412
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Bioactive Flavonoids: A Comprehensive Review on Pharmacokinetics and Analytical Aspects

, , , &

References

  • Elliott, M.; Chithan, K. The Impact of Plant Flavonoids on Mammalian Biology: Implications for Immunity, Inflammation and Cancer. In: The Flavonoids: Advances in Research Since 1986; London, UK: Routledge, 2017, pp. 619–652. DOI: 10.1201/9780203736692.
  • Grange, J.; Davey, R. Antibacterial Properties of Propolis (Bee Glue). J. R. Soc. Med. 1990, 83, 159–160. DOI: 10.1177/014107689008300310.
  • Lee, Y. K.; Yuk, D. Y.; Lee, J. W.; Lee, S. Y.; Ha, T. Y.; Oh, K. W.; Yun, Y. P.; Hong, J. T. (−)Epigallocatechin-3-Gallate Prevents Lipopolysaccharide-Induced Elevation of Beta-Amyloid Generation and Memory Deficiency. Brain Res. 2009, 1250, 164–174. DOI: 10.1016/j.brainres.2008.10.012.
  • Burak, M.; Imen, Y. Flavonoids and Their Antioxidant Properties. Turkiye Klin Tip Bil Derg. 1999, 19, 296–304. DOI: 10.1017/jns.2016.41.
  • Castañeda-Ovando, A.; de, L.; Pacheco-Hernández, M.; Páez-Hernández, M. E.; Rodríguez, J. A.; Galán-Vidal, C. A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–871. DOI: 10.1016/j.foodchem.2008.09.001.
  • Skibola, C. F.; Smith, M. T. Potential Health Impacts of Excessive Flavonoid Intake. Free Radic. Biol. Med. 2000, 29, 375–383. DOI: 10.1016/S0891-5849(00)00304-X.[PMC][11035267.
  • Harborne, J. B.; Williams, C. A. Advances in Flavonoid Research Since 1992. Phytochemistry 2000, 55, 481–504. DOI: 10.1016/S0031-9422(00)00235-1.
  • Harborne, J. B.; Baxter, H. The Handbook of Natural Flavonoids, Vol. 1 and 2; Hoboken, NJ: John Wiley and Sons, 1999.
  • Brown, J. A Review of the Genetic Effects of Naturally Occurring Flavonoids, Anthraquinones and Related Compounds. Mutat. Res./Rev. Genetic Toxicol. 1980, 75, 243–277. DOI: 10.1016/0165-1110(80)90029-9.
  • Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. DOI: 10.1093/ajcn/79.5.727.
  • Robards, K.; Li, X.; Antolovich, M.; Boyd, S. Characterisation of Citrus by Chromatographic Analysis of Flavonoids. J. Sci. Food Agric. 1997, 75, 87–101. DOI: 10.1002/(SICI)1097-0010(199709)75:1 < 87::AID-JSFA846 > 3.0.CO;2-B.
  • Iwashina, T. Flavonoid Properties of Five Families Newly Incorporated into the Order Caryophyllales (Review). Bull. Natl. Mus. Nat. Sci. 2013, 39, 25–51.
  • Wang, W.; Goodman, M. T. Antioxidant Property of Dietary Phenolic Agents in a Human LDL-Oxidation Ex Vivo Model: Interaction of Protein Binding Activity. Nutr. Res. 1999, 19, 191–202. DOI: 10.1016/S0271-5317(98)00183-3.
  • Scalbert, A. Antimicrobial Properties of Tannins. Phytochemistry 1991, 30, 3875–3883. DOI: 10.1016/0031-9422(91)83426-L.
  • Manthey, J. A.; Guthrie, N. Antiproliferative Activities of Citrus Flavonoids against Six Human Cancer Cell Lines. J. Agric. Food Chem. 2002, 50, 5837–5843. DOI: 10.1021/jf020121d.
  • Bose, S.; Sarkar, D.; Bose, A.; Mandal, SC.; Natural flavonoids and its pharmaceutical importance. The Pharma Review 2018, 94, 61–75.
  • Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 29, e47. DOI: 10.1017/jns.2016.41.
  • Giusti, M. M.; Wrolstad, R. E. Acylated Anthocyanins from Edible Sources and Their Applications in Food Systems. Biochem. Eng. J. 2003, 14, 217–225. DOI: 10.1016/S1369-703X(02)00221-8.
  • Wang, H.; Provan, G. J.; Helliwell, K. Tea Flavonoids: Their Functions, Utilisation and Analysis. Trends Food Sci. Technol. 2000, 11, 152–160. DOI: 10.1016/S0924-2244(00)00061-3.
  • Atanassova, M.; Bagdassarian, V. Rutin Content in Plant Products. J. Univ. Chem. Technol. Metal. 2009, 44, 201–203.
  • Calderon-Montano, J. M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A Review on the Dietary Flavonoid Kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. DOI: 10.2174/138955711795305335.
  • Kim, S.-H.; Choi, K.-C. Anti-Cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models. Toxicol. Res. 2013, 29, 229–234. DOI: 10.5487/TR.2013.29.4.229.
  • Shimoi, K.; Okada, H.; Furugori, M.; Goda, T.; Takase, S.; Suzuki, M.; Hara, Y.; Yamamoto, H.; Kinae, N. Intestinal Absorption of Luteolin and Luteolin 7-O-β-Glucoside in Rats and Humans. FEBS Lett. 1998, 438, 220–224. DOI: 10.1016/S0014-5793(98)01304-0.
  • López-Lázaro, M. Distribution and Biological Activities of the Flavonoid Luteolin. Mini Rev. Med. Chem. 2009, 9, 31–59. DOI: 10.2174/138955709787001712.
