472
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Optical and Electrochemical Aptasensors Developed for the Detection of Alpha-Fetoprotein

, , , , , , , , , & show all
Pages 857-871 | Published online: 15 Aug 2022

References

  • Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. DOI: 10.3322/caac.21660.
  • Dehghani, S.; Nosrati, R.; Yousefi, M.; Nezami, A.; Soltani, F.; Taghdisi, S. M.; Abnous, K.; Alibolandi, M.; Ramezani, M. Aptamer-Based Biosensors and Nanosensors for the Detection of Vascular Endothelial Growth Factor (VEGF): A Review. Biosens. Bioelectron. 2018, 110, 23–37. DOI: 10.1016/j.bios.2018.03.037.
  • Lin, X.; Leung, K.-H.; Lin, L.; Lin, L.; Lin, S.; Leung, C.-H.; Ma, D.-L.; Lin, J.-M. Determination of Cell Metabolite VEGF165 and Dynamic Analysis of protein-DNA Interactions by Combination of Microfluidic Technique and Luminescent Switch-on Probe. Biosens. Bioelectron. 2016, 79, 41–47. DOI: 10.1016/j.bios.2015.11.089.
  • Nagpal, M.; Singh, S.; Singh, P.; Chauhan, P. S.; Zaidi, M. A. Tumor Markers: A Diagnostic Tool. Natl. J. Maxillofac. Surg. 2016, 7, 17–20.
  • Rasool, M.; Rashid, S.; Arooj, M.; Ansari, S. A.; Khan, K. M.; Malik, A.; Naseer, M. I.; Zahid, S.; Manan, A.; Asif, M.; et al. New Possibilities in Hepatocellular Carcinoma Treatment. Anticancer Res. 2014, 34, 1563–1571. http://ar.iiarjournals.org/content/34/4/1563.abstract.
  • Naz, Z.; Usman, S.; Saleem, K.; Ahmed, S.; Bashir, H.; Bilal, M.; Sumrin, A. Alpha-Fetoprotein: A Fabulous Biomarker in Hepatocellular, Gastric and Rectal Cancer Diagnosis. biomedicalresearch. 2018, 29, 1550. DOI: 10.4066/biomedicalresearch.29-17-1550.
  • Anzai, H.; Kazama, S.; Kiyomatsu, T.; Nishikawa, T.; Tanaka, T.; Tanaka, J.; Hata, K.; Kawai, K.; Yamaguchi, H.; Nozawa, H.; et al. Alpha-Fetoprotein-Producing Early Rectal Carcinoma: A Rare Case Report and Review. World J. Surg. Oncol. 2015, 13, 180. DOI: 10.1186/s12957-015-0590-x.
  • Mohammadinejad, A.; Kazemi Oskuee, R.; Eivazzadeh-Keihan, R.; Rezayi, M.; Baradaran, B.; Maleki, A.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Development of Biosensors for Detection of Alpha-Fetoprotein: As a Major Biomarker for Hepatocellular Carcinoma. TrAC, Trends Anal. Chem. 2020, 130, 115961. DOI: 10.1016/j.trac.2020.115961.
  • Yokoyama, S.; Takeuchi, A.; Yamaguchi, S.; Mitani, Y.; Watanabe, T.; Matsuda, K.; Hotta, T.; Shively, J. E.; Yamaue, H. Clinical Implications of Carcinoembryonic Antigen Distribution in Serum Exosomal Fraction—Measurement by ELISA. PLoS One. 2017, 12, e0183337. DOI: 10.1371/journal.pone.0183337.
  • Gu, X.; She, Z.; Ma, T.; Tian, S.; Kraatz, H.-B. Electrochemical Detection of Carcinoembryonic Antigen. Biosens. Bioelectron. 2018, 102, 610–616. DOI: 10.1016/j.bios.2017.12.014.
  • Xiang, W.; Lv, Q.; Shi, H.; Xie, B.; Gao, L. Aptamer-Based Biosensor for Detecting Carcinoembryonic Antigen. Talanta. 2020, 214, 120716. DOI: 10.1016/j.talanta.2020.120716.
