria. Sci. Rep. 2016, 6, 1–7. DOI: 10.1038/srep38158.
  • Beltramo, P. J.; Van Hooghten, R.; Vermant, J. Millimeter-Area, Free Standing, Phospholipid Bilayers. Soft Matter 2016, 12, 4324–4331. DOI: 10.1039/c6sm00250a.
  • Yamaura, D.; Tadaki, D.; Araki, S.; Yoshida, M.; Arata, K.; Ohori, T.; Ishibashi, K.-I.; Kato, M.; Ma, T.; Miyata, R.; et al. Amphiphobic Septa Enhance the Mechanical Stability of Free-Standing Bilayer Lipid Membranes. Langmuir 2018, 34, 5615–5622. DOI: 10.1021/acs.langmuir.8b00747.
  • Kalb, E.; Frey, S.; Tamm, L. K. Formation of Supported Planar Bilayers by Fusion of Vesicles to Supported Phospholipid Monolayers. Biochim. Biophys. Acta – Biomembr. 1992, 1103, 307–316. DOI: 10.1016/0005-2736(92)90101-Q.
  • Raguse, B.; Braach-Maksvytis, V.; Cornell, B. A.; King, L. G.; Osman, P. D. J.; Pace, R. J.; Wieczorek, L. Tethered Lipid Bilayer Membranes: Formation and Ionic Reservoir Characterization. Langmuir 1998, 14, 648–659. DOI: 10.1021/la9711239.
  • Budvytyte, R.; Valincius, G.; Niaura, G.; Voiciuk, V.; Mickevicius, M.; Chapman, H.; Goh, H.-Z.; Shekhar, P.; Heinrich, F.; Shenoy, S.; et al. Structure and Properties of Tethered Bilayer Lipid Membranes with Unsaturated Anchor Molecules. Langmuir 2013, 29, 8645–8656. DOI: 10.1021/la401132c.
  • Osborn, T. D.; Yager, P. Modeling Success and Failure of Langmuir-Blodgett Transfer of Phospholipid Bilayers to Silicon Dioxide. Biophys. J. 1995, 68, 1364–1373. DOI: 10.1016/S0006-3495(95)80309-7.
  • Peterson, I. R. Langmuir-Blodgett Films. J. Phys. D: Appl. Phys. 1990, 23, 379–395. DOI: 10.1088/0022-3727/23/4/001.
  • Erbe, A.; Bushby, R. J.; Evans, S. D.; Jeuken, L. J. C. Tethered Bilayer Lipid Membranes Studied by Simultaneous Attenuated Total Reflectance Infrared Spectroscopy and Electrochemical Impedance Spectroscopy. J. Phys. Chem. B 2007, 111, 3515–3524. DOI: 10.1021/jp0676181.
  • Talaikis, M.; Eicher-Lorka, O.; Valincius, G.; Niaura, G. Water-Induced Structural Changes in the Membrane-Anchoring Monolayers Revealed by Isotope-Edited SERS. J. Phys. Chem. C 2016, 120, 22489–22499. DOI: 10.1021/acs.jpcc.6b07686.
  • Hoogerheide, D. P.; Noskov, S. Y.; Kuszak, A. J.; Buchanan, S. K.; Rostovtseva, T. K.; Nanda, H. Structure of Voltage-Dependent Anion Channel-Tethered Bilayer Lipid Membranes Determined Using Neutron Reflectivity. Acta Crystallogr. D Struct. Biol. 2018, 74, 1219–1232. DOI: 10.1107/S2059798318011749.
  • Jadhav, S. R.; Zheng, Y.; Michael Garavito, R.; Mark Worden, R. Functional Characterization of PorB Class II Porin from Neisseria Meningitidis Using a Tethered Bilayer Lipid Membrane. Biosens. Bioelectron. 2008, 24, 831–835. DOI: 10.1016/j.bios.2008.07.010.