  • Felgines, C.; Texier, O.; Morand, C.; Manach, C.; Scalbert, A.; Régerat, F.; Rémésy, C. Bioavailability of the Flavanone Naringenin and Its Glycosides in Rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, G1148–G1154. DOI: 10.1152/ajpgi.2000.279.6.G1148.[PMC][11093936.
  • Rathmell, W.; Bendall, D. Phenolic Compounds in Relation to Phytoalexin Biosynthesis in Hypocotyls of Phaseolus vulgaris. Physiol. Plant Pathol. 1971, 1, 1, 351–362. DOI: 10.1016/0048-4059(71)90055-5.
  • Hvattum, E. Determination of Phenolic Compounds in Rose Hip (Rosa Canina) Using Liquid Chromatography Coupled to Electrospray Ionisation Tandem Mass Spectrometry and Diode‐Array Detection. Rapid Commun. Mass Spectrom. 2002, 16, 655–662. DOI: 10.1002/rcm.622.
  • Duke, D. J. Phytochemical and Ethnobotanical Databases; Cinchona, 1998.
  • Khan, M. T. H.; Orhan, I.; Senol, F. S.; Kartal, M.; Sener, B.; Dvorská, M.; Smejkal, K.; Slapetová, T. Cholinesterase Inhibitory Activities of Some Flavonoid Derivatives and Chosen Xanthone and Their Molecular Docking Studies. Chem. Biol. Interact. 2009, 181, 383–389. DOI: 10.1016/j.cbi.2009.06.024.[PMC][19596285.
  • Truong, V.-D.; Deighton, N.; Thompson, R. T.; McFeeters, R. F.; Dean, L. O.; Pecota, K. V.; Yencho, G. C. Characterization of Anthocyanins and Anthocyanidins in Purple-Fleshed Sweetpotatoes by HPLC-DAD/ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 404–410. DOI: 10.1021/jf902799a.
  • Zhang, Y.; Wang, G.-J.; Song, T. T.; Murphy, P. A.; Hendrich, S. Urinary Disposition of the Soybean Isoflavones Daidzein, Genistein and Glycitein Differs among Humans with Moderate Fecal Isoflavone Degradation Activity. J. Nutr. 1999, 129, 957–962. DOI: 10.1093/jn/129.5.957.
  • Tekale, S.; Mashele, S.; Pooe, O.; Thore, S.; Kendrekar, P.; Pawar, R. Biological Role of Chalcones in Medicinal Chemistry. In: Vector-Borne Diseases-Recent Developments in Epidemiology and Control; London, UK: IntechOpen, 2020. DOI: 10.5772/intechopen.91626.
  • Yu, C. P.; Shia, C. S.; Tsai, S. Y.; Hou, Y. C. Pharmacokinetics and Relative Bioavailability of Flavonoids between Two Dosage Forms of Gegen-Qinlian-Tang in Rats. Evid. Based Complement Alternat. Med. 2012, 2012, 308018. DOI: 10.1155/2012/308018.
  • Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of Quercetin: Problems and Promises. CMC 2013, 20, 2572–2582. DOI: 10.2174/09298673113209990120.
  • Kim, Y. S.; Ryu, Y. B.; Curtis-Long, M. J.; Yuk, H. J.; Cho, J. K.; Kim, J. Y.; Kim, K. D.; Lee, W. S.; Park, K. H. Flavanones and Rotenoids from the Roots of Amorpha Fruticosa L. that Inhibit Bacterial Neuraminidase. Food Chem. Toxicol. 2011, 49, 1849–1856. DOI: 10.1016/j.fct.2011.04.038.
  • Carvalho, O. V.; Botelho, C. V.; Ferreira, C. G.; Ferreira, H. C.; Santos, M. R.; Diaz, M. A.; Oliveira, T. T.; Soares-Martins, J. A.; Almeida, M. R.; Junior, A. S. In Vitro Inhibition of Canine Distemper Virus by Flavonoids and Phenolic Acids: Implications of Structural Differences for Antiviral Design. Res. Vet. Sci. 2013, 95, 717–724. DOI: 10.1016/j.rvsc.2013.04.013.
  • Hollman, P. C.; van Trijp, J. M.; Buysman, M. N.; van der Gaag, M. S.; Mengelers, M. J.; de Vries, J. H.; Katan, M. B. Relative Bioavailability of the Antioxidant Flavonoid Quercetin from Various Foods in Man. FEBS Lett. 1997, 418, 152–156. DOI: 10.1016/S0014-5793(97)01367-7.[PMC][9414116.
  • Hollman, P. C.; Gaag, M.; Mengelers, M. J.; van Trijp, J. M.; de Vries, J. H.; Katan, M. B. Absorption and Disposition Kinetics of the Dietary Antioxidant Quercetin in Man. Free Radic. Biol. Med. 1996, 21, 703–707. DOI: 10.1177/00912700122010366.
  • Hollman, P. C.; Katan, M. B. Absorption, Metabolism and Health Effects of Dietary Flavonoids in Man. Biomed. Pharmacother. 1997, 51, 305–310. DOI: 10.1016/S0753-3322(97)88045-6.
  • Manach, C.; Morand, C.; Demigné, C.; Texier, O.; Régérat, F.; Rémésy, C. Bioavailability of Rutin and Quercetin in Rats. FEBS Lett. 1997, 409, 12–16. DOI: 10.1016/S0014-5793(97)00467-5.
  • Young, J. F.; Nielsen, S. E.; Haraldsdóttir, J.; Daneshvar, B.; Lauridsen, S. T.; Knuthsen, P.; Crozier, A.; Sandström, B.; Dragsted, L. O. Effect of Fruit Juice Intake on Urinary Quercetin Excretion and Biomarkers of Antioxidative Status. Am. J. Clin. Nutr. 1999, 69, 87–94. DOI: 10.1093/ajcn/69.1.87.
  • Hollman, P. H.; Katan, M. B. Dietary Flavonoids: Intake, Health Effects and Bioavailability. Food Chem. Toxicol. 1999, 37, 937–942. DOI: 10.1093/ajcn/69.1.87.[PMC][10541448.
