941
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Recent Trends and Advances in Porous Metal-Organic Framework Nanostructures for the Electrochemical and Optical Sensing of Heavy Metals in Water

ORCID Icon, ORCID Icon & ORCID Icon

References

  • https://en.wikipedia.org/wiki/Pollution.
  • Avtar, R.; Tripathi, S.; Aggarwal, A. K.; Kumar, P. Population-Urbanization-Energy Nexus: A Review. Resources 2019, 8, 136. DOI: 10.3390/resources8030136.
  • Puri, M. K. A. A Review of Permissible Limits of Drinking Water. J. Occup. Environ. Med 2012, 16, 1–6. DOI: 10.4103/0019-5278.99696.
  • Noor, A.; Fizal, S.; Hossain, S.; Alkarkhi, A. F. M. Assessment of the chemical hazard awareness of petrol tanker driver: A case study. Heliyon 2019, 5, e02368. DOI: 10.1016/j.heliyon.2019.e02368.
  • Peirce, J. J.; Weiner, F. R.; Vesilind, P. A. Environmental Pollution and Control, 4rth ed.; Butterworth-Heinemann: Burlington, MA; 1998.
  • Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front Public Heal. 2020, 8, 1–13. DOI: 10.3389/fpubh.2020.00014.
  • Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 1–14. DOI: 10.1155/2019/6730305.
  • Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metals Toxicity and the Environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. DOI: 10.1007/978-3-7643-8340-4.
  • Kanan, S. M.; Malkawi, A. Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. Comments Inorg. Chem 2021, 41, 1–66. DOI: 10.1080/02603594.2020.1805319.
  • Devaraj, M.; Sasikumar, Y.; Rajendran, S.; Ponce, L. C. Review—Metal Organic Framework Based Nanomaterials for Electrochemical Sensing of Toxic Heavy Metal Ions: Progress and Their Prospects. J. Electrochem. Soc. 2021, 168, 037513. DOI: 10.1149/1945-7111/abec97.
  • https://www.lpdlabservices.co.uk/analytical_techniques/chemical_analysis/index.php.
  • Liu, C.; Ziwei, Y.; Xiaojie, W.; Mao, S. Recent Advances in Field-Effect Transistor Sensing Strategies for Fast and Highly Efficient Analysis of Heavy Metal Ions. Electrochem. Sci. Adv. 2021, e2100137. DOI: 10.1002/elsa.202100137.
  • Zhang, L.; Han, Y.; Zhu, J.; Zhai, Y.; Dong, S. Simple and Sensitive Fluorescent and Electrochemical Trinitrotoluene Sensors Based on Aqueous Carbon Dots. Anal. Chem. 2015, 87, 2033–2036. DOI: 10.1021/ac5043686.
  • Chatterjee, S.; Fujimoto, M. S.; Cheng, Y. H.; Kargupta, R.; Soltis, J. A.; Motkuri, R. K.; Basuray, S. Improving the Sensitivity of Electrochemical Sensors through a Complementary Luminescent Mode: A New Spectroelectrochemical Approach. Sensors Actuators, B Chem. 2019, 284, 663–674. DOI: 10.1016/j.snb.2018.10.093.
  • Hu, X.; Wang, F.; Peng, Q.; Hu, J.; Peng, H.; Li, L.; Zheng, B.; Du, J.; Xiao, D. Construction of a Luminescent Sensor Based on a Lanthanide Complex for the Highly Efficient Detection of Methyl Parathion. RSC Adv 2019, 9, 13048–13053. DOI: 10.1039/c9ra01748h.
  • Wang, H.; Ma, J.; Zhang, J.; Feng, Y. Gas Sensing Materials Roadmap. 2021.
  • Garg, N.; Deep, A.; Sharma, A. L. Metal-Organic Frameworks Based Nanostructure Platforms for Chemo-Resistive Sensing of Gases. Coord. Chem. Rev 2021, 445, 214073. DOI: 10.1016/j.ccr.2021.214073.
  • Garg, N.; Kumar, M.; Kumari, N.; Deep, A.; Sharma, A. L. Chemoresistive Room-Temperature Sensing of Ammonia Using Zeolite Imidazole Framework and Reduced Graphene Oxide (ZIF-67/rGO) Composite. ACS Omega 2020, 5, 27492–27501. DOI: 10.1021/acsomega.0c03981.
  • G, Z.; S, C.; Si, X.; Jiao, C.; Li, F.; Zhang, J.; Wang, S.; Liu, S.; Li, Z.; Sun, L.; Xu, F. High and Selective CO2 Uptake, H2 Storage and Methanol Sensing on the Amine-Decorated 12-Connected MOF CAU-1. Energy Environ. Sci. 2011, 4, 4522. DOI: 10.1039/c1ee01380g.
