641
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review

, , , , , & show all

References

  • World Health Organization. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2019; World Health Organization: Geneva, 2020.
  • World Health Organization. WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All; World Health Organization: Licence: CC BY-NC-SA 3.0 IGO, 2020.
  • The Global Cancer Observatory. International Agency for Research on Cancer, World Health Organization, Fact Sheet on All Cancers; 2020; Vol. 419.
  • American Cancer Society. Cancer Treatment and Survivorship Facts and Figures 2019-2021; American Cancer Society: Atlanta, 2019.
  • Aristizabal-Pachon, A. F.; Castillo William Orlando. Genotoxic Evaluation of Occupational Exposure to Antineoplastic Drugs. Toxicol. Res. 2020, 36, 29–36. 10.1007/s43188-019-00003-7.
  • Goodman, L. S.; Wintrobe, M. M.; Dameshek, W.; Goodman, M. J.; Gilman, A.; McLennan, M. T. Nitrogen Mustard Therapy; Use of Methyl-Bis (Beta-Chloroethyl) Amine Hydrochloride and Tris (Beta-Chloroethyl) Amine Hydrochloride for Hodgkin’s Disease, Lymphosarcoma, Leukemia and Certain Allied and Miscellaneous Disorders. J. Am. Med. Assoc. 1946, 132, 126–132. 10.1001/jama.1946.02870380008004.
  • Connor, T. H.; MacKenzie, B. A.; DeBord, D. G.; Trout, D. B.; O’Callaghan, J. P. NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings. U.S. Dep. Heal. Hum. Serv. Centers Dis. Control Prev. Natl. Inst. Occup. Saf. Health. 2016, 2016–161, 1–34.
  • Al-Azzam, S. I.; Awawdeh, B. T.; Alzoubi, K. H.; Khader, Y. S.; Alkafajei, A. M. Compliance with Safe Handling Guidelines of Antineoplastic Drugs in Jordanian Hospitals. J. Oncol. Pharm. Pract. 2015, 21 (1), 3–9. 10.1177/1078155213517128.
  • Connor, T. H.; McDiarmid, M. A. Preventing Occupational Exposures to Antineoplastic Drugs in Health Care Settings. CA. Cancer J. Clin. 2006, 56 (6), 354–365. 10.3322/canjclin.56.6.354.
  • Reinhardt, H.; Otte, P.; Eggleton, A. G.; Ruch, M.; Wöhrl, S.; Ajayi, S.; Duyster, J.; Jung, M.; Hug, M. J.; Engelhardt, M. Avoiding Chemotherapy Prescribing Errors: Analysis and Innovative Strategies. Cancer 2019, 125 (9), 1547–1557. 10.1002/cncr.31950.
  • Tjokrowidjaja, A.; Hovey, E.; Lewis, C. R. Let’s Talk about Cytotoxic Chemotherapy Dosing: Unravelling Adjustments and off-Protocol Prescribing. Med. J. Aust. 2019, 210 (2), 65–66. 10.5694/mja2.12072.
  • Nelson, W. K.; Moore, J.; Grasso, J. A.; Barbarotta, L.; Fischer, D. S. Development of a Policy and Procedure for Accidental Chemotherapy Overdose. Clin. J. Oncol. Nurs. 2014, 18 (4), 414–420. 10.1188/14.CJON.18-04AP.
  • Bernabeu-Martínez, M. A.; Merino, M. R.; Santos Gago, J. M.; Alvarez Sabucedo, L. M.; Wanden-Berghe, C.; Sanz-Valero, J. Guidelines for Safe Handling of Hazardous Drugs: A Systematic Review. PLoS One 2018, 13 (5), 1–24. DOI: 10.1371/journal.pone.0197172.
  • Nouri, A.; Seyed Javadi, M.; Iranijam, E.; Aghamohammadi, M. Improving Nurses’ Performance in the Safe Handling of Antineoplastic Agents: A Quasi-Experimental Study. BMC Nurs. 2021, 20 (1), 247. 10.1186/s12912-021-00771-4.
  • Falck, K.; Gröhn, P.; Sorsa, M.; Vainio, H.; Heinonen, E.; Holsti, L. R. Mutagenicity in Urine of Nurses Handling Cytostatic Drugs. Lancet 1979, 313 (8128), 1250–1251. DOI: 10.1016/S0140-6736(79)91939-1.
  • Villarini, M.; Gianfredi, V.; Levorato, S.; Vannini, S.; Salvatori, T.; Moretti, M. Occupational Exposure to Cytostatic/Antineoplastic Drugs and Cytogenetic Damage Measured Using the Lymphocyte Cytokinesis-Block Micronucleus Assay: A Systematic Review of the Literature and Meta-Analysis. Mutat. Res. Rev. Mutat. Res. 2016, 770, 35–45. 10.1016/j.mrrev.2016.05.001.
  • Mahmoodi, M.; Soleyman-Jahi, S.; Zendehdel, K.; Mozdarani, H.; Azimi, C.; Farzanfar, F.; Safari, Z.; Mohagheghi, M. A.; Khaleghian, M.; Divsalar, K.; et al. Chromosomal Aberrations, Sister Chromatid Exchanges, and Micronuclei in Lymphocytes of Oncology Department Personnel Handling Anti-Neoplastic Drugs. Drug Chem. Toxicol. 2017, 40 (2), 235–240. 10.1080/01480545.2016.1209678.
  • World Health Organization Collaborating Centre for Drug Statistics Methodology. Anatomical Therapeutic Chemical Classification System together with a technical unit of measurement called the Defined Daily Dose. https://www.whocc.no/atc_ddd_index/?code=L.
  • IARC (International Agency for Research on Cancer). Agents Classified by the IARC Monographs; IARC Press, 2021, 1–130.
  • Jain, S.; Jadav, T.; Sahu, A. K.; Kalia, K.; Sengupta, P. An Exploration of Advancement in Analytical Methodology for Quantification of Anticancer Drugs in Biomatrices. Anal. Sci. 2019, 35 (7), 719–732. 10.2116/analsci.19R002.
  • Guichard, N.; Guillarme, D.; Bonnabry, P.; Fleury-Souverain, S. Antineoplastic Drugs and Their Analysis: A State of the Art Review. Analyst 2017, 142 (13), 2273–2321. 10.1039/c7an00367f.
  • Mathias, P. I.; Connor, T. H.; B’Hymer, C. A Review of High Performance Liquid Chromatographic-Mass Spectrometric Urinary Methods for Anticancer Drug Exposure of Health Care Workers. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1060 (April), 316–324. 10.1016/j.jchromb.2017.06.028.
  • Nussbaumer, S.; Bonnabry, P.; Veuthey, J. L.; Fleury-Souverain, S. Analysis of Anticancer Drugs: A Review. Talanta 2011, 85 (5), 2265–2289. 10.1016/j.talanta.2011.08.034.
  • Turci, R.; Sottani, C.; Spagnoli, G.; Minoia, C. Biological and Environmental Monitoring of Hospital Personnel Exposed to Antineoplastic Agents: A Review of Analytical Methods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 789 (2), 169–209. DOI: 10.1016/S1570-0232(03)00100-4.
  • Safaei, M.; Shishehbore, M. R. A Review on Analytical Methods with Special Reference to Electroanalytical Methods for the Determination of Some Anticancer Drugs in Pharmaceutical and Biological Samples. Talanta 2021, 229 (March), 122247. 10.1016/j.talanta.2021.122247.
  • Sabourian, R.; Mirjalili, S. Z.; Namini, N.; Chavoshy, F.; Hajimahmoodi, M.; Safavi, M. HPLC Methods for Quantifying Anticancer Drugs in Human Samples: A Systematic Review. Anal. Biochem. 2020, 610 (August), 113891. 10.1016/j.ab.2020.113891.
  • Pashaei, Y.; Mehrabi, M.; Shekarchi, M. A Review on Various Analytical Methods for Determination of Anthracyclines and Their Metabolites as Anti–Cancer Chemotherapy Drugs in Different Matrices over the Last Four Decades. TrAC - Trends Anal. Chem. 2020, 130, 115991. DOI: 10.1016/j.trac.2020.115991.
  • Kurbanoglu, S.; Bakirhan, N. K.; Gumustas, M.; Ozkan, S. A. Modern Assay Techniques for Cancer Drugs: Electroanalytical and Liquid Chromatography Methods. Crit. Rev. Anal. Chem. 2019, 49 (4), 306–323. 10.1080/10408347.2018.1527206.
  • Ali, I.; Haque, A.; Wani, W. A.; Saleem, K.; Al Za’abi, M. Analyses of Anticancer Drugs by Capillary Electrophoresis: A Review. Biomed. Chromatogr. 2013, 27 (10), 1296–1311. 10.1002/bmc.2953.
  • Iranifam, M. Analytical Applications of Chemiluminescence Methods for Cancer Detection and Therapy. TrAC - Trends Anal. Chem. 2014, 59, 156–183. DOI: 10.1016/j.trac.2014.03.010.
  • De Castro, F.; Benedetti, M.; Del Coco, L.; Fanizzi, F. P. NMR-Based Metabolomics in Metal-Based Drug Research. Molecules 2019, 24 (12), 1–14. DOI: 10.3390/molecules24122240.
  • Wang, J. Portable Electrochemical Systems. TrAC - Trends Anal. Chem. 2002, 21 (4), 226–232. DOI: 10.1016/S0165-9936(02)00402-8.
  • Umapathi, R.; Ghoreishian, S. M.; Sonwal, S.; Rani, G. M.; Huh, Y. S. Portable Electrochemical Sensing Methodologies for On-Site Detection of Pesticide Residues in Fruits and Vegetables. Coord. Chem. Rev. 2022, 453, 214305. DOI: 10.1016/j.ccr.2021.214305.
  • Lima, H. R. S.; da Silva, J. S.; de Oliveira Farias, E. A.; Teixeira, P. R. S.; Eiras, C.; Nunes, L. C. C. Electrochemical Sensors and Biosensors for the Analysis of Antineoplastic Drugs. Biosens. Bioelectron. 2018, 108 (February), 27–37. 10.1016/j.bios.2018.02.034.
  • Chu, C. S.; Rubin, S. C. Basic Principles of Chemotherapy. In Clinical Gynecologic Oncology; DiSaia, P. J., Creasman, W. T., Mannel, R. S., McMeekin, D. S., Mutch, D. G., Eds.; Elsevier, 2018; pp 449–469. DOI: 10.1016/B978-0-323-40067-1.00017-6.
  • Sakthivel, K.; Muthumariappan, A.; Chen, S. M.; Li, Y. L.; Chen, T. W.; Ali, M. A. Evaluating Ternary Metal Oxide (TMO)Core-Shell Nanocomposites for the Rapid Determination of the Anti-Neoplastic Drug Chlorambucil (LeukeranTM)by Electrochemical Approaches. Mater. Sci. Eng. C 2019, 103 (December 2018), 109724. 10.1016/j.msec.2019.05.009.
  • Hatamluyi, B.; Lorestani, F.; Es’haghi, Z. Au/Pd@rGO Nanocomposite Decorated with Poly (L-Cysteine) as a Probe for Simultaneous Sensitive Electrochemical Determination of Anticancer Drugs, Ifosfamide and Etoposide. Biosens. Bioelectron. 2018, 120 (August), 22–29. 10.1016/j.bios.2018.08.008.
  • Hasanpour, F.; Taei, M.; Fouladgar, M. A Voltammetric Sensor Based on Spinel-Structured Copper Ferrite Nanoparticles Multiwalled Carbon Nanotubes Modified Carbon Paste Electrode for Determination of Dacarbazine. Russ. J. Electrochem. 2018, 54 (1), 70–76. DOI: 10.1134/S1023193517110040.
  • Ibrahim, M.; Temerk, Y.; Ibrahim, H. Fabrication of a New Biosensor Based on a Sn Doped Ceria Nanoparticle Modified Glassy Carbon Paste Electrode for the Selective Determination of the Anticancer Drug Dacarbazine in Pharmaceuticals. RSC Adv. 2017, 7 (51), 32357–32366. DOI: 10.1039/C7RA04331G.
  • Baj-Rossi, C.; de Micheli, G.; Carrara, S. Electrochemical Detection of Anti-Breast-Cancer Agents in Human Serum by Cytochrome P450-Coated Carbon Nanotubes. Sensors (Switzerland) 2012, 12 (5), 6520–6537. 10.3390/s120506520.
  • Kalambate, P. K.; Dhanjai; Sinha, A.; Li, Y.; Shen, Y.; Huang, Y. An Electrochemical Sensor for Ifosfamide, Acetaminophen, Domperidone, and Sumatriptan Based on Self-Assembled MXene/MWCNT/Chitosan Nanocomposite Thin Film. Microchim. Acta 2020, 187, 402. DOI: 10.1007/s00604-020-04366-9.
  • Dehdashtian, S.; Behbahanian, N.; Taherzadeh, K. M. An Ultrasensitive Electrochemical Sensor for Direct Determination of Anticancer Drug Dacarbazine Based on Multiwall Carbon Nanotube-Modified Carbon Paste Electrode and Application in Pharmaceutical Sample. J. Iran. Chem. Soc. 2018, 15 (4), 931–941. DOI: 10.1007/s13738-018-1291-5.
  • Satyanarayana, M.; Yugender Goud, K.; Koteshwara Reddy, K.; Vengatajalabathy Gobi, K. Conducting Polymer-Layered Carbon Nanotube as Sensor Interface for Electrochemical Detection of Dacarbazine In-Vitro. Electrocatalysis 2017, 8 (3), 214–223. DOI: 10.1007/s12678-017-0357-y.
  • Prasad, B. B.; Pathak, P. K. Development of Surface Imprinted Nanospheres Using the Inverse Suspension Polymerization Method for Electrochemical Ultra Sensing of Dacarbazine. Anal. Chim. Acta 2017, 974, 75–86. 10.1016/j.aca.2017.04.001.
  • Fatma, S.; Prasad, B. B.; Singh, K.; Singh, R.; Jaiswal, S. A Reduced Graphene Oxide Ceramic Electrode Modified with One MoNomer Doubly Imprinted Acryloylated Tetraamine Cobalt Phthalocyanine Polymer for the Simultaneous Analysis of Anticancerous Drugs. Sens. Actuators B Chem. 2019, 281 (October 2018), 139–149. DOI: 10.1016/j.snb.2018.10.070.
  • Pathak, P. K.; Kumar, A.; Prasad, B. B. A Novel Electrocatalytic Nanocomposite of Reduced Graphene Oxide/Silver Nanocube Hybrid Decorated Imprinted Polymer for Ultra-Trace Sensing of Temozolomide. New J. Chem. 2018, 42 (16), 13486–13496. DOI: 10.1039/C8NJ01824C.
  • Prasad, B. B.; Singh, R.; Kumar, A. Synthesis of Fullerene (C60-Monoadduct)-Based Water-Compatible Imprinted Micelles for Electrochemical Determination of Chlorambucil. Biosens. Bioelectron. 2017, 94 (January), 115–123. 10.1016/j.bios.2017.02.040.
  • Bali Prasad, B.; Kumar, A.; Singh, R. Synthesis of Novel Monomeric Graphene Quantum Dots and Corresponding Nanocomposite with Molecularly Imprinted Polymer for Electrochemical Detection of an Anticancerous Ifosfamide Drug. Biosens. Bioelectron. 2017, 94, 1–9. 10.1016/j.bios.2017.02.028.
  • Kumar Singh, A.; Singh, M. QCM Sensing of Melphalan via Electropolymerized Molecularly Imprinted Polythiophene Films. Biosens. Bioelectron. 2015, 74, 711–717. 10.1016/j.bios.2015.07.027.
  • Liu, J.; Zhang, Y.; Jiang, M.; Tian, L.; Sun, S.; Zhao, N.; Zhao, F.; Li, Y. Electrochemical Microfluidic Chip Based on Molecular Imprinting Technique Applied for Therapeutic Drug Monitoring. Biosens. Bioelectron. 2017, 91 (January), 714–720. 10.1016/j.bios.2017.01.037.
  • Huang, B.; Xiao, L.; Dong, H.; Zhang, X.; Gan, W.; Mahboob, S.; Al-Ghanim, K. A.; Yuan, Q.; Li, Y. Electrochemical Sensing Platform Based on Molecularly Imprinted Polymer Decorated N,S Co-Doped Activated Graphene for Ultrasensitive and Selective Determination of Cyclophosphamide. Talanta 2017, 164 (October 2016), 601–607. 10.1016/j.talanta.2016.11.009.
  • Palaska, P.; Aritzoglou, E.; Girousi, S. Sensitive Detection of Cyclophosphamide Using DNA-Modified Carbon Paste, Pencil Graphite and Hanging Mercury Drop Electrodes. Talanta 2007, 72 (3), 1199–1206. 10.1016/j.talanta.2007.01.013.
  • Guo, X.; Wang, Q.; Li, J.; Cui, J.; Zhou, S.; Hao, S.; Wu, D. A Mini-Electrochemical System Integrated Micropipet Tip and Pencil Graphite Electrode for Detection of Anticancer Drug Sensitivity in Vitro. Biosens. Bioelectron. 2015, 64, 594–596. 10.1016/j.bios.2014.09.086.
  • Yu, C.; Zhu, Z.; Wang, L.; Wang, Q.; Bao, N.; Gu, H. A New Disposable Electrode for Electrochemical Study of Leukemia K562 Cells and Anticancer Drug Sensitivity Test. Biosens. Bioelectron. 2014, 53, 142–147. 10.1016/j.bios.2013.09.044.
  • El-Said, W. A.; Yea, C. H.; Kim, H.; Oh, B. K.; Choi, J. W. Cell-Based Chip for the Detection of Anticancer Effect on HeLa Cells Using Cyclic Voltammetry. Biosens. Bioelectron. 2009, 24 (5), 1259–1265. 10.1016/j.bios.2008.07.037.
  • Erol, A.; Akpınar, F.; Muti, M. Electrochemical Determination of Anticancer Drug Bendamustine and Its Interaction with Double Strand DNA in the Absence and Presence of Quercetin. Colloids Surfaces B Biointerfaces 2021, 205, 111884. 10.1016/j.colsurfb.2021.111884.
  • Radi, A. E.; Nassef, H. M.; Eissa, A. Electrochemical Study of the Interaction of the Alkylating Agent Busulfan with Double Strand DNA. Electroanalysis 2013, 25 (11), 2463–2469. DOI: 10.1002/elan.201300294.
  • Radi, A. E.; Eissa, A.; Nassef, H. M. Voltammetric and Spectroscopic Studies on the Binding of the Antitumor Drug Dacarbazine with DNA. J. Electroanal. Chem. 2014, 717718, 24–28. DOI: 10.1016/j.jelechem.2014.01.007.
  • Eksin, E.; Polat, D.; Erdem, A. Voltammetric and Impedimetric Detection of Interaction Between Dacarbazine and Nucleic Acids. Electroanalysis 2019, 31 (10), 2012–2019. DOI: 10.1002/elan.201900284.