  • Guo, L.; Shi, Y.; Liu, X.; Han, Z.; Zhao, Z.; Chen, Y.; Xie, W.; Li, X. Enhanced Fluorescence Detection of Proteins Using ZnO Nanowires Integrated inside Microfluidic Chips. Biosens. Bioelectron. 2018, 99, 368–374. DOI: 10.1016/j.bios.2017.08.003.
  • Lin, X.; Li, S.; Zhang, B.; Yang, H.; Zhang, K.; Huang, H. An Enzyme-Free Fluorescent Biosensor for Highly Sensitive Detection of Carcinoembryonic Antigen Based on Aptamer-Induced Entropy-Driven Circuit. Anal. Methods. 2020, 12, 5496–5502. DOI: 10.1039/D0AY01326A.
  • Ghorbani, F.; Abbaszadeh, H.; Dolatabadi, J. E. N.; Aghebati-Maleki, L.; Yousefi, M. Application of Various Optical and Electrochemical Aptasensors for Detection of Human Prostate Specific Antigen: A Review. Biosens. Bioelectron. 2019, 142, 111484. DOI: 10.1016/j.bios.2019.111484.
  • Li, R.; Feng, F.; Chen, Z.-Z.; Bai, Y.-F.; Guo, F.-F.; Wu, F.-Y.; Zhou, G. Sensitive Detection of Carcinoembryonic Antigen Using Surface Plasmon Resonance Biosensor with Gold Nanoparticles Signal Amplification. Talanta. 2015, 140, 143–149. DOI: 10.1016/j.talanta.2015.03.041.
  • Xing, T.-Y.; Zhao, J.; Weng, G.-J.; Zhu, J.; Li, J.-J.; Zhao, J.-W. Specific Detection of Carcinoembryonic Antigen Based on Fluorescence Quenching of Hollow Porous Gold Nanoshells with Roughened Surface. ACS Appl. Mater. Interfaces. 2017, 9, 36632–36641. DOI: 10.1021/acsami.7b11310.
  • Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Baradaran, B.; Maleki, A.; Hejazi, M.; Mokhtarzadeh, A.; Guardia, M. Recent Advances on Nanomaterial Based Electrochemical and Optical Aptasesnors for Detection of Cancer Biomarkers. TrAC, Trends Anal. Chem. 2018, 100, 103–115. DOI: 10.1016/j.trac.2017.12.019.
  • Hong, P.; Li, W.; Li, J. Applications of Aptasensors in Clinical Diagnostics. Sensors (Basel). 2012, 12, 1181–1193. DOI: 10.3390/s120201181.
  • Torres, F. G.; Troncoso, O. P.; Gonzales, K. N.; Sari, R. M.; Gea, S. Bacterial Cellulose-Based Biosensors. Med. Devices Sens. 2020, 3, e10102. DOI: 10.1002/mds3.10102.
  • Li, Q.; Xia, Y.; Wan, X.; Yang, S.; Cai, Z.; Ye, Y.; Li, G. Morphology-Dependent MnO2/Nitrogen-Doped Graphene Nanocomposites for Simultaneous Detection of Trace Dopamine and Uric Acid. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 109, 110615. DOI: 10.1016/j.msec.2019.110615.
  • Li, Q.; Wu, J.-T.; Liu, Y.; Qi, X.-M.; Jin, H.-G.; Yang, C.; Liu, J.; Li, G.-L.; He, Q.-G. Recent Advances in Black Phosphorus-Based Electrochemical Sensors: A Review. Anal. Chim. Acta. 2021, 1170, 338480. DOI: 10.1016/j.aca.2021.338480.
  • Li, F.; Ni, B.; Zheng, Y.; Huang, Y.; Li, G. A Simple and Efficient Voltammetric Sensor for Dopamine Determination Based on ZnO Nanorods/Electro-Reduced Graphene Oxide Composite. Surf. Interfaces. 2021, 26, 101375. DOI: 10.1016/j.surfin.2021.101375.