  • Eicher-Lorka, O.; Charkova, T.; Matijoška, A.; Kuodis, Z.; Urbelis, G.; Penkauskas, T.; Mickevičius, M.; Bulovas, A.; Valinčius, G. Cholesterol-Based Tethers and Markers for Model Membranes Investigation. Chem. Phys. Lipids 2016, 195, 71–86. DOI: 10.1016/j.chemphyslip.2015.12.006.
  • Gritsch, S.; Nollert, P.; Jähnig, F.; Sackmann, E. Impedance Spectroscopy of Porin and Gramicidin Pores Reconstituted into Supported Lipid Bilayers on Indium-Tin-Oxide Electrodes. Langmuir 1998, 14, 3118–3125. DOI: 10.1021/la9710381.
  • Puiggalí-Jou, A.; Pawlowski, J.; Del Valle, L. J.; Michaux, C.; Perpète, E. A.; Sek, S.; Alemán, C. Properties of Omp2a-Based Supported Lipid Bilayers: Comparison with Polymeric Bioinspired Membranes. ACS Omega 2018, 3, 9003–9019. DOI: 10.1021/acsomega.8b00913.
  • Kibrom, A.; Roskamp, R. F.; Jonas, U.; Menges, B.; Knoll, W.; Paulsen, H.; Naumann, R. L. C. Hydrogel-Supported Protein-Tethered Bilayer Lipid Membranes: A New Approach toward Polymer-Supported Lipid Membranes. Soft Matter 2011, 7, 237–246. DOI: 10.1039/C0SM00618A.
  • Sugihara, K.; Delai, M.; Szendro, I.; Guillaume-Gentil, O.; Vörös, J.; Zambelli, T. Simultaneous OWLS and EIS Monitoring of Supported Lipid Bilayers with the Pore Forming Peptide Melittin. Sens. Actuators B Chem. 2012, 161, 600–606. DOI: 10.1016/j.snb.2011.11.007.
  • Chen, J.; Guan, S. M.; Sun, W.; Fu, H. Melittin, the Major Pain-Producing Substance of Bee Venom. Neurosci. Bull. 2016, 32, 265–272. DOI: 10.1007/s12264-016-0024-y.
  • Richter, R. P.; Brisson, A. Characterization of Lipid Bilayers and Protein Assemblies Supported on Rough Surfaces by Atomic Force Microscopy†. Langmuir 2003, 19, 1632–1640. DOI: 10.1021/la026427w.
  • Briand, E.; Zäch, M.; Svedhem, S.; Kasemo, B.; Petronis, S. Combined QCM-D and EIS Study of Supported Lipid Bilayer Formation and Interaction with Pore-Forming Peptides. Analyst 2010, 135, 343–350. DOI: 10.1039/b918288h.
  • Gabriunaite, I.; Valiūnienė, A.; Poderyte, M.; Ramanavicius, A. Silane-Based Self-Assembled Monolayer Deposited on Fluorine Doped Tin Oxide as Model System for Pharmaceutical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2020, 177, 112832. DOI: 10.1016/j.jpba.2019.112832.
  • Valiūnienė, A.; Gabriunaite, I.; Poderyte, M.; Ramanavicius, A. Electroporation of a Hybrid Bilayer Membrane by Scanning Electrochemical Microscope. Bioelectrochemistry 2020, 136, 107617. DOI: 10.1016/j.bioelechem.2020.107617.
  • Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-Alloys for Long-Term Implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. DOI: 10.1016/j.jmbbm.2012.11.014.
  • Rakovska, B.; Ragaliauskas, T.; Mickevicius, M.; Jankunec, M.; Niaura, G.; Vanderah, D. J.; Valincius, G. Structure and Function of the Membrane Anchoring Self-Assembled Monolayers. Langmuir 2015, 31, 846–857. DOI: 10.1021/la503715b.
