707
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 742-774 | Published online: 22 Jul 2022

References

  • Halliwell, B.; Gutteridge, J. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, 2015.
  • Halliwell, B. Reactive Species and Antioxidants. Redox Biology is a Fundamental Theme of Aerobic Life. Plant Physiol. 2006, 141, 312–322. DOI: 10.1104/PP.106.077073.
  • Mailloux, R. J.; McBride, S. L.; Harper, M. E. Unearthing the Secrets of Mitochondrial ROS and Glutathione in Bioenergetics. Trends Biochem. Sci. 2013, 38, 592–602. DOI: 10.1016/J.TIBS.2013.09.001.
  • Snezhkina, A. V.; Kudryavtseva, A. V.; Kardymon, O. L.; Savvateeva, M. V.; Melnikova, N. V.; Krasnov, G. S.; Dmitriev, A. A. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid. Med. Cell. Longev. 2019, 2019, 6175804. DOI: 10.1155/2019/6175804.
  • Tafani, M.; Sansone, L.; Limana, F.; Arcangeli, T.; De Santis, E.; Polese, M.; Fini, M.; Russo, M. A. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression. Oxid. Med. Cell. Longev. 2016, 2016, 1–18. DOI: 10.1155/2016/3907147.
  • Spencer, N. Y.; Engelhardt, J. F. The Basic Biology of Redoxosomes in Cytokine-Mediated Signal Transduction and Implications for Disease-Specific Therapies. Biochemistry. 2014, 53, 1551–1564. DOI: 10.1021/bi401719r.
  • Sun, Y.; Lu, Y.; Saredy, J.; Wang, X.; Drummer IV, C.; Shao, Y.; Saaoud, F.; Xu, K.; Liu, M.; Yang, W. Y.; et al. ROS Systems Are a New Integrated Network for Sensing Homeostasis and Alarming Stresses in Organelle Metabolic Processes. Redox Biol. 2020, 37, 101696. DOI: 10.1016/J.REDOX.2020.101696.
  • Li, J. M.; Shah, A. M. Endothelial Cell Superoxide Generation: Regulation and Relevance for Cardiovascular Pathophysiology. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 2004, 287, 1014–1030. DOI: 10.1152/ajpregu.00124.2004.
  • Harris, I. S.; DeNicola, G. M. The Complex Interplay between Antioxidants and ROS in Cancer. Trends Cell Biol. 2020, 30, 440–451. DOI: 10.1016/J.TCB.2020.03.002.
  • Luo, S.; Lei, H.; Qin, H.; Xia, Y. Molecular Mechanisms of Endothelial NO Synthase Uncoupling. Curr. Pharm. Des. 2014, 20, 3548–3553. DOI: 10.2174/13816128113196660746.
  • Robinson, J. M. Reactive Oxygen Species in Phagocytic Leukocytes. Histochem. Cell Biol. 2008, 130, 281–297. DOI: 10.1007/s00418-008-0461-4.
  • Tlili, A.; Dupré-Crochet, S.; Erard, M.; Nüsse, O. Kinetic Analysis of Phagosomal Production of Reactive Oxygen Species. Free Radic. Biol. Med. 2011, 50, 438–447. DOI: 10.1016/J.FREERADBIOMED.2010.11.024.
  • Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. Biomed Res. Int. 2014, 2014, 761264. DOI: 10.1155/2014/761264.
  • Sayre, L. M.; Perry, G.; Smith, M. A. Oxidative Stress and Neurotoxicity. Chem. Res. Toxicol. 2008, 21, 172–188. DOI: 10.1021/TX700210J.
  • Pollack, M.; Leeuwenburgh, C. Apoptosis and Aging: Role of the Mitochondria. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, B475–B482. DOI: 10.1093/GERONA/56.11.B475.
  • Cutler, R. G.; Rodriguez, H. Critical Reviews of Oxidative Stress and Aging; World Scientific: Singapore, 2002.
  • Yamato, M.; Egashira, T.; Utsumi, H. Application of In Vivo ESR Spectroscopy to Measurement of Cerebrovascular ROS Generation in Stroke. Free Radic. Biol. Med. 2003, 35, 1619–1631. DOI: 10.1016/J.FREERADBIOMED.2003.09.013.
  • Coudray, C.; Favier, A. Determination of Salicylate Hydroxylation Products as an In Vivo Oxidative Stress Marker. Free Radic. Biol. Med. 2000, 29, 1064–1070. DOI: 10.1016/S0891-5849(00)00403-2.
  • Wojtala, A.; Bonora, M.; Malinska, D.; Pinton, P.; Duszynski, J.; Wieckowski, M. R. Methods to Monitor ROS Production by Fluorescence Microscopy and Fluorometry. Methods Enzymol. 2014, 542, 243–262. DOI: 10.1016/B978-0-12-416618-9.00013-3.
  • Kim, J. S.; Jeong, K.; Murphy, J. M.; Rodriguez, Y. A. R.; Lim, S. T. S. A Quantitative Method to Measure Low Levels of Ros in Nonphagocytic Cells by Using a Chemiluminescent Imaging System. Oxid. Med. Cell. Longev. 2019, 11, 1754593. DOI: 10.1155/2019/1754593.
  • Lu, C.; Song, G.; Lin, J. M. Reactive Oxygen Species and Their Chemiluminescence-Detection Methods. TrAC Trends Anal. Chem. 2006, 25, 985–995. DOI: 10.1016/j.trac.2006.07.007.
  • Duanghathaipornsuk, S.; Farrell, E. J.; Alba-Rubio, A. C.; Zelenay, P.; Kim, D.-S.; Farrell, E. J.; Alba-Rubio, A. C.; Zelenay, P.; Kim, D. Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications. Biosensors. 2021, 11, 30.     DOI: 10.3390/BIOS11020030.
  • Ganesana, M.; Erlichman, J. S.; Andreescu, S. Real-Time Monitoring of Superoxide Accumulation and Antioxidant Activity in a Brain Slice Model Using an Electrochemical Cytochrome c Biosensor. Free Radic. Biol. Med. 2012, 53, 2240–2249. DOI: 10.1016/J.FREERADBIOMED.2012.10.540.
  • Yang, H.; Hou, J.; Wang, Z.; Zhang, T.; Xu, C. An Ultrasensitive Biosensor for Superoxide Anion Based on Hollow Porous PtAg Nanospheres. Biosens. Bioelectron. 2018, 117, 429–435. DOI: 10.1016/J.BIOS.2018.06.034.
  • Chen, W.; Ding, S.; Wu, J.; Shi, G.; Zhu, A. In Situ Detection of Hydroxyl Radicals in Mitochondrial Oxidative Stress with a Nanopipette Electrode. Chem. Commun. (Camb.). 2020, 56, 13225–13228. DOI: 10.1039/D0CC05889K.
  • Gáspár, S. Detection of Superoxide and Hydrogen Peroxide from Living Cells Using Electrochemical Sensors. ACS Symp. Ser. 2011, 1083, 289–309. DOI: 10.1021/BK-2011-1083.CH010.
  • Calas-Blanchard, C.; Catanante, G.; Noguer, T. Electrochemical Sensor and Biosensor Strategies for ROS/RNS Detection in Biological Systems. Electroanalysis. 2014, 26, 1277–1286. DOI: 10.1002/elan.201400083.
  • Zhao, S.; Zang, G.; Zhang, Y.; Liu, H.; Wang, N.; Cai, S.; Durkan, C.; Xie, G.; Wang, G. Recent Advances of Electrochemical Sensors for Detecting and Monitoring ROS/RNS. Biosens. Bioelectron. 2021, 179, 113052. DOI: 10.1016/J.BIOS.2021.113052.
  • Hayyan, M.; Hashim, M. A.; Alnashef, I. M. Superoxide Ion: Generation and Chemical Implications. Chem Rev. 2016, 116, 3029–3085. DOI: 10.1021/ACS.CHEMREV.5B00407.
  • Henchcliffe, C.; Beal, F. M. Mitochondrial Biology and Oxidative Stress in Parkinson Disease Pathogenesis. Nat. Clin. Pract. Neurol. 2008, 4, 600–609. DOI: 10.1038/ncpneuro0924.
  • Yeh, C. C.; Hou, M. F.; Tsai, S. M.; Lin, S. K.; Hsiao, J. K.; Huang, J. C.; Wang, L. H.; Wu, S. H.; Hou, L. A.; Ma, H.; Tsai, L. Y. Superoxide Anion Radical, Lipid Peroxides and Antioxidant Status in the Blood of Patients with Breast Cancer. Clin Chim Acta. 2005, 361, 104–111. DOI: 10.1016/J.CCCN.2005.05.002.
  • Farmer, K. J.; Sohal, R. S. Relationship between Superoxide Anion Radical Generation and Aging in the Housefly, Musca domestica. Free Radic. Free Radic. Biol. Med. 1989, 7, 23–29. DOI: 10.1016/0891-5849(89)90096-8.
  • Kocabay, O.; Emregul, E.; Aras, S.; Emregul, K. C. Carboxymethylcellulose-Gelatin-Superoxidase Dismutase Electrode for Amperometric Superoxide Radical Sensing. Bioprocess Biosyst. Eng. 2012, 35, 923–930. DOI: 10.1007/S00449-011-0677-X.
  • Liu, Y.; Liu, X.; Liu, Y.; Liu, G.; Ding, L.; Lu, X. Construction of a Highly Sensitive Non-Enzymatic Sensor for Superoxide Anion Radical Detection from Living Cells. Biosens Bioelectron. 2017, 90, 39–45. DOI: 10.1016/J.BIOS.2016.11.015.
  • Abbas, K.; Hardy, M.; Poulhès, F.; Karoui, H.; Tordo, P.; Ouari, O.; Peyrot, F. Medium-Throughput ESR Detection of Superoxide Production in Undetached Adherent Cells Using Cyclic Nitrone Spin Traps. Free Radic. Res. 2015, 49, 1122–1128. DOI: 10.3109/10715762.2015.1045504.
  • Abbas, K.; Babić, N.; Peyrot, F. Use of Spin Traps to Detect Superoxide Production in Living Cells by Electron Paramagnetic Resonance (EPR) Spectroscopy. Methods. 2016, 109, 31–43. DOI: 10.1016/J.YMETH.2016.05.001.
  • Fernandes, D. C.; Gonçalves, R. C.; Laurindo, F. R. M. Measurement of Superoxide Production and NADPH Oxidase Activity by HPLC Analysis of Dihydroethidium Oxidation. Methods Mol. Biol. 2017, 1527, 233–249. DOI: 10.1007/978-1-4939-6625-7_19.
  • Kalinovic, S.; Oelze, M.; Kröller-Schön, S.; Steven, S.; Vujacic-Mirski, K.; Kvandová, M.; Schmal, I.; Al Zuabi, A.; Münzel, T.; Daiber, A. Comparison of Mitochondrial Superoxide Detection Ex Vivo/In Vivo by mitoSOX HPLC Method with Classical Assays in Three Different Animal Models of Oxidative Stress. Antioxidants. 2019, 8, 514. DOI: 10.3390/antiox8110514.