  • Li, G.; Qi, X.; Zhang, G.; Wang, S.; Li, K.; Wu, J.; Wan, X.; Liu, Y.; Li, Q. Low-Cost Voltammetric Sensors for Robust Determination of Toxic Cd(II) and Pb(II) in Environment and Food Based on Shuttle-like α-Fe2O3 Nanoparticles Decorated β-Bi2O3 Microspheres. Microchem. J. 2022, 179, 107515. DOI: 10.1016/j.microc.2022.107515.
  • Malik, P.; Gupta, R.; Malik, V.; Ameta, R. K. Emerging Nanomaterials for Improved Biosensing. Measurement: Sensors. 2021, 16, 100050. DOI: 10.1016/j.measen.2021.100050.
  • Li, G.; Qi, X.; Wu, J.; Xu, L.; Wan, X.; Liu, Y.; Chen, Y.; Li, Q. Ultrasensitive, Label-Free Voltammetric Determination of Norfloxacin Based on Molecularly Imprinted Polymers and Au Nanoparticle-Functionalized Black Phosphorus Nanosheet Nanocomposite. J. Hazard. Mater. 2022, 436, 129107. DOI: 10.1016/j.jhazmat.2022.129107.
  • Perumal, V.; Hashim, U. Advances in Biosensors: Principle, Architecture and Applications. J. Appl. Biomed. 2014, 12, 1–15. DOI: 10.1016/j.jab.2013.02.001.
  • Bostan, H. B.; Taghdisi, S. M.; Bowen, J. L.; Demertzis, N.; Rezaee, R.; Panahi, Y.; Tsatsakis, A. M.; Karimi, G. Determination of Microcystin-LR, Employing Aptasensors. Biosens. Bioelectron. 2018, 119, 110–118. DOI: 10.1016/j.bios.2018.08.003.
  • Dong, L.; Tan, Q.; Ye, W.; Liu, D.; Chen, H.; Hu, H.; Wen, D.; Liu, Y.; Cao, Y.; Kang, J.; et al. Screening and Identifying a Novel ssDNA Aptamer against Alpha-Fetoprotein Using CE-SELEX. Sci. Rep. 2015, 5, 15552. DOI: 10.1038/srep15552.
  • Huang, C.-J.; Lin, H.-I.; Shiesh, S.-C.; Lee, G.-B. An Integrated Microfluidic System for Rapid Screening of Alpha-Fetoprotein-Specific Aptamers. Biosens. Bioelectron. 2012, 35, 50–55. DOI: 10.1016/j.bios.2012.02.024.
  • Lee, Y. J.; Lee, S.-W. Regression of Hepatocarcinoma Cells Using RNA Aptamer Specific to Alpha-Fetoprotein. Biochem. Biophys. Res. Commun. 2012, 417, 521–527. DOI: 10.1016/j.bbrc.2011.11.153.
  • Zanchetta, G.; Lanfranco, R.; Giavazzi, F.; Bellini, T.; Buscaglia, M. Emerging Applications of Label-Free Optical Biosensors. Nanophotonics. 2017, 6, 627–645. DOI: 10.1515/nanoph-2016-0158.
  • Lei, J.; Ju, H. Signal Amplification Using Functional Nanomaterials for Biosensing. Chem. Soc. Rev. 2012, 41, 2122–2134. DOI: 10.1039/C1CS15274B.
  • Thakur, N.; Gupta, D.; Mandal, D.; Nagaiah, T. C. Ultrasensitive Electrochemical Biosensors for Dopamine and Cholesterol: Recent Advances, Challenges and Strategies. Chem. Commun. (Camb.). 2021, 57, 13084–13113. DOI: 10.1039/D1CC05271C.
  • Han, R.; Sun, Y.; Lin, Y.; Liu, H.; Dai, Y.; Zhu, X.; Gao, D.; Wang, X.; Luo, C. A Simple Chemiluminescent Aptasensor for the Detection of α-Fetoprotein Based on Iron-Based Metal Organic Frameworks. New J. Chem. 2020, 44, 4099–4107. DOI: 10.1039/C9NJ05870B.