  • Temerk, Y.; Ibrahim, H. Binding Mode and Thermodynamic Studies on the Interaction of the Anticancer Drug Dacarbazine and Dacarbazine-Cu(II) Complex with Single and Double Stranded DNA. J. Pharm. Biomed. Anal. 2014, 95, 26–33. 10.1016/j.jpba.2014.02.010.
  • Zhang, R.; Wang, X.; Gong, S. A Voltammetric Study of the Effect of Gold Nanoparticles on the Binding of DTIC to DNA Bases. Electrochem. Solid-State Lett. 2004, 7 (8), J27–J28. DOI: 10.1149/1.1758933.
  • Shen, Q.; Wang, X.; Fu, D. The Amplification Effect of Functionalized Gold Nanoparticles on the Binding of Anticancer Drug Dacarbazine to DNA and DNA Bases. Appl. Surf. Sci. 2008, 255 (2), 577–580. DOI: 10.1016/j.apsusc.2008.06.132.
  • Song, M.; Zhang, R.; Wang, X. Nano-Titanium Dioxide Enhanced Biosensing of the Interaction of Dacarbazine with DNA and DNA Bases. Mater. Lett. 2006, 60 (17–18), 2143–2147. DOI: 10.1016/j.matlet.2005.12.100.
  • Altay, C.; Eksin, E.; Congur, G.; Erdem, A. Electrochemical Monitoring of the Interaction between Temozolamide and Nucleic Acids by Using Disposable Pencil Graphite Electrodes. Talanta 2015, 144, 809–815. 10.1016/j.talanta.2015.07.017.
  • Lopes, I. C.; Oliveira, S. C. B.; Oliveira-Brett, A. M. In Situ Electrochemical Evaluation of Anticancer Drug Temozolomide and Its Metabolites-DNA Interaction. Anal. Bioanal. Chem. 2013, 405 (11), 3783–3790. 10.1007/s00216-012-6546-x.
  • Topkaya, S. N.; Serindere, G.; Ozder, M. Determination of DNA Hypermethylation Using Anti-Cancer Drug-Temozolomide. Electroanalysis 2016, 28 (5), 1052–1059. DOI: 10.1002/elan.201501027.
  • de Carvalho, P. A. V.; Campelo Lopes, I.; Silva, E. H. C.; Bruzaca, E. E. S.; Alves, H. J.; Lima, M. I. S.; Tanaka, A. A. Electrochemical Behaviour of Anticancer Drug Lomustine and in Situ Evaluation of Its Interaction with DNA. J. Pharm. Biomed. Anal. 2019, 176, 112786. 10.1016/j.jpba.2019.112786.
  • Wang, J.; Lin, M. S.; Villa, V. Investigation of the Adsorptive Stripping Voltammetric Behaviour of the Anticancer Drugs Chlorambucil and 5-Fluorouracil. Analyst 1987, 112 (3), 247–251. 10.1039/an9871200247.
  • Mutharani, B.; Ranganathan, P.; Chen, S. M.; Tsai, H. C. Temperature‐responsive Voltammetric Sensor Based on Stimuli-Sensitive Semi-Interpenetrating Polymer Network Conductive Microgels for Reversible Switch Detection of Nitrogen Mustard Analog Chlorambucil (LeukeranTM). Electrochim. Acta 2021, 374, 137866. DOI: 10.1016/j.electacta.2021.137866.
  • Barek, J.; Berka, A.; Zima, J. Determination of Melphalan Using Differential Pulse Voltammetry. Anal. Lett., 1985, 18 (20), 2581–2589. DOI: 10.1080/00032718508064488.
  • Díaz De Guereñu, M. M.; Barrio, R. J.; Arranz, A.; Arranz, J. F. Use of Derivatization Reactions with Adsorptive Stripping Voltammetry for Determining Fotemustine in Biological Samples. J. Pharm. Biomed. Anal. 1992, 10 (7), 481–486. DOI: 10.1016/0731-7085(92)80068-X.
  • Pecková, K.; Vrzalová, L.; Bencko, V.; Barek, J. Voltammetric and Amperometric Determination of N-Nitroso Antineoplastic Drugs at Mercury and Amalgam Electrodes. Collect. Czechoslov. Chem. Commun. 2009, 74 (11–12), 1697–1713. DOI: 10.1135/cccc2009112.
  • Temerk, Y.; Ibrahim, M.; Ibrahim, H.; Kotb, M. Adsorptive Stripping Voltammetric Determination of Anticancer Drug Lomustine in Biological Fluids Using in Situ Mercury Film Coated Graphite Pencil Electrode. J. Electroanal. Chem. 2016, 760, 135–142. DOI: 10.1016/j.jelechem.2015.11.026.
  • Ordieres, A. J. M.; Garcia, A. C.; Blanco, P. T.; Smyth, W. F. An Electroanalytical Study of the Anticancer Drug Dacarbazine. Anal. Chim. Acta 1987, 202 (C), 141–149. DOI: 10.1016/S0003-2670(00)85909-7.
  • Temerk, Y. M.; Kamal, M. M.; Ibrahim, M. S.; Ibrahim, H.; Schuhmann, W. Electrochemical Behaviour of the Anticancer Dacarbazine-Cu2 + complex and Its Analytical Applications. Electroanalysis 2011, 23 (7), 1638–1644. DOI: 10.1002/elan.201100038.
  • Deepa, S.; Swamy, B. E. K.; Pai, K. V. A Surfactant SDS Modified Carbon Paste Electrode as an Enhanced and Effective Electrochemical Sensor for the Determination of Doxorubicin and Dacarbazine Its Applications: A Voltammetric Study. J. Electroanal. Chem. 2020, 879, 114748. DOI: 10.1016/j.jelechem.2020.114748.
  • Abdel-aal, F. A. M.; Ali, M. F. B. Eco-Friendly Fabricated Electrochemical Sensor Using Red Cabbage Extract for Electrochemical Determination of Dacarbazine with the Aid of Factorial Design Approach. J. Electrochem. Soc. 2017, 164 (14), H1053–H1063. DOI: 10.1149/2.0581714jes.
  • Chiao, J.; Beitz, J.; DeLap, R. J. Antimetabolic Agents. In Current Cancer Therapeutics; Kirkwood, J. M., Lotze, M. Y., Yaskao, J. M., Eds.; Current Medicine Group: London, 2001; pp 37–40. DOI: 10.1007/978-1-4613-1099-0_2.
  • El-Said, W. A.; Abdel-Rahman, M. A.; Sayed, E. M.; Abdel-Wahab, A. M. A. Electrochemical Monitoring of Methotrexate Anticancer Drug in Human Blood Serum by Using in Situ Solvothermal Synthesized Fe3O4/ITO Electrode. Electroanalysis 2019, 31 (5), 829–837. DOI: 10.1002/elan.201800798.
  • Phal, S.; Lindholm-Sethson, B.; Geladi, P.; Shchukarev, A.; Tesfalidet, S. Determination of Methotrexate in Spiked Human Blood Serum Using Multi-Frequency Electrochemical Immittance Spectroscopy and Multivariate Data Analysis. Anal. Chim. Acta 2017, 987, 15–24. 10.1016/j.aca.2017.08.034.
  • Phal, S.; Shatri, B.; Berisha, A.; Geladi, P.; Lindholm-Sethson, B.; Tesfalidet, S. Covalently Electrografted Carboxyphenyl Layers onto Gold Surface Serving as a Platform for the Construction of an Immunosensor for Detection of Methotrexate. J. Electroanal. Chem. 2018, 812, 235–243. DOI: 10.1016/j.jelechem.2017.12.072.
  • Khand, A. A.; Lakho, S. A.; Tahira, A.; Ubaidullah, M.; Alothman, A. A.; Aljadoa, K.; Nafady, A.; Ibupoto, Z. H. Facile Electrochemical Determination of Methotrexate (MTX) Using Glassy Carbon Electrode-Modified with Electronically Disordered NiO Nanostructures. Nanomaterials, 2021, 11 (5), 1266. DOI: 10.3390/nano11051266.
  • Zhu, L.; Liu, X.; Yang, J.; He, Y.; Li, Y. Application of Multiplex Microfluidic Electrochemical Sensors in Monitoring Hematological Tumor Biomarkers. Anal. Chem. 2020, 92 (17), 11981–11986. DOI: 10.1021/acs.analchem.0c02430.
  • Afzali, M.; Mostafavi, A.; Nekooie, R.; Jahromi, Z. A Novel Voltammetric Sensor Based on Palladium Nanoparticles/Carbon Nanofibers/Ionic Liquid Modified Carbon Paste Electrode for Sensitive Determination of Anti-Cancer Drug Pemetrexed. J. Mol. Liq. 2019, 282, 456–465. DOI: 10.1016/j.molliq.2019.03.041.
  • Hatamluyi, B.; Es’haghi, Z. Electrochemical Biosensing Platform Based on Molecularly Imprinted Polymer Reinforced by ZnO–Graphene Capped Quantum Dots for 6-Mercaptopurine Detection. Electrochim. Acta 2018, 283, 1170–1177. DOI: 10.1016/j.electacta.2018.07.068.
  • Kumar, A.; Pathak, P. K.; Prasad, B. B. Electrocatalytic Imprinted Polymer of N-Doped Hollow Carbon Nanosphere-Palladium Nanocomposite for Ultratrace Detection of Anticancer Drug 6-Mercaptopurine. ACS Appl. Mater. Interfaces 2019, 11 (17), 16065–16074. DOI: 10.1021/acsami.9b02947.
  • Gowda, J. I.; Mallappa, M. M.; Nandibewoor, S. T. CTAB Functionalized Multiwalled Carbon Nanotube Composite Modified Electrode for the Determination of 6-Mercaptopurine. Sens. Bio-Sensing Res. 2017, 12, 1–7. DOI: 10.1016/j.sbsr.2016.11.002.
  • Karimi-Maleh, H.; Shojaei, A. F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous Determination of 6-Mercaptopruine, 6-Thioguanine and Dasatinib as Three Important Anticancer Drugs Using Nanostructure Voltammetric Sensor Employing Pt/MWCNTs and 1-Butyl-3-Methylimidazolium Hexafluoro Phosphate. Biosens. Bioelectron. 2016, 86, 879–884. DOI: 10.1016/j.bios.2016.07.086.
  • Tajik, S.; Beitollahi, H.; Jang, H. W.; Shokouhimehr, M. A Screen Printed Electrode Modified with Fe3O4@polypyrrole-Pt Core-Shell Nanoparticles for Electrochemical Detection of 6-Mercaptopurine and 6-Thioguanine. Talanta 2021, 232, 122379. DOI: 10.1016/j.talanta.2021.122379.
  • Prasad, B. B.; Singh, R.; Kumar, A. Development of Imprinted Polyneutral Red/Electrochemically Reduced Graphene Oxide Composite for Ultra-Trace Sensing of 6-Thioguanine. Carbon N. Y. 2016, 102, 86–96. DOI: 10.1016/j.carbon.2016.02.031.
  • Ensafi, A. A.; Karimi-Maleh, H. Modified Multiwall Carbon Nanotubes Paste Electrode as a Sensor for Simultaneous Determination of 6-Thioguanine and Folic Acid Using Ferrocenedicarboxylic Acid as a Mediator. J. Electroanal. Chem. 2010, 640 (1–2), 75–83. DOI: 10.1016/j.jelechem.2010.01.010.
  • Satana, H. E.; Pontinha, A. D. R.; Diculescu, V. C.; Oliveira-Brett, A. M. Nucleoside Analogue Electrochemical Behaviour and in Situ Evaluation of DNA-Clofarabine Interaction. Bioelectrochemistry 2012, 87, 3–8. DOI: 10.1016/j.bioelechem.2011.07.004.
  • Satana, E. H.; Oliveira-Brett, A. M. In Situ Evaluation of Fludarabine-DNA Interaction Using a DNA-Electrochemical Biosensor. Int. J. Electrochem. 2011, 2011 (Artcled ID 340239), 1–8. DOI: 10.4061/2011/340239.
  • Dogan-Topal, B.; Bakirhan, N. K.; Tok, T. T.; Ozkan, S. A. Electrochemical Determination and in Silico Studies of Fludarabine on NH2 Functionalized Multiwalled Carbon Nanotube Modified Glassy Carbon Electrode. Electroanalysis 2020, 32 (1), 37–49. DOI: 10.1002/elan.201900347.
  • De-Los-Santos-Álvarez, N.; Lobo-Castañón, M. J.; Miranda-Ordieres, A. J.; Tuñón-Blanco, P. Catalytic Voltammetric Determination of Cladribine in Biological Samples. Electroanalysis 2003, 15 (5–6), 441–446. DOI: 10.1002/elan.200390051.
  • De-Los-Santos-Álvarez, N.; Lobo-Castañón, M. J.; Miranda-Ordieres, A. J.; Tuñón-Blanco, P. Electrocatalytic Adsorptive Voltammetry for Fludarabine Determination in Urine. Anal. Chim. Acta 2004, 504 (2), 271–277. DOI: 10.1016/j.aca.2003.10.055.
  • Pattar, V. P.; Nandibewoor, S. T. Electroanalytical Method for the Determination of 5-Fluorouracil Using a Reduced Graphene Oxide/Chitosan Modified Sensor. RSC Adv. 2015, 5 (43), 34292–34301. DOI: 10.1039/c5ra04396d.
  • Hua, X.; Hou, X.; Gong, X.; Shen, G. Electrochemical Behavior of 5-Fluorouracil on a Glassy Carbon Electrode Modified with Bromothymol Blue and Multi-Walled Carbon Nanotubes. Anal. Methods 2013, 5 (10), 2470–2476. DOI: 10.1039/c3ay40149a.
  • Hatamluyi, B.; Es’haghi, Z.; Modarres Zahed, F.; Darroudi, M. A Novel Electrochemical Sensor Based on GQDs-PANI/ZnO-NCs Modified Glassy Carbon Electrode for Simultaneous Determination of Irinotecan and 5-Fluorouracil in Biological Samples. Sens. Actuators B Chem. 2019, 286, 540–549. DOI: 10.1016/j.snb.2019.02.017.
  • Satyanarayana, M.; Goud, K. Y.; Reddy, K. K.; Gobi, K. V. Biopolymer Stabilized Nanogold Particles on Carbon Nanotube Support as Sensing Platform for Electrochemical Detection of 5-Fluorouracil in-Vitro. Electrochim. Acta 2015, 178, 608–616. DOI: 10.1016/j.electacta.2015.08.036.
  • Ganesan, M.; Ramadhass, K. D.; Chuang, H. C.; Gopalakrishnan, G. Synthesis of Nitrogen-Doped Carbon Quantum Dots@Fe2O3/Multiwall Carbon Nanotubes Ternary Nanocomposite for the Simultaneous Electrochemical Detection of 5-Fluorouracil, Uric Acid, and Xanthine. J. Mol. Liq. 2021, 331, 115768. DOI: 10.1016/j.molliq.2021.115768.
  • Mariyappan, V.; Keerthi, M.; Chen, S.-M.; Boopathy, G. Facile Synthesis of α-Sm2S3/MoS2 Bimetallic Sulfide as a High-Performance Electrochemical Sensor for the Detection of Antineoplastic Drug 5-Fluorouracil in a Biological Samples. J. Electrochem. Soc. 2020, 167 (11), 117506. DOI: 10.1149/1945-7111/aba1a5.
  • Vishnu S. K, D.; Ranganathan, P.; Rwei, S. P.; Pattamaprom, C.; Kavitha, T.; Sarojini, P. New Reductant-Free Synthesis of Gold Nanoparticles-Doped Chitosan-Based Semi-IPN Nanogel: A Robust Nanoreactor for Exclusively Sensitive 5-Fluorouracil Sensor. Int. J. Biol. Macromol. 2020, 148, 79–88. 10.1016/j.ijbiomac.2020.01.108.
  • Mutharani, B.; Ranganathan, P.; Chen, S.-M. Temperature-Reversible Switched Antineoplastic Drug 5-Fluorouracil Electrochemical Sensor Based on Adaptable Thermo-Sensitive Microgel Encapsulated PEDOT. Sensors Actuators, B Chem. 2020, 304, 127361. DOI: 10.1016/j.snb.2019.127361.
  • Zahed, F. M.; Hatamluyi, B.; Lorestani, F.; Es’haghi, Z. Silver Nanoparticles Decorated Polyaniline Nanocomposite Based Electrochemical Sensor for the Determination of Anticancer Drug 5-Fluorouracil. J. Pharm. Biomed. Anal. 2018, 161, 12–19. 10.1016/j.jpba.2018.08.004.
  • Hadi, M.; Mollaei, T.; Ehsani, A. Graphene Oxides/Multi-Walled Carbon Nanotubes Hybrid-Modified Carbon Electrodes for Fast and Sensitive Voltammetric Determination of the Anticancer Drug 5-Fluorouracil in Spiked Human Plasma Samples. Chem. Pap. 2018, 72 (2), 431–439. DOI: 10.1007/s11696-017-0295-4.
  • Bukkitgar, S. D.; Shetti, N. P. Electrochemical Behavior of an Anticancer Drug 5-Fluorouracil at Methylene Blue Modified Carbon Paste Electrode. Mater. Sci. Eng. C 2016, 65, 262–268. 10.1016/j.msec.2016.04.045.
  • Bukkitgar, S. D.; Shetti, N. P. Electrochemical Sensor for the Determination of Anticancer Drug 5- Fluorouracil at Glucose Modified Electrode. ChemistrySelect 2016, 1 (4), 771–777. DOI: 10.1002/slct.201600197.
  • Zhan, T.; Cao, L.; Sun, W.; Hou, W. Electrochemical Behavior of 5-Fluoro-1H-Pyrimidine-2 on an Ionic Liquid Modified Carbon Paste Electrode. Anal. Methods 2011, 3 (11), 2651–2656. DOI: 10.1039/c1ay05454f.
  • Fallah Shojaei, A.; Tabatabaeian, K.; Shakeri, S.; Karimi, F. A Novel 5-Fluorouracile Anticancer Drug Sensor Based on ZnFe2O4 Magnetic Nanoparticles Ionic Liquids Carbon Paste Electrode. Sensors Actuators, B Chem. 2016, 230, 607–614. DOI: 10.1016/j.snb.2016.02.082.
  • Rahimi-Nasrabadi, M.; Ahmadi, F.; Beigizadeh, H.; Karimi, M. S.; Sobhani-Nasab, A.; Joseph, Y.; Ehrlich, H.; Ganjali, M. R. A Modified Sensitive Carbon Paste Electrode for 5-Fluorouracil Based Using a Composite of Praseodymium Erbium Tungstate. Microchem. J. 2020, 154, 104654. DOI: 10.1016/j.microc.2020.104654.
  • Abbar, J. C.; Shetti, N. P.; Nandibewoor, S. T. Development of Voltammetric Method for the Determination of an Anticancer Drug, 5-Flurouracil, at a Multiwalled Carbon Nanotubes Paste Electrode. Synth. React. Inorganic, Met. Nano-Metal Chem. 2016, 46 (6), 814–820. DOI: 10.1080/15533174.2014.989586.