  • C, 1M. G.; Dincă, M. Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors 2017, 17, 1108–1111. DOI: 10.3390/s17051108.
  • Li, D.; Huang, X.; Sun, G.; Zhu, J.; Huang, W. Dual-Function Metal − Organic Framework-Based Wearable Fibers for Gas Probing and Energy Storage. Appl. Mater. Interfaces 2018, 10, 2837–2842. DOI: 10.1021/acsami.7b16761.
  • Zhang, W.; Tan, Y.; Gao, Y.; Wu, J.; Hu, J. Nanocomposites of Zeolitic Imidazolate Frameworks on Graphene Oxide for Pseudocapacitor Applications. J. Appl. Electrochem. 2016, 46, 441–450. DOI: 10.1007/s10800-016-0921-9.
  • Kumar, P.; Deep, A.; Kim, K. Metal Organic Frameworks for Sensing Applications. Trends Anal. Chem. 2015, 73, 39–53. DOI: 10.1016/j.trac.2015.04.009.
  • Maduraiveeran, G.; Jin, W. Nanomaterials Based Electrochemical Sensor and Biosensor Platforms for Environmental Applications, Trends Environ. Anal. Chem 2017, 13, 10–23. DOI: 10.1016/j.teac.2017.02.001.
  • Li, R.; Zhang, X.; Jin, M.; Yan, B.; Xu, H. Porous Metal − Organic Frameworks for Gas Storage and Separation: What, How, and Why? J. Phys. Chem. Lett. 2014, 594, 6–12. DOI: 10.1016/j.cplett.2014.01.018.
  • Zhang, Z.; Yao, Z. Z.; Xiang, S.; Chen, B. Perspective of Microporous Metal-Organic Frameworks for CO2 Capture and Separation. Energy Environ. Sci. 2014, 7, 2868–2899. DOI: 10.1039/C4EE00143E.
  • Pirzadeh, K.; Ghoreyshi, A. A.; Rahimnejad, M.; Mohammadi, M. Electrochemical Synthesis, Characterization and Application of a Microstructure Cu3(BTC)2 Metal Organic Framework for CO2 and CH4 Separation. Korean J. Chem. Eng. 2018, 35, 974. DOI: 10.1007/s11814-017-0340-6.
  • Yang, Q.; Xu, Q.; Jiang, H.-L. Metal–Organic Frameworks Meet Metal Nanoparticles: synergistic Effect for Enhanced Catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808. DOI: 10.1039/C6CS00724D.
  • Kent, C. A.; Liu, D.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. Light Harvesting in Microscale Metal-Organic Frameworks by Energy Migration and Interfacial Electron Transfer Quenching. J. Am. Chem. Soc. 2011, 133, 12940. DOI: 10.1021/ja204214t.
  • Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal–Organic Frameworks: functional Luminescent and Photonic Materials for Sensing Applications. Chem. Soc. Rev. 2017, 46, 3242–3285. DOI: 10.1039/C6CS00930A.
  • X, Z.; Wang, L.; Zheng, M. Nanoscale Metal-Organic Frameworks for Drug Delivery: A Conventional Platform with New Promise. J. Mater. Chem. B 2018, 6, 707–717. DOI: 10.1039/C7TB02970E.
  • Panchariya, D. K.; Rai, R. K.; Anil Kumar, E.; Singh, S. K. Core-Shell Zeolitic Imidazolate Frameworks for Enhanced Hydrogen Storage. ACS Omega 2018, 3, 167–175. DOI: 10.1021/acsomega.7b01693.
  • Chen, X.; Ma, D. D.; Chen, B.; Zhang, K.; Zou, R.; Wu, X. T.; Zhu, Q. L. Metal–Organic Framework-Derived Mesoporous Carbon Nanoframes Embedded with Atomically Dispersed Fe–Nx Active Sites for Efficient Bifunctional Oxygen and Carbon Dioxide Electroreduction. Appl. Catal. B Environ. 2020, 267, 118720. DOI: 10.1016/j.apcatb.2020.118720.
  • Li, X.; Zhu, Q.-L. MOF-Based Materials for Photo- and Electrocatalytic CO2 Reduction. Energy Chem. 2020, 2, 100033. DOI: 10.1016/j.enchem.2020.100033.
  • Ma, D. D.; Zhu, Q. L. MOF-Based Atomically Dispersed Metal Catalysts: Recent Progress towards Novel Atomic Configurations and Electrocatalytic Applications. Coord. Chem. Rev. 2020, 422, 213483. DOI: 10.1016/j.ccr.2020.213483.
  • Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A. A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions. Chemistry 2011, 17, 11372–11388. DOI: 10.1002/chem.201101595.
  • Wang, L.; Feng, X.; Ren, L.; Piao, Q.; Zhong, J.; Wang, Y.; Li, H.; Chen, Y.; Wang, B. Flexible Solid-State Supercapacitor Based on a Metal − Organic Framework Interwoven by Electrochemically-Deposited PANI. J. Am. Chem. Soc. 2015, 137, 4920–4923. DOI: 10.1021/jacs.5b01613.
  • Hosseinian, A.; Amjad, A.; Hosseinzadeh, R. Nanocomposite of ZIF-67 Metal – Organic Framework with Reduced Graphene Oxide Nanosheets for High-Performance Supercapacitor Applications. J. Mater. Sci. Mater. Electron. 2017, 28, 18040–18048. DOI: 10.1007/s10854-017-7747-z.
  • Wang, L.; Yang, H.; Pan, G.; Miao, L.; Chen, S.; Song, Y. Polyaniline-Carbon Nanotubes @ Zeolite Imidazolate Framework67- Carbon Cloth Hierarchical Nanostructures for Supercapacitor Electrode. Electrochim. Acta 2017, 240, 16–23. DOI: 10.1016/j.electacta.2017.04.035.
  • Liu, X.; Zhang, L.; Wang, J. Design Strategies for MOF-Derived Porous Functional Materials: Preserving Surfaces and Nurturing Pores. J. Mater 2021, 7, 440–459. DOI: 10.1016/j.jmat.2020.10.008.
  • Fang, X.; Zong, B.; Mao, S. Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Lett 2018, 10, 1–19. DOI: 10.1007/s40820-018-0218-0.
  • Manousi, N.; Giannakoudakis, D. A.; Rosenberg, E.; Zachariadis, G. A. Extraction of Metal Ions with Metal–Organic Frameworks. Molecules 2019, 24, 4605–4625. DOI: 10.3390/molecules24244605.
  • Karmakar, A.; Velasco, E.; Li, J. Metal-organic frameworks (MOFs) as effective sensors and scavengers for toxic environmental pollutants.Natl. Sci. Rev. 2022. DOI: 10.1093/nsr/nwac091.
  • Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y. S.; Jiang, Y.; Gao, B. Surface Functional Groups of Carbon-Based Adsorbents and Their Roles in the Removal of Heavy Metals from Aqueous Solutions: A Critical Review. Chem. Eng. J. 2021, 366, 608–621. DOI: 10.1016/j.cej.2019.02.119.Surface.
  • Pourhakkak, P.; Taghizadeh, A.; Taghizadeh, M.; Mehrorang, G. Fundamentals of Adsorption Technology. In Interface Science and Technology; Elsevier: Amsterdam, Netherlands, 2021; pp 1–70.
  • Vazquez, L.; Tascon, D.; Deban, L. Determination of Pb(II) with a Dithizone Modified Carbon Paste Electrode. J. Environ. Sci. Heal. 2006, 41, 2735–2746. DOI: 10.1080/10934520600966433.
  • Roto, R.; Mellisani, B.; Kuncaka, A.; Mudasir, M.; Suratman, A. Colorimetric Sensing of Pb2+ Ion by Using Ag Nanoparticles in the Presence of Dithizone. Chemosensors, 7(3), 2019. DOI: 10.3390/chemosensors7030028
  • Peng, C.; Huang, Y.; Hongliang, Z.; Yuxi, K.; Chufan, C.; Shuan, M.; Song, L.; Dahuan, Z. A Versatile MOF-Based Trap for Heavy Metal Ion Capture and Dispersion. Nat. Commun. 2018, 9, 1–9. DOI: 10.1038/s41467-017-02600-2.
  • P, J. J.; Iv, Bauer, C. A.; Allendorf, M. D. Luminescent Metal-Organic Frameworks. In Met. Fram. Appl. from Catal. to Gas Storage; Wiley: United Kingdom, 2011; pp 1–38.
  • Lustig, W. P.; Li, J. Luminescent Metal-Organic Frameworks and Coordination Polymers as Alternative Phosphors for Energy Efficient Lighting Devices. Coord. Chem. Rev. 2018, 373, 116–147. DOI: 10.1016/j.ccr.2017.09.017.
  • Samanta, P.; Let, S.; Mandal, W.; Dutta, S.; Ghosh, S. K. Luminescent Metal-Organic Frameworks (LMOFs) as Potential Probes for the Recognition of Cationic Water Pollutants. Inorg. Chem. Front. 2020, 7, 1801–1821. DOI: 10.1039/D0QI00167H.