  • Ma, S.; Ma, Y.; Liu, Q.; Lin, W. A Two-Photon Fluorescent Probe with Lysosome Targetability for Imaging Endogenous Superoxide Anion in Living Cells, Zebrafish and Pneumonia Tissue. Sens. Actuators B Chem. 2021, 332, 129523. DOI: 10.1016/j.snb.2021.129523.
  • Chen, L.; Lu, X.; Xiao, F.; Wu, D. A Sensitive and Selective Fluorescence Probe for the Detection of Superoxide Radical Anion In Vivo Based on a Protection-Deprotection Process. Dye. Pigment. 2021, 194, 109614. DOI: 10.1016/j.dyepig.2021.109614.
  • Bronsart, L. L.; Stokes, C.; Contag, C. H. Multimodality Imaging of Cancer Superoxide Anion Using the Small Molecule Coelenterazine. Mol. Imaging Biol. 2016, 18, 166–171. DOI: 10.1007/s11307-015-0896-7.
  • Balamurugan, M.; Santharaman, P.; Madasamy, T.; Rajesh, S.; Sethy, N. K.; Bhargava, K.; Kotamraju, S.; Karunakaran, C. Recent Trends in Electrochemical Biosensors of Superoxide Dismutases. Biosens. Bioelectron. 2018, 116, 89–99. DOI: 10.1016/J.BIOS.2018.05.040.
  • Han, M.; Guo, P.; Wang, X.; Tu, W.; Bao, J.; Dai, Z. Mesoporous SiO2–(L)-Lysine Hybrid Nanodisks: Direct Electron Transfer of Superoxide Dismutase, Sensitive Detection of Superoxide Anions and Its Application in Living Cell Monitoring. RSC Adv. 2013, 3, 20456–20463. DOI: 10.1039/c3ra42403k.
  • Lian, M.; Xu, L.; Zhu, X.; Chen, X.; Yang, W.; Wang, T. Seamless Signal Transduction from Three-Dimensional Cultured Cells to a Superoxide Anions Biosensor via In Situ Self-Assembly of Dipeptide Hydrogel. Anal Chem. 2017, 89, 12843–12849. DOI: 10.1021/ACS.ANALCHEM.7B03371.
  • Derkus, B.; Emregul, E.; Emregul, K. C. Copper–Zinc Alloy Nanoparticle Based Enzyme-Free Superoxide Radical Sensing on a Screen-Printed Electrode. Talanta. 2015, 134, 206–214. DOI: 10.1016/J.TALANTA.2014.11.003.
  • Emregul, E.; Kocabay, O.; Derkus, B.; Yumak, T.; Emregul, K. C.; Sinag, A.; Polat, K. A Novel Carboxymethylcellulose–Gelatin–Titanium Dioxide–Superoxide Dismutase Biosensor; Electrochemical Properties of Carboxymethylcellulose–Gelatin–Titanium Dioxide–Superoxide Dismutase. Bioelectrochemistry. 2013, 90, 8–17. DOI: 10.1016/J.BIOELECHEM.2012.09.002.
  • Hiatt, L. A.; McKenzie, J. R.; Deravi, L. F.; Harry, R. S.; Wright, D. W.; Cliffel, D. E. A Printed Superoxide Dismutase Coated Electrode for the Study of Macrophage Oxidative Burst. Biosens Bioelectron. 2012, 33, 128–133. DOI: 10.1016/J.BIOS.2011.12.038.
  • Crulhas, B. P.; Recco, L. C.; Delella, F. K.; Pedrosa, V. A. A Novel Superoxide Anion Biosensor for Monitoring Reactive Species of Oxygen Released by Cancer Cells. Electroanalysis. 2017, 29, 1252–1257. DOI: 10.1002/elan.201600767.
  • Peng, Q.; Yan, X.; Shi, X.; Ou, S.; Gu, H.; Yin, X.; Shi, G.; Yu, Y. In Vivo Monitoring of Superoxide Anion from Alzheimer’s Rat Brains with Functionalized Ionic Liquid Polymer Decorated Microsensor. Biosens Bioelectron. 2019, 144, 111665. DOI: 10.1016/J.BIOS.2019.111665.
  • Wang, Z.; Liu, D.; Gu, H.; Zhu, A.; Tian, Y.; Shi, G. NTA-Modified Carbon Electrode as a General Relaying Substrate to Facilitate Electron Transfer of SOD: Application to In Vivo Monitoring of O2− in a Rat Brain. Biosens Bioelectron. 2013, 43, 101–107. DOI: 10.1016/J.BIOS.2012.10.071.
  • Wang, X.; Han, M.; Bao, J.; Tu, W.; Dai, Z. A Superoxide Anion Biosensor Based on Direct Electron Transfer of Superoxide Dismutase on Sodium Alginate Sol–Gel Film and Its Application to Monitoring of Living Cells. Anal Chim Acta. 2012, 717, 61–66. DOI: 10.1016/J.ACA.2011.12.045.
  • Li, X. R.; Wang, B.; Xu, J. J.; Chen, H. Y. In Vitro Detection of Superoxide Anions Released from Cancer Cells Based on Potassium-Doped Carbon Nanotubes–Ionic Liquid Composite Gels. Nanoscale. 2011, 3, 5026–5033. DOI: 10.1039/C1NR11025J.
  • Zhu, X.; Liu, T.; Zhao, H.; Shi, L.; Li, X.; Lan, M. Ultrasensitive Detection of Superoxide Anion Released from Living Cells Using a Porous Pt–Pd Decorated Enzymatic Sensor. Biosens. Bioelectron. 2016, 79, 449–456. DOI: 10.1016/J.BIOS.2015.12.061.
  • Sadeghian, R. B.; Ostrovidov, S.; Han, J.; Salehi, S.; Bahraminejad, B.; Bae, H.; Chen, M.; Khademhosseini, A. Online Monitoring of Superoxide Anions Released from Skeletal Muscle Cells Using an Electrochemical Biosensor Based on Thick-Film Nanoporous Gold. ACS Sens. 2016, 1, 921–928. DOI: 10.1021/acssensors.6b00325.
  • Liu, X.; Marrakchi, M.; Jahne, M.; Rogers, S.; Andreescu, S. Real-Time Investigation of Antibiotics-Induced Oxidative Stress and Superoxide Release in Bacteria Using an Electrochemical Biosensor. Free Radic. Biol. Med. 2016, 91, 25–33. DOI: 10.1016/J.FREERADBIOMED.2015.12.001.
  • Banan Sadeghian, R.; Han, J.; Ostrovidov, S.; Salehi, S.; Bahraminejad, B.; Ahadian, S.; Chen, M.; Khademhosseini, A. Macroporous Mesh of Nanoporous Gold in Electrochemical Monitoring of Superoxide Release from Skeletal Muscle Cells. Biosens. Bioelectron. 2017, 88, 41–47. DOI: 10.1016/J.BIOS.2016.06.067.
  • Rahman, M. A.; Kothalam, A.; Choe, E. S.; Won, M. S.; Shim, Y. B. Stability and Sensitivity Enhanced Electrochemical In Vivo Superoxide Microbiosensor Based on Covalently Co-Immobilized Lipid and Cytochrome c. Anal Chem. 2012, 84, 6654–6660. DOI: 10.1021/AC301086M.
  • Ozel, R. E.; Bulbul, G.; Perez, J.; Pourmand, N. Functionalized Quartz Nanopipette for Intracellular Superoxide Sensing: A Tool for Monitoring Reactive Oxygen Species Levels in Single Living Cell. ACS Sens. 2018, 3, 1316–1321. DOI: 10.1021/ACSSENSORS.8B00185.
  • Archibald, F. S.; Fridovich, I. The Scavenging of Superoxide Radical by Manganous Complexes: In Vitro. Arch. Biochem. Biophys. 1982, 214, 452–463. DOI: 10.1016/0003-9861(82)90049-2.
  • Shen, X.; Wang, Q.; Liu, Y.; Xue, W.; Ma, L.; Feng, S.; Wan, M.; Wang, F.; Mao, C. Manganese Phosphate Self-Assembled Nanoparticle Surface and Its Application for Superoxide Anion Detection. Sci. Rep. 2016, 6, 1–9. DOI: 10.1038/srep28989.
  • Zheng, J.; Wang, B.; Jin, Y.; Weng, B.; Chen, J. Nanostructured MXene-Based Biomimetic Enzymes for Amperometric Detection of Superoxide Anions from HepG2 Cells. Microchim. Acta. 2019, 186, 1–9. DOI: 10.1007/s00604-018-3220-9.
  • Wang, Q.; Zhou, Q.; Zhang, Q.; Shi, R.; Ma, S.; Zhao, W.; Zhou, M. Fabrication of Novel Superoxide Anion Biosensor Based on 3D Interface of Mussel-Inspired Fe3O4-Mn3(PO3)2@Ni Foam. Talanta. 2018, 179, 145–152. DOI: 10.1016/J.TALANTA.2017.10.054.
  • Zhao, S. F.; Hu, F. X.; Shi, Z. Z.; Fu, J. J.; Chen, Y.; Dai, F. Y.; Guo, C. X.; Li, C. M. 2-D/2-D Heterostructured Biomimetic Enzyme by Interfacial Assembling Mn3(PO4)2 and MXene as a Flexible Platform for Realtime Sensitive Sensing Cell Superoxide. Nano Res. 2021, 14, 879–886. DOI: 10.1007/s12274-020-3130-0.
  • Cui, M.; Ren, J.; Wen, X.; Li, N.; Xing, Y.; Zhang, C.; Han, Y.; Ji, X. (III) Tetraphenyl Porphine as Superoxide Dismutase Mimic. Chem. Res. Chin. Univ. 2020, 36, 774–780. DOI: 10.1007/s40242-019-0006-5.
  • Ding, A.; Liu, F.; Zheng, J.; Chen, J.; Li, C.; Wang, B. Synthesis of Manganese Oxide Embedded Carbon Nanofibers as Effective Biomimetic Enzymes for Sensitive Detection of Superoxide Anions Released from Living Cells. Macromol. Mater. Eng. 2018, 303, 1800079. DOI: 10.1002/mame.201800079.
  • Yuan, L.; Liu, S.; Tu, W.; Zhang, Z.; Bao, J.; Dai, Z. Biomimetic Superoxide Dismutase Stabilized by Photopolymerization for Superoxide Anions Biosensing and Cell Monitoring. Anal Chem. 2014, 86, 4783–4790. DOI: 10.1021/AC403920Q.
  • Cai, X.; Shi, L.; Sun, W.; Zhao, H.; Li, H.; He, H.; Lan, M. A Facile Way to Fabricate Manganese Phosphate Self-Assembled Carbon Networks as Efficient Electrochemical Catalysts for Real-Time Monitoring of Superoxide Anions Released from HepG2 Cells. Biosens. Bioelectron. 2018, 102, 171–178. DOI: 10.1016/J.BIOS.2017.11.020.
  • Cai, X.; Wang, Z.; Zhang, H.; Li, Y.; Chen, K.; Zhao, H.; Lan, M. Carbon-Mediated Synthesis of Shape-Controllable Manganese Phosphate as Nanozymes for Modulation of Superoxide Anions in HeLa Cells. J. Mater. Chem. B. 2019, 7, 401–407. DOI: 10.1039/C8TB02573H.