  • Corcoran, M. P.; McKay, D. L.; Blumberg, J. B. Flavonoid Basics: Chemistry, Sources, Mechanisms of Action, and Safety. J. Nutr. Gerontol. Geriatr. 2012, 31, 176–189. DOI: 10.1080/21551197.2012.698219.
  • Hollman, P. C. Absorption, Bioavailability, and Metabolism of Flavonoids. Pharm. Biol. 2004, 42, 74–83. DOI: 10.2174/0929867324666171003114154.
  • Manach, C.; Morand, C.; Texier, O.; Favier, M. L.; Agullo, G.; Demigné, C.; Régérat, F.; Rémésy, C. Quercetin Metabolites in Plasma of Rats Fed Diets Containing Rutin or Quercetin. J. Nutr. 1995, 125, 1911–1922. DOI: 10.1093/jn/125.7.1911.
  • Piskula, M. K.; Terao, J. Accumulation of (−)-Epicatechin Metabolites in Rat Plasma after Oral Administration and Distribution of Conjugation Enzymes in Rat Tissues. J. Nutr. 1998, 128, 1172–1178. DOI: 10.1093/jn/128.7.1172.
  • Nagao, A.; Seki, M.; Kobayashi, H. Inhibition of Xanthine Oxidase by Flavonoids. Biosci. Biotechnol. Biochem. 1999, 63, 1787–1790. DOI: 10.1271/bbb.63.1787.
  • Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. DOI: 10.1093/ajcn/81.1.230S.
  • Barnes, S.; Prasain, J.; D’Alessandro, T.; Arabshahi, A.; Botting, N.; Lila, M. A.; Jackson, G.; Janle, E. M.; Weaver, C. M. The Metabolism and Analysis of Isoflavones and Other Dietary Polyphenols in Foods and Biological Systems. Food Funct. 2011, 2, 235–244. DOI: 10.1039/C1FO10025D.
  • Ortega, N.; Reguant, J.; Romero, M. P.; Macia, A.; Motilva, M. J. Effect of Fat Content on the Digestibility and Bioaccessibility of Cocoa Polyphenol by an In Vitro Digestion Model. J. Agric. Food Chem. 2009, 57, 5743–5749. DOI: 10.1021/jf900591q.
  • Porrini, M.; Riso, P. Factors Influencing the Bioavailability of Antioxidants in Foods: A Critical Appraisal. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 647–650. DOI: 10.1016/j.numecd.2008.08.004.
  • Ferrandiz, M.; Alcaraz, M. Anti-Inflammatory Activity and Inhibition of Arachidonic Acid Metabolism by Flavonoids. Agents Actions 1991, 32, 283–288. DOI: 10.1016/j.numecd.2008.08.004.
  • Jucá, M. M.; Cysne Filho, F. M.; de Almeida, J. C.; Mesquita, D. D.; Barriga, J. R.; Dias, K. C.; Barbosa, T. M.; Vasconcelos, L. C.; Leal, L. K.; Ribeiro, J. E.; Vasconcelos, S. M. Flavonoids: Biological Activities and Therapeutic Potential. Nat. Prod. Res. 2020, 34, 692–705. DOI: 10.1080/14786419.2018.1493588.
  • Meena, N. L.; Verma, P.; Pande, R.; Kumar, M.; Watts, A.; Gupta, O. P. In: Bioavailability and Nutritional Analysis of Flavonoids, Lone, R.; Shuab, R.; Kamili, A. N., Eds.; Singapore: Springer, 2020, p. 135.
  • Silva, L.; David, J. M.; Borges, R.; Ferreira, S. L. C.; David, J. P.; Reis, P.; Bruns, R. E. Determination of Flavanones in Orange Juices Obtained from Different Sources by HPLC/DAD. J. Anal. Methods Chem. 2014, 2014, 1–5. DOI: 10.1016/j.trac.2021.116220.
  • Feng, R.; Hu, X.; Ma, Y.; Sun, L.; Lv, Y.; Row, K. H.; Zhu, T. Synthesis of Poly (Styrene-Divinylbenzene) by nano-TiO2 and the Application for Pipette-Tip Solid-Phase Extraction of Flavonoid in Epipremnum aureum Rhizome. Sep. Sci. Technol. 2020, 55, 2294–2302. DOI: 10.1080/01496395.2019.1624571.
  • Lund, J. A.; Brown, P. N.; Shipley, P. R. Quantification of North American and European Crataegus Flavonoids by Nuclear Magnetic Resonance Spectrometry. Fitoterapia 2020, 143, 104537. DOI: 10.1016/j.fitote.2020.104537.
  • Sammani, S.; Clavijo, M.; González, S.; Cerdà, A. V. High-Performance Liquid Chromatographic Method for the Simultaneous Determination of Four Flavonols in Food Supplements and Pharmaceutical Formulations. Anal. Lett. 2019, 52, 1298–1314. DOI: 10.1080/00032719.2018.1536138.
  • Shaghaghi, M.; Manzouri, J. L.; Afshar, D. J.; Jouyban, A. Determination of Flavonoids in Pharmaceutical Preparations Using Terbium Sensitized Fluorescence Method. DARU J. Pharma. Sci. 2009, 17, 264–268.
  • Bernal, F. A.; Orduz-Diaz, L. L.; Coy-Barrera, E. Exploitation of the Complexation Reaction of Ortho-Dihydroxylated Anthocyanins with Aluminum (III) for Their Quantitative Spectrophotometric Determination in Edible Sources. Food Chem. 2015, 185, 84–89. DOI: 10.1016/j.foodchem.2015.03.116.