  • Lima, D.; Calaça, G. N.; Viana, A. G.; Pessôa, C. A. Porphyran-Capped Gold Nanoparticles Modified Carbon Paste Electrode: A Simple and Efficient Electrochemical Sensor for the Sensitive Determination of 5-Fluorouracil. Appl. Surf. Sci. 2018, 427, 742–753. DOI: 10.1016/j.apsusc.2017.08.228.
  • Prasad, B. B.; Kumar, A. Development of Molecularly Imprinted Polymer Nanoarrays of N-Acryloyl-2-Mercaptobenzamide on a Silver Electrode for Ultratrace Sensing of Uracil and 5-Fluorouracil. J. Mater. Chem. B 2015, 3 (28), 5864–5876. 10.1039/c5tb00678c.
  • Prasad, B. B.; Kumar, D.; Madhuri, R.; Tiwari, M. P. Nonhydrolytic Sol-Gel Derived Imprinted Polymer-Multiwalled Carbon Nanotubes Composite Fiber Sensors for Electrochemical Sensing of Uracil and 5-Fluorouracil. Electrochim. Acta 2012, 71, 106–115. DOI: 10.1016/j.electacta.2012.03.110.
  • Mirčeski, V.; Gulaboski, R.; Jordanoski, B.; Komorsky-Lovrić, Š. Square-Wave Voltammetry of 5-Fluorouracil. J. Electroanal. Chem. 2000, 490 (1), 37–47. DOI: 10.1016/S0022-0728(00)00203-5.
  • Es’haghi, Z.; Moeinpour, F. Carbon Nanotube/Polyurethane Modified Hollow Fiber-Pencil Graphite Electrode for in Situ Concentration and Electrochemical Quantification of Anticancer Drugs Capecitabine and Erlotinib. Eng. Life Sci. 2019, 19 (4), 302–314. 10.1002/elsc.201800167.
  • Prasad, B. B.; Singh, R.; Kumar, A. Gold Nanorods: Vs. Gold Nanoparticles: Application in Electrochemical Sensing of Cytosine β-d-Arabinoside Using Metal Ion Mediated Molecularly Imprinted Polymer. RSC Adv. 2016, 6 (84), 80679–80691. DOI: 10.1039/C6RA14097A.
  • Bouzid, B.; Macdonald, A. M. G. Flow-Injection Methods for the Determination of Uracil Derivatives with Voltammetric Detection. Anal. Chim. Acta 1988, 211 (C), 175–193. DOI: 10.1016/S0003-2670(00)83678-8.
  • Rus, I.; Pusta, A.; Tertiș, M.; Barbălată, C.; Tomuță, I.; Săndulescu, R.; Cristea, C. Gemcitabine Direct Electrochemical Detection from Pharmaceutical Formulations Using a Boron-Doped Diamond Electrode. Pharmaceuticals 2021, 14, 912. DOI: 10.3390/ph14090912.
  • Buoro, R. M.; Lopes, I. C.; Diculescu, V. C.; Serrano, S. H. P.; Lemos, L.; Oliveira-Brett, A. M. In Situ Evaluation of Gemcitabine-DNA Interaction Using a DNA-Electrochemical Biosensor. Bioelectrochemistry 2014, 99, 40–45. 10.1016/j.bioelechem.2014.05.005.
  • Tandel, R.; Teradal, N.; Satpati, A.; Jaldappagari, S. Fabrication of the Electrochemically Reduced Graphene Oxide-Bismuth Nanoparticles Composite and Its Analytical Application for an Anticancer Drug Gemcitabine. Chinese Chem. Lett. 2017, 28 (7), 1429–1437. DOI: 10.1016/j.cclet.2016.11.028.
  • Teradal, N. L.; Kalanur, S. S.; Prashanth, S. N.; Seetharamappa, J. Electrochemical Investigations of an Anticancer Drug in the Presence of Sodium Dodecyl Sulfate as an Enhancing Agent at Carbon Paste Electrode. J. Appl. Electrochem. 2012, 42 (11), 917–923. DOI: 10.1007/s10800-012-0473-6.
  • Shoja, Y.; Kermanpur, A.; Karimzadeh, F.; Ghodsi, J.; Rafati, A. A.; Adhami, S. Electrochemical Molecularly Bioimprinted Siloxane Biosensor on the Basis of Core/Shell Silver Nanoparticles/EGFR Exon 21 L858R Point Mutant Gene/Siloxane Film for Ultra-Sensing of Gemcitabine as a Lung Cancer Chemotherapy Medication. Biosens. Bioelectron. 2019, 145, 111611. 10.1016/j.bios.2019.111611.
  • Queiroz, N. L.; Nascimento, M. L.; Nascimento, J. A. M.; Nascimento, V. B.; Oliveira, S. C. B. Electrochemistry Study of Antineoplastic Raltitrexed Oxidation Mechanism and Its Interaction with DNA. Electroanalysis 2018, 30 (6), 1184–1191. DOI: 10.1002/elan.201800087.
  • Wang, J.; Tuzhi, P.; Lin, M. S.; Tapia, T. Trace Measurements of the Antineoplastic Agent Methotrexate by Adsorptive Stripping Voltammetry. Talanta 1986, 33 (9), 707–712. DOI: 10.1016/0039-9140(86)80170-9.
  • Cataldi, T. R. I.; Guerrieri, A.; Palmisano, F.; Zambonin, P. G. Adsorptive Cathodic Stripping Voltammetry of Amethopterine at a Static Mercury Drop Electrode and Its Application to Serum Drug Determination. Analyst 1988, 113 (6), 869–873. 10.1039/AN9881300869.
  • Temizer, A.; Nur Onar, A. Determination of Methotrexate in Human Blood Plasma by Adsorptive Stripping Voltammetry. Talanta 1988, 35 (10), 805–806. DOI: 10.1016/0039-9140(88)80188-7.
  • Janíková-Bandžuchová, L.; Šelešovská, R. Determination of Methotrexate at a Silver Solid Amalgam Electrode by Differential Pulse Voltammetry. Anal. Lett. 2016, 49 (1), 122–134. DOI: 10.1080/00032719.2014.996812.
  • Šelešovská, R.; Bandžuchová, L.; Navrátil, T. Voltammetric Behavior of Methotrexate Using Mercury Meniscus Modified Silver Solid Amalgam Electrode. Electroanalysis 2011, 23 (1), 177–187. DOI: 10.1002/elan.201000440.
  • del Pozo, J. A.; García, A. C.; Blanco, P. T. Adsorptive Stripping Voltammetry on Mercury-Coated Carbon Fibre Ultramicroelectrodes. Anal. Chim. Acta 1993, 273 (1–2), 101–109. DOI: 10.1016/0003-2670(93)80149-F.
  • Mirmomtaz, E.; Ensafi, A. A. Voltammetric Determination of Trace Quantities of 6-Thioguanine Based on the Interaction with DNA at a Mercury Electrode. Electrochim. Acta 2009, 54 (18), 4353–4358. DOI: 10.1016/j.electacta.2009.03.004.
  • Nageswara Reddy, C.; Reddy Prasad, P.; Sreedhar, N. Y. Determination of Nelarabine in Pharmaceutical Formulations and Urine Samples by Adsorptive Stripping Voltammetry. Int. J. PharmTech Res. 2011, 3 (2), 1125–1131.
  • Yan, Z.; Li, H. Voltammetric Determination of 6-Mercaptopurine at Co(III) Trisphenanthroline Complex and DNA Decorated with Grpahene Oxide Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2015, 10 (10), 8714–8726.
  • Zhou, P.; He, L.; Gan, G.; Ni, S.; Li, H.; Li, W. Fabrication and Evaluation of [Co(Phen)2L]3+-Modified DNA-MWCNT and SDS-MWCNT Electrodes for Electrochemical Detection of 6-Mercaptopurine. J. Electroanal. Chem. 2012, 665, 63–69. DOI: 10.1016/j.jelechem.2011.11.026.
  • Gu, H. Y.; Sun, D. M.; Yu, A. M.; Chen, H. Y. Electrochemical Behavior of 6-Mercapto-Purine at Hanging Copper Amalgam Dropping Electrode and Its Trace Determination by Differential Pulse Adsorption Cathodic Stripping Voltammetry. Anal. Lett. 1996, 29 (15), 2743–2753. DOI: 10.1080/00032719608002277.
  • Kalanur, S. S.; Seetharamappa, J.; Mamatha, G. P.; Hadagali, M. D.; Kandagal, P. B. Electrochemical Behavior of an Anti-Cancer Drug at Glassy Carbon Electrode and Its Determination in Pharmaceutical Formulations. Int. J. Electrochem. Sci. 2008, 3 (7), 756–767.
  • Madrakian, T.; Ghasemi, H.; Haghshenas, E.; Afkhami, A. Preparation of a ZnO Nanoparticles/Multiwalled Carbon Nanotubes/Carbon Paste Electrode as a Sensitive Tool for Capecitabine Determination in Real Samples. RSC Adv. 2016, 6 (40), 33851–33856. DOI: 10.1039/C6RA03666J.
  • Zhang, Q.; Shan, X.; Fu, Y.; Liu, P.; Li, X.; Liu, B.; Zhang, L.; Li, D. Electrochemical Determination of the Anticancer Drug Capecitabine Based on a Graphene-Gold Nanocomposite-Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2017, 12 (11), 10773–10782. DOI: 10.20964/2017.11.36.
  • Afzali, M.; Mostafavi, A.; Shamspur, T. A Novel Electrochemical Sensor Based on Magnetic Core@shell Molecularly Imprinted Nanocomposite (Fe3O4@graphene Oxide@MIP) for Sensitive and Selective Determination of Anticancer Drug Capecitabine. Arab. J. Chem. 2020, 13 (8), 6626–6638. DOI: 10.1016/j.arabjc.2020.06.018.
  • Abd El-Hady, D.; Abdel-Hamid, M. I.; Seliem, M. M.; Andrisano, V.; Abo El-Maali, N. Osteryoung Square Wave Stripping Voltammetry at Mercury Film Electrode for Monitoring Ultra Trace Levels of Tarabine PFS and Its Interaction with SsDNA. J. Pharm. Biomed. Anal. 2004, 34 (5), 879–890. 10.1016/j.jpba.2003.12.001.
  • Florea, A.; Guo, Z.; Cristea, C.; Bessueille, F.; Vocanson, F.; Goutaland, F.; Dzyadevych, S.; Səndulescu, R.; Jaffrezic-Renault, N. Anticancer Drug Detection Using a Highly Sensitive Molecularly Imprinted Electrochemical Sensor Based on an Electropolymerized Microporous Metal Organic Framework. Talanta 2015, 138, 71–76. 10.1016/j.talanta.2015.01.013.
  • Rafique, B.; Khalid, A. M.; Akhtar, K.; Jabbar, A. Interaction of Anticancer Drug Methotrexate with DNA Analyzed by Electrochemical and Spectroscopic Methods. Biosens. Bioelectron. 2013, 44 (1), 21–26. 10.1016/j.bios.2012.12.028.
  • Chen, J.; Fu, B.; Liu, T.; Yan, Z.; Li, K. A Graphene Oxide-DNA Electrochemical Sensor Based on Glassy Carbon Electrode for Sensitive Determination of Methotrexate. Electroanalysis 2018, 30 (2), 288–295. DOI: 10.1002/elan.201700615.
  • Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Atar, N.; Yola, M. L.; Gupta, V. K.; Ensafi, A. A. A Novel DNA Biosensor Based on a Pencil Graphite Electrode Modified with Polypyrrole/Functionalized Multiwalled Carbon Nanotubes for Determination of 6-Mercaptopurine Anticancer Drug. Ind. Eng. Chem. Res. 2015, 54 (14), 3634–3639. DOI: 10.1021/ie504438z.
  • Koyuncu Zeybek, D.; Demir, B.; Zeybek, B.; Pekyardimci, Ş. A Sensitive Electrochemical DNA Biosensor for Antineoplastic Drug 5-Fluorouracil Based on Glassy Carbon Electrode Modified with Poly(Bromocresol Purple). Talanta 2015, 144, 793–800. 10.1016/j.talanta.2015.06.077.
  • Foroughi, M. M.; Jahani, S.; Aramesh-Broujeni, Z.; Rostaminasab Dolatabad, M. A Label-Free Electrochemical Biosensor Based on 3D Cubic Eu3+/Cu2O Nanostructures with Clover-like Faces for the Determination of Anticancer Drug Cytarabine. RSC Adv. 2021, 11 (28), 17514–17525. 10.1039/d1ra01372f.
  • Tiğ, G. A.; Zeybek, B.; PekyardImcI, Ş. Electrochemical DNA Biosensor Based on Poly(2,6-Pyridinedicarboxylic Acid) Modified Glassy Carbon Electrode for the Determination of Anticancer Drug Gemcitabine. Talanta 2016, 154, 312–321. 10.1016/j.talanta.2016.03.049.
  • Wang, P.; Wu, Q.; Wang, C.; Pu, Y.; Zhou, M.; Zhang, M. 3D Flower-Like MoS 2 Nanomaterial as Signal-Promoter of PTC-PEI/S2O82− System for Fabricating a Sensitive Electrochemiluminescence Methotrexate Sensor. J. Electrochem. Soc. 2020, 167 (10), 107505. DOI: 10.1149/1945-7111/ab98ac.
  • Zhou, M.; Pu, Y.; Wu, Q.; Wang, P.; Liu, T.; Zhang, M. 2D Hexagonal SnS2 Nanoplates as Novel Co-Reaction Accelerator for Construction of Ultrasensitive g-C3N4-Based Electrochemiluminescent Biosensor. Sensors Actuators, B Chem. 2020, 319, 128298. DOI: 10.1016/j.snb.2020.128298.
  • Stefan, R. I.; Bokretsion, R. G.; Van Staden, J. F.; Aboul-Enein, H. Y. Determination of L- and D-Enantiomers of Methotrexate Using Amperometric Biosensors. Talanta 2003, 60 (5), 983–990. DOI: 10.1016/S0039-9140(03)00177-2.
  • Pontinha, A. D. R.; Jorge, S. M. A.; Chiorcea Paquim, A. M.; Diculescu, V. C.; Oliveira-Brett, A. M. In Situ Evaluation of Anticancer Drug Methotrexate-DNA Interaction Using a DNA-Electrochemical Biosensor and AFM Characterization. Phys. Chem. Chem. Phys. 2011, 13 (12), 5227–5234. 10.1039/c0cp02377a.
  • Shpigun, L. K.; Andryukhina, E. Y. A New Electrochemical Sensor for Direct Detection of Purine Antimetabolites and DNA Degradation. J. Anal. Methods Chem. 2019, 2019, Article ID 1572526. 10.1155/2019/1572526.
  • Tang, W.; Li, W.; Li, Y.; Zhang, M.; Zeng, X. Electrochemical Sensors Based on Multi-Walled Nanotubes for Investigating the Damage and Action of 6-Mercaptopurine on Double-Stranded DNA. New J. Chem. 2015, 39 (11), 8454–8460. DOI: 10.1039/C5NJ01303H.
  • Unal, D. N.; Eksin, E.; Erdem, A. Electrochemical Determination of 6-Thioguanine and Its Interaction with DNA Oligonucleotides Using Disposable Graphite Pencil Electrodes. Anal. Lett. 2018, 51 (1–2), 265–278. DOI: 10.1080/00032719.2017.1338714.
  • Unal, D. N.; Eksin, E.; Erdem, A. Carbon Nanotubes Modified Graphite Electrodes for Monitoring of Biointeraction Between 6-Thioguanine and DNA. Electroanalysis 2017, 29 (10), 2292–2299. DOI: 10.1002/elan.201700270.
  • Pontinha, A. D. R.; Satana, H. E.; Diculescu, V. C.; Oliveira-Brett, A. M. Anodic Oxidation of Cladribine and in Situ Evaluation of DNA-Cladribine Interaction. Electroanalysis 2011, 23 (11), 2651–2657. DOI: 10.1002/elan.201100320.
  • Shahzad, S.; Karadurmus, L.; Dogan-Topal, B.; Taskin-Tok, T.; Shah, A.; Ozkan, S. A. Sensitive Nucleic Acid Detection at NH2-MWCNTs Modified Glassy Carbon Electrode and Its Application for Monitoring of Gemcitabine-DNA Interaction. Electroanalysis 2020, 32 (5), 912–922. DOI: 10.1002/elan.201900597.
  • Gurudatt, N. G.; Naveen, M. H.; Ban, C.; Shim, Y. B. Enhanced Electrochemical Sensing of Leukemia Cells Using Drug/Lipid Co-Immobilized on the Conducting Polymer Layer. Biosens. Bioelectron. 2016, 86, 33–40. 10.1016/j.bios.2016.06.029.
  • Šelešovská, R.; Janíková-Bandžuchová, L.; Chýlková, J. Sensitive Voltammetric Sensor Based on Boron-Doped Diamond Electrode for Determination of the Chemotherapeutic Drug Methotrexate in Pharmaceutical and Biological Samples. Electroanalysis 2015, 27 (1), 42–51. DOI: 10.1002/elan.201400326.
  • Gao, L.; Wu, Y.; Liu, J.; Ye, B. Anodic Voltammetric Behaviors of Methotrexate at a Glassy Carbon Electrode and Its Determination in Spiked Human Urine. J. Electroanal. Chem. 2007, 610 (2), 131–136. DOI: 10.1016/j.jelechem.2007.07.030.
  • Asadian, E.; Shahrokhian, S.; Iraji Zad, A.; Ghorbani-Bidkorbeh, F. Glassy Carbon Electrode Modified with 3D Graphene–Carbon Nanotube Network for Sensitive Electrochemical Determination of Methotrexate. Sensors Actuators, B Chem. 2017, 239, 617–627. DOI: 10.1016/j.snb.2016.08.064.
  • Jandaghi, N.; Jahani, S.; Foroughi, M. M.; Kazemipour, M.; Ansari, M. Cerium-Doped Flower-Shaped ZnO Nano-Crystallites as a Sensing Component for Simultaneous Electrochemical Determination of Epirubicin and Methotrexate. Microchim. Acta 2020, 187 (1), 24. DOI: 10.1007/s00604-019-4016-2.
  • Materon, E. M.; Wong, A.; Fatibello-Filho, O.; Faria, R. C. Development of a Simple Electrochemical Sensor for the Simultaneous Detection of Anticancer Drugs. J. Electroanal. Chem. 2018, 827, 64–72. DOI: 10.1016/j.jelechem.2018.09.010.
  • Ghadimi, H.; Nasiri-Tabrizi, B.; Nia, P. M.; Basirun, W. J.; Tehrani, R. M. A.; Lorestani, F. Nanocomposites of Nitrogen-Doped Graphene Decorated with a Palladium Silver Bimetallic Alloy for Use as a Biosensor for Methotrexate Detection. RSC Adv. 2015, 5 (120), 99555–99565. DOI: 10.1039/C5RA18109G.