  • Alharbi, A. R. M.; Andersson, J. M.; Köper, I.; Andersson, G. G. Investigating the Structure of Self-Assembled Monolayers Related to Biological Cell Membranes. Langmuir 2019, 35, 14213–14221. DOI: 10.1021/acs.langmuir.9b02553.
  • Mcgillivray, D. J.; Valincius, G.; Vanderah, D. J.; Febo-Ayala, W.; Woodward, J. T.; Heinrich, F.; Kasianowicz, J. J.; Lösche, M. Molecular-Scale Structural and Functional Characterization of Sparsely Tethered Bilayer Lipid Membranes. Biointerphases 2007, 2, 21–33. DOI: 10.1116/1.2709308.
  • Atanasov, V.; Knorr, N.; Duran, R. S.; Ingebrandt, S.; Offenhäusser, A.; Knoll, W.; Köper, I. Membrane on a Chip: A Functional Tethered Lipid Bilayer Membrane on Silicon Oxide surfaces. Biophys. J. 2005, 89, 1780–1788. DOI: 10.1529/biophysj.105.061374.
  • Hughes, L. D.; Boxer, S. G. DNA-Based Patterning of Tethered Membrane Patches. Langmuir 2013, 29, 12220–12227. DOI: 10.1021/la402537p.
  • Zhou, W.; Burke, P. J. Versatile Bottom-Up Synthesis of Tethered Bilayer Lipid Membranes on Nanoelectronic Biosensor Devices. ACS Appl. Mater. Interfaces 2017, 9, 14618–14632. DOI: 10.1021/acsami.7b00268.
  • Gabriunaite, I.; Valincius, G.; Žilinskas, A.; Valiūnienė, A. Tethered Bilayer Membrane Formation on Silanized Fluorine Doped Tin Oxide Surface. J. Electrochem. Soc. 2022, 169, 037515. DOI: 10.1149/1945-7111/ac5c96.
  • Tucker-Schwartz, A. K.; Farrell, R. A.; Garrell, R. L. Thiol-Ene Click Reaction as a General Route to Functional Trialkoxysilanes for Surface Coating Applications. J. Am. Chem. Soc. 2011, 133, 11026–11029. DOI: 10.1021/ja202292q.
  • Liustrovaitė, V.; Valiūnienė, A.; Valinčius, G.; Ramanavičius, A. Electrochemical Impedance Spectroscopy Based Evaluation of Chlorophyll a Reconstitution within Tethered Bilayer Lipid Membrane. J. Electrochem. Soc. 2021, 168, 066506. DOI: 10.1149/1945-7111/ac0262.
  • Aberle, A. G.; Glunz, S. W.; Stephens, A. W.; Green, M. A. High-Eficiency Silicon Solar Cells: Si/SiO2, Interface Parameters and Their Impact on Device Performance. Prog. Photovolt: Res. Appl. 1994, 2, 265–273. DOI: 10.1002/pip.4670020402.
  • Kilpeläinen, S.; Kujala, J.; Tuomisto, F.; Slotte, J.; Lu, Y. W.; Nylandsted Larsen, A. Si Nanoparticle Interfaces in Si/SiO2 Solar Cell Materials. J. Appl. Phys. 2013, 114, 164316. DOI: 10.1063/1.4824826.
  • Gourbilleau, F.; Ternon, C.; Maestre, D.; Palais, O.; Dufour, C. Silicon-Rich SiO2/SiO2 Multilayers: A Promising Material for the Third Generation of Solar Cell. J. Appl. Phys. 2009, 106, 013501. DOI: 10.1063/1.3156730.
  • Silberzan, P.; Leger, L.; Ausserre, D.; Benattar, J. J. Silanation of Silica Surfaces. A New Method of Constructing Pure or Mixed Monolayers. Langmuir 1991, 7, 1647–1651. DOI: 10.1021/la00056a017.
  • McGovern, M. E.; Kallury, K. M. R.; Thompson, M. Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane. Langmuir 1994, 10, 3607–3614. DOI: 10.1021/la00022a038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.