  • Niu, Y.; Hu, S.; Zhou, Q.; Liu, Y.; Liu, Y.; Zhao, J.; Wan, M.; Zhao, W.; Shen, J. Superoxide Anion Biosensor Based on Bionic-Enzyme Hyperbranched Polyester Particles. Aust. J. Chem. 2018, 71, 119–126. DOI: 10.1071/CH17420.
  • Luo, Y.; Hu, G.; Zhu, A.; Kong, B.; Wang, Z.; Liu, C.; Tian, Y. A Biomimetic Sensor for the Determination of Extracellular O2− Using Synthesized Mn-TPAA on TiO2 Nanoneedle Film. Biosens. Bioelectron. 2011, 29, 189–194. DOI: 10.1016/J.BIOS.2011.08.017.
  • Ding, A.; Wang, B.; Ma, X.; Diao, J.; Zheng, J.; Chen, J.; Li, C. DNA-Induced Synthesis of Biomimetic Enzyme for Sensitive Detection of Superoxide Anions Released from Live Cell. RSC Adv. 2018, 8, 12354–12359. DOI: 10.1039/C7RA12962A.
  • Zou, Z.; Sun, Q.; Zhou, G.; Ma, X.; Zou, L.; Zhang, Y.; Liang, T.; Shi, Z.; Gao, J.; Li, C. M. Real-Time Biomimetically Monitoring Superoxide Anions Released from Transient Transmembrane Secretion to Investigate the Inhibition Effect on Aspergillus flavus Growth. Sens. Bio-Sens. Res. 2020, 29, 100363. DOI: 10.1016/j.sbsr.2020.100363.
  • Ma, X.; Hu, W.; Guo, C.; Yu, L.; Gao, L.; Xie, J.; Li, C. M. DNA-Templated Biomimetic Enzyme Sheets on Carbon Nanotubes to Sensitively In Situ Detect Superoxide Anions Released from Cells. Adv. Funct. Mater. 2014, 24, 5897–5903. DOI: 10.1002/adfm.201401443.
  • Zou, Z.; Ma, X. Q.; Zou, L.; Shi, Z. Z.; Sun, Q. Q.; Liu, Q.; Liang, T. T.; Li, C. M. Tailoring Pore Structures with Optimal Mesopores to Remarkably Promote DNA Adsorption Guiding the Growth of Active Mn3(PO4)2 toward Sensitive Superoxide Biomimetic Enzyme Sensors. Nanoscale. 2019, 11, 2624–2630. DOI: 10.1039/C8NR08829B.
  • Wang, Y.; Wang, D.; Sun, L. H.; Xue, P.; Wang, M. Q.; Lu, Z.; Wang, F.; Xia, Q.; Xu, M. W.; Bao, S. J. Constructing High Effective nano-Mn3(PO4)2-Chitosan In Situ Electrochemical Detection Interface for Superoxide Anions Released from Living Cell. Biosens. Bioelectron. 2019, 133, 133–140. DOI: 10.1016/J.BIOS.2019.03.029.
  • Hu, F. X.; Kang, Y. J.; Du, F.; Zhu, L.; Xue, Y. H.; Chen, T.; Dai, L. M.; Li, C. M. Living Cells Directly Growing on a DNA/Mn3(PO4)2-Immobilized and Vertically Aligned CNT Array as a Free-Standing Hybrid Film for Highly Sensitive In Situ Detection of Released Superoxide Anions. Adv. Funct. Mater. 2015, 25, 5924–5932. DOI: 10.1002/adfm.201502341.
  • Zhou, J.; Luo, Y.; Zhu, A.; Liu, Y.; Zhu, Z.; Tian, Y. A Reliable and Durable Approach for Real-Time Determination of Cellular Superoxide Anion Based on Biomimetic Superoxide Dismutase Stabilized by a Zeolite. Analyst. 2011, 136, 1594–1598. DOI: 10.1039/C0AN00690D.
  • Peng, F.; Xu, T.; Wu, F.; Ma, C.; Liu, Y.; Li, J.; Zhao, B.; Mao, C. Novel Biomimetic Enzyme for Sensitive Detection of Superoxide Anions. Talanta. 2017, 174, 82–91. DOI: 10.1016/J.TALANTA.2017.05.028.
  • Wang, M. Q.; Ye, C.; Bao, S. J.; Xu, M. W.; Zhang, Y.; Wang, L.; Ma, X. Q.; Guo, J.; Li, C. M. Nanostructured Cobalt Phosphates as Excellent Biomimetic Enzymes to Sensitively Detect Superoxide Anions Released from Living Cells. Biosens Bioelectron. 2017, 87, 998–1004. DOI: 10.1016/J.BIOS.2016.09.066.
  • Zhao, X.; Peng, M.; Liu, Y.; Wang, C.; Guan, L.; Li, K.; Lin, Y. Fabrication of Cobalt Nanocomposites as Enzyme Mimetic with Excellent Electrocatalytic Activity for Superoxide Oxidation and Cellular Release Detection. ACS Sustainable Chem. Eng. 2019, 7, 10227–10233. DOI: 10.1021/acssuschemeng.9b01694.
  • Zou, Z.; Chen, J.; Shi, Z.; Yuan, C.; Zhou, G.; Liu, Q.; Chen, H.; Zeng, Q.; Liang, T.; Tang, K. L.; Li, C. M. Cobalt Phosphates Loaded into Iodine-Spaced Reduced Graphene Oxide Nanolayers for Electrochemical Measurement of Superoxide Generated by Cells. ACS Appl. Nano Mater. 2021, 4, 3631–3638. DOI: 10.1021/acsanm.1c00148.
  • Zou, Z.; Shi, Z. Z.; Wu, J. G.; Wu, C.; Zeng, Q. X.; Zhang, Y. Y.; Zhou, G. D.; Wu, X. S.; Li, J.; Chen, H.; et al. Atomically Dispersed Co to an End-Adsorbing Molecule for Excellent Biomimetically and Prime Sensitively Detecting O2•− Released from Living Cells. Anal Chem. 2021, 93, 10789–10797. DOI: 10.1021/ACS.ANALCHEM.1C00483.
  • Wang, Y.; Wang, M. Q.; Lei, L. L.; Chen, Z. Y.; Liu, Y. S.; Bao, S. J. FePO4 Embedded in Nanofibers Consisting of Amorphous Carbon and Reduced Graphene Oxide as an Enzyme Mimetic for Monitoring Superoxide Anions Released by Living Cells. Microchim. Acta. 2018, 185, 1–9. DOI: 10.1007/S00604-018-2691-Z.
  • Wei, H.; Shang, T.; Wu, T.; Liu, G.; Ding, L.; Liu, X. Construction of an Ultrasensitive Non-Enzymatic Sensor to Investigate the Dynamic Process of Superoxide Anion Release from Living Cells. Biosens Bioelectron. 2018, 100, 8–15. DOI: 10.1016/J.BIOS.2017.08.046.
  • Liu, X.; Liu, X.; Wei, H.; Song, G.; Guo, H.; Lu, X. Sensitive Detection of Superoxide Anion Released from Living Cells Using Silver Nanoparticles and Functionalized Multiwalled Carbon Nanotube Composite. Sens. Actuators B Chem. 2017, 252, 503–510. DOI: 10.1016/j.snb.2017.06.027.
  • Wang, Z.; Zhao, H.; Gao, Q.; Chen, K.; Lan, M. Facile Synthesis of Ultrathin Two-Dimensional Graphene-like CeO2–TiO2 Mesoporous Nanosheet Loaded with Ag Nanoparticles for Non-Enzymatic Electrochemical Detection of Superoxide Anions in HepG2 Cells. Biosens. Bioelectron. 2021, 184, 113236. DOI: 10.1016/J.BIOS.2021.113236.
  • Wu, T.; Li, L.; Song, G.; Ran, M.; Lu, X.; Liu, X. An Ultrasensitive Electrochemical Sensor Based on Cotton Carbon Fiber Composites for the Determination of Superoxide Anion Release from Cells. Microchim. Acta. 2019, 186, 1–9. DOI: 10.1007/S00604-019-3304-1.
  • Hu, F. X.; Guo, C.; Yang, H. B.; Shi, Z.; Wang, M.; Xue, Y. H.; Zhu, L.; Chen, T.; Dai, L.; Li, C. M. 3D Pt/Graphene Foam Bioplatform for Highly Sensitive and Selective In-Situ Adsorption and Detection of Superoxide Anions Released from Living Cells. Sens. Actuators B Chem. 2019, 287, 209–217. DOI: 10.1016/j.snb.2019.02.037.
  • Madhurantakam, S.; Selvaraj, S.; Balaguru Rayappan, J. B.; Krishnan, U. M. Exploring Hesperidin-Copper Complex as an Enzyme Mimic for Monitoring Macrophage Activity. J Solid State Electrochem. 2018, 22, 1893–1899. DOI: 10.1007/s10008-018-3883-5.
  • Wang, M. Q.; Ye, C.; Bao, S. J.; Zhang, Y.; Xu, M. W.; Li, Z. Bimetal–Organic-Frameworks-Derived Yolk–Shell-Structured Porous Co2P/ZnO@PC/CNTs Hybrids for Highly Sensitive Non-Enzymatic Detection of Superoxide Anion Released from Living Cells. Chem. Commun. (Camb.). 2016, 52, 12442–12445. DOI: 10.1039/C6CC06974F.
  • Liu, Y.; Wei, H.; Jiang, X.; Guo, H.; Liu, X. Synthesis of Metal–Organic Frameworks Derived Nanocomposites for Superoxide Anion Radical Sensing and Cell Monitoring upon Oxidative Stress. J. Electroanal. Chem. 2018, 820, 51–59. DOI: 10.1016/j.jelechem.2018.04.068.
  • Jiang, X.; Liu, X.; Wu, T.; Li, L.; Zhang, R.; Lu, X. Metal–Organic Framework Derived Carbon-Based Sensor for Monitoring of the Oxidative Stress of Living Cell and Assessment of Antioxidant Activity of Food Extracts. Talanta. 2019, 194, 591–597. DOI: 10.1016/J.TALANTA.2018.10.093.
  • Li, Y.; Shi, L.; Cai, X.; Zhao, H.; Niu, X.; Lan, M. Construction of Non-Enzymatic Sensor Based on Porous Carbon Matrix Loaded with Pt and Co Nanoparticles for Real-Time Monitoring of Cellular Superoxide Anions. Electrochim. Acta. 2019, 294, 304–311. DOI: 10.1016/j.electacta.2018.10.105.
  • Zhang, H.; Cai, X.; Zhao, H.; Sun, W.; Wang, Z.; Lan, M. Enzyme-Free Electrochemical Sensor Based on ZIF-67 for the Detection of Superoxide Anion Radical Released from SK-BR-3 Cells. J. Electroanal. Chem. 2019, 855, 113653. DOI: 10.1016/j.jelechem.2019.113653.
  • Fan, W.; Liu, X.; Wu, J.; Liu, Q.; Ding, L.; Liu, X. Development of a Novel Silver-Based Sensing Platform for Detecting Superoxide Anion Released from HeLa Cells Directly. Electroanalysis. 2022, 34, 987–994. DOI: 10.1002/elan.202100254.