  • Ensafi, A. A.; Rezaloo, F.; Rezaei, B. CoFe2O4/Reduced Graphene Oxide/Ionic Liquid Modified Glassy Carbon Electrode, a Selective and Sensitive Electrochemical Sensor for Determination of Methotrexate. J. Taiwan Inst. Chem. Eng. 2017, 78, 45–50. DOI: 10.1016/j.jtice.2017.05.031.
  • Zhu, Z.; Wang, F.; Wang, F.; Xi, L. Simultaneous Determination of Methotrexate and Calcium Folinate with Electrochemical Method Based on a Poly-ABSA/Functionalized MWNTs Composite Film Modified Electrode. J. Electroanal. Chem. 2013, 708, 13–19. DOI: 10.1016/j.jelechem.2013.09.004.
  • Wei, Y.; Luo, L.; Ding, Y.; Si, X.; Ning, Y. Highly Sensitive Determination of Methotrexate at Poly (l-Lysine) Modified Electrode in the Presence of Sodium Dodecyl Benzene Sulfonate. Bioelectrochemistry 2014, 98, 70–75. 10.1016/j.bioelechem.2014.03.005.
  • Wang, F.; Wang, Y.; Lu, K.; Wei, X.; Ye, B. Sensitive Determination of Methotrexate at Nano-Au Self-Assembled Monolayer Modified Electrode. J. Electroanal. Chem. 2012, 674, 83–89. DOI: 10.1016/j.jelechem.2012.04.010.
  • Mutharani, B.; Ranganathan, P.; Chen, S. M.; Sireesha, P. Ultrasound-Induced Radicals Initiated the Formation of Inorganic–Organic Pr2O3/Polystyrene Hybrid Composite for Electro-Oxidative Determination of Chemotherapeutic Drug Methotrexate. Ultrason. Sonochem. 2019, 56, 410–421. 10.1016/j.ultsonch.2019.04.029.
  • Li, J.; Chen, D.; Zhang, T.; Chen, G. Highly Sensitive Electrochemical Determination of Methotrexate Based on a N-Doped Hollow Nanocarbon Sphere Modified Electrode. Anal. Methods 2021, 13 (1), 117–123. 10.1039/d0ay01996h.
  • Fathi, Z.; Jahani, S.; Zandi, M. S.; Foroughi, M. M. Synthesis of Bifunctional Cabbage Flower–like Ho3+/NiO Nanostructures as a Modifier for Simultaneous Determination of Methotrexate and Carbamazepine. Anal. Bioanal. Chem. 2020, 412 (4), 1011–1024. 10.1007/s00216-019-02326-8.
  • Guo, Y.; Chen, Y.; Zhao, Q.; Shuang, S.; Dong, C. Electrochemical Sensor for Ultrasensitive Determination of Doxorubicin and Methotrexate Based on Cyclodextrin-Graphene Hybrid Nanosheets. Electroanalysis 2011, 23 (10), 2400–2407. DOI: 10.1002/elan.201100259.
  • Huang, D.; Wu, H.; Zhu, Y.; Su, H.; Zhang, H.; Sheng, L.; Liu, Z.; Xu, H.; Song, C. Sensitive Determination of Anticancer Drug Methotrexate Using Graphite Oxide-Nafion Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2019, 14 (4), 3792–3804. DOI: 10.20964/2019.04.03.
  • Wang, F.; Wu, Y.; Liu, J.; Ye, B. DNA Langmuir-Blodgett Modified Glassy Carbon Electrode as Voltammetric Sensor for Determinate of Methotrexate. Electrochim. Acta 2009, 54 (5), 1408–1413. DOI: 10.1016/j.electacta.2008.09.027.
  • Wang, Y.; Liu, H.; Wang, F.; Gao, Y. Electrochemical Oxidation Behavior of Methotrexate at DNA/SWCNT/Nafion Composite Film-Modified Glassy Carbon Electrode. J. Solid State Electrochem. 2012, 16 (10), 3227–3235. DOI: 10.1007/s10008-012-1763-y.
  • Wang, Y.; Xie, J.; Tao, L.; Tian, H.; Wang, S.; Ding, H. Simultaneous Electrochemical Determination of Epirubicin and Methotrexate in Human Blood Using a Disposable Electrode Modified with Nano-Au/MWNTs-ZnO Composites. Sens. Actuators B Chem. 2014, 204, 360–367. DOI: 10.1016/j.snb.2014.07.099.
  • Zhou, H.; Ran, G.; Masson, J. F.; Wang, C.; Zhao, Y.; Song, Q. Novel Tungsten Phosphide Embedded Nitrogen-Doped Carbon Nanotubes: A Portable and Renewable Monitoring Platform for Anticancer Drug in Whole Blood. Biosens. Bioelectron. 2018, 105, 226–235. 10.1016/j.bios.2018.01.045.
  • Kummari, S.; Kumar, V. S.; Satyanarayana, M.; Gobi, K. V. Direct Electrochemical Determination of Methotrexate Using Functionalized Carbon Nanotube Paste Electrode as Biosensor for In-Vitro Analysis of Urine and Dilute Serum Samples. Microchem. J. 2019, 148, 626–633. DOI: 10.1016/j.microc.2019.05.054.
  • Salandari-Jolge, N.; Ensafi, A. A.; Rezaei, B. A Novel Three-Dimensional Network of CuCr2O4/CuO Nanofibers for Voltammetric Determination of Anticancer Drug Methotrexate. Anal. Bioanal. Chem. 2020, 412 (11), 2443–2453. 10.1007/s00216-020-02461-7.
  • Asbahr, D.; Figueiredo-Filho, L. C. S.; Vicentini, F. C.; Oliveira, G. G.; Fatibello-Filho, O.; Banks, C. E. Differential Pulse Adsorptive Stripping Voltammetric Determination of Nanomolar Levels of Methotrexate Utilizing Bismuth Film Modified Electrodes. Sens. Actuators B Chem. 2013, 188, 334–339. DOI: 10.1016/j.snb.2013.07.027.
  • Tesfalidet, S.; Geladi, P.; Shimizu, K.; Lindholm-Sethson, B. Detection of Methotrexate in a Flow System Using Electrochemical Impedance Spectroscopy and Multivariate Data Analysis. Anal. Chim. Acta 2016, 914, 1–6. DOI: 10.1016/j.aca.2016.02.012.
  • Lima, H. R. S.; Airton de Oliveira Farias, E.; Teixeira, P. R. S.; Eiras, C.; Nunes, L. C. C. Blend Films Based on Biopolymers Extracted from Babassu Mesocarp (Orbignya Phalerata) for the Electrochemical Detection of Methotrexate Antineoplastic Drug. J. Solid State Electrochem. 2019, 23 (11), 3153–3164. DOI: 10.1007/s10008-019-04406-2.
  • Karadas, N.; Ozkan, S. A. Electrochemical Preparation of Sodium Dodecylsulfate Doped Over-Oxidized Polypyrrole/Multi-Walled Carbon Nanotube Composite on Glassy Carbon Electrode and Its Application on Sensitive and Selective Determination of Anticancer Drug: Pemetrexed. Talanta 2014, 119, 248–254. DOI: 10.1016/j.talanta.2013.10.065.
  • Ozcelikay, G.; Karadas-Bakirhan, N.; Taskin-Tok, T.; Ozkan, S. A. A Selective and Molecular Imaging Approach for Anticancer Drug: Pemetrexed by Nanoparticle Accelerated Molecularly Imprinting Polymer. Electrochim. Acta 2020, 354, 136665. DOI: 10.1016/j.electacta.2020.136665.
  • Hanko, M.; Švorc, Ľ.; Planková, A.; Mikuš, P. Novel Electrochemical Strategy for Determination of 6-Mercaptopurine Using Anodically Pretreated Boron-Doped Diamond Electrode. J. Electroanal. Chem. 2019, 840, 295–304. DOI: 10.1016/j.jelechem.2019.03.067.
  • Shpigun, L. K.; Andryukhina, E. Y. Electrochemical Sensor Based on Nanocomposite of Ionic Liquid Modified Graphene Oxide – Chitosan and Its Application for Flow Injection Detection of Anticancer Thiopurine Drugs. Electroanalysis 2018, 30 (10), 2356–2365. DOI: 10.1002/elan.201800358.
  • Keyvanfard, M.; Khosravi, V.; Karimi-Maleh, H.; Alizad, K.; Rezaei, B. Voltammetric Determination of 6-Mercaptopurine Using a Multiwall Carbon Nanotubes Paste Electrode in the Presence of Isoprenaline as a Mediator. J. Mol. Liq. 2013, 177, 182–189. DOI: 10.1016/j.molliq.2012.10.020.
  • Beitollahi, H.; Ivari, S. G.; Torkzadeh-Mahani, M. A Double Electrochemical Platform for Ultrasensitive and Simultaneous Determination of 6-Mercaptopurine and Folic Acid Based on a Carbon Paste Electrode Modified with ZnO-CuO Nanoplates and 2-Chlorobenzoyl Ferrocene. ECS J. Solid State Sci. Technol. 2017, 6 (4), M29–M35. DOI: 10.1149/2.0201704jss.
  • Ensafi, A. A.; Karimi-Maleh, H. Determination of 6-Mercaptopurine in the Presence of Uric Acid Using Modified Multiwall Carbon Nanotubes-TiO2 as a Voltammetric Sensor. Drug Test. Anal. 2012, 4 (12), 970–977. DOI: 10.1002/dta.286.
  • Vinita; Tiwari, M.; Agnihotri, N.; Singh, M.; Singh, A. K.; Prakash, R. Nanonetwork of Coordination Polymer AHMT-Ag for the Effective and Broad Spectrum Detection of 6-Mercaptopurine in Urine and Blood Serum. ACS Omega 2019, 4 (16), 16733–16742. DOI: 10.1021/acsomega.9b01122.
  • Shahrokhian, S.; Ghorbani-Bidkorbeh, F.; Mohammadi, A.; Dinarvand, R. Electrochemical Determinations of 6-Mercaptopurine on the Surface of a Carbon Nanotube-Paste Electrode Modified with a Cobalt Salophen Complex. J. Solid State Electrochem. 2012, 16 (4), 1643–1650. DOI: 10.1007/s10008-011-1575-5.
  • Mirmomtaz, E.; Ensafi, A. A.; Karimi-Maleh, H. Electrocatalytic Determination of 6-Tioguanine at a p-Aminophenol Modified Carbon Paste Electrode. Electroanalysis 2008, 20 (18), 1973–1979. DOI: 10.1002/elan.200804273.
  • Smarzewska, S.; Pokora, J.; Leniart, A.; Festinger, N.; Ciesielski, W. Carbon Paste Electrodes Modified with Graphene Oxides – Comparative Electrochemical Studies of Thioguanine. Electroanalysis 2016, 28 (7), 1562–1569. DOI: 10.1002/elan.201501101.
  • Mohammadi, S.; Taher, M. A.; Beitollahi, H.; Hosseinzadeh, R. Voltammetric Mixture Analysis of 6-Thioguanine and Folic Acid Using Ionic Liquid-Carbon Paste Electrode Modified by Nano Petal-Like MoWS 2 and N-(Ferrocenylmethylidene)Fluoren-2-Amine. J. Electrochem. Soc. 2020, 167 (4), 047520. DOI: 10.1149/1945-7111/ab6f59.
  • Naik, K. M.; Nandibewoor, S. T. Electro-Oxidation and Determination of Gemcitabine Hydrochloride, an Anticancer Drug at Gold Electrode. J. Ind. Eng. Chem. 2013, 19 (6), 1933–1938. DOI: 10.1016/j.jiec.2013.02.040.
  • Isah, T. Anticancer Alkaloids from Trees: Development into Drugs. Pharmacogn. Rev. 2016, 10 (20), 90–99. DOI: 10.4103/0973-7847.194047.
  • Najari, S.; Bagheri, H.; Monsef-Khoshhesab, Z.; Hajian, A.; Afkhami, A. Electrochemical Sensor Based on Gold Nanoparticle-Multiwall Carbon Nanotube Nanocomposite for the Sensitive Determination of Docetaxel as an Anticancer Drug. Ionics (Kiel). 2018, 24 (10), 3209–3219. DOI: 10.1007/s11581-018-2517-3.
  • Hatamluyi, B.; Lorestani, F.; Es’haghi, Z. Au/Pd@rGO Nanocomposite Decorated with Poly (L-Cysteine) as a Probe for Simultaneous Sensitive Electrochemical Determination of Anticancer Drugs, Ifosfamide and Etoposide. Biosens. Bioelectron. 2018, 120, 22–29. DOI: 10.1016/j.bios.2018.08.008.
  • Taei, M.; Hassanpour, F.; Salavati, H.; Sadeghi, Z.; Alvandi, H. Highly Selective Electrochemical Determination of Taxol Based on Ds-DNA-Modified Pencil Electrode. Appl. Biochem. Biotechnol. 2015, 176 (2), 344–358. DOI: 10.1007/s12010-015-1578-2.
  • Li, H.; Li, J.; Yang, Z.; Xu, Q.; Hu, X. Sodium Dodecyl Sulfate Sensitized Electrochemical Method for Sub-Picomole Level Determination of Topotecan Hydrochloride at a Novel Disposable Electrode. Sci. China Chem. 2011, 54 (1), 217–222. DOI: 10.1007/s11426-010-4089-6.
  • Ibrahim, M.; Ibrahim, H.; Almandil, N. B.; Kawde, A. N. A Novel Nanocomposite Based on Gold Nanoparticles Loaded on Acetylene Black for Electrochemical Sensing of the Anticancer Drug Topotecan in the Presence of High Concentration of Uric Acid. J. Electroanal. Chem. 2018, 824, 22–31. DOI: 10.1016/j.jelechem.2018.07.031.
  • Norouzi, P.; Qomi, M.; Nemati, A.; Ganjali, M. R. Determination of Anti Colon Cancer Drug, Irinotecan by Fast Fourier Transforms Continuous Cyclic Voltammetry. Int. J. Electrochem. Sci. 2009, 4 (9), 1248–1261.
  • Novak Jovanović, I.; Komorsky-Lovrić, Š.; Lucić Vrdoljak, A.; Popović, A. R.; Neuberg, M. Voltammetric Characterisation of Anticancer Drug Irinotecan. Electroanalysis 2018, 30 (2), 336–344. DOI: 10.1002/elan.201700593.
  • Temerk, Y. M.; Ibrahim, H.; Schuhmann, W. Square Wave Cathodic Adsorptive Stripping Voltammetric Determination of the Anticancer Drugs Flutamide and Irinotecan in Biological Fluids Using Renewable Pencil Graphite Electrodes. Electroanalysis 2016, 28 (2), 372–379. DOI: 10.1002/elan.201500329.
  • Yu, Y.; Li, Q. L. Electrochemical Study on Interaction of Vincristine with Tubulin. Chin. J. Chem. 2001, 19 (11), 1084–1088. DOI: 10.1002/cjoc.20010191114.
  • Holgado, T. M.; Quintana, M. C.; Pinilla, J. M. Electrochemical Study of Taxol (Paclitaxel) by Cathodic Stripping Voltammetry: Determination in Human Urine. Microchem. J. 2003, 74 (1), 99–104. DOI: 10.1016/S0026-265X(02)00175-3.
  • Zhang, Y.; Zheng, J.; Guo, M. Preparation of Molecularly Imprinted Electrochemical Sensor for Detection of Vincristine Based on Reduced Graphene Oxide/Gold Nanoparticle Composite Film. Chinese J. Chem. 2016, 34 (12), 1268–1276. DOI: 10.1002/cjoc.201600582.
  • Haghshenas, E.; Madrakian, T.; Afkhami, A.; Saify Nabiabad, H. A Label-Free Electrochemical Biosensor Based on Tubulin Immobilized on Gold Nanoparticle/Glassy Carbon Electrode for the Determination of Vinblastine. Anal. Bioanal. Chem. 2017, 409 (22), 5269–5278. 10.1007/s00216-017-0471-y.
  • Tajik, S.; Taher, M. A.; Beitollahi, H.; Torkzadeh-Mahani, M. Electrochemical Determination of the Anticancer Drug Taxol at a Ds-DNA Modified Pencil-Graphite Electrode and Its Application as a Label-Free Electrochemical Biosensor. Talanta 2015, 134, 60–64. 10.1016/j.talanta.2014.10.063.
  • Mehdinia, A.; Habib Kazemi, S.; Zahra Bathaie, S.; Alizadeh, A.; Shamsipur, M.; Mousavi, M. F. Electrochemical Studies of DNA Immobilization onto the Azide-Terminated Monolayers and Its Interaction with Taxol. Anal. Biochem. 2008, 375 (2), 331–338. 10.1016/j.ab.2008.01.006.
  • Kuralay, F.; Dükar, N.; Bayramlı, Y. Designing Functional Materials: DNA/Poly(3,4-Ethylenedioxythiophene) Interfaces for Advanced DNA Direct Electrochemistry and DNA-Drug Interaction Detection. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2021, 272 (July), 115382. DOI: 10.1016/j.mseb.2021.115382.
  • Bolat, G. Investigation of Poly(CTAB-MWCNTs) Composite Based Electrochemical DNA Biosensor and Interaction Study with Anticancer Drug Irinotecan. Microchem. J. 2020, 159, 105426. DOI: 10.1016/j.microc.2020.105426.
  • Alvau, M. D.; Tartaggia, S.; Meneghello, A.; Casetta, B.; Calia, G.; Serra, P. A.; Polo, F.; Toffoli, G. Enzyme-Based Electrochemical Biosensor for Therapeutic Drug Monitoring of Anticancer Drug Irinotecan. Anal. Chem. 2018, 90 (10), 6012–6019. 10.1021/acs.analchem.7b04357.
  • Kim, H. R.; Pereira, C. M.; Han, H. Y.; Lee, H. J. Voltammetric Studies of Topotecan Transfer across Liquid/Liquid Interfaces and Sensing Applications. Anal. Chem. 2015, 87 (10), 5356–5362. 10.1021/acs.analchem.5b00653.
  • Yu, Y.; Li, Q. Studies on the Interaction of Paclitaxel with Tubulin by an Electrochemical Method. Anal. Chim. Acta 2001, 436 (1), 147–152. DOI: 10.1016/S0003-2670(01)00896-0.
  • Radi, A. E.; Nassef, H. M.; Eissa, A. Voltammetric and Ultraviolet-Visible Spectroscopic Studies on the Interaction of Etoposide with Deoxyribonucleic Acid. Electrochim. Acta 2013, 113, 164–169. DOI: 10.1016/j.electacta.2013.09.046.
  • Mahmoudi-Moghaddam, H.; Tajik, S.; Beitollahi, H. A New Electrochemical DNA Biosensor Based on Modified Carbon Paste Electrode Using Graphene Quantum Dots and Ionic Liquid for Determination of Topotecan. Microchem. J. 2019, 150, 104085. DOI: 10.1016/j.microc.2019.104085.