  • Wu, M.-S.; Liu, Z.; Shi, H.-W.; Chen, H.-Y.; Xu, J.-J. Visual Electrochemiluminescence Detection of Cancer Biomarkers on a Closed Bipolar Electrode Array Chip. Anal. Chem. 2015, 87, 530–537. DOI: 10.1021/ac502989f.
  • Xie, L.; Cao, Y.; Hu, F.; Li, T.; Wang, Q.; Gan, N. Microfluidic Chip Electrophoresis for Simultaneous Fluorometric Aptasensing of Alpha-Fetoprotein, Carbohydrate Antigen 125 and Carcinoembryonic Antigen by Applying a Catalytic Hairpin Assembly. Mikrochim. Acta. 2019, 186, 547. DOI: 10.1007/s00604-019-3594-3.
  • Jiang, Y.; Tang, Y.; Miao, P. Polydopamine Nanosphere@Silver Nanoclusters for Fluorescence Detection of Multiplex Tumor Markers. Nanoscale. 2019, 11, 8119–8123. DOI: 10.1039/C9NR01307E.
  • Xu, J.; Chen, W.; Shi, M.; Huang, Y.; Fang, L.; Zhao, S.; Yao, L.; Liang, H. An Aptamer-Based Four-Color Fluorometic Method for Simultaneous Determination and Imaging of Alpha-Fetoprotein, Vascular Endothelial Growth Factor-165, Carcinoembryonic Antigen and Human Epidermal Growth Factor Receptor 2 in Living Cells. Mikrochim. Acta. 2019, 186, 204. DOI: 10.1007/s00604-019-3312-1.
  • Li, G.; Zeng, J.; Liu, H.; Ding, P.; Liang, J.; Nie, X.; Zhou, Z. A Fluorometric Aptamer Nanoprobe for Alpha-Fetoprotein by Exploiting the FRET between 5-Carboxyfluorescein and Palladium Nanoparticles. Mikrochim. Acta. 2019, 186, 314. DOI: 10.1007/s00604-019-3403-z.
  • Zhou, L.; Ji, F.; Zhang, T.; Wang, F.; Li, Y.; Yu, Z.; Jin, X.; Ruan, B. An Fluorescent Aptasensor for Sensitive Detection of Tumor Marker Based on the FRET of a Sandwich Structured QDs-AFP-AuNPs. Talanta. 2019, 197, 444–450. DOI: 10.1016/j.talanta.2019.01.012.
  • Bao, B.; Su, P.; Zhu, J.; Chen, J.; Xu, Y.; Gu, B.; Liu, Y.; Wang, L. Rapid Aptasensor Capable of Simply Detect Tumor Markers Based on Conjugated Polyelectrolytes. Talanta. 2018, 190, 204–209. DOI: 10.1016/j.talanta.2018.07.072.
  • Zhang, Y.; Bai, Y.; Feng, F.; Shuang, S. A Graphene Oxide-Based Fluorescent Aptasensor for Alpha-Fetoprotein Detection. Anal. Methods. 2016, 8, 6131–6134. DOI: 10.1039/C6AY01949H.
  • Xu, S.; Feng, X.; Gao, T.; Liu, G.; Mao, Y.; Lin, J.; Yu, X.; Luo, X. Aptamer Induced Multicoloured Au NCs-MoS(2) "Switch on" Fluorescence Resonance Energy Transfer Biosensor for Dual Color Simultaneous Detection of Multiple Tumor Markers by Single Wavelength Excitation. Anal Chim Acta. 2017, 983, 173–180. DOI: 10.1016/j.aca.2017.06.023.
  • Duong, D. S. T.; Jang, C.-H. Highly Sensitive Label-Free Liquid Crystal-Based Aptasensor to Detect Alpha-Fetoprotein. Liq. Cryst. 2022, 49, 709–710. DOI: 10.1080/02678292.2021.2005165.
  • Qi, L.; Liu, S.; Jiang, Y.; Lin, J.-M.; Yu, L.; Hu, Q. Simultaneous Detection of Multiple Tumor Markers in Blood by Functional Liquid Crystal Sensors Assisted with Target-Induced Dissociation of Aptamer. Anal. Chem. 2020, 92, 3867–3873. DOI: 10.1021/acs.analchem.9b05317.