  • Sun, Z.; Khurshid, A.; Sohail, M.; Qiu, W.; Cao, D.; Su, S. J. Encapsulation of Dyes in Luminescent Metal-Organic Frameworks for White Light Emitting Diodes. Nanomaterials 2021, 11, 2761. DOI: 10.3390/nano11102761.
  • Sun, T.; Gao, Y.; Du, Y.; Zhou, L.; Chen, X. Recent Advances in Developing Lanthanide Metal–Organic Frameworks for Ratiometric Fluorescent Sensing. Front Chem. 2020, 8, 624592–624597. DOI: 10.3389/fchem.2020.624592.
  • Dong, X.-Y.; Wang, R.; Wang, J.-Z.; Zang, S.; Mak, T. C. W. Highly Selective Fe3+ Sensing and Proton Conduction in a Water-Stable Sulfonate–Carboxylate Tb–Organic-Framework. J. Mater. Chem. A. 2015, 3, 641–647. DOI: 10.1039/C4TA04421E.
  • Yang, C.; Ren, H.; Yan, X. Fluorescent Metal − Organic Framework MIL-53(Al) for Highly Selective and Sensitive Detection of Fe3+ in Aqueous Solution. Anal. Chem. 2013, 85, 7441–7446. DOI: 10.1021/ac401387z.
  • Dang, S.; Ma, E.; Sun, Z.-M.; Zhang, H. A Layer-Structured Eu-MOF as a Highly Selective Fluorescent Probe for Fe3+ Detection through a Cation-Exchange Approach. J. Mater. Chem. 2012, 22, 16920–16926. DOI: 10.1039/c2jm32661b.
  • Cao, X. M.; Wei, N.; Liu, L.; Li, L.; Han, Z. B. Luminescent Lanthanide-Organic Polyrotaxane Framework as a Turn-off Sensor for Nitrobenzene and Fe3. +RSC Adv. 2016, 6, 19459–19462. DOI: 10.1039/C5RA25872C.
  • Ji, G.; Liu, J.; Gao, X.; Sun, W.; Wang, J.; Zhao, S.; Liu, Z. A Luminescent Lanthanide MOF for Selectively and Ultra-High Sensitively Detecting Pb2+ Ions in Aqueous Solution. J. Mater. Chem. A. 2017, 5, 10200–10205. DOI: 10.1039/C7TA02439H.
  • Mahmoud, M. E.; Moussa, Z.; Prakasam, T.; Li, L.; Abiad, M. G.; Patra, D.; Hmadeh, M. Lanthanides Based Metal Organic Frameworks for Luminescence Sensing of Toxic Metal Ions. J. Solid State Chem. 2020, 281, 121031. DOI: 10.1016/j.jssc.2019.121031.
  • Li, Q.; Wang, C.; Tan, H.; Tang, G.; Gao, J.; Chen, C. H. A Turn on Fluorescent Sensor Based on Lanthanide Coordination Polymer Nanoparticles for the Detection of Mercury(II) in Biological Fluids. RSC Adv. 2016, 6, 17811–17817. DOI: 10.1039/C5RA26849D.
  • Zhao, D.; Cui, Y.; Yang, Y.; Qian, G. Sensing-Functional Luminescent Metal–Organic Frameworks. CrystEngComm. 2016, 18, 3746–3759. DOI: 10.1039/C6CE00545D.
  • Lin, Z. G.; Song, F. Q.; Wang, H.; Song, X. Q.; Yu, X. X.; Liu, W. S. The Construction of a Novel Luminescent Lanthanide Framework for the Selective Sensing of Cu2+ and 4-Nitrophenol in Water. Dalton Trans. 2021, 50, 1874–1886. DOI: 10.1039/d0dt04089d.
  • Wang, H.; Wang, X.; Liang, M.; Chen, G.; Kong, R. M.; Xia, L.; Qu, F. A Boric Acid-Functionalized Lanthanide Metal-Organic Framework as a Fluorescence “Turn-on” Probe for Selective Monitoring of Hg2+ and CH3Hg. +Anal. Chem. 2020, 92, 3366–3372. DOI: 10.1021/acs.analchem.9b05410.
  • Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post‐Synthetic Modification of Metal–Organic Frameworks toward Applications. Adv. Funct. Mater. 2021, 31, 2006291. DOI: 10.1002/adfm.202006291.