  • Qiu, Q.; Chen, H.; You, Z.; Feng, Y.; Wang, X.; Wang, Y.; Ying, Y. Shear Exfoliated Metal-Organic Framework Nanosheet-Enabled Flexible Sensor for Real-Time Monitoring of Superoxide Anion. ACS Appl. Mater. Interfaces. 2020, 12, 5429–5436. DOI: 10.1021/ACSAMI.9B17659.
  • Li, Y.; Zhang, H.; Cai, X.; Zhao, H.; Magdassi, S.; Lan, M. Electrochemical Detection of Superoxide Anions in HeLa Cells by Using Two Enzyme-Free Sensors Prepared from ZIF-8-Derived Carbon Nanomaterials. Microchim. Acta. 2019, 186, 1–8. DOI: 10.1007/S00604-019-3473-Y.
  • Cai, X.; Chen, K.; Wang, Z.; Sun, W.; Zhao, H.; Zhang, H.; Chen, H.; Lan, M. Fabricating Carbon-Nanotubes-Based Porous Foam for Superoxide Electrochemical Sensing through One-Step Hydrothermal Process Induced by Phytic Acid. Anal. Chim. Acta. 2018, 1038, 132–139. DOI: 10.1016/J.ACA.2018.07.014.
  • Gao, Q.; Zhao, H.; Wang, Z.; Cai, X.; Zhou, L.; Lan, M. Fabrication of Hierarchically Porous Carbon Networks for the Electrochemical Determination of Superoxide Anion Released from Living Cells. Sens. Actuators B Chem. 2021, 330, 129309. DOI: 10.1016/j.snb.2020.129309.
  • Huang, S.; Zhang, L.; Dai, L.; Wang, Y.; Tian, Y. Nonenzymatic Electrochemical Sensor with Ratiometric Signal Output for Selective Determination of Superoxide Anion in Rat Brain. Anal. Chem. 2021, 93, 5570–5576. DOI: 10.1021/ACS.ANALCHEM.1C00151.
  • Jeong, J.; Essafi, M.; Lee, C.; Haoues, M.; Diouani, M. F.; Kim, H.; Kim, Y. Ultrasensitive Detection of Hazardous Reactive Oxygen Species Using Flexible Organic Transistors with Polyphenol-Embedded Conjugated Polymer Sensing Layers. J. Hazard. Mater. 2018, 355, 17–24. DOI: 10.1016/j.jhazmat.2018.04.063.
  • Flamm, H.; Kieninger, J.; Weltin, A.; Urban, G. A. Superoxide Microsensor Integrated into a Sensing Cell Culture Flask Microsystem Using Direct Oxidation for Cell Culture Application. Biosens. Bioelectron. 2015, 65, 354–359. DOI: 10.1016/J.BIOS.2014.10.062.
  • Liu, T.; Niu, X.; Shi, L.; Zhu, X.; Zhao, H.; Lana, M. Electrocatalytic Analysis of Superoxide Anion Radical Using Nitrogen-Doped Graphene Supported Prussian Blue as a Biomimetic Superoxide Dismutase. Electrochim. Acta. 2015, 176, 1280–1287. DOI: 10.1016/j.electacta.2015.07.155.
  • Matsuoka, R.; Igarashi, M.; Kondo, T.; Aikawa, T.; Yuasa, M. Biomimetic Antithrombogenic Electrochemical Superoxide Anion Radical Sensor. J. Electrochem. Soc. 2014, 161, B163–B166. DOI: 10.1149/2.099406jes.
  • Liu, X.; Ran, M.; Liu, G.; Liu, X.; Xue, Z.; Lu, X. A Sensitively Non-Enzymatic Amperometric Sensor and Its Application in Living Cell Superoxide Anion Radical Detection. Talanta. 2018, 186, 248–255. DOI: 10.1016/J.TALANTA.2018.04.067.
  • Wang, M.-Q.; Ye, C.; Bao, S.; Xu, M.-W. Controlled Synthesis of Mn3(PO4)2 Hollow Spheres as Biomimetic Enzymes for Selective Detection of Superoxide Anions Released by Living Cells. Microchim. Acta. 2017, 184, 1177–1184. DOI: 10.1007/s00604-017-2112-8.
  • Sies, H. Role of Metabolic H2O2 Generation: Redox Signaling and Oxidative Stress. J. Biol. Chem. 2014, 289, 8735–8741. DOI: 10.1074/JBC.R113.544635.
  • Parvez, S.; Long, M. J. C.; Poganik, J. R.; Aye, Y. Redox Signaling by Reactive Electrophiles and Oxidants. Chem. Rev. 2018, 118, 8798–8888. DOI: 10.1021/ACS.CHEMREV.7B00698.
  • Peng, R.; Offenhäusser, A.; Ermolenko, Y.; Mourzina, Y. Biomimetic Sensor Based on Mn(III) Meso-Tetra(N-Methyl-4-Pyridyl) Porphyrin for Non-Enzymatic Electrocatalytic Determination of Hydrogen Peroxide and as an Electrochemical Transducer in Oxidase Biosensor for Analysis of Biological Media. Sens. Actuators B Chem. 2020, 321, 128437. DOI: 10.1016/j.snb.2020.128437.
  • Lennicke, C.; Rahn, J.; Lichtenfels, R.; Wessjohann, L. A.; Seliger, B. Hydrogen Peroxide – Production, Fate and Role in Redox Signaling of Tumor Cells. Cell Commun. Signal. 2015, 13, 1–19. DOI: 10.1186/S12964-015-0118-6.
  • Veal, E. A.; Day, A. M.; Morgan, B. A. Hydrogen Peroxide Sensing and Signaling. Mol. Cell. 2007, 26, 1–14. DOI: 10.1016/J.MOLCEL.2007.03.016.
  • Daniel, K. B.; Agrawal, A.; Manchester, M.; Cohen, S. M. Readily Accessible Fluorescent Probes for Sensitive Biological Imaging of Hydrogen Peroxide. ChemBioChem. 2013, 14, 593–598. DOI: 10.1002/CBIC.201200724.
  • Wang, C.; Yang, M.; Mi, G.; Zhang, B.; Dou, X. H.; Liu, E.; Hu, X.; Xue, W.; Fan, J. Dual-Emission Fluorescence Sensor Based on Biocompatible Bovine Serum Albumin Stabilized Copper Nanoclusters for Ratio and Visualization Detection of Hydrogen Peroxide. Dye Pigment. 2021, 190, 109312. DOI: 10.1016/J.DYEPIG.2021.109312.
  • Chen, Y.; Wang, Z.; Huang, Y.; Feng, S.; Zheng, Z.; Liu, X.; Liu, A. M. Label-Free Detection of Hydrogen Peroxide-Induced Oxidative Stress in Human Retinal Pigment Epithelium Cells via Laser Tweezers Raman Spectroscopy. Biomed. Opt. Express. 2019, 10, 500–513. DOI: 10.1364/BOE.10.000500.
  • Kim, H. J.; Seo, Y. H.; An, S.; Jo, A.; Kwon, I. C.; Kim, S. Chemiluminescence Imaging of Duox2-Derived Hydrogen Peroxide for Longitudinal Visualization of Biological Response to Viral Infection in Nasal Mucosa. Theranostics. 2018, 8, 1798–1807. DOI: 10.7150/THNO.22481.
  • Suárez, G.; Santschi, C.; Martin, O. J. F.; Slaveykova, V. I. Biosensor Based on Chemically-Designed Anchorable Cytochrome c for the Detection of H2O2 Released by Aquaticcells. Biosens. Bioelectron. 2013, 42, 385–390. DOI: 10.1016/j.bios.2012.10.083.
  • Zhao, Y.; Hu, Y.; Hou, J.; Jia, Z.; Zhong, D.; Zhou, S.; Huo, D.; Yang, M.; Hou, C. Electrochemical Biointerface Based on Electrodeposition AuNPs on 3D Graphene Aerogel: Direct Electron Transfer of Cytochrome c and Hydrogen Peroxide Sensing. J. Electroanal. Chem. 2019, 842, 16–23. DOI: 10.1016/j.jelechem.2019.04.052.
  • Reuillard, B.; Gentil, S.; Carrière, M.; Le Goff, A.; Cosnier, S. Biomimetic versus Enzymatic High-Potential Electrocatalytic Reduction of Hydrogen Peroxide on a Functionalized Carbon Nanotube Electrode. Chem. Sci. 2015, 6, 5139–5143. DOI: 10.1039/C5SC01473E.
  • Qin, F. X.; Jia, S. Y.; Wang, F. F.; Wu, S. H.; Song, J.; Liu, Y. Hemin@Metal–Organic Framework with Peroxidase-like Activity and Its Application to Glucose Detection. Catal. Sci. Technol. 2013, 3, 2761–2768. DOI: 10.1039/c3cy00268c.
  • Shu, Y.; Chen, J.; Xu, Z.; Jin, D.; Xu, Q.; Hu, X. Nickel Metal-Organic Framework Nanosheet/Hemin Composite as Biomimetic Peroxidase for Electrocatalytic Reduction of H2O2. J. Electroanal. Chem. 2019, 845, 137–143. DOI: 10.1016/j.jelechem.2019.05.029.
  • Zhao, P.; Chen, S.; Zhou, J.; Zhang, S.; Huo, D.; Hou, C. A Novel Fe-Hemin-Metal Organic Frameworks Supported on Chitosan-Reduced Graphene Oxide for Real-Time Monitoring of H2O2 Released from Living Cells. Anal. Chim. Acta. 2020, 1128, 90–98. DOI: 10.1016/J.ACA.2020.06.008.
  • Cui, H.; Cui, S.; Zhang, S.; Tian, Q.; Liu, Y.; Zhang, P.; Wang, M.; Zhang, J.; Li, X. Cu–MOF/Hemin: A Bionic Enzyme with Excellent Dispersity for the Determination of Hydrogen Peroxide Released from Living Cells. Analyst. 2021, 146, 5951–5961. DOI: 10.1039/D1AN01323H.
  • Liu, Y.; Liu, X.; Guo, Z.; Hu, Z.; Xue, Z.; Lu, X. Horseradish Peroxidase Supported on Porous Graphene as a Novel Sensing Platform for Detection of Hydrogen Peroxide in Living Cells Sensitively. Biosens. Bioelectron. 2017, 87, 101–107. DOI: 10.1016/J.BIOS.2016.08.015.
  • Gutierrez, F. A.; Rubianes, M. D.; Rivas, G. A. New Bioanalytical Platform Based on the Use of Avidin for the Successful Exfoliation of Multi-Walled Carbon Nanotubes and the Robust Anchoring of Biomolecules. Application for Hydrogen Peroxide Biosensing. Anal. Chim. Acta. 2019, 1065, 12–20. DOI: 10.1016/J.ACA.2019.03.022.
  • Feizabadi, M.; Soleymanpour, A.; Faridnouri, H.; Ajloo, D. Improving Stability of Biosensor Based on Covalent Immobilization of Horseradish Peroxidase by γ-Aminobutyric Acid and Application in Detection of H2O2. Int. J. Biol. Macromol. 2019, 136, 597–606. DOI: 10.1016/J.IJBIOMAC.2019.06.103.