  • Wang, Q.; Hu, Y.; Jiang, N.; Wang, J.; Yu, M.; Zhuang, X. Preparation of Aptamer Responsive DNA Functionalized Hydrogels for the Sensitive Detection of α-Fetoprotein Using SERS Method. Bioconjug. Chem. 2020, 31, 813–820. DOI: 10.1021/acs.bioconjchem.9b00874.
  • Chen, F.; Zhang, F.; Liu, Y.; Cai, C. Simply and Sensitively Simultaneous Detection Hepatocellular Carcinoma Markers AFP and miRNA-122 by a Label-Free Resonance Light Scattering Sensor. Talanta. 2018, 186, 473–480. DOI: 10.1016/j.talanta.2018.04.060.
  • Li, G.; Li, W.; Li, S.; Shi, X.; Liang, J.; Lai, J.; Zhou, Z. A Novel Aptasensor Based on Light-Addressable Potentiometric Sensor for the Determination of Alpha-Fetoprotein. Biochem. Eng. J. 2020, 164, 107780. DOI: 10.1016/j.bej.2020.107780.
  • Murthy, K. V. R.; Virk, H. Luminescence Phenomena: An Introduction. DDF. 2013, 347, 1–34. DOI: 10.4028/www.scientific.net/DDF.347.1.
  • Kulmala, S.; Suomi, J. Current Status of Modern Analytical Luminescence Methods. Anal. Chim. Acta. 2003, 500, 21–69. DOI: 10.1016/j.aca.2003.09.004.
  • Roda, A.; Mirasoli, M.; Michelini, E.; Di Fusco, M.; Zangheri, M.; Cevenini, L.; Roda, B.; Simoni, P. Progress in Chemical Luminescence-Based Biosensors: A Critical Review. Biosens. Bioelectron. 2016, 76, 164–179. DOI: 10.1016/j.bios.2015.06.017.
  • Hötzer, B.; Medintz, I. L.; Hildebrandt, N. Fluorescence in Nanobiotechnology: Sophisticated Fluorophores for Novel Applications. Small. 2012, 8, 2297–2326. DOI: 10.1002/smll.201200109.
  • Xu, S.; Gao, T.; Feng, X.; Mao, Y.; Liu, P.; Yu, X.; Luo, X. Dual Ligand co-Functionalized Fluorescent Gold Nanoclusters for the “Turn on” Sensing of Glutathione in Tumor Cells. J. Mater. Chem. B. 2016, 4, 1270–1275. DOI: 10.1039/C5TB02195B.
  • Xu, S.; Lu, X.; Yao, C.; Huang, F.; Jiang, H.; Hua, W.; Na, N.; Liu, H.; Ouyang, J. A Visual Sensor Array for Pattern Recognition Analysis of Proteins Using Novel Blue-Emitting Fluorescent Gold Nanoclusters. Anal. Chem. 2014, 86, 11634–11639. DOI: 10.1021/ac502643s.
  • Li, S.; Liu, X.; Liu, S.; Guo, M.; Liu, C.; Pei, M. Fluorescence Sensing Strategy Based on Aptamer Recognition and Mismatched Catalytic Hairpin Assembly for Highly Sensitive Detection of Alpha-Fetoprotein. Anal. Chim. Acta. 2021, 1141, 21–27. DOI: 10.1016/j.aca.2020.10.030.
  • Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Li, J. Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Anal. Chem. 2010, 82, 2341–2346. DOI: 10.1021/ac9025384.
  • Huang, C.; Liu, Y.; Wu, L.; Zhao, H. Synthesis of Chiral Fluorescence Silver Nano-Clusters and Study on the Aggregation-Induced Emission Enhancement and Chiral Flip. RSC Adv. 2016, 6, 105288–105295. DOI: 10.1039/C6RA22102E.
  • Zhou, W.; Dong, S. A New AgNC Fluorescence Regulation Mechanism Caused by Coiled DNA and Its Applications in Constructing Molecular Beacons with Low Background and Large Signal Enhancement. Chem. Commun. (Camb.). 2017, 53, 12290–12293. DOI: 10.1039/C7CC06872G.