  • Wang, Z.; Cohen, S. M. Postsynthetic Modification of Metal–Organic Frameworks, Chem. Soc. Rev., 2009, 38, 1315–1329. DOI: 10.1039/b802258p.
  • Du, Y.; Song, N.; Lv, X.; Hu, B.; Zhou, W.; Jia, Q. Establishment of Highly Sensitive and Selective Fluorescent Sensor for Fe3+ Based on a Post-Synthetic Modification of Metal-Organic Framework. Dye. Pigment 2017, 138, 15–22. DOI: 10.1016/j.dyepig.2016.11.018.
  • Rubin, H. N.; Reynolds, M. M. Amino-Incorporated Tricarboxylate Metal-Organic Framework for the Sensitive Fluorescence Detection of Heavy Metal Ions with Insights into the Origin of Photoluminescence Response. Inorg. Chem. 2019, 58, 10671–10679. DOI: 10.1021/acs.inorgchem.9b00481.
  • Xiaoxiong, Z.; Wenjun, Z.; Cuiliu, L.; Xiaohong, Q.; Chengyu, Z. Eu3+ -Postdoped UIO-66-Type Metal-Organic Framework as a Luminescent Sensor for Hg2+ Detection in Aqueous Media. Inorg. Chem. 2019, 58, 3910–3915. DOI: 10.1021/acs.inorgchem.8b03555.
  • Xu, X. Y.; Yan, B. Eu(III) Functionalized Zr-Based Metal-Organic Framework as Excellent Fluorescent Probe for Cd2+ Detection in Aqueous Environment. Sensors Actuators, B. Chem. 2016, 222, 347–353. DOI: 10.1016/j.snb.2015.08.082.
  • Luo, J.; Liu, B. S.; Zhang, X. R.; Liu, R. T. A Eu3+ Post-Functionalized Metal-Organic Framework as Fluorescent Probe for Highly Selective Sensing of Cu2+ in Aqueous Media. J. Mol. Struct. 2019, 1177, 444–448. DOI: 10.1016/j.molstruc.2018.09.091.
  • Guo, H.; Wu, N.; Xue, R.; Liu, H.; Wang, M.; Yao, W.; Wang, X.; Yang, W. An Eu(III)-Functionalized Sr-Based Metal-Organic Framework for Fluorometric Determination of Cr(III) and Cr(VI) Ions. Microchim. Acta 2020, 187, 1–11. DOI: 10.1007/s00604-020-04292-w.
  • Liu, C.; Yan, B. Zeolite-Type Metal Organic Frameworks Immobilized Eu3+ for Cation Sensing in Aqueous Environment. J Colloid Interface Sci. 2015, 459, 206–211. DOI: 10.1016/j.jcis.2015.08.025.
  • Rudd, N. D.; Wang, H.; Fuentes-Fernandez, E. M. A.; Teat, S. J.; Chen, F.; Hall, G.; Chabal, Y. J.; Li, J. Highly Efficient Luminescent Metal-Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. ACS Appl. Mater. Interfaces 2016, 8, 30294–30303. DOI: 10.1021/acsami.6b10890.
  • Buasakun, J.; Srilaoong, P.; Chainok, K.; Raksakoon, C.; Rattanakram, R.; Duangthongyou, T. Dual Luminescent Coordination Polymers Based on Flexible Aliphatic Carboxylate Ligands Supplemented by Rigid Bipyridyl Ligands for 2,4-Dinitrophenol (DNP) and Iron(III) Ion Detection. Polyhedron 2021, 204, 115265. DOI: 10.1016/j.poly.2021.115265.
  • Li, F.; Hong, Y. S.; Zuo, K. X.; Sun, Q.; Gao, E. Q. Highly Selective Fluorescent Probe for Hg2+ and MnO4− by the Two-Fold Interpenetrating Metal-Organic Framework with Nitro Functionalized Linkers. J. Solid State Chem 2019, 270, 509–515. DOI: 10.1016/j.jssc.2018.12.025.
  • Pankajakshan, A.; Kuznetsov, D.; Mandal, S. Ultrasensitive Detection of Hg(II) Ions in Aqueous Medium Using Zinc-Based Metal-Organic Framework. Inorg. Chem. 2019, 58, 1377–1381. DOI: 10.1021/acs.inorgchem.8b02898.
  • Feng, M.; Zhang, P.; Zhou, H.; Sharma, V. K. Water-Stable Metal-Organic Frameworks for Aqueous Removal of Heavy Metals and Radionuclides: A Review. Chemosphere 2018, 209, 783–800. DOI: 10.1016/j.chemosphere.2018.06.114.