  • Kurkin, V. A.; Pravdivtseva, O. E.; Shaikhutdinov, I. K.; Kurkina, A. V.; Volkova, N. A. Quantitative Determination of Total Flavonoids in Blood-Red Hawthorn Fruit. Pharm Chem J 2020, 54, 36–39. DOI: 10.1007/s11094-019-1913-y.
  • Fedenko, V. S.; Shemet, S. A.; Landi, M. UV–Vis Spectroscopy and Colorimetric Models for Detecting Anthocyanin-Metal Complexes in Plants: An Overview of in Vitro and In Vivo Techniques. J. Plant. Physiol. 2017, 212, 13–28. DOI: 10.1016/j.jplph.2017.02.001.
  • Corradini, E.; Foglia, P.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Lagana, A. Flavonoids: Chemical Properties and Analytical Methodologies of Identification and Quantitation in Foods and Plants. Nat. Prod. Res. 2011, 25, 469–495. DOI: 10.1080/14786419.2010.482054.
  • Turco, J. F.; Do Nascimento, C. L.; de Lima, V. A.; Torres, Y. R. Could Antioxidant Capacity and Flavonoid Content of Ethanolic Extracts of Geopropolis from Brazilian Native Bees Be Estimated from Digital Photos and Nir Spectra. Microchem. J. 2020, 157, 105031. DOI: 10.1016/j.microc.2020.105031.
  • Wang, C. H.; Huang, C. C.; Chen, W.; Lai, Y. S. The Chemical Aspects of Raman Spectroscopy: Statistical Structure-Spectrum Relationship in the Analyses of Bioflavonoids. J. Food Drug Anal. 2020, 28, 45–53. DOI: 10.38212/2224-6614.742.
  • Mattle, C.; Heigl, N.; Abel, G.; Bonn, G.; Huck, C. Near-Infrared Diffuse Reflection Spectroscopy and Multivariate Calibration Hyphenated with Thin-Layer Chromatography for Quality Control of a Phytomedicine and Simultaneous Quantification of Methoxylated Flavones. JPC J. Plan. Chromatogr. Modern TLC 2010, 23, 348–352. DOI: 10.1556/JPC.23.2010.5.9.
  • Bligh, S. W. A.; Ogegbo, O.; Wang, Z.-T. In: Flavonoids by HPLC, Ramawat, K. G.; Merillon, J.-M., Eds.; Berlin, Heidelberg: Springer, 2013, p. 2107.
  • Lombard, K. A.; Geoffriau, E.; Peffley, E. Flavonoid Quantification in Onion by Spectrophotometric and High Performance Liquid Chromatography Analysis. HortSci. 2002, 37, 682–685. DOI: 10.21273/HORTSCI.37.4.682.
  • Seal, T. Quantitative HPLC Analysis of Phenolic Acids, Flavonoids and Ascorbic Acid in Four Different Solvent Extracts of Two Wild Edible Leaves, Sonchus Arvensis and Oenanthe Linearis of North-Eastern Region in India. J. App. Pharm. Sci. 2016, 6, 157–166. DOI: 10.7324/JAPS.2016.60225.
  • Nour, V.; Trandafir, I.; Cosmulescu, S. HPLC Determination of Phenolic Acids, Flavonoids and Juglone in Walnut Leaves. J. Chromatogr. Sci. 2013, 51, 883–890. DOI: 10.1093/chromsci/bms180.
  • Niranjan, A.; Pandey, A.; Misra, P.; Trivedi, P. K.; Lehri, A.; Amla, D. V. Development and Optimization of HPLC-PDA-MS-MS Method for Simultaneous Quantification of Three Classes of Flavonoids in Legume Seeds, Vegetables, Fruits, and Medicinal Plants. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 1729–1742. DOI: 10.1080/10826076.2011.578324.
  • Bronner, W. E.; Beecher, G. R. Extraction and Measurement of Prominent Flavonoids in Orange and Grapefruit Juice Concentrates. J. Chromatogr. A. 1995, 705, 247–256. DOI: 10.1016/0021-9673(95)00304-6.
  • Park, J. S.; Kim, I. S.; Rehman, S. U.; Na, C. S.; Yoo, H. H. HPLC Determination of Bioactive Flavonoids in Hovenia Dulcis Fruit Extracts. J. Chromatogr. Sci. 2016, 54, 130–135. DOI: 10.1093/chromsci/bmv114.
  • Sultana, T.; Stecher, G.; Mayer, R.; Trojer, L.; Qureshi, M. N.; Abel, G.; Popp, M.; Bonn, G. K. Quality Assessment and Quantitative Analysis of Flavonoids from Tea Samples of Different Origins by HPLC-DAD-ESI-MS. J. Agric. Food Chem. 2008, 56, 3444–3453. DOI: 10.1021/jf703625r.
  • Zhao, J. G.; Zhang, Y. Q. A New Estimation of the Total Flavonoids in Silkworm Cocoon Sericin Layer through Aglycone Determination by Hydrolysis-Assisted Extraction and HPLC-DAD Analysis. Food Nutr. Res. 2016, 60, 30932. DOI: 10.3402/fnr.v60.30932.
  • Ola, S. S.; Catia, G.; Marzia, I.; Francesco, V. F.; Afolabi, A. A.; Nadia, M. HPLC/DAD/MS Characterisation and Analysis of Flavonoids and Cynnamoil Derivatives in Four Nigerian Green-Leafy Vegetables. Food Chem. 2009, 115, 1568–1574. DOI: 10.1016/j.foodchem.2009.02.013.
  • Hajimehdipoor, H.; Amin, G. R.; Adib, N.; Rastegar, H.; Shekarchi, M. Development of a Validated HPLC Method for the Simultaneous Determination of Flavonoids in Cuscuta Chinensis Lam. by Ultra-Violet Detection. DARU J. Pharma. Sci. 2012, 20, 1–6. DOI: 10.1186/2008-2231-20-39.