  • Top, M.; Er, O.; Congur, G.; Erdem, A.; Lambrecht, F. Y. Intracellular Uptake Study of Radiolabeled Anticancer Drug and Impedimetric Detection of Its Interaction with DNA. Talanta 2016, 160, 157–163. 10.1016/j.talanta.2016.06.058.
  • Idili, A.; Arroyo-Currás, N.; Ploense, K. L.; Csordas, A. T.; Kuwahara, M.; Kippin, T. E.; Plaxco, K. W. Seconds-Resolved Pharmacokinetic Measurements of the Chemotherapeutic Irinotecan: In Situ in the Living Body. Chem. Sci. 2019, 10 (35), 8164–8170. 10.1039/c9sc01495k.
  • Pinar, P. T.; Saka, C.; Yardim, Y. Electrochemical Behavior of the Antineoplastic Agent Etoposide at a Graphene-Based Modified Electrode: Its Square-Wave Adsorptive Stripping Voltammetric Determination in the Pharmaceutical Formulations. Rev. Roum. Chim. 2018, 63 (12), 1149–1156.
  • Nguyen, H. V.; Richtera, L.; Moulick, A.; Xhaxhiu, K.; Kudr, J.; Cernei, N.; Polanska, H.; Heger, Z.; Masarik, M.; Kopel, P.; et al. Electrochemical Sensing of Etoposide Using Carbon Quantum Dot Modified Glassy Carbon Electrode. Analyst 2016, 141 (9), 2665–2675. 10.1039/c5an02476e.
  • Vajedi, F. sadat; Dehghani, H. A High-Sensitive Electrochemical DNA Biosensor Based on a Novel ZnAl/Layered Double Hydroxide Modified Cobalt Ferrite-Graphene Oxide Nanocomposite Electrophoretically Deposited onto FTO Substrate for Electroanalytical Studies of Etoposide. Talanta 2020, 208, 120444. 10.1016/j.talanta.2019.120444.
  • Gowda, J. I.; Nandibewoor, S. T. Electrochemical Behavior of Paclitaxel and Its Determination at Glassy Carbon Electrode. Asian J. Pharm. Sci. 2014, 9 (1), 42–49. DOI: 10.1016/j.ajps.2013.11.007.
  • Gowda, J. I.; Nandibewoor, S. T. Carbon Paste Sensor for the Determination of an Anticancer Drug Paclitaxel in Pharmaceuticals and Biological Fluids. Anal. Bioanal. Electrochem. 2015, 7 (5), 539–554.
  • Gowda, J. I.; Nandibewoor, S. T. Electrochemical Characterization and Determination of Paclitaxel Drug Using Graphite Pencil Electrode. Electrochim. Acta 2014, 116, 326–333. DOI: 10.1016/j.electacta.2013.11.014.
  • Bonazza, G.; Tartaggia, S.; Toffoli, G.; Polo, F.; Daniele, S. Voltammetric Behaviour of the Anticancer Drug Irinotecan and Its Metabolites in Acetonitrile. Implications for Electrochemical Therapeutic Drug Monitoring. Electrochim. Acta 2018, 289, 483–493. DOI: 10.1016/j.electacta.2018.09.094.
  • Bonazza, G.; Tartaggia, S.; Toffoli, G.; Polo, F.; Daniele, S. A Fast Method for the Detection of Irinotecan in Plasma Samples by Combining Solid Phase Extraction and Differential Pulse Voltammetry. Anal. Bioanal. Chem. 2020, 412 (7), 1585–1595. 10.1007/s00216-020-02386-1.
  • Karadas, N.; Sanli, S.; Akmese, B.; Dogan-Topal, B.; Can, A.; Ozkan, S. A. Analytical Application of Polymethylene Blue-Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode on Anticancer Drug Irinotecan and Determination of Its Ionization Constant Value. Talanta 2013, 115, 911–919. 10.1016/j.talanta.2013.07.006.
  • Cheng, Q.; Du, Y.; Wu, K.; Chen, J.; Zhou, Y. Electrochemical Detection of Anticancer Drug Topotecan Using Nano-Acetylene Black Film. Colloids Surf. B Biointerfaces 2011, 84 (1), 135–139. 10.1016/j.colsurfb.2010.12.027.
  • Saxena, S.; Shrivastava, R.; Satsangee, S. P.; Srivastava, S. TiO2/Graphene/Chitosan-Nanocomposite-Based Electrochemical Sensor for the Sensing of Anti-HIV Drug Topotecan. J. Electrochem. Soc. 2014, 161 (14), H934–H940. DOI: 10.1149/2.0891414jes.
  • Mohammadian, A.; Ebrahimi, M.; Karimi-Maleh, H. Synergic Effect of 2D Nitrogen Doped Reduced Graphene Nano-Sheet and Ionic Liquid as a New Approach for Fabrication of Anticancer Drug Sensor in Analysis of Doxorubicin and Topotecan. J. Mol. Liq. 2018, 265, 727–732. DOI: 10.1016/j.molliq.2018.07.026.
  • Alavi-Tabari, S. A. R.; Khalilzadeh, M. A.; Karimi-Maleh, H.; Zareyee, D. An Amplified Platform Nanostructure Sensor for the Analysis of Epirubicin in the Presence of Topotecan as Two Important Chemotherapy Drugs for Breast Cancer Therapy. New J. Chem. 2018, 42 (5), 3828–3832. DOI: 10.1039/C7NJ04430E.
  • Beitollahi, H.; Dehghannoudeh, G.; Moghaddam, H. M.; Forootanfar, H. A Sensitive Electrochemical DNA Biosensor for Anticancer Drug Topotecan Based on Graphene Carbon Paste Electrode. J. Electrochem. Soc. 2017, 164 (12), H812–H817. DOI: 10.1149/2.0511712jes.
  • Er, E.; Erk, N. A Novel Electrochemical Sensing Platform Based on Mono-Dispersed Gold Nanorods Modified Graphene for the Sensitive Determination of Topotecan. Sens. Actuators, B Chem. 2020, 320 (April), 128320. DOI: 10.1016/j.snb.2020.128320.
  • Offermanns, S.; Rosenthal, W. Encyclopedia of Molecular Pharmacology, 2nd ed.; Offermanns, S., Rosenthal, W., Eds.; Springer: Berlin, 2008. DOI: 10.1007/978-3-540-38918-7.
  • Sharifi, J.; Fayazfar, H. Highly Sensitive Determination of Doxorubicin Hydrochloride Antitumor Agent via a Carbon Nanotube/Gold Nanoparticle Based Nanocomposite Biosensor. Bioelectrochemistry 2021, 139, 107741. 10.1016/j.bioelechem.2021.107741.
  • Ghanbari, M. H.; Shahdost-Fard, F.; Salehzadeh, H.; Ganjali, M. R.; Iman, M.; Rahimi-Nasrabadi, M.; Ahmadi, F. A Nanocomposite Prepared from Reduced Graphene Oxide, Gold Nanoparticles and Poly(2-Amino-5-Mercapto-1,3,4-Thiadiazole) for Use in an Electrochemical Sensor for Doxorubicin. Microchim. Acta 2019, 186 (9), 641. DOI: 10.1007/s00604-019-3761-6.
  • Taei, M.; Hasanpour, F.; Salavati, H.; Mohammadian, S. Fast and Sensitive Determination of Doxorubicin Using Multi-Walled Carbon Nanotubes as a Sensor and CoFe2O4 Magnetic Nanoparticles as a Mediator. Microchim. Acta 2016, 183 (1), 49–56. DOI: 10.1007/s00604-015-1588-3.
  • Taei, M.; Hasanpour, F.; Dehghani, E. Electrodepositing of Copper Nanowires on Layered Double Hydroxide Film Modified Glassy Carbon Electrode for the Determination of Doxorubicin. J. Taiwan Inst. Chem. Eng. 2015, 54, 183–190. DOI: 10.1016/j.jtice.2015.03.016.
  • Oliveira-Brett, A. M.; Piedade, J. A. P.; Chiorcea, A. M. Anodic Voltammetry and AFM Imaging of Picomoles of Adriamycin Adsorbed onto Carbon Surfaces. J. Electroanal. Chem. 2002, 538539, 267–276. DOI: 10.1016/S0022-0728(02)00944-0.
  • Shams, A.; Yari, A. A New Sensor Consisting of Ag-MWCNT Nanocomposite as the Sensing Element for Electrochemical Determination of Epirubicin. Sens. Actuators, B Chem. 2019, 286, 131–138. DOI: 10.1016/j.snb.2019.01.128.
  • Arkan, E.; Paimard, G.; Moradi, K. A Novel Electrochemical Sensor Based on Electrospun TiO2 Nanoparticles/Carbon Nanofibers for Determination of Idarubicin in Biological Samples. J. Electroanal. Chem. 2017, 801, 480–487. DOI: 10.1016/j.jelechem.2017.08.034.
  • Ibrahim, M.; Ibrahim, H.; Almandil, N. B.; Sayed, M. A.; Kawde, A. N.; Aldaqdouq, Y. A Novel Platform Based on Au − CeO2@MWCNT Functionalized Glassy Carbon Microspheres for Voltammetric Sensing of Valrubicin as Bladder Anticancer Drug and Its Interaction with DNA. Electroanalysis 2020, 32 (10), 2146–2155. DOI: 10.1002/elan.202060125.
  • Villar, J. C. C.; García, A. C.; Blanco, P. T. Adsorptive Stripping Voltammetric Behaviour of Mitoxantrone on Mercury Electrodes. Talanta 1993, 40 (3), 333–339. DOI: 10.1016/0039-9140(93)80242-J.
  • Liu, Y.; Wei, M.; Hu, Y.; Zhu, L.; Du, J. An Electrochemical Sensor Based on a Molecularly Imprinted Polymer for Determination of Anticancer Drug Mitoxantrone. Sens. Actuators B Chem. 2018, 255, 544–551. DOI: 10.1016/j.snb.2017.08.023.
  • Chang, J.; Gai, P.; Li, H.; Li, F. Target-Induced Diffusivity Enhancement for Rapid and Highly Sensitive Homogeneous Electrochemical Detection of BLM in Human Serum. Talanta 2018, 190 (August), 492–497. 10.1016/j.talanta.2018.08.038.
  • He, Y. Q.; Gao, Y.; Gu, H. W.; Meng, X. Z.; Yi, H. C.; Chen, Y.; Sun, W. Y. Target-Induced Activation of DNAzyme for Sensitive Detection of Bleomycin by Using a Simple MOF-Modified Electrode. Biosens. Bioelectron. 2021, 178 (December 2020), 113034. 10.1016/j.bios.2021.113034.
  • Chandra, P.; Zaidi, S. A.; Noh, H. B.; Shim, Y. B. Separation and Simultaneous Detection of Anticancer Drugs in a Microfluidic Device with an Amperometric Biosensor. Biosens. Bioelectron. 2011, 28 (1), 326–332. DOI: 10.1016/j.bios.2011.07.038.
  • Skalová, Š.; Langmaier, J.; Barek, J.; Vyskočil, V.; Navrátil, T. Doxorubicin Determination Using Two Novel Voltammetric Approaches: A Comparative Study. Electrochim. Acta 2020, 330, 135180. DOI: 10.1016/j.electacta.2019.135180.
  • Hahn, Y.; Lee, H. Y. Electrochemical Behavior and Square Wave Voltammetric Determination of Doxorubicin Hydrochloride. Arch. Pharm. Res. 2004, 27 (1), 31–34. 10.1007/BF02980041.
  • Yu, J.; Jin, H.; Gui, R.; Wang, Z.; Ge, F. A General Strategy to Facilely Design Ratiometric Electrochemical Sensors in Electrolyte Solution by Directly Using a Bare Electrode for Dual-Signal Sensing of Analytes. Talanta 2017, 162, 435–439. 10.1016/j.talanta.2016.10.084.
  • Zhang, K.; Zhang, Y. Electrochemical Behavior of Adriamycin at an Electrode Modified with Silver Nanoparticles and Multi-Walled Carbon Nanotubes, and Its Application. Microchim. Acta 2010, 169 (1), 161–165. DOI: 10.1007/s00604-010-0331-3.
  • Fei, J.; Wen, X.; Zhang, Y.; Yi, L.; Chen, X.; Cao, H. Voltammetric Determination of Trace Doxorubicin at a Nano-Titania/Nafion Composite Film Modified Electrode in the Presence of Cetyltrimethylammonium Bromide. Microchim. Acta 2009, 164 (1–2), 85–91. DOI: 10.1007/s00604-008-0037-y.
  • Vacek, J.; Havran, L.; Fojta, M. Ex Situ Voltammetry and Chronopotentiometry of Doxorubicin at a Pyrolytic Graphite Electrode: Redox and Catalytic Properties and Analytical Applications. Electroanalysis 2009, 21 (19), 2139–2144. DOI: 10.1002/elan.200904646.
  • Lü, L. A Novel Sensitive Doxorubicin Hydrochloride Electrochemical Sensor Based on a Nickel Hexacyanoferrate/Ni-Al-LDH Modified Gold Electrode. Anal. Sci. 2020, 36 (1), 127–133. 10.2116/analsci.19P271.
  • Chandra, P.; Noh, H. B.; Won, M. S.; Shim, Y. B. Detection of Daunomycin Using Phosphatidylserine and Aptamer Co-Immobilized on Au Nanoparticles Deposited Conducting Polymer. Biosens. Bioelectron. 2011, 26 (11), 4442–4449. 10.1016/j.bios.2011.04.060.
  • Hajian, R.; Mehrayin, Z.; Mohagheghian, M.; Zafari, M.; Hosseini, P.; Shams, N. Fabrication of an Electrochemical Sensor Based on Carbon Nanotubes Modified with Gold Nanoparticles for Determination of Valrubicin as a Chemotherapy Drug: Valrubicin-DNA Interaction. Mater. Sci. Eng. C 2015, 49, 769–775. 10.1016/j.msec.2015.01.072.
  • Li, S.; Wei, C.; Hu, J.; Li, Q. Electrochemical Behavior and Application of Pirarubicin at Gold Nanoparticles-Modified Indium Tin Oxide Electrode. Anal. Lett. 2008, 41 (4), 582–592. DOI: 10.1080/00032710801910635.
  • Li, S. Q.; Yang, Y. F.; Yang, S. Y.; Ye, S. Y.; Fang, H. Q.; Hu, J. B.; Li, Q. L. Electrochemical Reduction and Voltammetric Determination of Pirarubicin at Carboxyl Ions Implantation-Modified Indium Tin Oxide Electrode. Chinese J. Anal. Chem. 2011, 39 (7), 990–993. DOI: 10.1016/S1872-2040(10)60454-9.
  • Paziewska-Nowak, A.; Jankowska-Śliwińska, J.; Dawgul, M.; Pijanowska, D. G. Selective Electrochemical Detection of Pirarubicin by Means of DNA-Modified Graphite Biosensor. Electroanalysis 2017, 29 (7), 1810–1819. DOI: 10.1002/elan.201700067.
  • Tan, X.; Hu, J.; Li, Q. Adsorptive Stripping Voltammetry of Bleomycin. Analyst 1997, 122, 991–994. DOI: 10.1039/a700436b.
  • Marín, D.; Pérez, P.; Teijeiro, C.; Paleček, E. Voltammetric Determination of Mitomycin C in the Presence of Other Anti-Cancer Drugs and in Urine. Anal. Chim. Acta 1998, 358 (1), 45–50. DOI: 10.1016/S0003-2670(97)00605-3.
  • Rezaei, B.; Askarpour, N.; Ensafi, A. A. A Novel Sensitive Doxorubicin Impedimetric Immunosensor Based on a Specific Monoclonal Antibody-Gold Nanoaprticle-Sol-Gel Modified Electrode. Talanta 2014, 119, 164–169. 10.1016/j.talanta.2013.11.017.
  • Yang, J.; Shen, H.; Zhang, X.; Tao, Y.; Xiang, H.; Xie, G. A Novel Platform for High Sensitivity Determination of PbP2a Based on Gold Nanoparticles Composited Graphitized Mesoporous Carbon and Doxorubicin Loaded Hollow Gold Nanospheres. Biosens. Bioelectron. 2016, 77, 1119–1125. DOI: 10.1016/j.bios.2015.11.009.
  • Porfireva, A. V.; Goida, A. I.; Rogov, A. M.; Evtugyn, G. A. Impedimetric DNA Sensor Based on Poly(Proflavine) for Determination of Anthracycline Drugs. Electroanalysis 2020, 32 (4), 827–834. DOI: 10.1002/elan.201900653.
  • Shamagsumova, R.; Porfireva, A.; Stepanova, V.; Osin, Y.; Evtugyn, G.; Hianik, T. Polyaniline-DNA Based Sensor for the Detection of Anthracycline Drugs. Sens. Actuators B Chem. 2015, 220, 573–582. DOI: 10.1016/j.snb.2015.05.076.
  • Li, C. Z.; Liu, Y.; Luong, J. H. T. Impedance Sensing of DNA Binding Drugs Using Gold Substrates Modified with Gold Nanoparticles. Anal. Chem. 2005, 77 (2), 478–485. 10.1021/ac048672l.
  • Khodadadi, A.; Faghih-Mirzaei, E.; Karimi-Maleh, H.; Abbaspourrad, A.; Agarwal, S.; Gupta, V. K. A New Epirubicin Biosensor Based on Amplifying DNA Interactions with Polypyrrole and Nitrogen-Doped Reduced Graphene: Experimental and Docking Theoretical Investigations. Sens. Actuators, B Chem. 2019, 284, 568–574. DOI: 10.1016/j.snb.2018.12.164.
  • Alizadeh, M.; Azar, P. A.; Mozaffari, S. A.; Karimi-Maleh, H.; Tamaddon, A. M. A DNA Based Biosensor Amplified With ZIF-8/Ionic Liquid Composite for Determination of Mitoxantrone Anticancer Drug: An Experimental/Docking Investigation. Front. Chem. 2020, 8 (October), 1–10. 10.3389/fchem.2020.00814.
  • Ribeiro, J. A.; Silva, F.; Pereira, C. M. Electrochemical Study of the Anticancer Drug Daunorubicin at a Water/Oil Interface: Drug Lipophilicity and Quantification. Anal. Chem. 2013, 85 (3), 1582–1590. 10.1021/ac3028245.
  • Karadurmus, L.; Dogan-Topal, B.; Kurbanoglu, S.; Shah, A.; Ozkan, S. A. The Interaction between DNA and Three Intercalating Anthracyclines Using Electrochemical Dna Nanobiosensor Based on Metal Nanoparticles Modified Screen-Printed Electrode. Micromachines 2021, 12 (11), 1337. DOI: 10.3390/mi12111337.
  • Zhang, H. M.; Li, N. Q. Electrochemical Studies of the Interaction of Adriamycin to DNA. J. Pharm. Biomed. Anal. 2000, 22 (1), 67–73. DOI: 10.1016/S0731-7085(99)00254-X.