  • Ryu, U.; Jee, S.; Chandra, P.; Shin, J.; Ko, C. Recent Advances in Process Engineering and Upcoming Applications of Metal – Organic Frameworks. Coordination Chemistry Reviews. 2021, 426, 213544. DOI: 10.1016/j.ccr.2020.213544.
  • Karra, J. R.; Jasuja, H.; Huang, Y. G.; Walton, K. S. Structural Stability of BTTB-Based Metal-Organic Frameworks under Humid Conditions. J. Mater. Chem. A 2015, 3, 1624–1631. 2015). DOI: 10.1039/C4TA01372G.
  • Jasuja, H.; Jiao, Y.; Burtch, N. C.; Huang, Y.; Walton, K. S. Synthesis of Cobalt-, Nickel-, Copper-, and Zinc-Based, Water-Stable, Pillared Metal − Organic Frameworks. Langmuir, 2014, 30, 14300–14307. DOI: 10.1021/la503269f.
  • Tan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y. J. Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration. Chem. Mater 2012, 24, 3153–3167. DOI: 10.1021/cm301427w.
  • Ye, Y.; Sun, L.; Zhang, C.; Du, J.; Liu, Y.; Song, X.; Liang, Z. A Stable Pillared Metal–Organic Framework Constructed by H4TCPP Ligand as Luminescent Sensor for Selective Detection of TNP and Fe3+ Ions. Appl. Organomet. Chem 2019, 33, 1–10. DOI: 10.1002/aoc.5243.
  • Khatun, A.; Panda, D. K.; Sayresmith, N.; Walter, M. G.; Saha, S. Thiazolothiazole-Based Luminescent Metal-Organic Frameworks with Ligand-to-Ligand Energy Transfer and Hg2+-Sensing Capabilities. Inorg. Chem. 2019, 58, 12707–12715. DOI: 10.1021/acs.inorgchem.9b01595.
  • Song, Y.; Hu, D.; Liu, F.; Chen, S.; Wang, L. Fabrication of Fluorescent SiO2@Zeolitic Imidazolate Framework-8 Nanosensor for Cu2+ Detection. Analyst 2015, 140, 623–629. DOI: 10.1039/c4an01773k.
  • Lin, X.; Gao, G.; Zheng, L.; Chi, Y.; Chen, G. Encapsulation of Strongly Fluorescent Carbon Quantum Dots in Metal-Organic Frameworks for Enhancing Chemical Sensing. Anal. Chem. 2014, 86, 1223–1228. DOI: 10.1021/ac403536a.
  • Lin, X.; Luo, F.; Zheng, L.; Gao, G.; Chi, Y. Fast, Sensitive, and Selective Ion-Triggered Disassembly and Release Based on Tris(Bipyridine)Ruthenium(II)-Functionalized Metal-Organic Frameworks. Anal. Chem. 2015, 87, 4864–4870. DOI: 10.1021/acs.analchem.5b00391.
  • Liu, C.; Chen, X.; Zong, B.; Mao, S. Rapid Advances in Sensitive and Rapid Mercury Determination with Graphene- Based Sensors. J. Mater. Chem. A 2019, 7, 6616–6630. DOI: 10.1039/C9TA01009B.
  • Wang, L.; Zheng, P.; Zhang, W.; Xu, M.; Jia, K.; Liu, X. Detection of Cu2+ Metals by Luminescent Sensor Based on Sulfonated Poly(Arylene Ether Nitrile)/Metal-Organic Frameworks. Mater. Today Commun 2018, 16, 258–263. DOI: 10.1016/j.mtcomm.2018.06.011.
  • Xin, X.; Ai, J.; Li, F.; Zhao, J.; Zhang, L. An Imidazole Functionalized Copper(II)-Organic Framework for Highly Selective Sensing of Picric Acid and Metal Ions in Water. Appl. Organomet. Chem 2020, 34, 1–8. DOI: 10.1002/aoc.5803.
  • Bin Guan, B.; Li, Q.; Xu, Y. T.; Chen, L. H.; Wu, Z. S.; Fan, Z. L.; Zhu, W. Highly Selective and Sensitive Detection towards Cationic Cu2+ and Fe3+ Contaminants via an in-MOF Based Dual-Responsive Fluorescence Probe. Inorg. Chem. Commun. 2020, 122, 108273. DOI: 10.1016/j.inoche.2020.108273.
  • Fan, T.; Xia, T.; Zhang, Q.; Cui, Y.; Yang, Y.; Qian, G. A Porous and Luminescent Metal-Organic Framework Containing Triazine Group for Sensing and Imaging of Zn2+. Microporous Mesoporous Mater. 2018, 266, 1–6. DOI: 10.1016/j.micromeso.2018.02.050.