  • Baghayeri, M.; Rouhi, M.; Lakouraj, M. M.; Amiri-Aref, M. Bioelectrocatalysis of Hydrogen Peroxide Based on Immobilized Hemoglobin onto Glassy Carbon Electrode Modified with Magnetic Poly(Indole-co-Thiophene) Nanocomposite. J. Electroanal. Chem. 2017, 784, 69–76. DOI: 10.1016/j.jelechem.2016.12.006.
  • Gao, J.; Liu, H.; Tong, C.; Pang, L.; Feng, Y.; Zuo, M.; Wei, Z.; Li, J. Hemoglobin-Mn3(PO4)2 Hybrid Nanoflower with Opulent Electroactive Centers for High-Performance Hydrogen Peroxide Electrochemical Biosensor. Sens. Actuators B Chem. 2020, 307, 127628. DOI: 10.1016/j.snb.2019.127628.
  • Lu, J.; Hu, Y.; Wang, P.; Liu, P.; Chen, Z.; Sun, D. Electrochemical Biosensor Based on Gold Nanoflowers-Encapsulated Magnetic Metal-Organic Framework Nanozymes for Drug Evaluation with In-Situ Monitoring of H2O2 Released from H9C2 Cardiac Cells. Sens. Actuators B Chem. 2020, 311, 127909. DOI: 10.1016/j.snb.2020.127909.
  • Lopa, N. S.; Rahman, M. M.; Ahmed, F.; Chandra Sutradhar, S.; Ryu, T.; Kim, W. A Base-Stable Metal-Organic Framework for Sensitive and Non-Enzymatic Electrochemical Detection of Hydrogen Peroxide. Electrochim. Acta. 2018, 274, 49–56. DOI: 10.1016/j.electacta.2018.03.148.
  • Jiang, T.; Sun, X.; Wei, L.; Li, M. Determination of Hydrogen Peroxide Released from Cancer Cells by a Fe-Organic Framework/Horseradish Peroxidase-Modified Electrode. Anal. Chim. Acta. 2020, 1135, 132–141. DOI: 10.1016/J.ACA.2020.09.040.
  • Wang, Q.; Yang, Y.; Gao, F.; Ni, J.; Zhang, Y.; Lin, Z. Graphene Oxide Directed One-Step Synthesis of Flowerlike Graphene@HKUST-1 for Enzyme-Free Detection of Hydrogen Peroxide in Biological Samples. ACS Appl. Mater. Interfaces. 2016, 8, 32477–32487. DOI: 10.1021/ACSAMI.6B11965.
  • Li, C.; Wu, R.; Zou, J.; Zhang, T.; Zhang, S.; Zhang, Z.; Hu, X.; Yan, Y.; Ling, X. MNPs@Anionic MOFs/ERGO with the Size Selectivity for the Electrochemical Determination of H2O2 Released from Living Cells. Biosens. Bioelectron. 2018, 116, 81–88. DOI: 10.1016/J.BIOS.2018.05.045.
  • Ju, J.; Chen, W. In Situ Growth of Surfactant-Free Gold Nanoparticles on Nitrogen-Doped Graphene Quantum Dots for Electrochemical Detection of Hydrogen Peroxide in Biological Environments. Anal. Chem. 2015, 87, 1903–1910. DOI: 10.1021/AC5041555.
  • Zhang, Y.; Xiao, J.; Sun, Y.; Wang, L.; Dong, X.; Ren, J.; He, W.; Xiao, F. Flexible Nanohybrid Microelectrode Based on Carbon Fiber Wrapped by Gold Nanoparticles Decorated Nitrogen Doped Carbon Nanotube Arrays: In Situ Electrochemical Detection in Live Cancer Cells. Biosens. Bioelectron. 2018, 100, 453–461. DOI: 10.1016/J.BIOS.2017.09.038.
  • Chen, Y.; Li, Q.; Jiang, H.; Wang, X. Pt Modified Carbon Fiber Microelectrode for Electrochemically Catalytic Reduction of Hydrogen Peroxide and Its Application in Living Cell H2O2 Detection. J. Electroanal. Chem. 2016, 781, 233–237. DOI: 10.1016/j.jelechem.2016.06.020.
  • Purohit, B.; Mahato, K.; Kumar, A.; Chandra, P. Sputtering Enhanced Peroxidase like Activity of a Dendritic Nanochip for Amperometric Determination of Hydrogen Peroxide in Blood Samples. Microchim. Acta. 2019, 186, 1–10. DOI: 10.1007/S00604-019-3773-2.
  • Zhang, Y.; Chi, K.; Xiao, J.; Xu, Y.; Zhao, A.; Xu, Y.; Sun, Y.; Xiao, F.; Wang, S. Coral-like Hierarchical Structured Carbon Nanoscaffold with Improved Sensitivity for Biomolecular Detection in Cancer Tissue. Biosens. Bioelectron. 2020, 150, 111924. DOI: 10.1016/J.BIOS.2019.111924.
  • Gupta, R.; Singh, P.; Ganesan, V.; Koch, B.; Rastogi, P. K.; Yadav, D. K.; Sonkar, P. K. Palladium Nanoparticles Supported on Mesoporous Silica Microspheres for Enzyme-Free Amperometric Detection of H2O2 Released from Living Cells. Sens. Actuators B Chem. 2018, 276, 517–525. DOI: 10.1016/j.snb.2018.08.148.
  • Annalakshmi, M.; Kumaravel, S.; Chen, S. M.; Chen, T. W. Thermo-Regulated Synthesis of NiMn Layered Double Hydroxides for Real-Time Determination of Hydrogen Peroxide in Living Cells and Oxidase Activity. Appl. Surf. Sci. 2021, 539, 148256. DOI: 10.1016/j.apsusc.2020.148256.
  • Manavalan, S.; Ganesamurthi, J.; Chen, S. M.; Veerakumar, P.; Murugan, K. A Robust Mn@FeNi-S/Graphene Oxide Nanocomposite as a High-Efficiency Catalyst for the Non-Enzymatic Electrochemical Detection of Hydrogen Peroxide. Nanoscale. 2020, 12, 5961–5972. DOI: 10.1039/C9NR09148C.
  • Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Transition Metal Based Layered Double Hydroxides Tailored for Energy Conversion and Storage. Mater. Today. 2016, 19, 213–226. DOI: 10.1016/j.mattod.2015.10.006.
  • Zhang, C.; Li, L.; Ju, J.; Chen, W. Electrochemical Sensor Based on Graphene-Supported Tin Oxide Nanoclusters for Nonenzymatic Detection of Hydrogen Peroxide. Electrochim. Acta. 2016, 210, 181–189. DOI: 10.1016/j.electacta.2016.05.151.
  • Wu, Z. L.; Li, C. K.; Yu, J. G.; Chen, X. Q. MnO2/Reduced Graphene Oxide Nanoribbons: Facile Hydrothermal Preparation and Their Application in Amperometric Detection of Hydrogen Peroxide. Sens. Actuators B Chem. 2017, 239, 544–552. DOI: 10.1016/j.snb.2016.08.062.
  • Asif, M.; Liu, H.; Aziz, A.; Wang, H.; Wang, Z.; Ajmal, M.; Xiao, F.; Liu, H. Core-Shell Iron Oxide-Layered Double Hydroxide: High Electrochemical Sensing Performance of H2O2 Biomarker in Live Cancer Cells with Plasma Therapeutics. Biosens. Bioelectron. 2017, 97, 352–359. DOI: 10.1016/J.BIOS.2017.05.057.
  • Cui, X.; Zhao, H.; Li, Z. Hexagonal Cobalt Oxyhydroxide Nanoflakes/Reduced Graphene Oxide for Hydrogen Peroxide Detection in Biological Samples. Anal. Bioanal. Chem. 2018, 410, 7523–7535. DOI: 10.1007/s00216-018-1370-6.
  • Zou, N.; Wei, X.; Zong, Z.; Li, X.; Meng, F.; Wang, Z. Preparation of Manganese Dioxide Nanozyme as Catalyst for Electrochemical Sensing of Hydrogen Peroxide. Int. J. Electrochem. Sci. 2021, 16, 210324. DOI: 10.20964/2021.03.47.
  • Li, Y.; Huan, K.; Deng, D.; Tang, L.; Wang, J.; Luo, L. Facile Synthesis of ZnMn2O4@rGO Microspheres for Ultrasensitive Electrochemical Detection of Hydrogen Peroxide from Human Breast Cancer Cells. ACS Appl. Mater. Interfaces. 2020, 12, 3430–3437. DOI: 10.1021/ACSAMI.9B19126.
  • Yin, D.; Tang, J.; Mo, R.; Wang, F.; Jia, X.; Li, C. Construction of Sandwich-like Structured GO/Cu2O/GO Electrochemical Biosensor for Sensitive Detection of H2O2 Releasing from Living Cells. Res. Square. 2020. DOI: 10.21203/rs.2.23550/v1.
  • Abu Zahed, M.; Barman, S. C.; Sharifuzzaman, M.; Xuan, X.; Nah, J. S.; Park, J. Y. Ex Situ Synthesis of Hexagonal NiO Nanosheets and Carboxyl-Terminated Reduced Graphene Oxide Nanocomposite for Non-Enzymatic Electrochemical Detection of H2O2 and Ascorbic Acid. J. Electrochem. Soc. 2018, 165, B840–B847. DOI: 10.1149/2.0621816jes.
  • Mani, V.; Selvaraj, S.; Peng, T. K.; Lin, H. Y.; Jeromiyas, N.; Ikeda, H.; Hayakawa, Y.; Ponnusamy, S.; Muthamizhchelvan, C.; Huang, S. T. ZnCo2O4 Nanoflowers Grown on Co3O4 Nanowire-Decorated Cu Foams for In Situ Profiling of H2O2 in Live Cells and Biological Media. ACS Appl. Nano. Mater. 2019, 2, 5049–5060. DOI: 10.1021/ACSANM.9B00969.
  • Annalakshmi, M.; Balasubramanian, P.; Chen, S. M.; Chen, T. W. Enzyme-Free Electrocatalytic Sensing of Hydrogen Peroxide Using a Glassy Carbon Electrode Modified with Cobalt Nanoparticle-Decorated Tungsten Carbide. Microchim. Acta. 2019, 186, 1–9. DOI: 10.1007/S00604-019-3377-X.
  • Li, J.; Tang, C.; Liang, T.; Tang, C.; Lv, X.; Tang, K.; Li, C. M. Porous Molybdenum Carbide Nanostructured Catalyst toward Highly Sensitive Biomimetic Sensing of H2O2. Electroanalysis. 2020, 32, 1243–1250. DOI: 10.1002/elan.202000008.
  • Li, B.; Liu, L. H.; Song, H. Y.; Deng, Z. P.; Huo, L. H.; Gao, S. Carbon-Doping Mesoporous β-Mo2C Aggregates for Nanomolar Electrochemical Detection of Hydrogen Peroxide. ACS Appl. Nano Mater. 2020, 3, 7499–7507. DOI: 10.1021/acsanm.0c01106.
  • Yin, D.; Bo, X.; Liu, J.; Guo, L. A Novel Enzyme-Free Glucose and H2O2 Sensor Based on 3D Graphene Aerogels Decorated with Ni3N Nanoparticles. Anal. Chim. Acta. 2018, 1038, 11–20. DOI: 10.1016/J.ACA.2018.06.086.