  • Ting, B. P.; Zhang, J.; Gao, Z.; Ying, J. Y. A DNA Biosensor Based on the Detection of Doxorubicin-Conjugated Ag Nanoparticle Labels Using Solid-State Voltammetry. Biosens. Bioelectron. 2009, 25 (2), 282–287. 10.1016/j.bios.2009.07.005.
  • Hajian, R.; Shams, N.; Parvin, A. DNA-Binding Studies of Daunorubicin in the Presence of Methylene Blue by Spectroscopy and Voltammetry Techniques. Chin. J. Chem. 2009, 27 (6), 1055–1060. DOI: 10.1002/cjoc.200990176.
  • Karimi-Maleh, H.; Alizadeh, M.; Orooji, Y.; Karimi, F.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V. K.; et al. Guanine-Based DNA Biosensor Amplified with Pt/SWCNTs Nanocomposite as Analytical Tool for Nanomolar Determination of Daunorubicin as an Anticancer Drug: A Docking/Experimental Investigation. Ind. Eng. Chem. Res. 2021, 60 (2), 816–823. DOI: 10.1021/acs.iecr.0c04698.
  • Eksin, E.; Zor, E.; Erdem, A.; Bingol, H. Electrochemical Monitoring of Biointeraction by Graphene-Based Material Modified Pencil Graphite Electrode. Biosens. Bioelectron. 2017, 92 (December 2016), 207–214. 10.1016/j.bios.2017.02.016.
  • Congur, G.; Eksin, E.; Erdem, A. Chitosan Modified Graphite Electrodes Developed for Electrochemical Monitoring of Interaction between Daunorubicin and DNA. Sens. Bio-Sens. Res. 2019, 22 (November 2018), 100255. DOI: 10.1016/j.sbsr.2018.100255.
  • Saljooqi, A.; Shamspur, T.; Mostafavi, A. Ag-4-ATP-MWCNT Electrode Modified with DsDNA as Label-Free Electrochemical Sensor for the Detection of Daunorubicin Anticancer Drug. Bioelectrochemistry 2017, 118, 161–167. 10.1016/j.bioelechem.2017.08.003.
  • Ribeiro, J. A.; Pereira, C. M.; Silva, F. Electrochemistry of the Interaction between Bioactive Drugs Daunorubicin and Dopamine and DNA at a Water/Oil Interface. Electrochim. Acta 2015, 180, 687–694. DOI: 10.1016/j.electacta.2015.08.074.
  • Krzak, A.; Swiech, O.; Majdecki, M.; Bilewicz, R. Complexing Daunorubicin with β-Cyclodextrin Derivative Increases Drug Intercalation into DNA. Electrochim. Acta 2017, 247, 139–148. DOI: 10.1016/j.electacta.2017.06.140.
  • Erdem, A.; Ozsoz, M. Interaction of the Anticancer Drug Epirubicin with DNA. Anal. Chim. Acta 2001, 437 (1), 107–114. DOI: 10.1016/S0003-2670(01)00942-4.
  • Abedi, R.; Bakhsh Raoof, J.; Bagheri Hashkavayi, A.; Asghary, M. Highly Sensitive and Label-Free Electrochemical Biosensor Based on Gold Nanostructures for Studying the Interaction of Prostate Cancer Gene Sequence with Epirubicin Anti-Cancer Drug. Microchem. J. 2021, 170, 106668. DOI: 10.1016/j.microc.2021.106668.
  • Hajian, R.; Hossaini, P.; Mehrayin, Z.; Woi, P. M.; Shams, N. DNA-Binding Studies of Valrubicin as a Chemotherapy Drug Using Spectroscopy and Electrochemical Techniques. J. Pharm. Anal. 2017, 7 (3), 176–180. 10.1016/j.jpha.2017.01.003.
  • Satana Kara, H. E. Redox Mechanism of Anticancer Drug Idarubicin and In-Situ Evaluation of Interaction with DNA Using an Electrochemical Biosensor. Bioelectrochemistry 2014, 99, 17–23. DOI: 10.1016/j.bioelechem.2014.06.002.
  • Oliveira-Brett, A. M.; MacEdo, T. R. A.; Raimundo, D.; Marques, M. H.; Serrano, S. H. P. Voltammetric Behaviour of Mitoxantrone at a DNA-Biosensor. Biosens. Bioelectron. 1998, 13 (7–8), 861–867. DOI: 10.1016/S0956-5663(98)00053-0.
  • Erdem, A.; Congur, G. Impedimetric Detection of in Situ Interaction between Anti-Cancer Drug Bleomycin and DNA. Int. J. Biol. Macromol. 2013, 61, 295–301. 10.1016/j.ijbiomac.2013.07.012.
  • Heydari-Bafrooei, E.; Amini, M.; Saeednia, S. Electrochemical Detection of DNA Damage Induced by Bleomycin in the Presence of Metal Ions. J. Electroanal. Chem. 2017, 803 (September), 104–110. DOI: 10.1016/j.jelechem.2017.09.031.
  • Findik, M.; Bingol, H.; Erdem, A. Hybrid Nanoflowers Modified Pencil Graphite Electrodes Developed for Electrochemical Monitoring of Interaction between Mitomycin C and DNA. Talanta 2021, 222 (April 2020), 121647. 10.1016/j.talanta.2020.121647.
  • Kuralay, F.; Bayramlı, Y. Electrochemical Determination of Mitomycin C and Its Interaction with Double-Stranded DNA Using a Poly(o-Phenylenediamine)-Multi-Walled Carbon Nanotube Modified Pencil Graphite Electrode. Anal. Lett. 2021, 54 (8), 1295–1308. DOI: 10.1080/00032719.2020.1801710.
  • Gürsoy, S.; Dükar, N.; Yaman, Y. T.; Abaci, S.; Kuralay, F. Electroactive Polyglycine Coatings for Nanobiosensing Applications: Label-Free DNA Hybridization, DNA-Antitumor Agent Interaction and Antitumor Agent Determination. Anal. Chim. Acta 2019, 1072, 15–24. 10.1016/j.aca.2019.04.044.
  • Erdem, A.; Muti, M.; Papakonstantinou, P.; Canavar, E.; Karadeniz, H.; Congur, G.; Sharma, S. Graphene Oxide Integrated Sensor for Electrochemical Monitoring of Mitomycin C-DNA Interaction. Analyst 2012, 137 (9), 2129–2135. 10.1039/c2an16011k.
  • Eksin, E.; Muti, M.; Erdem, A. Chitosan/Ionic Liquid Composite Electrode for Electrochemical Monitoring of the Surface-Confined Interaction between Mitomycin C and DNA. Electroanalysis 2013, 25 (10), 2321–2329. DOI: 10.1002/elan.201300188.
  • Sengiz, C.; Congur, G.; Eksin, E.; Erdem, A. Multiwalled Carbon Nanotubes-Chitosan Modified Single-Use Biosensors for Electrochemical Monitoring of Drug-DNA Interactions. Electroanalysis 2015, 27 (8), 1855–1863. DOI: 10.1002/elan.201500107.
  • Ozkan, D.; Karadeniz, H.; Erdem, A.; Mascini, M.; Ozsoz, M. Electrochemical Genosensor for Mitomycin C-DNA Interaction Based on Guanine Signal. J. Pharm. Biomed. Anal. 2004, 35 (4), 905–912. 10.1016/j.jpba.2004.03.001.
  • Kuralay, F.; Demirci, S.; Kiristi, M.; Oksuz, L.; Oksuz, A. U. Poly(3,4-Ethylenedioxythiophene) Coated Chitosan Modified Disposable Electrodes for DNA and DNA-Drug Interaction Sensing. Colloids Surf. B Biointerfaces 2014, 123, 825–830. 10.1016/j.colsurfb.2014.10.021.
  • Ensafi, A. A.; Amini, M.; Rezaei, B. Impedimetric DNA-Biosensor for the Study of Anti-Cancer Action of Mitomycin C: Comparison between Acid and Electroreductive Activation. Biosens. Bioelectron. 2014, 59, 282–288. 10.1016/j.bios.2014.03.041.
  • Sugawara, K.; Kadoya, T.; Kuramitz, H. Monitoring of the Interaction between U937 Cells and Electroactive Daunomycin with an Arginine-Rich Peptide. Bioelectrochemistry 2015, 105, 95–102. 10.1016/j.bioelechem.2015.05.012.
  • Lei, K. F.; Liu, T. K.; Tsang, N. M. Towards a High Throughput Impedimetric Screening of Chemosensitivity of Cancer Cells Suspended in Hydrogel and Cultured in a Paper Substrate. Biosens. Bioelectron. 2018, 100 (259), 355–360. 10.1016/j.bios.2017.09.029.
  • Caviglia, C.; Zór, K.; Canepa, S.; Carminati, M.; Larsen, L. B.; Raiteri, R.; Andresen, T. L.; Heiskanen, A.; Emnéus, J. Interdependence of Initial Cell Density, Drug Concentration and Exposure Time Revealed by Real-Time Impedance Spectroscopic Cytotoxicity Assay. Analyst 2015, 140 (10), 3623–3629. 10.1039/c5an00097a.
  • Caviglia, C.; Zór, K.; Montini, L.; Tilli, V.; Canepa, S.; Melander, F.; Muhammad, H. B.; Carminati, M.; Ferrari, G.; Raiteri, R.; et al. Impedimetric Toxicity Assay in Microfluidics Using Free and Liposome-Encapsulated Anticancer Drugs. Anal. Chem. 2015, 87 (4), 2204–2212. 10.1021/ac503621d.
  • Nieciecka, D.; Joniec, A.; Blanchard, G. J.; Krysinski, P. Interactions of Doxorubicin with Organized Interfacial Assemblies. 1. Electrochemical Characterization. Langmuir 2013, 29 (47), 14560–14569. 10.1021/la403765w.
  • Nieciecka, D.; Królikowska, A.; Setiawan, I.; Krysinski, P.; Blanchard, G. J. Interactions of Doxorubicin with Organized Interfacial Assemblies. 2. Spectroscopic Characterization. Langmuir 2013, 29 (47), 14570–14579. 10.1021/la4037666.
  • Nieciecka, D.; Królikowska, A.; Krysinski, P. Probing the Interactions of Mitoxantrone with Biomimetic Membranes with Electrochemical and Spectroscopic Techniques. Electrochim. Acta 2015, 165, 430–442. DOI: 10.1016/j.electacta.2015.02.223.
  • Haghshenas, E.; Madrakian, T.; Afkhami, A. Electrochemically Oxidized Multiwalled Carbon Nanotube/Glassy Carbon Electrode as a Probe for Simultaneous Determination of Dopamine and Doxorubicin in Biological Samples. Anal. Bioanal. Chem. 2016, 408 (10), 2577–2586. 10.1007/s00216-016-9361-y.
  • Hashemzadeh, N.; Hasanzadeh, M.; Shadjou, N.; Eivazi-Ziaei, J.; Khoubnasabjafari, M.; Jouyban, A. Graphene Quantum Dot Modified Glassy Carbon Electrode for the Determination of Doxorubicin Hydrochloride in Human Plasma. J. Pharm. Anal. 2016, 6 (4), 235–241. 10.1016/j.jpha.2016.03.003.
  • Hasanzadeh, M.; Hashemzadeh, N.; Shadjou, N.; Eivazi-Ziaei, J.; Khoubnasabjafari, M.; Jouyban, A. Sensing of Doxorubicin Hydrochloride Using Graphene Quantum Dot Modified Glassy Carbon Electrode. J. Mol. Liq. 2016, 221, 354–357. DOI: 10.1016/j.molliq.2016.05.082.
  • Ehsani, M.; Soleymani, J.; Mohammadalizadeh, P.; Hasanzadeh, M.; Jouyban, A.; Khoubnasabjafari, M.; Vaez-Gharamaleki, Y. Low Potential Detection of Doxorubicin Using a Sensitive Electrochemical Sensor Based on Glassy Carbon Electrode Modified with Silver Nanoparticles-Supported Poly(Chitosan): A New Platform in Pharmaceutical Analysis. Microchem. J. 2021, 165 (February), 106101. DOI: 10.1016/j.microc.2021.106101.
  • Ehsani, M.; Soleymani, J.; Hasanzadeh, M.; Vaez-Gharamaleki, Y.; Khoubnasabjafari, M.; Jouyban, A. Sensitive Monitoring of Doxorubicin in Plasma of Patients, MDA-MB-231 and 4T1 Cell Lysates Using Electroanalysis Method. J. Pharm. Biomed. Anal. 2021, 192, 113701. 10.1016/j.jpba.2020.113701.
  • Guo, H.; Jin, H.; Gui, R.; Wang, Z.; Xia, J.; Zhang, F. Electrodeposition One-Step Preparation of Silver Nanoparticles/Carbon Dots/Reduced Graphene Oxide Ternary Dendritic Nanocomposites for Sensitive Detection of Doxorubicin. Sensors Actuators, B Chem. 2017, 253, 50–57. DOI: 10.1016/j.snb.2017.06.095.
  • Kalambate, P. K.; Li, Y.; Shen, Y.; Huang, Y. Mesoporous Pd@Pt Core-Shell Nanoparticles Supported on Multi-Walled Carbon Nanotubes as a Sensing Platform: Application in Simultaneous Electrochemical Detection of Anticancer Drugs Doxorubicin and Dasatinib. Anal. Methods 2019, 11 (4), 443–453. DOI: 10.1039/C8AY02381F.
  • Behravan, M.; Aghaie, H.; Giahi, M.; Maleknia, L. Determination of Doxorubicin by Reduced Graphene Oxide/Gold/Polypyrrole Modified Glassy Carbon Electrode: A New Preparation Strategy. Diam. Relat. Mater. 2021, 117 (May), 108478. DOI: 10.1016/j.diamond.2021.108478.
  • Materon, E. M.; Wong, A.; Fatibello-Filho, O.; Faria, R. C. Development of a Simple Electrochemical Sensor for the Simultaneous Detection of Anticancer Drugs. J. Electroanal. Chem. 2018, 827 (August), 64–72. DOI: 10.1016/j.jelechem.2018.09.010.
  • Rajaji, U.; Yogesh Kumar, K.; Chen, S. M.; Raghu, M. S.; Parashuram, L.; Alzahrani, F. M.; Alsaiari, N. S.; Ouladsmane, M. Deep Eutectic Solvent Synthesis of Iron Vanadate-Decorated Sulfur-Doped Carbon Nanofiber Nanocomposite: Electrochemical Sensing Tool for Doxorubicin. Microchim. Acta 2021, 188 (9), 303. DOI: 10.1007/s00604-021-04950-7.
  • Soleymani, J.; Hasanzadeh, M.; Shadjou, N.; Khoubnasab Jafari, M.; Gharamaleki, J. V.; Yadollahi, M.; Jouyban, A. A New Kinetic-Mechanistic Approach to Elucidate Electrooxidation of Doxorubicin Hydrochloride in Unprocessed Human Fluids Using Magnetic Graphene Based Nanocomposite Modified Glassy Carbon Electrode. Mater. Sci. Eng. C 2016, 61, 638–650. 10.1016/j.msec.2016.01.003.
  • Soleymani, J.; Hasanzadeh, M.; Eskandani, M.; Khoubnasabjafari, M.; Shadjou, N.; Jouyban, A. Electrochemical Sensing of Doxorubicin in Unprocessed Whole Blood, Cell Lysate, and Human Plasma Samples Using Thin Film of Poly-Arginine Modified Glassy Carbon Electrode. Mater. Sci. Eng. C 2017, 77, 790–802. 10.1016/j.msec.2017.03.257.
  • Ghanbari, M. H.; Norouzi, Z. A New Nanostructure Consisting of Nitrogen-Doped Carbon Nanoonions for an Electrochemical Sensor to the Determination of Doxorubicin. Microchem. J. 2020, 157 (May), 105098. DOI: 10.1016/j.microc.2020.105098.
  • Yan, F.; Chen, J.; Jin, Q.; Zhou, H.; Sailjoi, A.; Liu, J.; Tang, W. Fast One-Step Fabrication of a Vertically-Ordered Mesoporous Silica-Nanochannel Film on Graphene for Direct and Sensitive Detection of Doxorubicin in Human Whole Blood. J. Mater. Chem. C 2020, 8 (21), 7113–7119. DOI: 10.1039/D0TC00744G.
  • Vetri Selvi, S.; Prasannan, A.; Chen, S. M.; Vadivelmurugan, A.; Tsai, H. C.; Lai, J. Y. Glutathione and Cystamine Functionalized MoS2core-Shell Nanoparticles for Enhanced Electrochemical Detection of Doxorubicin. Microchim. Acta 2021, 188 (2), 35. DOI: 10.1007/s00604-020-04642-8.
  • Wang, M.; Lin, J.; Gong, J.; Ma, M.; Tang, H.; Liu, J.; Yan, F. Rapid and Sensitive Determination of Doxorubicin in Human Whole Blood by Vertically-Ordered Mesoporous Silica Film Modified Electrochemically Pretreated Glassy Carbon Electrodes. RSC Adv. 2021, 11 (15), 9021–9028. 10.1039/d0ra10000e.
  • Chaney, E. N.; Baldwin, R. P. Electrochemical Determination of Adriamycin Compounds in Urine by Preconcentration at Carbon Paste Electrodes. Anal. Chem. 1982, 54 (14), 2556–2560. 10.1021/ac00251a034.
  • Jemelková, Z.; Zima, J.; Barek, J. Voltammetric and Amperometric Determination of Doxorubicin Using Carbon Paste Electrodes. Collect. Czechoslov. Chem. Commun. 2009, 74 (10), 1503–1515. DOI: 10.1135/cccc2009081.
  • Alavi-Tabari, S. A. R.; Khalilzadeh, M. A.; Karimi-Maleh, H. Simultaneous Determination of Doxorubicin and Dasatinib as Two Breast Anticancer Drugs Uses an Amplified Sensor with Ionic Liquid and ZnO Nanoparticle. J. Electroanal. Chem. 2018, 811, 84–88. DOI: 10.1016/j.jelechem.2018.01.034.
  • Madrakian, T.; Asl, K. D.; Ahmadi, M.; Afkhami, A. Fe3O4@Pt/MWCNT/Carbon Paste Electrode for Determination of a Doxorubicin Anticancer Drug in a Human Urine Sample. RSC Adv. 2016, 6 (76), 72803–72809. DOI: 10.1039/C6RA13935C.
  • Jahandari, S.; Taher, M. A.; Karimi-Maleh, H.; Mansouri, G. Simultaneous Voltammetric Determination of Glutathione, Doxorubicin and Tyrosine Based on the Electrocatalytic Effect of a Nickel(II) Complex and of Pt:Co Nanoparticles as a Conductive Mediator. Microchim. Acta 2019, 186 (8), 493. DOI: 10.1007/s00604-019-3598-z.