  • Liang, J.; Li, K.; Liu, B. Visual Sensing with Conjugated Polyelectrolytes. Chem. Sci. 2013, 4, 1377–1394. DOI: 10.1039/c2sc21792a.
  • Liu, J.; Liu, B. 2016. Red and near Infrared Fluorescent Conjugated Polyelectrolytes for Biomedical Applications.
  • Prakash, J.; Parveen, A.; Mishra, Y. K.; Kaushik, A. Nanotechnology-Assisted Liquid Crystals-Based Biosensors: Towards Fundamental to Advanced Applications. Biosens. Bioelectron. 2020, 168, 112562. DOI: 10.1016/j.bios.2020.112562.
  • Croxatto, A.; Prod'hom, G.; Greub, G. Applications of MALDI-TOF Mass Spectrometry in Clinical Diagnostic Microbiology. FEMS Microbiol. Rev. 2012, 36, 380–407. DOI: 10.1111/j.1574-6976.2011.00298.x.
  • Wang, Z.; Fang, X.; Sun, N.; Deng, C. A Rational Route to Hybrid Aptamer-Molecularly Imprinted Magnetic Nanoprobe for Recognition of Protein Biomarkers in Human Serum. Anal. Chim. Acta. 2020, 1128, 1–10. DOI: 10.1016/j.aca.2020.06.036.
  • Su, Y.; Xue, T.; Wu, L.; Hu, Y.; Wang, J.; Xu, Q.; Chen, Y.; Lin, Z. Label-Free Detection of Biomarker Alpha Fetoprotein in Serum by ssDNA Aptamer Functionalized Magnetic Nanoparticles. Nanotechnology. 2020, 31, 095104. DOI: 10.1088/1361-6528/ab57f7.
  • Emrani, A. S.; Danesh, N. M.; Ramezani, M.; Taghdisi, S. M.; Abnous, K. A Novel Fluorescent Aptasensor Based on Hairpin Structure of Complementary Strand of Aptamer and Nanoparticles as a Signal Amplification Approach for Ultrasensitive Detection of Cocaine. Biosens. Bioelectron. 2016, 79, 288–293. DOI: 10.1016/j.bios.2015.12.025.
  • Hayat, A.; Marty, J. L. Aptamer Based Electrochemical Sensors for Emerging Environmental Pollutants. Front. Chem. 2014, 2, 41. DOI: 10.3389/fchem.2014.00041.
  • Díaz-Fernández, A.; Lorenzo-Gómez, R.; Miranda-Castro, R.; de-Los-Santos-Álvarez, N.; Lobo-Castañón, M. J. Electrochemical Aptasensors for Cancer Diagnosis in Biological Fluids - A Review. Anal. Chim. Acta. 2020, 1124, 1–19. DOI: 10.1016/j.aca.2020.04.022.
  • Meirinho, S. G.; Dias, L. G.; Peres, A. M.; Rodrigues, L. R. Voltammetric Aptasensors for Protein Disease Biomarkers Detection: A Review. Biotechnol. Adv. 2016, 34, 941–953. DOI: 10.1016/j.biotechadv.2016.05.006.
  • Yang, X.; Zhao, C.; Zhang, C.; Wen, K.; Zhu, Y. Bi-Directionally Amplified Ratiometric Electrochemical Aptasensor for the Ultrasensitive Detection of Alpha-Fetoprotein. Sens. Actuators, B. 2020, 323, 128666. DOI: 10.1016/j.snb.2020.128666.
  • Wang, H.; Xie, X.-Q.; Peng, Y.; Li, J.; Liu, C.-S. Self-Healing Mechanism and Bioelectrochemical Interface Properties of Core-Shell Guanosine-Borate Hydrogels. J. Colloid Interface Sci. 2021, 590, 103–113. DOI: 10.1016/j.jcis.2021.01.034.