  • Deepalakshmi, T.; Tran, D. T.; Kim, N. H.; Chong, K. T.; Lee, J. H. Nitrogen-Doped Graphene-Encapsulated Nickel Cobalt Nitride as a Highly Sensitive and Selective Electrode for Glucose and Hydrogen Peroxide Sensing Applications. ACS Appl. Mater. Interfaces. 2018, 10, 35847–35858. DOI: 10.1021/acsami.8b15069.
  • Mani, V.; Raj, K.; Mani, G. MoS2 Flowers Grown on Graphene/Carbon Nanotubes: A Versatile Substrate for Electrochemical Determination of Hydrogen Peroxide. Int. J. Electrochem. Sci. 2016, 11, 2954–2961. DOI: 10.20964/110402954.
  • Dai, H.; Chen, D.; Cao, P.; Li, Y.; Wang, N.; Sun, S.; Chen, T.; Ma, H.; Lin, M. Molybdenum Sulfide/Nitrogen-Doped Carbon Nanowire-Based Electrochemical Sensor for Hydrogen Peroxide in Living Cells. Sens. Actuators B Chem. 2018, 276, 65–71. DOI: 10.1016/j.snb.2018.08.081.
  • Ma, X.; Tang, K. L.; Lu, K.; Zhang, C.; Shi, W.; Zhao, W. Structural Engineering of Hollow Microflower-like CuS@C Hybrids as Versatile Electrochemical Sensing Platform for Highly Sensitive Hydrogen Peroxide and Hydrazine Detection. ACS Appl. Mater. Interfaces. 2021, 13, 40942–40952. DOI: 10.1021/ACSAMI.1C11747.
  • Manibalan, K.; Han, S.; Zheng, Y.; Li, H.; Lin, J. M. Latent Redox Reporter of 4-Methoxyphenol as Electrochemical Signal Proxy for Real-Time Profiling of Endogenous H2O2 in Living Cells. ACS Sens. 2019, 4, 2450–2457. DOI: 10.1021/ACSSENSORS.9B01049.
  • Mani, V.; Shanthi, S.; Peng, T. K.; Lin, H. Y.; Ikeda, H.; Hayakawa, Y.; Ponnusamy, S.; Muthamizhchelvan, C.; Huang, S. T. Real-Time Quantification of Hydrogen Peroxide Production in Living Cells Using NiCo2S4@CoS2 Heterostructure. Sens. Actuators B Chem. 2019, 287, 124–130. DOI: 10.1016/j.snb.2019.02.015.
  • Shu, Y.; Zhang, W.; Yin, X.; Zhang, L.; Yang, Y.; Ma, D.; Gao, Q. Efficient Electrochemical Biosensing of Hydrogen Peroxide on Bimetallic Mo1-xWxS2 Nanoflowers. J. Colloid Interface Sci. 2020, 566, 248–256. DOI: 10.1016/J.JCIS.2020.01.083.
  • Tong, S.; Li, Z.; Qiu, B.; Zhao, Y.; Zhang, Z. Biphasic Nickel Phosphide Nanosheets: Self-Supported Electrocatalyst for Sensitive and Selective Electrochemical H2O2 Detection and Its Practical Applications in Blood and Living Cells. Sens. Actuators B Chem. 2018, 258, 789–795. DOI: 10.1016/j.snb.2017.11.184.
  • Li, Z.; Xin, Y.; Wu, W.; Fu, B.; Zhang, Z. Topotactic Conversion of Copper(I) Phosphide Nanowires for Sensitive Electrochemical Detection of H2O2 Release from Living Cells. Anal. Chem. 2016, 88, 7724–7729. DOI: 10.1021/ACS.ANALCHEM.6B01637.
  • Qiu, W.; Zhu, Q.; Gao, F.; Gao, F.; Huang, J.; Pan, Y.; Wang, Q. Graphene Oxide Directed In-Situ Synthesis of Prussian Blue for Non-Enzymatic Sensing of Hydrogen Peroxide Released from Macrophages. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 72, 692–700. DOI: 10.1016/J.MSEC.2016.11.134.
  • Zhao, P.; Zhao, Y.; Jiang, L.; Chen, S.; Ji, Z.; Hou, C.; Huo, D.; Yang, M. 3D Carbon Nanotubes Spaced Graphene Aerogel Incorporated with Prussian Blue Nanoparticles for Real-Time Detection of H2O2 Released from Living Cells. J. Electrochem. Soc. 2020, 167, 047511. DOI: 10.1149/1945-7111/ab717f.
  • Rojas, D.; Della Pelle, F.; Del Carlo, M.; d’Angelo, M.; Dominguez-Benot, R.; Cimini, A.; Escarpa, A.; Compagnone, D. Electrodeposited Prussian Blue on Carbon Black Modified Disposable Electrodes for Direct Enzyme-Free H2O2 Sensing in a Parkinson’s Disease In Vitro Model. Sens. Actuators B Chem. 2018, 275, 402–408. DOI: 10.1016/j.snb.2018.08.040.
  • Lete, C.; Marin, M.; Anghel, E. M.; Preda, L.; Matei, C.; Lupu, S. Sinusoidal Voltage Electrodeposition of PEDOT-Prussian Blue Nanoparticles Composite and Its Application to Amperometric Sensing of H2O2 in Human Blood. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 102, 661–669. DOI: 10.1016/J.MSEC.2019.04.086.
  • Niu, Q.; Bao, C.; Cao, X.; Liu, C.; Wang, H.; Lu, W. Ni–Fe PBA Hollow Nanocubes as Efficient Electrode Materials for Highly Sensitive Detection of Guanine and Hydrogen Peroxide in Human Whole Saliva. Biosens. Bioelectron. 2019, 141, 111445. DOI: 10.1016/J.BIOS.2019.111445.
  • Zhang, W.; Wang, C.; Guan, L.; Peng, M.; Li, K.; Lin, Y. A Non-Enzymatic Electrochemical Biosensor Based on Au@PBA(Ni–Fe):MoS2 Nanocubes for Stable and Sensitive Detection of Hydrogen Peroxide Released from Living Cells. J. Mater. Chem. B. 2019, 7, 7704–7712. DOI: 10.1039/C9TB02059D.
  • Fu, Y.; Huang, D.; Li, C.; Zou, L.; Ye, B. Graphene Blended with SnO2 and Pd-Pt Nanocages for Sensitive Non-Enzymatic Electrochemical Detection of H2O2 Released from Living Cells. Anal. Chim. Acta. 2018, 1014, 10–18. DOI: 10.1016/J.ACA.2018.01.067.
  • Li, H.; Zhao, H.; He, H.; Shi, L.; Cai, X.; Lan, M. Pt-Pd Bimetallic Nanocoral Modified Carbon Fiber Microelectrode as a Sensitive Hydrogen Peroxide Sensor for Cellular Detection. Sens. Actuators B Chem. 2018, 260, 174–182. DOI: 10.1016/j.snb.2017.12.179.
  • He, G.; Gao, F.; Li, W.; Li, P.; Zhang, X.; Yin, H.; Yang, B.; Liu, Y.; Zhang, S. Electrochemical Sensing of H2O2 Released from Living Cells Based on AuPd Alloy-Modified PDA Nanotubes. Anal. Methods. 2019, 11, 1651–1656. DOI: 10.1039/C8AY02743A.
  • Al-Ansi, N.; Salah, A.; Adlat, S.; Qi, B. A Highly Sensitive Nonenzymatic H2O2 Sensor Based on 3D N-Doped Porous Graphene Aerogel Decorated with AuPd Alloy Nanoparticles. Synth. Met. 2020, 264, 116380. DOI: 10.1016/j.synthmet.2020.116380.
  • Dong, W.; Ren, Y.; Bai, Z.; Yang, Y.; Chen, Q. Fabrication of Hexahedral Au-Pd/Graphene Nanocomposites Biosensor and Its Application in Cancer Cell H2O2 Detection. Bioelectrochemistry. 2019, 128, 274–282. DOI: 10.1016/J.BIOELECHEM.2019.04.018.
  • Gowthaman, N. S. K.; Arul, P.; Shim, J. J.; John, S. A. Free-Standing Au-Ag Nanoparticles on Carbon Cloth: A Non-Enzymatic Flexible Electrochemical Sensor for the Biomarker of Oxidative Stress. Appl. Surf. Sci. 2019, 495, 143550. DOI: 10.1016/j.apsusc.2019.143550.
  • Dou, B.; Yang, J.; Yuan, R.; Xiang, Y. Trimetallic Hybrid Nanoflower-Decorated MoS2 Nanosheet Sensor for Direct In Situ Monitoring of H2O2 Secreted from Live Cancer Cells. Anal. Chem. 2018, 90, 5945–5950. DOI: 10.1021/ACS.ANALCHEM.8B00894.
  • Shabnam, L.; Faisal, S. N.; Roy, A. K.; Minett, A. I.; Gomes, V. G. Nonenzymatic Multispecies Sensor Based on Cu-Ni Nanoparticle Dispersion on Doped Graphene. Electrochim. Acta. 2017, 224, 295–305. DOI: 10.1016/j.electacta.2016.12.056.
  • Liu, Y.; Li, H.; Gong, S.; Chen, Y.; Xie, R.; Wu, Q.; Tao, J.; Meng, F.; Zhao, P. A Novel Non-Enzymatic Electrochemical Biosensor Based on the Nanohybrid of Bimetallic PdCu Nanoparticles/Carbon Black for Highly Sensitive Detection of H2O2 Released from Living Cells. Sens. Actuators B Chem. 2019, 290, 249–257. DOI: 10.1016/j.snb.2019.03.129.
  • Wang, T.; Wu, Y.; She, J.; Xu, Y.; Zhang, Y.; Zhao, A.; Manoj, D.; Xi, J.; Sun, Y.; Ren, J.; Xiao, F. 3D Nitrogen-Doped Carbon Nanofoam Arrays Embedded with PdCu Alloy Nanoparticles: Assembling on Flexible Microelectrode for Electrochemical Detection in Cancer Cells. Anal. Chim. Acta. 2021, 1158, 338420. DOI: 10.1016/J.ACA.2021.338420.
  • Bai, W. S.; Zhang, X. J.; Zheng, J. B. Direct Growth of Ordered PdCu and Co Doped PdCu Nanoparticles on Graphene Oxide Based on a One-Step Hydrothermal Method for Ultrasensitive Sensing of H2O2 in Living Cells. Analyst. 2018, 144, 157–160. DOI: 10.1039/C8AN01875H.
  • Shu, Y.; Li, B.; Xu, Q.; Gu, P.; Xiao, X.; Liu, F.; Yu, L.; Pang, H.; Hu, X. Cube-like CoSn(OH)6 Nanostructure for Sensitive Electrochemical Detection of H2O2 in Human Serum Sample. Sens. Actuators B Chem. 2017, 241, 528–533. DOI: 10.1016/j.snb.2016.10.072.
  • Bai, J.; Sun, C.; Jiang, X. Carbon Dots-Decorated Multiwalled Carbon Nanotubes Nanocomposites as a High-Performance Electrochemical Sensor for Detection of H2O2 in Living Cells. Anal. Bioanal. Chem. 2016, 408, 4705–4714. DOI: 10.1007/S00216-016-9554-4.