  • Chang-Ming, H. E.; Cheng, Z. H.; Dao-Feng, C. H. Qualitative and Quantitative Analysis of Flavonoids in Sophora Tonkinensis by LC/MS and HPLC. Chin. J. Nat. Med. 2013, 11, 690–698. DOI: 10.1016/S1875-5364(13)60081-3.
  • Calabro, M. L.; Galtieri, V.; Cutroneo, P.; Tommasini, S.; Ficarra, P.; Ficarra, R. Study of the Extraction Procedure by Experimental Design and Validation of a LC Method for Determination of Flavonoids in Citrus Bergamia Juice. J. Pharm. Biomed. Anal. 2004, 35, 349–363. DOI: 10.1016/S0731-7085(03)00585-5.
  • Zeraik, M. L.; Yariwake, J. H. Quantification of Isoorientin and Total Flavonoids in Passiflora Edulis Fruit Pulp by HPLC-UV/DAD. Microchem. J. 2010, 96, 86–91. DOI: 10.1016/j.microc.2010.02.003.
  • Kulevanova, S.; Stefova, M.; Panovska, T. K.; Stafilov, T. HPLC Identification and Determination of Myricetin, Quercetin, Kaempferol and Total Flavonoids in Herbal Drugs. Maced. Pharm. Bull. 2003, 48, 25–30. DOI: 10.33320/maced.pharm.bull.2002.48.005.
  • Mesbah, M. K.; Khalifa, S. I.; El-Gindy, A.; Tawfik, K. A. HPLC Determination of Certain Flavonoids and Terpene Lactones in Selected Ginkgo Biloba L. phytopharmaceuticals. Farmaco 2005, 60, 583–590. DOI: 10.1016/j.farmac.2005.01.014.
  • Romani, A.; Vignolini, P.; Isolani, L.; Ieri, F.; Heimler, D. HPLC-DAD/MS Characterization of Flavonoids and Hydroxycinnamic Derivatives in Turnip Tops (Brassica Rapa L. subsp. sylvestris L.). J. Agric. Food Chem. 2006, 54, 1342–1346. DOI: 10.1021/jf052629x.
  • Seal, T. A. HPLC Determination of Phenolic Acids, Flavonoids and Ascorbic Acid in Four Different Solvent Extracts of Zanthoxylum Acanthopodium, a Wild Edible Plant of Meghalaya State of India. Int. J. Pharm. Pharm. Sci. 2016, 8, 103–109.
  • Bhandari, P.; Kumar, N.; Gupta, A. P.; Singh, B.; Kaul, V. K. A Rapid RP‐HPTLC Densitometry Method for Simultaneous Determination of Major Flavonoids in Important Medicinal Plants. J. Sep. Sci. 2007, 30, 2092–2096. DOI: 10.1002/jssc.200700066.
  • Innocenti, M.; Michelozzi, M.; Giaccherini, C.; Ieri, F.; Vincieri, F. F.; Mulinacci, N. Flavonoids and Biflavonoids in Tuscan Berries of Juniperus communis L.: Detection and Quantitation by HPLC/DAD/ESI/MS. J. Agric. Food Chem. 2007, 55, 6596–6602. DOI: 10.1021/jf070257h.
  • Mundkinajeddu, D.; Sawant, L. P.; Koshy, R.; Akunuri, P.; Singh, V. K.; Mayachari, A.; Sharaf, M. H.; Balasubramanian, M.; Agarwal, A. Development and Validation of High Performance Liquid Chromatography Method for Simultaneous Estimation of Flavonoid Glycosides in Withania Somnifera Aerial Parts. Int. Scholar. Res. Notice. 2014, 2014, 1–6. DOI: 10.1155/2014/351547.
  • Li, W.; Fitzloff, J. F. HPLC Determination of Flavonoids and Terpene Lactones in Commercial Ginkgo Biloba Products. J. Liq. Chromatogr. Relat. Technol. 2002, 25, 2501–2514. DOI: 10.1081/JLC-120014270.
  • Ossipov, V.; Nurmi, K.; Loponen, J.; Prokopiev, N.; Haukioja, E.; Pihlaja, K. HPLC Isolation and Identification of Flavonoids from White Birch Betula Pubescens Leaves. Biochem. Syst. Ecol. 1995, 23, 213–222. DOI: 10.1016/0305-1978(94)00092-U.
  • Ciric, A.; Jelikic‐Stankov, M.; Cvijovic, M.; Djurdjevic, P. Statistical Optimization of an RP‐HPLC Method for the Determination of Selected Flavonoids in Berry Juices and Evaluation of Their Antioxidant Activities. Biomed. Chromatogr. 2018, 32, e4150. DOI: 10.1002/bmc.4150.
  • Minakhmetov, R. A.; Onuchak, L. A.; Kurkin, V. A.; Avdeeva, E. V.; Volotsueva, A. V. Analysis of Flavonoids in Silybum Marianum Fruit by HPLC. Chem. Nat. Compd. 2001, 37, 318–321. DOI: 10.1023/A:1013758131883.
  • Li, G.; Yu, S.; Zhou, Y. H.; Chen, Q. F. Spectrophotometric Determination of Flavonoids Content in Leaves of Fagopyrum Cymosum Complex. Asian J. Chem. 2013, 25, 7575–7578. DOI: 10.14233/ajchem.2013.15265.
  • Baranowska, I.; Bajkacz, S. A New UHPLC-MS/MS Method for the Determination of Flavonoids in Supplements and DPPH-UHPLC-UV Method for the Evaluation of the Radical Scavenging Activity of Flavonoids. Food Chem. 2018, 256, 333–341. DOI: 10.1016/j.foodchem.2018.02.138.
  • da Silva, L. A.; Pezzini, B. R.; Soares, L. Spectrophotometric Determination of the Total Flavonoid Content in Ocimum basilicum L. (Lamiaceae) Leaves. Pharmacogn. Mag. 2015, 11, 96–101. DOI: 10.4103/0973-1296.149721.