  • Stanković, D. M.; Milanović, Z.; Švorc, Ľ.; Stanković, V.; Janković, D.; Mirković, M.; Đurić, S. V. Screen Printed Diamond Electrode as Efficient “Point-of-Care” Platform for Submicromolar Determination of Cytostatic Drug in Biological Fluids and Pharmaceutical Product. Diam. Relat. Mater. 2021, 113 (2020), 108277. DOI: 10.1016/j.diamond.2021.108277.
  • Er, E.; Erk, N. Construction of a Sensitive Electrochemical Sensor Based on 1T-MoS2 Nanosheets Decorated with Shape-Controlled Gold Nanostructures for the Voltammetric Determination of Doxorubicin. Microchim. Acta 2020, 187 (4), 223. DOI: 10.1007/s00604-020-4206-y.
  • Wang, J.; Lin, M. S.; Villa, V. Adsorptive Stripping Voltammetric Determination of Low Levels of Daunorubicin. Analyst 1987, 112 (9), 1303–1307. 10.1039/an9871201303.
  • Erdem, A.; Karadeniz, H.; Caliskan, A. Dendrimer Modified Graphite Sensors for Detection of Anticancer Drug Daunorubicin by Voltammetry and Electrochemical Impedance Spectroscopy. Analyst 2011, 136 (5), 1041–1045. 10.1039/c0an00357c.
  • Gao, D. M.; Hu, J. B.; Yang, M.; Li, Q. L. Determination of Daunomycin at a Novel COOH/Indium Tin Oxide Ion Implantation-Modified Electrode. Anal. Biochem. 2006, 358 (1), 70–75. 10.1016/j.ab.2006.06.008.
  • Bozal-Palabiyik, B.; Kurbanoglu, S.; Gumustas, M.; Uslu, B.; Ozkan, S. A. Electrochemical Approach for the Sensitive Determination of Anticancer Drug Epirubicin in Pharmaceuticals in the Presence of Anionic Surfactant. Rev. Roum. Chim. 2013, 58 (7–8), 647–658.
  • Abbasghorbani, M. Fe3O4 Loaded Single Wall Carbon Nanotubes and 1-Methyl-3-Octylimidazlium Chloride as Two Amplifiers for Fabrication of Highly Sensitive Voltammetric Sensor for Epirubicin Anticancer Drug Analysis. J. Mol. Liq. 2018, 266, 176–180. DOI: 10.1016/j.molliq.2018.06.060.
  • Karimi, F.; Shojaei, A. F.; Tabatabaeian, K.; Shakeri, S. CoFe2O4 Nanoparticle/Ionic Liquid Modified Carbon Paste Electrode as an Amplified Sensor for Epirubicin Analysis as an Anticancer Drug. J. Mol. Liq. 2017, 242, 685–689. DOI: 10.1016/j.molliq.2017.07.067.
  • Hashkavayi, A. B.; Raoof, J. B. Design an Aptasensor Based on Structure-Switching Aptamer on Dendritic Gold Nanostructures/Fe3O4@SiO2/DABCO Modified Screen Printed Electrode for Highly Selective Detection of Epirubicin. Biosens. Bioelectron. 2017, 91, 650–657. 10.1016/j.bios.2017.01.025.
  • Irem Kaya, S.; Kurbanoglu, S.; Yavuz, E.; Demiroglu Mustafov, S.; Sen, F.; Ozkan, S. A. Carbon-Based Ruthenium Nanomaterial-Based Electroanalytical Sensors for the Detection of Anticancer Drug Idarubicin. Sci. Rep. 2020, 10 (1), 1–12. DOI: 10.1038/s41598-020-68055-6.
  • Kurbanoglu, S.; Dogan-Topal, B.; Uslu, B.; Can, A.; Ozkan, S. A. Electrochemical Investigations of the Anticancer Drug Idarubicin Using Multiwalled Carbon Nanotubes Modified Glassy Carbon and Pyrolytic Graphite Electrodes. Electroanalysis 2013, 25 (6), 1473–1482. DOI: 10.1002/elan.201300048.
  • Oliveira Brett, A. M.; MacEdo, T. R. A.; Raimundo, D.; Marques, M. H.; Serrano, S. H. P. Electrochemical Oxidation of Mitoxantrone at a Glassy Carbon Electrode. Anal. Chim. Acta 1999, 385 (1–3), 401–408. DOI: 10.1016/S0003-2670(98)00807-1.
  • Hasanzadeh, M.; Khalilzadeh, B.; Shadjou, N. Nanosilica Grafted by Sulfonic Acid: A Novel Nanocomposite towards Amplification of Mitoxantrone Electrooxidation Signals. Nanocomposites 2016, 2 (2), 76–83. DOI: 10.1080/20550324.2016.1200286.
  • Villar, J. C. C.; García, A. C.; Blanco, P. T. Determination of Mitoxantrone Using Phase-Selective a.c. Adsorptive Stripping Voltammetry in a Flow System with Selectivity Enhancement. Anal. Chim. Acta 1992, 256 (2), 231–236. DOI: 10.1016/0003-2670(92)85348-A.
  • Mao, Y.; Hu, J.; Li, Q.; Xue, P. Study of the Electrochemical Behavior of Mitoxantrone and Its Determination at a Co-C Modified Ultramicroelectrode. Analyst 2000, 125 (12), 2299–2302. 10.1039/b006865i.
  • Lu, S.; Yang, M.; Li, X.; Liu, X.; Yin, Y.; Cao, Y. Amplified Detection of Bleomycin Based on an Electrochemically Driven Recycling Strategy. Anal. Methods 2014, 6 (15), 5573–5577. DOI: 10.1039/C4AY00989D.
  • Lawrence, D. S.; Niu, J. Protein Kinase Inhibitors: The Tyrosine-Specific Protein Kinases. Pharmacol. Ther., 1998, 77 (2), 81–114. DOI: 10.1016/S0163-7258(97)00052-1.
  • Brycht, M.; Leniart, A.; Skrzypek, S. Application of Solid Carbon Electrodes in Voltammetric (Bio)Analysis of Selected Cytostatic Drugs. In Handbook of Bioanalytics; Buszewski, B., Baranowska, I., Eds.; Springer Nature: Cham, 2020. DOI: 10.1007/978-3-030-95660-8.
  • Ghapanvari, M.; Madrakian, T.; Afkhami, A.; Ghoorchian, A. A Modified Carbon Paste Electrode Based on Fe3O4@multi-Walled Carbon Nanotubes@polyacrylonitrile Nanofibers for Determination of Imatinib Anticancer Drug. J. Appl. Electrochem. 2020, 50 (2), 281–294. DOI: 10.1007/s10800-019-01388-x.
  • Wu, Z.; Liu, J.; Liang, M.; Zheng, H.; Zhu, C.; Wang, Y. Detection of Imatinib Based on Electrochemical Sensor Constructed Using Biosynthesized Graphene-Silver Nanocomposite. Front. Chem. 2021, 9 (April), 1–7. 10.3389/fchem.2021.670074.
  • Rezvani Jalal, N.; Madrakian, T.; Afkhami, A.; Ghoorchian, A. In Situ Growth of Metal-Organic Framework HKUST-1 on Graphene Oxide Nanoribbons with High Electrochemical Sensing Performance in Imatinib Determination. ACS Appl. Mater. Interfaces 2020, 12 (4), 4859–4869. 10.1021/acsami.9b18097.
  • Brycht, M.; Kaczmarska, K.; Uslu, B.; Ozkan, S. A.; Skrzypek, S. Sensitive Determination of Anticancer Drug Imatinib in Spiked Human Urine Samples by Differential Pulse Voltammetry on Anodically Pretreated Boron-Doped Diamond Electrode. Diam. Relat. Mater. 2016, 68, 13–22. DOI: 10.1016/j.diamond.2016.05.007.
  • Moghaddam, A.; Zamani, H. A.; Karimi‐maleh, H. A New Electrochemical Platform for Dasatinib Anticancer Drug Sensing Using Fe3O4‐SWCTs/Ionic Liquid Paste Sensor. Micromachines 2021, 12 (4), 437. DOI: 10.3390/mi12040437.
  • Eskiköy Bayraktepe, D.; Polat, K.; Yazan, Z. Electrochemical Oxidation Pathway of the Anti-Cancer Agent Dasatinib Using Disposable Pencil Graphite Electrode and Its Adsorptive Stripping Voltammetric Determination in Biological Samples. J. Turkish Chem. Soc. Sect. A Chem. 2018, 5 (2), 381–392. DOI: 10.18596/jotcsa.345238.
  • Jesus, C. S. H.; Diculescu, V. C. Redox Mechanism, Spectrophotometrical Characterisation and Voltammetric Determination in Serum Samples of Kinases Inhibitor and Anticancer Drug Dasatinib. J. Electroanal. Chem. 2015, 752, 47–53. DOI: 10.1016/j.jelechem.2015.06.006.
  • Sener, C. E.; Dogan Topal, B.; Ozkan, S. A. Effect of Monomer Structure of Anionic Surfactant on Voltammetric Signals of an Anticancer Drug: Rapid, Simple, and Sensitive Electroanalysis of Nilotinib in Biological Samples. Anal. Bioanal. Chem. 2020, 412 (29), 8073–8081. 10.1007/s00216-020-02934-9.
  • Aksoz, B. E.; Dogan Topal, B. Effect of Triton X-100 on the Electrochemical Behavior of Hydrophobic Lapatinib Used in the Treatment of Breast Cancer: A First Electroanalytical Study. J. Electrochem. Soc. 2021, 168 (7), 076506. DOI: 10.1149/1945-7111/ac0ec3.
  • Bakirhan, N. K.; Tok, T. T.; Ozkan, S. A. The Redox Mechanism Investigation of Non-Small Cell Lung Cancer Drug: Erlotinib via Theoretical and Experimental Techniques and Its Host–Guest Detection by Β-Cyclodextrin Nanoparticles Modified Glassy Carbon Electrode. Sensors Actuators, B Chem. 2019, 278, 172–180. DOI: 10.1016/j.snb.2018.09.090.
  • Sharma, N.; Baldi, A. Exploring Versatile Applications of Cyclodextrins: An Overview. Drug Deliv. 2016, 23 (3), 729–747. DOI: 10.3109/10717544.2014.938839.
  • Yarahmadi, A.; Madrakian, T.; Afkhami, A.; Jalal, N. R. Electrochemical Determination of Sunitinib in Biological Samples Using Polyacrylonitrile Nanofibers/Nickel-Zinc-Ferrite Nanocomposite/Carbon Paste Electrode. J. Electrochem. Soc. 2019, 166 (14), B1268–B1275. DOI: 10.1149/2.0371914jes.
  • Ghoneim, M. M.; El-Desoky, H. S.; Ahmed, H. M.; El-badawy, F. M. Nano Determination of Kinase Inhibitor Sorafenib Drug in Pharmaceutical Formulation and Human Blood at a Modified Carbon Paste Electrode. J. Electrochem. Soc. 2016, 163 (6), B215–B226. DOI: 10.1149/2.0471606jes.
  • Bilge, S.; Dogan-Topal, B.; Atici, E. B.; Sınağ, A.; Ozkan, S. A. Rod-like CuO Nanoparticles/Waste Masks Carbon Modified Glassy Carbon Electrode as a Voltammetric Nanosensor for the Sensitive Determination of Anti-Cancer Drug Pazopanib in Biological and Pharmaceutical Samples. Sensors Actuators, B Chem. 2021, 343 (March), 130109. DOI: 10.1016/j.snb.2021.130109.
  • Doulache, M.; Kaya, S. I.; Cetinkaya, A.; K Bakirhan, N.; Trari, M.; Ozkan, S. A. Detailed Electrochemical Behavior and Thermodynamic Parameters of Anticancer Drug Regorafenib and Its Sensitive Electroanalytical Assay in Biological and Pharmaceutical Samples. Microchem. J. 2021, 170 (August), 106717. DOI: 10.1016/j.microc.2021.106717.
  • Venu, M.; Venkateswarlu, S.; Reddy, Y. V. M.; Seshadri Reddy, A.; Gupta, V. K.; Yoon, M.; Madhavi, G. Highly Sensitive Electrochemical Sensor for Anticancer Drug by a Zirconia Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposite. ACS Omega 2018, 3 (11), 14597–14605. 10.1021/acsomega.8b02129.
  • Rodríguez, J.; Berzas, J. J.; Castañeda, G.; Rodríguez, N. Voltammetric Determination of Imatinib (Gleevec) and Its Main Metabolite Using Square-Wave and Adsorptive Stripping Square-Wave Techniques in Urine Samples. Talanta 2005, 66 (1), 202–209. 10.1016/j.talanta.2004.11.010.
  • Hammam, E.; El-Desoky, H. S.; Tawfik, A.; Ghoneim, M. M. Voltammetric Behavior and Quantification of the Anti-Leukemia Drug Imatinib in Bulk Form, Pharmaceutical Formulation, and Human Serum at a Mercury Electrode. Can. J. Chem. 2004, 82 (7), 1203–1209. DOI: 10.1139/v04-060.
  • Nageswara Reddy, C.; Reddy Prasad, P.; Sreedhar, N. Y. Voltammetric Behavior of Gefitinib and Its Adsorptive Stripping Voltammetric Determination in Pharmaceutical Formulations and Urine Samples. Int. J. Pharm. Pharm. Sci. 2011, 3 (SUPPL. 3), 141–145.
  • Alghamdi, A. F.; Hefnawy, M.; Al-Rashood, S. Development and Validation of Electrochemical Method for Quantification of Palbociclib (Anticancer Agent) in Biological Matrices Using Square Wave-Adsorptive Stripping Voltammetry. Int. J. Electrochem. Sci. 2020, 15, 3517–3533. DOI: 10.20964/2020.04.31.
  • Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Gold Nanoparticles and Reduced Graphene Oxide-Amplified Label-Free DNA Biosensor for Dasatinib Detection. New J. Chem. 2018, 42 (19), 16378–16383. DOI: 10.1039/C8NJ03783C.
  • Çorman, M. E.; Cetinkaya, A.; Ozcelikay, G.; Özgür, E.; Atici, E. B.; Uzun, L.; Ozkan, S. A. A Porous Molecularly Imprinted Nanofilm for Selective and Sensitive Sensing of an Anticancer Drug Ruxolitinib. Anal. Chim. Acta 2021, 1187, 339143. 10.1016/j.aca.2021.339143.
  • Cetinkaya, A.; Topal, B. D.; Atici, E. B.; Ozkan, S. A. Simple and Highly Sensitive Assay of Axitinib in Dosage Form and Biological Samples and Its Electrochemical Behavior on the Boron-Doped Diamond and Glassy Carbon Electrodes. Electrochim. Acta 2021, 386, 138443. DOI: 10.1016/j.electacta.2021.138443.
  • Dogan-Topal, B.; Bozal-Palabiyik, B.; Ozkan, S. A.; Uslu, B. Investigation of Anticancer Drug Lapatinib and Its Interaction with DsDNA by Electrochemical and Spectroscopic Techniques. Sensors Actuators, B Chem. 2014, 194, 185–194. DOI: 10.1016/j.snb.2013.12.088.
  • Zhang, D.; Zhang, Y.; Zheng, L.; Zhan, Y.; He, L. Graphene Oxide/Poly-l-Lysine Assembled Layer for Adhesion and Electrochemical Impedance Detection of Leukemia K562 Cancer Cells. Biosens. Bioelectron. 2013, 42 (1), 112–118. 10.1016/j.bios.2012.10.057.
  • Zhou, S.; Kong, Y.; Shen, Q.; Ren, X.; Zhang, J. R.; Zhu, J. J. Chronic Myeloid Leukemia Drug Evaluation Using a Multisignal Amplified Photoelectrochemical Sensing Platform. Anal. Chem. 2014, 86 (23), 11680–11689. 10.1021/ac502969x.
  • Zhou, S.; Wang, Y.; Zhu, J. J. Simultaneous Detection of Tumor Cell Apoptosis Regulators Bcl-2 and Bax through a Dual-Signal-Marked Electrochemical Immunosensor. ACS Appl. Mater. Interfaces 2016, 8 (12), 7674–7682. 10.1021/acsami.6b01010.
  • Pradhan, R.; Rajput, S.; Mandal, M.; Mitra, A.; Das, S. Frequency Dependent Impedimetric Cytotoxic Evaluation of Anticancer Drug on Breast Cancer Cell. Biosens. Bioelectron. 2014, 55, 44–50. 10.1016/j.bios.2013.11.060.
  • Chen, H.; Luo, K.; Li, K. A Facile Electrochemical Sensor Based on NiO-ZnO/MWCNT-COOH Modified GCE for Simultaneous Quantification of Imatinib and Itraconazole. J. Electrochem. Soc. 2019, 166 (8), B697–B707. DOI: 10.1149/2.1071908jes.
  • Hassan Pour, B.; Haghnazari, N.; Keshavarzi, F.; Ahmadi, E.; Rahimian Zarif, B. High Sensitive Electrochemical Sensor for Imatinib Based on Metal-Organic Frameworks and Multiwall Carbon Nanotubes Nanocomposite. Microchem. J. 2021, 165 (August 2020), 106147. DOI: 10.1016/j.microc.2021.106147.
  • Hatamluyi, B.; Es’haghi, Z. A Layer-by-Layer Sensing Architecture Based on Dendrimer and Ionic Liquid Supported Reduced Graphene Oxide for Simultaneous Hollow-Fiber Solid Phase Microextraction and Electrochemical Determination of Anti-Cancer Drug Imatinib in Biological Samples. J. Electroanal. Chem. 2017, 801 (March), 439–449. DOI: 10.1016/j.jelechem.2017.08.032.
  • Rodríguez, J.; Castañeda, G.; Lizcano, I. Electrochemical Sensor for Leukemia Drug Imatinib Determination in Urine by Adsorptive Striping Square Wave Voltammetry Using Modified Screen-Printed Electrodes. Electrochim. Acta 2018, 269, 668–675. DOI: 10.1016/j.electacta.2018.03.051.
  • Cetinkaya, A.; Kaya, S. I.; Ozcelikay, G.; Atici, E. B.; Ozkan, S. A. A Molecularly Imprinted Electrochemical Sensor Based on Highly Selective and an Ultra-Trace Assay of Anti-Cancer Drug Axitinib in Its Dosage Form and Biological Samples. Talanta 2021, 233 (June), 122569. 10.1016/j.talanta.2021.122569.
  • Karadas-Bakirhan, N.; Patris, S.; Ozkan, S. A.; Can, A.; Kauffmann, J. M. Determination of the Anticancer Drug Sorafenib in Serum by Adsorptive Stripping Differential Pulse Voltammetry Using a Chitosan/Multiwall Carbon Nanotube Modified Glassy Carbon Electrode. Electroanalysis 2016, 28 (2), 358–365. DOI: 10.1002/elan.201500384.
  • Ghoneim, M. M.; El-Desoky, H. S.; Ahmed, H. M.; El-badawy, F. M. Nano Determination of Kinase I Nhibitor Sorafenib Drug in Pharmaceutical Formulation and Human Blood at a Modified Carbon Paste Electrode . J. Electrochem. Soc. 2016, 163 (6), B215–B226. DOI: 10.1149/2.0471606jes.