  • Xi, F.; Zhao, D.; Wang, X.; Chen, P. Non-Enzymatic Detection of Hydrogen Peroxide Using a Functionalized Three-Dimensional Graphene Electrode. Electrochem. Commun. 2013, 26, 81–84. DOI: 10.1016/j.elecom.2012.10.017.
  • Li, S. J.; Zhang, J. C.; Li, J.; Yang, H. Y.; Meng, J. J.; Zhang, B. A 3D Sandwich Structured Hybrid of Gold Nanoparticles Decorated MnO2/Graphene-Carbon Nanotubes as High Performance H2O2 Sensors. Sens. Actuators B Chem. 2018, 260, 1–11. DOI: 10.1016/j.snb.2017.12.184.
  • Lu, B.; Yuan, X.; Ren, Y.; Shi, Q.; Wang, S.; Dong, J.; Nan, Z. Cost-Effective Three Dimensional Ag/Polymer Dyes/Graphene-Carbon Spheres Hybrids for High Performance Nonenzymatic Sensor and Its Application in Living Cell H2O2 Detection. Bioelectrochemistry. 2018, 123, 103–111. DOI: 10.1016/J.BIOELECHEM.2018.05.001.
  • Bai, Z.; Li, G.; Liang, J.; Su, J.; Zhang, Y.; Chen, H.; Huang, Y.; Sui, W.; Zhao, Y. Non-Enzymatic Electrochemical Biosensor Based on Pt NPs/RGO-CS-Fc Nano-Hybrids for the Detection of Hydrogen Peroxide in Living Cells. Biosens. Bioelectron. 2016, 82, 185–194. DOI: 10.1016/J.BIOS.2016.04.004.
  • Qi, C.; Kan, Z.; Zhang, D.; Tang, J.; Ren, Z.; Jia, X.; Li, C.; Wang, F. Poly(1,3,5-Tris(4-Ethynylphenyl)-Benzene) Conjugated Polymers as Electrochemical Sensors for Hydrogen Peroxide Detection. ACS Appl. Polym. Mater. 2020, 2, 685–690. DOI: 10.1021/acsapm.9b01013.
  • Magro, M.; Baratella, D.; Pianca, N.; Toninello, A.; Grancara, S.; Zboril, R.; Vianello, F. Electrochemical Determination of Hydrogen Peroxide Production by Isolated Mitochondria: A Novel Nanocomposite Carbon–Maghemite Nanoparticle Electrode. Sens. Actuators B Chem. 2013, 176, 315–322. DOI: 10.1016/j.snb.2012.09.044.
  • Asif, M.; Aziz, A.; Dao, A. Q.; Hakeem, A.; Wang, H.; Dong, S.; Zhang, G.; Xiao, F.; Liu, H. Real-Time Tracking of Hydrogen Peroxide Secreted by Live Cells Using MnO2 Nanoparticles Intercalated Layered Doubled Hydroxide Nanohybrids. Anal. Chim. Acta. 2015, 898, 34–41. DOI: 10.1016/J.ACA.2015.09.053.
  • Asif, M.; Haitao, W.; Shuang, D.; Aziz, A.; Zhang, G.; Xiao, F.; Liu, H. Metal Oxide Intercalated Layered Double Hydroxide Nanosphere: With Enhanced Electrocatalyic Activity towards H2O2 for Biological Applications. Sens. Actuators B Chem. 2017, 239, 243–252. DOI: 10.1016/j.snb.2016.08.010.
  • Annalakshmi, M.; Kumaravel, S.; Chen, T. W.; Chen, S. M.; Lou, B. S. 3D Flower-like NiCo Layered Double Hydroxides: An Efficient Electrocatalyst for Non-Enzymatic Electrochemical Biosensing of Hydrogen Peroxide in Live Cells and Glucose in Biofluids. ACS Appl. Bio Mater. 2021, 4, 3203–3213. DOI: 10.1021/acsabm.0c01600.
  • Yuan, Y.; Zhang, F.; Wang, H.; Liu, J.; Zheng, Y.; Hou, S. Chemical Vapor Deposition Graphene Combined with Pt Nanoparticles Applied in Non-Enzymatic Sensing of Ultralow Concentrations of Hydrogen Peroxide. RSC Adv. 2017, 7, 30542–30547. DOI: 10.1039/C7RA05243J.
  • Balamurugan, J.; Thanh, T. D.; Karthikeyan, G.; Kim, N. H.; Lee, J. H. A Novel Hierarchical 3D N-Co-CNT@NG Nanocomposite Electrode for Non-Enzymatic Glucose and Hydrogen Peroxide Sensing Applications. Biosens. Bioelectron. 2017, 89, 970–977. DOI: 10.1016/J.BIOS.2016.09.077.
  • Zhang, T.; Xing, Y.; Song, Y.; Gu, Y.; Yan, X.; Lu, N.; Liu, H.; Xu, Z.; Xu, H.; Zhang, Z.; Yang, M. AuPt/MOF–Graphene: A Synergistic Catalyst with Surprisingly High Peroxidase-like Activity and Its Application for H2O2 Detection. Anal Chem. 2019, 91, 10589–10595. DOI: 10.1021/ACS.ANALCHEM.9B01715.
  • Zhou, J.; Zhao, Y.; Bao, J.; Huo, D.; Fa, H.; Shen, X.; Hou, C. One-Step Electrodeposition of Au-Pt Bimetallic Nanoparticles on MoS2 Nanoflowers for Hydrogen Peroxide Enzyme-Free Electrochemical Sensor. Electrochim. Acta. 2017, 250, 152–158. DOI: 10.1016/j.electacta.2017.08.044.
  • Li, X.; Liu, Y.; Zheng, L.; Dong, M.; Xue, Z.; Lu, X.; Liu, X. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on Silver Nanoparticles and Ionic Liquid Functionalized Multiwalled Carbon Nanotube Composite Modified Electrode. Electrochim. Acta. 2013, 113, 170–175. DOI: 10.1016/j.electacta.2013.09.049.
  • Liu, Y.; Guo, Z.; Hao, L.; Shi, X.; Yan, S.; Yang, H. Polyethyleneimine-AuNPs-Copper Protoporphyrin Nanocomposite: A Novel Biosensor for Sensitive Detection of Hydrogen Peroxide in Human Serum. J. Solid State Electrochem. 2019, 23, 2551–2558. DOI: 10.1007/s10008-019-04322-5.
  • Li, X.; Liu, X.; Wang, W.; Li, L.; Lu, X. High Loading Pt Nanoparticles on Functionalization of Carbon Nanotubes for Fabricating Nonenzyme Hydrogen Peroxide Sensor. Biosens. Bioelectron. 2014, 59, 221–226. DOI: 10.1016/J.BIOS.2014.03.046.
  • Liu, J. X.; Ding, S. N. Non-Enzymatic Amperometric Determination of Cellular Hydrogen Peroxide Using Dendrimer-Encapsulated Pt Nanoclusters/Carbon Nanotubes Hybrid Composites Modified Glassy Carbon Electrode. Sens. Actuators B Chem. 2017, 251, 200–207. DOI: 10.1016/j.snb.2017.05.043.
  • Roushani, M.; Bakyas, K.; Zare Dizajdizi, B. Development of Sensitive Amperometric Hydrogen Peroxide Sensor Using a CuNPs/MB/MWCNT-C60-Cs-IL Nanocomposite Modified Glassy Carbon Electrode. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 64, 54–60. DOI: 10.1016/J.MSEC.2016.03.078.
  • Guo, Z.; Xu, J.; Zhang, J.; Hu, Y.; Pan, Y.; Miao, P. Facile Strategy for Electrochemical Analysis of Hydrogen Peroxide Based on Multifunctional Fe3O4@Ag Nanocomposites. ACS Appl. Bio Mater. 2018, 1, 367–373. DOI: 10.1021/ACSABM.8B00101.
  • Zhu, L.; Zhang, Y.; Xu, P.; Wen, W.; Li, X.; Xu, J. PtW/MoS2 Hybrid Nanocomposite for Electrochemical Sensing of H2O2 Released from Living Cells. Biosens. Bioelectron. 2016, 80, 601–606. DOI: 10.1016/J.BIOS.2016.02.019.
  • Xu, D.; Hou, B.; Qian, L.; Zhang, X.; Liu, G. Non-Enzymatic Electrochemical Sensor Based on Sliver Nanoparticle-Decorated Carbon Nanotubes. Molecules. 2019, 24, 3411. DOI: 10.3390/molecules24183411.
  • Ma, B.; Kong, C.; Hu, X.; Liu, K.; Huang, Q.; Lv, J.; Lu, W.; Zhang, X.; Yang, Z.; Yang, S. A Sensitive Electrochemical Nonenzymatic Biosensor for the Detection of H2O2 Released from Living Cells Based on Ultrathin Concave Ag Nanosheets. Biosens. Bioelectron. 2018, 106, 29–36. DOI: 10.1016/J.BIOS.2018.01.041.
  • Li, J.; Jiang, J.; Xu, Z.; Liu, M.; Tang, S.; Yang, C.; Qian, D. Facile Synthesis of Ag@Cu2O Heterogeneous Nanocrystals Decorated N-Doped Reduced Graphene Oxide with Enhanced Electrocatalytic Activity for Ultrasensitive Detection of H2O2. Sens. Actuators B Chem. 2018, 260, 529–540. DOI: 10.1016/j.snb.2018.01.068.
  • Xi, J.; Xie, C.; Zhang, Y.; Wang, L.; Xiao, J.; Duan, X.; Ren, J.; Xiao, F.; Wang, S. Pd Nanoparticles Decorated N-Doped Graphene Quantum Dots@N-Doped Carbon Hollow Nanospheres with High Electrochemical Sensing Performance in Cancer Detection. ACS Appl. Mater. Interfaces. 2016, 8, 22563–22573. DOI: 10.1021/ACSAMI.6B05561.
  • Zhou, X.; Xu, L.; Lv, J.; Yang, S.; Zhu, S.; Chen, X.; Sun, X.; Dong, B.; Bai, X.; Lu, G.; Song, H. Au Anchored Three-Dimensional Macroporous NiO@CuO Inverse Opals for In-Situ Sensing of Hydrogen Peroxide Secretion from Living Cells. Sens. Actuators B Chem. 2019, 297, 126729. DOI: 10.1016/j.snb.2019.126729.
  • Thiruppathi, M.; Lin, P. Y.; Chou, Y. T.; Ho, H. Y.; Wu, L.; Ho, J. A. Simple Aminophenol-Based Electrochemical Probes for Non-Enzymatic, Dual Amperometric Detection of NADH and Hydrogen Peroxide. Talanta. 2019, 200, 450–457. DOI: 10.1016/J.TALANTA.2019.03.083.
  • Cao, P.; Wang, N.; Dai, H.; Ma, H.; Lin, M. Molybdenum-Containing Polypyrrole Self-Supporting Hollow Flexible Electrode for Hydrogen Peroxide Detection in Living Cells. Anal. Chim. Acta. 2021, 1151, 338251. DOI: 10.1016/J.ACA.2021.338251.