  • Yang, S.; Zhang, F.; Wang, Z.; Liang, Q. A Graphene Oxide-Based Label-Free Electrochemical Aptasensor for the Detection of Alpha-Fetoprotein. Biosens. Bioelectron. 2018, 112, 186–192. DOI: 10.1016/j.bios.2018.04.026.
  • Heiat, M.; Negahdary, M. Sensitive Diagnosis of Alpha-Fetoprotein by a Label Free Nanoaptasensor Designed by Modified Au Electrode with Spindle-Shaped Gold Nanostructure. Microchem. J. 2019, 148, 456–466. DOI: 10.1016/j.microc.2019.05.004.
  • Zhang, B.; Ding, H.; Chen, Q.; Wang, T.; Zhang, K. Prussian Blue Nanoparticle-Labeled Aptasensing Platform on Graphene Oxide for Voltammetric Detection of α-Fetoprotein in Hepatocellular Carcinoma with Target Recycling. Analyst. 2019, 144, 4858–4864. DOI: 10.1039/C9AN01029G.
  • Liu, N.; Fan, X.; Hou, H.; Gao, F.; Luo, X. Electrochemical Sensing Interfaces Based on Hierarchically Architectured Zwitterionic Peptides for Ultralow Fouling Detection of Alpha Fetoprotein in Serum. Anal. Chim. Acta. 2021, 1146, 17–23. DOI: 10.1016/j.aca.2020.12.031.
  • Li, G.; Li, S.; Wang, Z.; Xue, Y.; Dong, C.; Zeng, J.; Huang, Y.; Liang, J.; Zhou, Z. Label-Free Electrochemical Aptasensor for Detection of Alpha-Fetoprotein Based on AFP-Aptamer and Thionin/Reduced Graphene Oxide/Gold Nanoparticles. Anal. Biochem. 2018, 547, 37–44. DOI: 10.1016/j.ab.2018.02.012.
  • Gao, T.; Zhi, J.; Mu, C.; Gu, S.; Xiao, J.; Yang, J.; Wang, Z.; Xiang, Y. One-Step Detection for Two Serological Biomarker Species to Improve the Diagnostic Accuracy of Hepatocellular Carcinoma. Talanta. 2017, 178, 89–93. DOI: 10.1016/j.talanta.2017.09.011.
  • Cui, M.; Wang, Y.; Jiao, M.; Jayachandran, S.; Wu, Y.; Fan, X.; Luo, X. Mixed Self-Assembled Aptamer and Newly Designed Zwitterionic Peptide as Antifouling Biosensing Interface for Electrochemical Detection of Alpha-Fetoprotein. ACS Sens. 2017, 2, 490–494. DOI: 10.1021/acssensors.7b00103.
  • Huang, X.; Cui, B.; Ma, Y.; Yan, X.; Xia, L.; Zhou, N.; Wang, M.; He, L.; Zhang, Z. Three-Dimensional Nitrogen-Doped Mesoporous Carbon Nanomaterials Derived from Plant Biomass: Cost-Effective Construction of Label-Free Electrochemical Aptasensor for Sensitively Detecting Alpha-Fetoprotein. Anal. Chim. Acta. 2019, 1078, 125–134. DOI: 10.1016/j.aca.2019.06.009.
  • Wang, W.; Wang, Q.; Xie, H.; Wu, D.; Gan, N. A Universal Assay Strategy for Sensitive and Simultaneous Quantitation of Multiplex Tumor Markers Based on the Stirring Rod-Immobilized DNA-LaMnO(3) Perovskite-Metal Ions Encoded Probes. Talanta. 2021, 222, 121456. DOI: 10.1016/j.talanta.2020.121456.
  • Upan, J.; Youngvises, N.; Tuantranont, A.; Karuwan, C.; Banet, P.; Aubert, P.-H.; Jakmunee, J. A Simple Label-Free Electrochemical Sensor for Sensitive Detection of Alpha-Fetoprotein Based on Specific Aptamer Immobilized Platinum Nanoparticles/Carboxylated-Graphene Oxide. Sci. Rep. 2021, 11, 13969. DOI: 10.1038/s41598-021-93399-y.