  • Lee, J. S.; Paje, L. A.; Choi, W. H.; Cho, E. J.; Kim, H. Y.; Jacinto, S. D.; Lee, S. Validation of an Optimized HPLC/UV Method for the Quantification of Flavonoids in Lotus. JABC 2020, 63, 1–6. DOI: 10.1186/s13765-020-00568-0.
  • Dai, R.; Jiang, D.; Li, W.; Zhang, Y.; Yu, Y.; Deng, Y.; Meng, W. The Determination of the Total Flavonoids by UV and a Flavone Glycoside by HPLC in Torreya Grandis Fort Leaves. In 2007 IEEE/ICME International Conference on Complex Medical Engineering, 2007, pp. 1887–1891. DOI: 10.1109/ICCME.2007.4382076.
  • Alighiri, D.; Nuzulina, K.; Rodhiyah, M.; Drastisianti, A. Optimization of Condition Extraction in Quantification of Total Flavonoid Content in the Seeds of the Arummanis (Mangifera indica L.) Mango from Indonesia. J. Phys.: Conf. Ser. 2019, 1321, 022041. DOI: 10.1088/1742-6596/1321/2/022041.
  • Magiera, S.; Baranowska, I.; Lautenszleger, A. UHPLC–UV Method for the Determination of Flavonoids in Dietary Supplements and for Evaluation of Their Antioxidant Activities. J Pharm. Biomed. Anal. 2015, 102, 468–475. DOI: 10.1016/j.jpba.2014.10.004.
  • Paranthaman, R.; Praveen, K. P.; Kumaravel, S. GC-MS Analysis of Phytochemicals and Simultaneous Determination of Flavonoids in Amaranthus Caudatus (Sirukeerai) by RP-HPLC. J. Anal. Bioanal. Tech. 2012, 3, 2020. DOI: 10.1038/s41598-022-08421-8.
  • Purba, R. A.; Paengkoum, P. Bioanalytical HPLC Method of Piper Betle L. for Quantifying Phenolic Compound, Water-Soluble Vitamin, and Essential Oil in Five Different Solvent Extracts. J. Appl. Pharma. Sci. 2019, 9, 33–39. DOI: 10.7324/JAPS.2019.90504.
  • Lin, L. Z.; Mukhopadhyay, S.; Robbins, R. J.; Harnly, J. M. Identification and Quantification of Flavonoids of Mexican Oregano (Lippia graveolens) by LC-DAD-ESI/MS Analysis. J. Food Compost. Anal. 2007, 20, 361–369. DOI: 10.1016/j.jfca.2006.09.005.
  • Dias, A. L.; Rozet, E.; Larondelle, Y.; Hubert, P.; Rogez, H.; Quetin-Leclercq, J. Development and Validation of an UHPLC-LTQ-Orbitrap MS Method for Non-Anthocyanin Flavonoids Quantification in Euterpe Oleracea Juice. Anal. Bioanal. Chem. 2013, 405, 9235–9249. DOI: 10.1007/s00216-013-7325-z.
  • Yang, Y.; Shen, Y.; Wang, Y.; Yang, F.; Pei, J. Recent Developments in Electrochemical Sensing Platforms for the Detection of Plant Flavonoids. Int. J. Electrochem. Sci. 2022, 2022, 220523. DOI: 10.20964/2022.05.12.
  • Sariga, George, A.; Rajeev, R.; Thadathil, D. A.; Varghese, A. A Comprehensive Review on the Electrochemical Sensing of Flavonoids. Crit. Rev. Anal. Chem. 2021, 2021, 1–41. DOI: 10.1080/10408347.2021.2008863.
  • Baumann, D.; Adler, S.; Hamburger, M. A Simple Isolation Method for the Major Catechins in Green Tea Using High-Speed Countercurrent Chromatography. J. Nat. Prod. 2001, 64, 353–355. DOI: 10.1021/np0004395.
  • Rodrıguez-Delgado, M. A.; Malovana, S.; Perez, J. P.; Borges, T.; Montelongo, F. G. Separation of Phenolic Compounds by High-Performance Liquid Chromatography with Absorbance and Fluorimetric Detection. J. Chromatogr. A. 2001, 912, 249–257. DOI: 10.1016/S0021-9673(01)00598-2.
  • Cao, Y.; Chu, Q.; Fang, Y.; Ye, J. Analysis of Flavonoids in Ginkgo Biloba L. and Its Phytopharmaceuticals by Capillary Electrophoresis with Electrochemical Detection. Anal. Bioanal. Chem. 2002, 374, 294–299. DOI: 10.1007/s00216-002-1436-2.
  • de Rijke, E.; Out, P.; Niessen, W. M.; Ariese, F.; Gooijer, C.; Udo, A. T. Analytical Separation and Detection Methods for Flavonoids. J. Chromatogr. A. 2006, 1112, 31–63. DOI: 10.1016/j.chroma.2006.01.019.
  • Chu, Q.; Fu, L.; Guan, Y.; Ye, J. Determination and Differentiation of Flos Chrysanthemum Based on Characteristic Electrochemical Profiles by Capillary Electrophoresis with Electrochemical Detection. J. Agric. Food Chem. 2004, 52, 7828–7833. DOI: 10.1021/jf048933s.
  • Cao, Y.; Lou, C.; Fang, Y.; Ye, J. Determination of Active Ingredients of Rhododendron Dauricum L. by Capillary Electrophoresis with Electrochemical Detection. J. Chromatogr. A. 2002, 943, 153–157. DOI: 10.1016/S0021-9673(01)01434-0.
  • Peng, Y. Y.; Liu, F. H.; Ye, J. N. Determination of Bioactive Flavonoids in Rhododendron Dauricum L. By Capillary Electrophoresis with Electrochemical Detection. Chromatographia 2004, 60, 597–602. DOI: 10.1365/s10337-004-0420-8.