  • Zhang, S. T.; Yang, J.; Wu, H.; Liu, Y. Y.; Ma, J. F. Systematic Investigation of High-Sensitivity Luminescent Sensing for Polyoxometalates and Iron(III) by MOFs Assembled with a New Resorcin[4]arene-Functionalized Tetracarboxylate. Chemistry 2015, 21, 15806–15819. DOI: 10.1002/chem.201501976.
  • Wang, Z.; Ye, M.; Huang, Y. Y.; Hu, F.; Qi, F.; Li, D. A New 3D Pillar-Layered Cd(II) Compound: Luminescence Sensing Property for Detection of Fe3+ Ions and Treatment Activity on Focal Cerebral Ischemia/Reperfusion. J. Chinese Chemical Soc. 2021, 68, 2013–2020. DOI: 10.1002/jccs.202100108.
  • Liu, L.; Wang, Y.; Lin, R.; Yao, Z.; Lin, Q.; Wang, L.; Zhang, Z.; Xiang, S. Two Water-Stable Lanthanide Metal-Organic Frameworks with Oxygen-Rich Channels for Fluorescence Sensing of Fe(III) Ions in Aqueous Solution. Dalton Trans. 2018, 47, 16190–16196. DOI: 10.1039/C8DT03741H.
  • Hou, L.; Song, Y.; Xiao, Y.; Wu, R.; Wang, L. ZnMOF-74 Responsive Fluorescence Sensing Platform for Detection of Fe3+. Microchem. J. 2019, 150, 104154. DOI: 10.1016/j.microc.2019.104154.
  • Zhu, Y.; Zhou, X.; Li, L.; You, Y.; Huang, W. A Water-Stable Metal-Organic Framework as a Luminescent Fe3+ Sensor under Weak Acidic and Weak Basic Conditions. Sci. China Chem. 2017, 60, 1581–1587. DOI: 10.1007/s11426-017-9145-3.
  • Babazadeh, M.; Hosseinzadeh-Khanmiri, R.; Abolhasani, J.; Ghorbani-Kalhor, E.; Hassanpour, A. Solid Phase Extraction of Heavy Metal Ions from Agricultural Samples with the Aid of a Novel Functionalized Magnetic Metal-Organic Framework. RSC Adv. 2015, 5, 19884–19892. DOI: 10.1039/C4RA15532G.
  • Wang, B.; Yang, Q.; Guo, C.; Sun, Y.; Xie, L. H.; Li, J. R. Stable Zr(IV)-Based Metal-Organic Frameworks with Predesigned Functionalized Ligands for Highly Selective Detection of Fe(III) Ions in Water. ACS Appl. Mater. Interfaces 2017, 9, 10286–10295. DOI: 10.1021/acsami.7b00918.
  • Yang, J.; Dai, Y.; Zhu, X.; Wang, Z.; Li, Y.; Zhuang, Q.; Shi, J.; Gu, J. Metal-Organic Frameworks with Inherent Recognition Sites for Selective Phosphate Sensing through Their Coordination-Induced Fluorescence Enhancement Effect. J. Mater. Chem. A 2015, 3, 7445–7452. DOI: 10.1039/C5TA00077G.
  • Luo, J.; Liu, B. S.; Zhang, X. R.; Liu, R. T. A Novel Fluorescent Sensor with Highly Response of Cu2+ Based on Eu3+ Post-Modified Metal-Organic Framework in Aqueous Media. J. Mol. Struct. 2020, 1202, 127347. DOI: 10.1016/j.molstruc.2019.127347.
  • Zhou, Y.; Chen, H. H.; Yan, B. An Eu3+ Post-Functionalized Nanosized Metal-Organic Framework for Cation Exchange-Based Fe3+-Sensing in an Aqueous Environment. J. Mater. Chem. A. 2014, 2, 13691–13697. DOI: 10.1039/C4TA01297F.
  • Zhu, X. D.; Zhang, K.; Zhou, W. X.; Li, Q. H.; Fu, Y. Q.; Liu, R. M.; Qian, G. X. A Luminescent Two-Fold Interpenetrated Pillared-Layer Metal-Organic Framework for Highly Selective and Sensitive Sensing of Fe3+. Inorg. Chem. Commun. 2016, 73, 90–93. DOI: 10.1016/j.inoche.2016.10.009.
  • Zhang, X.; Hu, J.; Wang, B.; Li, Z.; Xu, S.; chen, Y.; Ma, X. A Chiral Zinc(II) Metal-Organic Framework as High Selective Luminescent Sensor for Detecting Trace Nitro Explosives Picric Acid and Fe3+ Ion. J. Solid State Chem. 2019, 269, 459–464. DOI: 10.1016/j.jssc.2018.10.021.