  • Zhou, J. X.; Tang, L. N.; Yang, F.; Liang, F. X.; Wang, H.; Li, Y. T.; Zhang, G. J. MoS2/Pt Nanocomposite-Functionalized Microneedle for Real-Time Monitoring of Hydrogen Peroxide Release from Living Cells. Analyst. 2017, 142, 4322–4329. DOI: 10.1039/C7AN01446E.
  • Zhong, Y.; Liu, M. M.; Chen, Y.; Yang, Y. J.; Wu, L. N.; Bai, F.; Lei, Y.; Gao, F.; Liu, A. L. A High-Performance Amperometric Sensor Based on a Monodisperse Pt–Au Bimetallic Nanoporous Electrode for Determination of Hydrogen Peroxide Released from Living Cells. Microchim. Acta. 2020, 187, 1–9. DOI: 10.1007/S00604-020-04480-8.
  • Liu, F.; Yang, L.; Yin, X.; Liu, X.; Ge, L.; Li, F. A Facile Homogeneous Electrochemical Biosensing Strategy Based on Displacement Reaction for Intracellular and Extracellular Hydrogen Peroxide Detection. Biosens. Bioelectron. 2019, 141, 111446. DOI: 10.1016/J.BIOS.2019.111446.
  • Chatterjee, S.; Chen, A. Functionalization of Carbon Buckypaper for the Sensitive Determination of Hydrogen Peroxide in Human Urine. Biosens. Bioelectron. 2012, 35, 302–307. DOI: 10.1016/J.BIOS.2012.03.005.
  • Ben-Amor, S.; Vanhove, E.; Sékli Belaïdi, F.; Charlot, S.; Colin, D.; Rigoulet, M.; Devin, A.; Sojic, N.; Launay, J.; Temple-Boyer, P.; Arbault, S. Enhanced Detection of Hydrogen Peroxide with Platinized Microelectrode Arrays for Analyses of Mitochondria Activities. Electrochim. Acta. 2014, 126, 171–178. DOI: 10.1016/j.electacta.2013.11.104.
  • Yuan, H.; Zhao, J.; Wang, Q.; Manoj, D.; Zhao, A.; Chi, K.; Ren, J.; He, W.; Zhang, Y.; Sun, Y.; et al. Hierarchical Core-Shell Structure of 2D VS2@VC@N-Doped Carbon Sheets Decorated by Ultrafine Pd Nanoparticles: Assembled in a 3D Rosette-like Array on Carbon Fiber Microelectrode for Electrochemical Sensing. ACS Appl. Mater. Interfaces. 2020, 12, 15507–15516. DOI: 10.1021/ACSAMI.9B21436.
  • Asif, M.; Aziz, A.; Ashraf, G.; Iftikhar, T.; Sun, Y.; Xiao, F.; Liu, H. Unveiling Microbiologically Influenced Corrosion Engineering to Transfigure Damages into Benefits: A Textile Sensor for H2O2 Detection in Clinical Cancer Tissues. Chem. Eng. J. 2022, 427, 131398. DOI: 10.1016/j.cej.2021.131398.
  • Zhang, Y.; Xiao, J.; Lv, Q.; Wang, L.; Dong, X.; Asif, M.; Ren, J.; He, W.; Sun, Y.; Xiao, F.; Wang, S. In Situ Electrochemical Sensing and Real-Time Monitoring Live Cells Based on Freestanding Nanohybrid Paper Electrode Assembled from 3D Functionalized Graphene Framework. ACS Appl. Mater. Interfaces. 2017, 9, 38201–38210. DOI: 10.1021/ACSAMI.7B08781.
  • Zhao, A.; She, J.; Manoj, D.; Wang, T.; Sun, Y.; Zhang, Y.; Xiao, F. Functionalized Graphene Fiber Modified by Dual Nanoenzyme: Towards High-Performance Flexible Nanohybrid Microelectrode for Electrochemical Sensing in Live Cancer Cells. Sens. Actuators B Chem. 2020, 310, 127861. DOI: 10.1016/j.snb.2020.127861.
  • Shu, Y.; Zhang, L.; Cai, H.; Yang, Y.; Zeng, J.; Ma, D.; Gao, Q. Hierarchical Mo2C@MoS2 Nanorods as Electrochemical Sensors for Highly Sensitive Detection of Hydrogen Peroxide and Cancer Cells. Sens. Actuators B Chem. 2020, 311, 127863. DOI: 10.1016/j.snb.2020.127863.
  • Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of Oxidative Damage in Human Disease. Clin. Chem. 2006, 52, 601–623. DOI: 10.1373/CLINCHEM.2005.061408.
  • Pinto, E.; Sigaud-Kutner, T. C. S.; Leitão, M. A. S.; Okamoto, O. K.; Morse, D.; Colepicolo, P. Heavy Metal–Induced Oxidative Stress in Algae1. J. Phycol. 2003, 39, 1008–1018. DOI: 10.1111/j.0022-3646.2003.02-193.x.
  • Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front. Environ. Sci. 2014, 2, 53. DOI: 10.3389/FENVS.2014.00053/BIBTEX.
  • Kwon, B. G.; Lee, D. S.; Kang, N.; Yoon, J. Characteristics of p-Chlorophenol Oxidation by Fenton’s Reagent. Water Res. 1999, 33, 2110–2118. DOI: 10.1016/S0043-1354(98)00428-X.
  • Endo, N.; Oowada, S.; Sueishi, Y.; Shimmei, M.; Makino, K.; Fujii, H.; Kotake, Y. Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source. J. Clin. Biochem. Nutr. 2009, 45, 193–201. DOI: 10.3164/JCBN.08-265.
  • Biondi, R.; Brancorsini, S.; Poli, G.; Egidi, M. G.; Capodicasa, E.; Bottiglieri, L.; Gerli, S.; Brillo, E.; Di Renzo, G. C.; Cretoiu, D.; et al. Detection and Scavenging of Hydroxyl Radical via D-Phenylalanine Hydroxylation in Human Fluids. Talanta. 2018, 181, 172–181. DOI: 10.1016/j.talanta.2017.12.084.
  • Korotkova, E. I.; Misini, B.; Dorozhko, E. V.; Bukkel, M. V.; Plotnikov, E. V.; Linert, W. Study of OH● Radicals in Human Serum Blood of Healthy Individuals and Those with Pathological Schizophrenia. Int. J. Mol. Sci. 2011, 12, 401–409. DOI: 10.3390/IJMS12010401.
  • Wu, L.; Yang, Y.; Zhang, H.; Zhu, G.; Zhang, X.; Chen, J. Sensitive Electrochemical Detection of Hydroxyl Radical with Biobarcode Amplification. Anal. Chim. Acta. 2012, 756, 1–6. DOI: 10.1016/J.ACA.2012.10.039.
  • Si, J. C.; Lu, L.; Gao, Z. F.; Zhang, Y.; Luo, H. Q.; Bing Li, N. A Sensitive Electrochemical Method Based on Fenton-Induced DNA Oxidation for Detection of Hydroxyl Radical. Anal. Methods. 2014, 6, 6536–6540. DOI: 10.1039/C4AY00843J.
  • Huang, Y.; Sinha, A.; Zhao, H.; Dang, X.; Zhang, Y.; Quan, X. Real Time Detection of Hazardous Hydroxyl Radical Using an Electrochemical Approach. ChemistrySelect. 2019, 4, 12507–12511. DOI: 10.1002/slct.201902512.
  • Xu, Y.; Wang, D.; Zhang, Y.; Zhang, J.; Jiang, S.; Liang, W.; Zhu, T.; Ye, B. C. A Novel Electrochemical Sensor for Determination of Hydroxyl Radicals in Living Cells by Coupling Nanoporous Gold Layer with Self-Assembled 6-(Ferrocenyl) Hexanethiol. Anal. Chim. Acta. 2020, 1096, 69–75. DOI: 10.1016/J.ACA.2019.10.055.
  • Ding, S.; Li, M.; Gong, H.; Zhu, Q.; Shi, G.; Zhu, A. Sensitive and Selective Measurement of Hydroxyl Radicals at Subcellular Level with Tungsten Nanoelectrodes. Anal. Chem. 2020, 92, 2543–2549. DOI: 10.1021/ACS.ANALCHEM.9B04139.
  • Gualandi, I.; Tonelli, D. A New Electrochemical Sensor for OH Radicals Detection. Talanta. 2013, 115, 779–786. DOI: 10.1016/J.TALANTA.2013.06.043.
  • Gualandi, I.; Guadagnini, L.; Zappoli, S.; Tonelli, D. A Polypyrrole Based Sensor for the Electrochemical Detection of OH Radicals. Electroanalysis. 2014, 26, 1544–1550. DOI: 10.1002/elan.201400054.
  • Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1169. DOI: 10.1021/CR0300789.
  • Scholz, F.; González, G. L. D. L.; De Carvalho, L. M.; Hilgemann, M.; Brainina, K. Z.; Kahlert, H.; Jack, R. S.; Minh, D. T. Indirect Electrochemical Sensing of Radicals and Radical Scavengers in Biological Matrices. Angew. Chem. Int. Ed. Engl. 2007, 46, 8079–8081. DOI: 10.1002/ANIE.200702690.
  • Zhu, A.; Liu, Y.; Rui, Q.; Tian, Y. Selective and Sensitive Determination of Hydroxyl Radicals Generated from Living Cells through an Electrochemical Impedance Method. Chem. Commun. (Camb.). 2011, 47, 4279–4281. DOI: 10.1039/C0CC05821A.
  • Li, L.; Zhu, A.; Tian, Y. An Electrochemical Strategy for Fast Monitoring of ˙OH Released from Live Cells at an Electroactive FcHT-Functional Surface Amplified by Au Nanoparticles. Chem. Commun. (Camb.). 2013, 49, 1279–1281. DOI: 10.1039/C2CC38339J.
  • Wang, D.; Huang, B.; Li, Y. Double Signal Amplification through a Functionalized Nanoporous Au–Ag Alloy Microwire and Au Nanoparticles: Development of an Electrochemical ˙OH Sensor Based on a Self-Assembled Layer of 6-(Ferrocenyl)Hexanethiol. Chem. Commun. (Camb.). 2019, 55, 2425–2428. DOI: 10.1039/C8CC08420C.
  • Hilgemann, M.; Scholz, F.; Kahlert, H.; de Carvalho, M. L.; da Rosa, M. B.; Lindequist, U.; Wurster, M.; do Nascimento, P. C.; Bohrer, D. Electrochemical Assay to Quantify the Hydroxyl Radical Scavenging Activity of Medicinal Plant Extracts. Electroanalysis. 2010, 22, 406–412. DOI: 10.1002/elan.200900385.
  • Wang, Z.; Yi, K.; Lin, Q.; Yang, L.; Chen, X.; Chen, H.; Liu, Y.; Wei, D. Free Radical Sensors Based on Inner-Cutting Graphene Field-Effect Transistors. Nat. Commun. 2019, 10, 1–10. DOI: 10.1038/s41467-019-09573-4.
  • Duanghathaipornsuk, S.; Kim, D. S.; Phares, T. L.; Li, C. H.; Jinschek, J. R.; Alba-Rubio, A. C. Supersensitive CeOx-Based Nanocomposite Sensor for the Electrochemical Detection of Hydroxyl Free Radicals. Nanoscale. 2021, 13, 5136–5144. DOI: 10.1039/D1NR00015B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.