  • Lin, H.; Gan, T.; Wu, K. Sensitive and Rapid Determination of Catechol in Tea Samples Using Mesoporous Al-Doped Silica Modified Electrode. Food Chem. 2009, 113, 701–704. DOI: 10.1016/j.foodchem.2008.07.073.
  • Yue, X.; Pang, S.; Han, P.; Zhang, C.; Wang, J.; Zhang, L. Carbon Nanotubes/Carbon Paper Composite Electrode for Sensitive Detection of Catechol in the Presence of Hydroquinone. Electrochem. Commun. 2013, 34, 356–359. DOI: 10.1016/j.elecom.2013.07.016.
  • Jiaojiao, X.; Pengyun, W.; Bin, Z.; Onyinye, A. I. Enhancing Electrochemical Sensing for Catechol by Biomimetic Oxidase Covalently Functionalized Graphene Oxide. Bioprocess Biosyst. Eng. 2021, 44, 343–353. DOI: 10.1007/s00449-020-02446-x.
  • Ganesh, H. V.; Noroozifar, M.; Kerman, K. Epigallocatechin Gallate-Modified Graphite Paste Electrode for Simultaneous Detection of Redox-Active Biomolecules. Sensors 2017, 18, 23. DOI: 10.3390/s18010023.
  • de Assis, I. M.; de Moraes, M. O.; da Conceição, R. C.; Romaguera-Barcelay, Y.; de Souza, R. F.; Larrudé, D. R.; Rocco, M. L.; Brito, W. R. Novel Electrochemical Sensor Based on Molecularly Imprinted Polymer for Selective Recognition of Sesquiterpene β-Caryophyllene. Spectrochim. Acta, Part A 2019, 217, 271–277. DOI: 10.1016/j.saa.2019.03.097.
  • Wu, T.; Guan, Y.; Ye, J. Determination of Flavonoids and Ascorbic Acid in Grapefruit Peel and Juice by Capillary Electrophoresis with Electrochemical Detection. Food Chem. 2007, 100, 1573–1579. DOI DOI: 10.1016/j.foodchem.2005.12.042.
  • Xu, X.; Ye, H.; Wang, W.; Yu, L.; Chen, G. Determination of Flavonoids in Houttuynia cordata Thunb. and Saururus chinensis (Lour.) Bail. by Capillary Electrophoresis with Electrochemical Detection. Talanta 2006, 68, 759–764. DOI: 10.1016/j.talanta.2005.05.027.
  • Tang, J.; Jin, B. Electrochemical Determination of Luteolin in Chrysanthemum Using Multi-Walled Carbon Nanotubes–Ionic Liquid Composite Electrode. Anal. Methods 2015, 7, 894–900. DOI: 10.1039/C4AY02531H.
  • Tang, J.; Jin, B. Poly (Crystal Violet)-Multi-Walled Carbon Nanotubes Modified Electrode for Electroanalytical Determination of Luteolin. Electroanal. Chem. 2016, 780, 46–52. DOI: 10.1016/j.jelechem.2016.08.037.
  • Huang, Q.; Lin, X.; Lin, C.; Zhang, Y.; Zhang, H.; Hu, S.; Wei, C.; Tong, Q. X. Ultrasensitive-Electrochemical Sensor for the Detection of Luteolin in Chrysanthemums and Peanut Shells Using an Au/Pd/Reduced Graphene Oxide Nanofilm. Anal. Methods 2016, 8, 6347–6352. DOI: 10.1039/C6AY01752E.
  • Gao, F.; Chen, X.; Tanaka, H.; Nishitani, A.; Wang, Q. Alkaline Phosphatase Mediated Synthesis of Carbon Nanotube–Hydroxyapatite Nanocomposite and Its Application for Electrochemical Determination of Luteolin. Adv. Powder Technol. 2016, 27, 921–928. DOI: 10.1016/j.apt.2016.02.016.
  • Xu, B.; Zhang, B.; Yang, L.; Zhao, F.; Zeng, B. Electrochemical Determination of Luteolin Using Molecularly Imprinted Poly-Carbazole on MoS2/Graphene-Carbon Nanotubes Nanocomposite Modified Electrode. Electrochim. Acta 2017, 258, 1413–1420. DOI: 10.1016/j.electacta.2017.12.004.
  • Cao, M.; Yin, X.; Bo, X.; Guo, L. High-Performance Electrocatalyst Based on Metal-Organic Framework/Macroporous Carbon Composite for Efficient Detection of Luteolin. Electroanal. Chem. 2018, 824, 153–160. DOI: 10.1016/j.jelechem.2018.07.049.
  • Fu, L.; Liu, Z.; Huang, Y.; Lai, G.; Zhang, H.; Su, W.; Yu, J.; Wang, A.; Lin, C. T.; Yu, A. Square Wave Voltammetric Quantitative Determination of Flavonoid Luteolin in Peanut Hulls and Perilla Based on Au NPs Loaded Boron Nitride Nanosheets. Electroanal. Chem. 2018, 817, 128–133. DOI: 10.1016/j.jelechem.2018.04.009.
  • Ali, S. M.; Nur, O.; Willander, M.; Danielsson, B. A Fast and Sensitive Potentiometric Glucose Microsensor Based on Glucose Oxidase Coated ZnO Nanowires Grown on a Thin Silver Wire. Sens. Actuators, B. 2010, 145, 869–874. DOI: 10.1016/j.snb.2009.12.072.
  • Ponnaiah, S. K.; Periakaruppan, P. A Glassy Carbon Electrode Modified with a Copper Tungstate and Polyaniline Nanocomposite for Voltammetric Determination of Quercetin. Microchim. Acta 2018, 185, 1–7. DOI: 10.1007/s00604-018-3071-4.