  • Aydoğmuş, Z.; Aslan, S. S.; Yildiz, G.; Senocak, A. Differential Pulse Voltammetric Determination of Anticancer Drug Regorafenib at a Carbon Paste Electrode: Electrochemical Study and Density Functional Theory Computations. J. Anal. Chem. 2020, 75 (5), 691–700. DOI: 10.1134/S1061934820050032.
  • Zahavi, D.; Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 34. DOI: 10.3390/antib9030034.
  • Thomas, A.; Teicher, B. A.; Hassan, R. Antibody–Drug Conjugates for Cancer Therapy. Lancet Oncol. 2016, 17 (6), e254-262. DOI: 10.1016/S1470-2045(16)30030-4.
  • Hatamluyi, B.; Es’haghi, Z. Quantitative Biodetection of Anticancer Drug Rituxan with DNA Biosensor Modified PAMAM Dendrimer/Reduced Graphene Oxide Nanocomposite. Electroanalysis 2018, 30 (8), 1651–1660. DOI: 10.1002/elan.201800014.
  • Tan, L.; Lin, P.; Chisti, M. M.; Rehman, A.; Zeng, X. Real Time Analysis of Binding between Rituximab (Anti-CD20 Antibody) and B Lymphoma Cells. Anal. Chem. 2013, 85 (18), 8543–8551. 10.1021/ac400062v.
  • Leo, N.; Shang, Y.; Yu, J. J.; Zeng, X. Characterization of Self-Assembled Monolayers of Peptide Mimotopes of CD20 Antigen and Their Binding with Rituximab. Langmuir 2015, 31 (51), 13764–13772. 10.1021/acs.langmuir.5b02605.
  • Oliveira, S. C. B.; Santarino, I. B.; Oliveira-Brett, A. M. Direct Electrochemistry of Native and Denatured Anticancer Antibody Rituximab at a Glassy Carbon Electrode. Electroanalysis 2013, 25 (4), 1029–1034. DOI: 10.1002/elan.201200552.
  • Santarino, I. B.; Oliveira, S. C. B.; Oliveira-Brett, A. M. In Situ Evaluation of the Anticancer Antibody Rituximab-DsDNA Interaction Using a DNA-Electrochemical Biosensor. Electroanalysis 2014, 26 (6), 1304–1311. DOI: 10.1002/elan.201300488.
  • Liu, J.; Chisti, M. M.; Zeng, X. General Signal Amplification Strategy for Nonfaradic Impedimetric Sensing: Trastuzumab Detection Employing a Peptide Immunosensor. Anal. Chem. 2017, 89 (7), 4013–4020. 10.1021/acs.analchem.6b04570.
  • Yadegari, A.; Omidi, M.; Yazdian, F.; Zali, H.; Tayebi, L. An Electrochemical Cytosensor for Ultrasensitive Detection of Cancer Cells Using Modified Graphene-Gold Nanostructures. RSC Adv. 2017, 7 (4), 2365–2372. DOI: 10.1039/C6RA25938C.
  • Centane, S.; Nyokong, T. The Antibody Assisted Detection of HER2 on a Cobalt Porphyrin Binuclear Framework and Gold Functionalized Graphene Quantum Dots Modified Electrode. J. Electroanal. Chem. 2021, 880, 114908. DOI: 10.1016/j.jelechem.2020.114908.
  • Yang, C.; Xu, C.; Wang, X.; Hu, X. Quantum-Dot-Based Biosensor for Simultaneous Detection of Biomarker and Therapeutic Drug: First Steps toward an Assay for Quantitative Pharmacology. Analyst 2012, 137 (5), 1205–1209. 10.1039/c2an15894a.
  • Machini, W. B. S.; Marques, N. V.; Oliveira-Brett, A. M. Nivolumab Anticancer Monoclonal Antibody Native and Denatured Direct Electrochemistry at a Glassy Carbon Electrode. J. Electroanal. Chem. 2019, 851, 113251. DOI: 10.1016/j.jelechem.2019.113251.
  • Machini, W. B. S.; Marques, N. V.; Oliveira-Brett, A. M. In Situ Evaluation of Anticancer Monoclonal Antibody Nivolumab-DNA Interaction Using a DNA-Electrochemical Biosensor. ChemElectroChem 2019, 6 (17), 4608–4616. DOI: 10.1002/celc.201901005.
  • Issaad, F. Z.; Tomé, L. I. N.; Marques, N. V.; Mouats, C.; Diculescu, V. C.; Oliveira-Brett, A. M. Bevacizumab Anticancer Monoclonal Antibody: Native and Denatured Redox Behaviour. Electrochim. Acta 2016, 206, 246–253. DOI: 10.1016/j.electacta.2016.04.097.
  • Tomé, L. I. N.; Marques, N. V.; Diculescu, V. C.; Oliveira-Brett, A. M. In Situ DsDNA-Bevacizumab Anticancer Monoclonal Antibody Interaction Electrochemical Evaluation. Anal. Chim. Acta 2015, 898, 28–33. 10.1016/j.aca.2015.09.049.
  • Schmid, G. M.; Atherton, D. R. Voltammetric Determination of Platinum from Aqueous Solutions and from Urine. Anal. Chem. 1986, 58 (9), 1956–1959. DOI: 10.1021/ac00122a009.
  • Wang, J.; Peng, T.; Lin, M. S. Voltammetric Measurement of Cis-Dichlorodiammineplatinum(II) Following Interfacial Accumulation at Mercury Electrodes. Bioelectrochem. Bioenerg. 1986, 16 (3), 395–406. DOI: 10.1016/0302-4598(86)80062-9.
  • Petrlova, J.; Potesil, D.; Zehnalek, J.; Sures, B.; Adam, V.; Trnkova, L.; Kizek, R. Cisplatin Electrochemical Biosensor. Electrochim. Acta 2006, 51 (24), 5169–5173. DOI: 10.1016/j.electacta.2006.03.077.
  • Hernández-Santos, D.; González-García, M. B.; Costa-García, A. Effect of Metals on Silver Electrodeposition: Application to the Detection of Cisplatin. Electrochim. Acta 2005, 50 (9), 1895–1902. DOI: 10.1016/j.electacta.2004.08.042.
  • Gholivand, M. B.; Ahmadi, E.; Mavaei, M. A Novel Voltammetric Sensor Based on Graphene Quantum Dots-Thionine/Nano-Porous Glassy Carbon Electrode for Detection of Cisplatin as an Anti-Cancer Drug. Sensors Actuators, B Chem. 2019, 299, 126975. DOI: 10.1016/j.snb.2019.126975.
  • Wu, Y.; Lai, R. Y. Tunable Signal-Off and Signal-On Electrochemical Cisplatin Sensor. Anal. Chem. 2017, 89 (18), 9984–9989. DOI: 10.1021/acs.analchem.7b02353.
  • Kensova, R.; Kremplova, M.; Smerkova, K.; Zitka, O.; Hynek, D.; Adam, V.; Beklova, M.; Trnkova, L.; Stiborova, M.; Eckschlager, T.; et al. Interactions of Platinum-Based Cytostatics with Metallothionein Revealed by Electrochemistry. Int. J. Electrochem. Sci. 2013, 8 (4), 4472–4484.
  • Luu, H. T. Le; Nachtigal, M. W.; Kuss, S. Electrochemical Characterization of Carboplatin at Unmodified Platinum Electrodes and Its Application to Drug Consumption Studies in Ovarian Cancer Cells. J. Electroanal. Chem. 2020, 872, 114253. DOI: 10.1016/j.jelechem.2020.114253.
  • Oliveira Brett, A. M.; Serrano, S. H. P.; Macedo, T. A.; Raimundo, D.; Marques, M. H.; La-Scalea, M. A. Electrochemical Determination of Carboplatin in Serum Using a DNA-Modified Glassy Carbon Electrode. Electroanalysis 1996, 8 (11), 992–995. DOI: 10.1002/elan.1140081104.
  • Mahnashi, M. H.; Mahmoud, A. M.; Alhazzani, K.; Alanazi, A. Z.; Alaseem, A. M.; Algahtani, M. M.; El-Wekil, M. M. Ultrasensitive and Selective Molecularly Imprinted Electrochemical Oxaliplatin Sensor Based on a Novel Nitrogen-Doped Carbon Nanotubes/Ag@cu MOF as a Signal Enhancer and Reporter Nanohybrid. Microchim. Acta 2021, 188 (4), 124. DOI: 10.1007/s00604-021-04781-6.
  • Hatamluyi, B.; Hashemzadeh, A.; Darroudi, M. A Novel Molecularly Imprinted Polymer Decorated by CQDs@HBNNS Nanocomposite and UiO-66-NH2 for Ultra-Selective Electrochemical Sensing of Oxaliplatin in Biological Samples. Sens. Actuators, B Chem. 2020, 307, 127614. DOI: 10.1016/j.snb.2019.127614.
  • Akbari Javar, H.; Garkani-Nejad, Z.; Dehghannoudeh, G.; Mahmoudi-Moghaddam, H. Development of a New Electrochemical DNA Biosensor Based on Eu3+ −doped NiO for Determination of Amsacrine as an Anti-Cancer Drug: Electrochemical, Spectroscopic and Docking Studies. Anal. Chim. Acta 2020, 1133, 48–57. DOI: 10.1016/j.aca.2020.07.071.
  • Moghaddam, H. M.; Beitollahi, H.; Dehghannoudeh, G.; Forootanfar, H. Electrochemical Determination of Amsacrine at a Ds-DNA Modified Graphene Carbon Paste Electrode and Its Application as a Label-Free Electrochemical Biosensor. Int. J. Electrochem. Sci. 2017, 12 (11), 9958–9971. DOI: 10.20964/2017.11.39.
  • Pathak, P. K.; Kumar, A.; Prasad, B. B. Functionalized Nitrogen Doped Graphene Quantum Dots and Bimetallic Au/Ag Core-Shell Decorated Imprinted Polymer for Electrochemical Sensing of Anticancerous Hydroxyurea. Biosens. Bioelectron. 2019, 127, 10–18. DOI: 10.1016/j.bios.2018.11.055.
  • Manesh, K. M.; Santhosh, P.; Komathi, S.; Kim, N. H.; Park, J. W.; Gopalan, A. I.; Lee, K. P. Electrochemical Detection of Celecoxib at a Polyaniline Grafted Multiwall Carbon Nanotubes Modified Electrode. Anal. Chim. Acta 2008, 626 (1), 1–9. DOI: 10.1016/j.aca.2008.07.050.
  • Ghoneim, M. M.; Beltagi, A. M. Adsorptive Stripping Voltammetric Determination of the Anti-Inflammatory Drug Celecoxib in Pharmaceutical Formulation and Human Serum. Talanta 2003, 60 (5), 911–921. DOI: 10.1016/S0039-9140(03)00151-6.
  • Athanasiou-Malaki, E.; Koupparis, M. A. Kinetic Study of the Determination of Hydrazines, Isoniazid and Sodium Azide by Monitoring Their Reactions with 1-Fluoro-2,4-Dinitrobenzene, by Means of a Fluoride-Selective Electrode. Talanta 1989, 36 (4), 431–436. DOI: 10.1016/0039-9140(89)80224-3.
  • Alghamdi, A. F. Development and Validation of Anodic Stripping Voltammetry Method for the Determination of Tretinoin in Human Urine and Plasma Using Glassy Carbon Electrode. J. King Saud Univ. Sci. 2020, 32 (5), 2635–2640. DOI: 10.1016/j.jksus.2020.05.005.
  • Vais, R. D.; Karimian, K.; Heli, H. Electrooxidation and Amperometric Determination of Vorinostat on Hierarchical Leaf-like Gold Nanolayers. Talanta 2018, 178, 704–709. DOI: 10.1016/j.talanta.2017.10.001.
  • Wu, Y.; Lai, R. Y. Electrochemical Detection of Platinum(IV) Prodrug Satraplatin in Serum. Anal. Chem. 2015, 87 (21), 11092–11097. DOI: 10.1021/acs.analchem.5b03215.
  • Golea, D. A.; Diculescu, V. C.; Tugulea, L.; OliveiraBrett, A. M. Proteasome Inhibitor Anticancer Drug Bortezomib Redox Behaviour at a Glassy Carbon Electrode. Electroanalysis 2012, 24 (10), 1915–1921. DOI: 10.1002/elan.201200307.
  • Henriques de Jesus, C. S. H.; Enache, T. A.; Diculescu, V. C. Charge Transfer Reaction Mechanisms of Epoxyketone and Boronated Peptides at Glassy Carbon and Boron Doped Diamond Electrodes. J. Electroanal. Chem. 2020, 878, 114733. DOI: 10.1016/j.jelechem.2020.114733.
  • Yapasan, E.; Caliskan, A.; Karadeniz, H.; Erdem, A. Electrochemical Investigation of Biomolecular Interactions between Platinum Derivatives and DNA by Carbon Nanotubes Modified Sensors. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2010, 169 (1–3), 169–173. DOI: 10.1016/j.mseb.2009.10.024.
  • Henriques de Jesus, C. S.; Chiorcea-Paquim, A. M.; Barsan, M. M.; Diculescu, V. C. Electrochemical Assay for 20S Proteasome Activity and Inhibition with Anti-Cancer Drugs. Talanta 2019, 199 (December 2018), 32–39. DOI: 10.1016/j.talanta.2019.02.052.
  • Barsan, M. M.; Diculescu, V. C. An Antibody-Based Amperometric Biosensor for 20S Proteasome Activity and Inhibitor Screening. Analyst 2021, 146 (10), 3216–3224. DOI: 10.1039/d0an02426k.
  • Ci, Y. X.; Zhai, Q.; Wang, S.; Chang, W. B.; Zhang, C. Y.; Ma, H.; Chen, D. Y.; Zhao, M. Z.; Hu, S. W. Voltammetric Studies of the Effect of Cisplatin-Liposome on Hela Cells. Talanta 2001, 55 (4), 693–698. DOI: 10.1016/S0039-9140(01)00480-5.
  • Dospivova, D.; Smerkova, K.; Ryvolova, M.; Hynek, D.; Adam, V.; Kopel, P.; Stiborova, M.; Eckschlager, T.; Hubalek, J.; Kizek, R. Catalytic Electrochemical Analysis of Platinum in Pt-DNA Adducts. Int. J. Electrochem. Sci. 2012, 7 (4), 3072–3088.
  • Materon, E. M.; Jimmy Huang, P. J.; Wong, A.; Pupim Ferreira, A. A.; Sotomayor, M. D. P. T.; Liu, J. Glutathione-s-Transferase Modified Electrodes for Detecting Anticancer Drugs. Biosens. Bioelectron. 2014, 58, 232–236. DOI: 10.1016/j.bios.2014.02.070.
  • Materon, E. M.; Wong, A.; Klein, S. I.; Liu, J.; Sotomayor, M. D. P. T. Multi-Walled Carbon Nanotubes Modified Screen-Printed Electrodes for Cisplatin Detection. Electrochim. Acta 2015, 158, 271–276. DOI: 10.1016/j.electacta.2015.01.184.
  • Naik, K. M.; Alagur, M. M.; Nandibewoor, S. T. Electrochemical Response of Hydroxyurea by Different Voltammetric Techniques at Carbon Paste Electrode. Anal. Methods 2013, 5 (24), 6947–6953. DOI: 10.1039/c3ay41680a.
  • Torkzadeh-Mahani, A.; Mohammadi, A.; Torkzadeh-Mahani, M.; Mohamadi, M. Voltammetric Determination of the Anticancer Drug Hydroxyurea Using a Carbon Paste Electrode Incorporating TiO2 Nanoparticles. Anal. Bioanal. Electrochem. 2017, 9 (1), 117–125.
  • Cazelles, R.; Shukla, R. P.; Ware, R. E.; Vinks, A. A.; Ben-Yoav, H. Electrochemical Determination of Hydroxyurea in a Complex Biological Matrix Using Mos2-Modified Electrodes and Chemometrics. Biomedicines 2021, 9 (1), 1–17. DOI: 10.3390/biomedicines9010006.
  • Haghshenas, M.; Mazloum-Ardakani, M.; Alizadeh, Z.; Vajhadin, F.; Naeimi, H. A Sensing Platform Using Ag/Pt Core-Shell Nanostructures Supported on Multiwalled Carbon Nanotubes to Detect Hydroxyurea. Electroanalysis 2020, 32 (10), 2137–2145. DOI: 10.1002/elan.202060020.
  • Naik, K. M.; Ashi, C. R.; Nandibewoor, S. T. Anodic Voltammetric Behavior of Hydroxyurea and Its Electroanalytical Determination in Pharmaceutical Dosage Form and Urine. J. Electroanal. Chem. 2015, 755, 109–114. DOI: 10.1016/j.jelechem.2015.07.038.
  • Fuku, X.; Iftikar, F.; Hess, E.; Iwuoha, E.; Baker, P. Cytochrome c Biosensor for Determination of Trace Levels of Cyanide and Arsenic Compounds. Anal. Chim. Acta 2012, 730, 49–59. DOI: 10.1016/j.aca.2012.02.025.
  • Arkan, E.; Karimi, Z.; Shamsipur, M.; Saber, R. Electrochemical Determination of Celecoxib on a Graphene Based Carbon Ionic Liquid Electrode Modified with Gold Nanoparticles and Its Application to Pharmaceutical Analysis. Anal. Sci. 2013, 29 (8), 855–860. DOI: 10.2116/analsci.29.855.
  • Parsaee, Z.; Karachi, N.; Abrishamifar, S. M.; Kahkha, M. R. R.; Razavi, R. Silver-Choline Chloride Modified Graphene Oxide: Novel Nano-Bioelectrochemical Sensor for Celecoxib Detection and CCD-RSM Model. Ultrason. Sonochem. 2018, 45, 106–115. DOI: 10.1016/j.ultsonch.2018.03.009.
  • Nezhadali, A.; Sadeghzadeh, S. Experimental Design-Artificial Neural Network-Genetic Algorithm Optimization and Computer-Assisted Design of Celecoxib Molecularly Imprinted Polymer/Carbon Nanotube Sensor. J. Electroanal. Chem. 2017, 795, 32–40. DOI: 10.1016/j.jelechem.2017.04.032.
  • Abdel Maksoud, M. I. A.; El-Sayyad, G. S.; Ashour, A. H.; El-Batal, A. I.; Abd-Elmonem, M. S.; Hendawy, H. A. M.; Abdel-Khalek, E. K.; Labib, S.; Abdeltwab, E.; El-Okr, M. M. Synthesis and Characterization of Metals-Substituted Cobalt Ferrite [Mx Co(1-x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] Nanoparticles as Antimicrobial Agents and Sensors for Anagrelide Determination in Biological Samples. Mater. Sci. Eng. C 2018, 92, 644–656. 10.1016/j.msec.2018.07.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.