  • Hu, D.; Cui, H.; Wang, X.; Luo, F.; Qiu, B.; Cai, W.; Huang, H.; Wang, J.; Lin, Z. Highly Sensitive and Selective Photoelectrochemical Aptasensors for Cancer Biomarkers Based on MoS(2)/Au/GaN Photoelectrodes. Anal. Chem. 2021, 93, 7341–7347. DOI: 10.1021/acs.analchem.1c01197.
  • Chivers, P. R. A.; Smith, D. K. Shaping and Structuring Supramolecular Gels. Nat. Rev. Mater. 2019, 4, 463–478. DOI: 10.1038/s41578-019-0111-6.
  • Li, J.; Wei, H.; Peng, Y.; Geng, L.; Zhu, L.; Cao, X.-Y.; Liu, C.-S.; Pang, H. A Multifunctional Self-Healing G-PyB/KCl Hydrogel: Smart Conductive, Rapid Room-Temperature Phase-Selective Gelation, and Ultrasensitive Detection of Alpha-Fetoprotein. Chem. Commun. (Camb.). 2019, 55, 7922–7925. DOI: 10.1039/C9CC02770J.
  • Cacicedo, M.; Manzo, R.; Municoy, S.; Bonazza, H.; Islan, G.; Desimone, M.; … Castro, G. 2019. Immobilized Enzymes and Their Applications. pp 169–200.
  • Li, W.; Chen, M.; Liang, J.; Lu, C.; Zhang, M.; Hu, F.; Zhou, Z.; Li, G. Electrochemical Aptasensor for Analyzing Alpha-Fetoprotein Using RGO–CS–Fc Nanocomposites Integrated with Gold–Platinum Nanoparticles. Anal. Methods. 2020, 12, 4956–4966. DOI: 10.1039/D0AY01465F.
  • Pandey, P. C.; Panday, D. Tetrahydrofuran and Hydrogen Peroxide Mediated Conversion of Potassium Hexacyanoferrate into Prussian Blue Nanoparticles: Application to Hydrogen Peroxide Sensing. Electrochim. Acta. 2016, 190, 758–765. DOI: 10.1016/j.electacta.2015.12.188.
  • Pandey, P. C.; Pandey, A. K. Tetrahydrofuran Hydroperoxide Mediated Synthesis of Prussian Blue Nanoparticles: A Study of Their Electrocatalytic Activity and Intrinsic Peroxidase-like Behavior. Electrochim. Acta. 2014, 125, 465–472. DOI: 10.1016/j.electacta.2014.01.126.
  • Hao, T.; Wu, X.; Xu, L.; Liu, L.; Ma, W.; Kuang, H.; Xu, C. Ultrasensitive Detection of Prostate-Specific Antigen and Thrombin Based on Gold-Upconversion Nanoparticle Assembled Pyramids. Small. 2017, 13, 1603944. DOI: 10.1002/smll.201603944.
  • Jamali, A. A.; Pourhassan-Moghaddam, M.; Dolatabadi, J. E. N.; Omidi, Y. Nanomaterials on the Road to microRNA Detection with Optical and Electrochemical Nanobiosensors. TrAC, Trends Anal. Chem. 2014, 55, 24–42. DOI: 10.1016/j.trac.2013.10.008.
  • Vigneshvar, S.; Sudhakumari, C. C.; Senthilkumaran, B.; Prakash, H. Recent Advances in Biosensor Technology for Potential Applications – An Overview. Front. Bioeng. Biotechnol. 2016, 4, 11. DOI: 10.3389/fbioe.2016.00011.
  • McConnell, E. M.; Nguyen, J.; Li, Y. Aptamer-Based Biosensors for Environmental Monitoring. Front. Chem. 2020, 8, 434. DOI: 10.3389/fchem.2020.00434.
  • Cho, H.; Yeh, E. C.; Sinha, R.; Laurence, T. A.; Bearinger, J. P.; Lee, L. P. Single-Step Nanoplasmonic VEGF165 Aptasensor for Early Cancer Diagnosis. ACS Nano. 2012, 6, 7607–7614. DOI: 10.1021/nn203833d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.