  • Abdullah, A. A.; Yardım, Y.; Şentürk, Z. The Performance of Cathodically Pretreated Boron-Doped Diamond Electrode in Cationic Surfactant Media for Enhancing the Adsorptive Stripping Voltammetric Determination of Catechol-Containing Flavonoid Quercetin in Apple Juice. Talanta 2018, 187, 156–164. DOI: 10.1016/j.talanta.2018.05.016.
  • Zhou, Z.; Gu, C.; Chen, C.; Zhao, P.; Xie, Y.; Fei, J. An Ultrasensitive Electrochemical Sensor for Quercetin Based on 1-Pyrenebutyrate Functionalized Reduced Oxide Graphene/Mercapto-β-Cyclodextrin/Au Nanoparticles Composite Film. Sens. Actuators, B. 2019, 288, 88–95. DOI: 10.1016/j.snb.2019.02.105.
  • Liu, Y.; Xie, R.; Yang, P.; Lu, L.; Shen, L.; Tao, J.; Liu, Z.; Zhao, P. An Excellent Electrochemical Sensor Based on Highly Porous Gold Film Modified Gold Electrode for Detecting Quercetin in Food and Medicine. J. Electrochem. Soc. 2020, 167, 047514. DOI: 10.1149/1945-7111/ab7299.
  • Kishioka, S. Y.; Yamada, A. Kinetic Study of the Catalytic Oxidation of Benzyl Alcohols by phthalimide-N-Oxyl Radical Electrogenerated in Acetonitrile Using Rotating Disk Electrode Voltammetry. Electroanal. Chem. 2005, 578, 71–77. DOI: 10.1016/j.jelechem.2004.12.021.
  • Arvand, M.; Farahpour, M.; Ardaki, M. S. Electrochemical Characterization of in Situ Functionalized Gold Organosulfur Self-Assembled Monolayer with Conducting Polymer and Carbon Nanotubes for Determination of Rutin. Talanta 2018, 176, 92–101. DOI: 10.1016/j.talanta.2017.08.012.
  • Rohani, T.; Mohammadi, S. Z.; Karimi, M. A.; Amini, S. Green Synthesized Silver Nanoparticles@ Zeolite Type a Hybridized with Carbon Ceramic, AgZA-CCE, as a New Nano-Electrocatalyst for Detection of Ultra-Trace Amounts of Rutin. Chem. Phys. Lett. 2018, 713, 259–265. DOI: 10.1016/j.cplett.2018.10.051.
  • Liu, J.; Li, Y.; Wu, X.; Wang, W.; Ye, B. A Simple but Highly Sensitive Graphene Based Voltammetric Sensor for Morin. Sen Lett 2013, 11, 1579–1585. DOI: 10.1166/sl.2013.3026.
  • Ziyatdinova, G.; Ziganshina, E.; Budnikov, H. Electrooxidation of Morin on Glassy Carbon Electrode Modified by Carboxylated Single-Walled Carbon Nanotubes and Surfactants. Electrochim. Acta 2014, 145, 209–216. DOI: 10.1016/j.electacta.2014.08.062.
  • Erady, V.; Mascarenhas, R. J.; Satpati, A. K.; Bhakta, A. K.; Mekhalif, Z.; Delhalle, J. Sensitive Voltammetric Determination of Morin in Psidium Guajava Leaf Extract at Nickel (II) Phthalocyanine Modified Carbon Paste Electrode. Surf. Interfaces 2020, 19, DOI: 10.1016/j.surfin.2020.100517.
  • Ottman, N.; Ruokolainen, L.; Suomalainen, A.; Sinkko, H.; Karisola, P.; Lehtimäki, J.; Lehto, M.; Hanski, I.; Alenius, H.; Fyhrquist, N. Soil Exposure Modifies the Gut Microbiota and Supports Immune Tolerance in a Mouse Model. J. Allergy Clin. Immunol. 2019, 143, 1198–1206. DOI: 10.1016/j.jaci.2018.06.024.
  • Singh, S.; Jain, D. V.; Singla, M. L. One Step Electrochemical Synthesis of Gold-Nanoparticles–Polypyrrole Composite for Application in Catechin Electrochemical Biosensor. Anal. Methods 2013, 5, 1024–1032. DOI: 10.1039/c2ay26201k.
  • Ribeiro, G. A.; da Rocha, C. Q.; Veloso, W. B.; Fernandes, R. N.; da Silva, I. S.; Tanaka, A. A. Determination of the Catechin Contents of Bioactive Plant Extracts Using Disposable Screen-Printed Carbon Electrodes in a Batch Injection Analysis (BIA) System. Microchem. J. 2019, 146, 1249–1254. DOI: 10.1016/j.microc.2019.02.058.
  • Della Pelle, F.; Rojas, D.; Scroccarello, A.; Carlo, D.; Ferraro, M.; Di Mattia, G.; Martuscelli, C.; Escarpa, M.; Compagnone, A. D. High-Performance Carbon Black/Molybdenum Disulfide Nanohybrid Sensor for Cocoa Catechins Determination Using an Extraction-Free Approach. Sens. Actuators, B. 2019, 296, 126651. DOI: 10.1016/j.snb.2019.126651.
  • Wang, F.; Zhao, F.; Zhang, Y.; Yang, H.; Ye, B. Sensitive Voltammetric Determination of Baicalein at DNA Langmuir–Blodgett Film Modified Glassy Carbon Electrode. Talanta 2011, 84, 160–168. DOI: 10.1016/j.talanta.2010.12.036.
  • Zhang, D.; Zhang, Y.; He, L. Sensitive Voltammetric Determination of Baicalein at Thermally Reduced Graphene Oxide Modified Glassy Carbon Electrode. Electroanalysis 2013, 25, 2136–2144. DOI: 10.1002/elan.201300189.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.