  • Chen, S.; Shi, Z.; Qin, L.; Jia, H.; Zheng, H. Two New Luminescent Cd(II)-Metal − Organic Frameworks as Bifunctional Chemosensors for Detection of Cations Fe3+, Anions CrO42−, and Cr2O72− in Aqueous Solution. Cryst. Growth Des 2017, 17, 67–72. DOI: 10.1021/acs.cgd.6b01197.
  • Moradi, E.; Rahimi, R.; Safarifard, V. Sonochemically Synthesized Microporous Metal–Organic Framework Representing Unique Selectivity for Detection of Fe3+ Ions. Polyhedron 2019, 159, 251–258. DOI: 10.1016/j.poly.2018.11.062.
  • Yan, W.; Zhang, C.; Chen, S.; Han, L.; Zheng, H. Two Lanthanide Metal − Organic Frameworks as Remarkably Selective and Sensitive Bifunctional Luminescence Sensor for Metal Ions and Small Organic Molecules. ACS Appl. Mater. Interfaces 2017, 9, 1629–1634. DOI: 10.1021/acsami.6b14563.
  • Parmar, B.; Rachuri, Y.; Bisht, K. K.; Suresh, E. Mixed-Ligand LMOF Fluorosensors for Detection of Cr(VI) Oxyanions and Fe3+/Pd2+ Cations in Aqueous Media. Inorg. Chem. 2017, 56, 10939–10949. DOI: 10.1021/acs.inorgchem.7b01130.
  • Gai, Y. L.; Guo, Q.; Zhao, X. Y.; Chen, Y.; Liu, S.; Zhang, Y.; Zhuo, C. X.; Yao, C.; Xiong, K. C. Extremely Stable Europium-Organic Framework for Luminescent Sensing of Cr2O72− and Fe3+ in Aqueous Systems. Dalton Trans. 2018, 47, 12051–12055. DOI: 10.1039/c8dt02313a.
  • Nartey, K. A.; Wang, X.; Zhang, J.; Hu, J. A Thermal Stable Fluorescent Coordination Polymer for Sensing Nitro Aromatic Compounds and Metal Ions with High Selectivity and Sensitivity in Aqueous Media. Opt. Mater. (Amst) 2021, 119, 111327. DOI: 10.1016/j.optmat.2021.111327.
  • Shayegan, H.; Farahani, Y. D.; Safarifard, V. A Pillar-Layer Metal-Organic Framework as a Turn-on Luminescent Sensor for Highly Selective and Sensitive Detection of Zn(II) Ion. J. Solid State Chem 2019, 279, 120968. DOI: 10.1016/j.jssc.2019.120968.
  • Besheli, M. E.; Rahimi, R.; Farahani, Y. D.; Safarifard, V. A Porous Ni-Based Metal-Organic Framework as a Selective Luminescent Probe to Fe3+ Metal Ion and MeOH. Inorganica Chim. Acta 2019, 495, 118956. DOI: 10.1016/j.ica.2019.118956.
  • Hao, J.; Liu, F.; Liu, N.; Zeng, M.; Song, Y.; Wang, L. Ratiometric Fluorescent Detection of Cu2+ with Carbon Dots Chelated Eu-Based Metal-Organic Frameworks. Sensors Actuators, B Chem 2017, 245, 641–647. DOI: 10.1016/j.snb.2017.02.029.
  • Ding, Q.; Li, C.; Wang, H.; Xu, C.; Kuang, H. Electrochemical Detection of Heavy Metal Ions in Water. Chem. Commun. (Camb) 2021, 57, 7215–7231. DOI: 10.1039/d1cc00983d.
  • Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. DOI: 10.1021/ac5039863.
  • Shimizu, F. M.; Braunger, M. L.; Riul, A. Heavy Metal/Toxins Detection Using Electronic Tongues. Chemosensors 2019, 7, 36. DOI: 10.3390/chemosensors7030036.
  • Mendoza, S.; Bustos, E.; Manríquez, J.; Godínez, L. A. Voltammetric Techniques. In Agric. Food Electroanal; Wiley: United Kingdom, 2015, 23–48.
  • Zhao, F.; Sun, T.; Geng, F.; Chen, P.; Gao, Y. Metal-Organic Frameworks-Based Electrochemical Sensors and Biosensors. Int. J. Electrochem. Sci. 2019, 14, 5287–5304. DOI: 10.20964/2019.06.63.
  • Wang, D.; Ke, Y.; Guo, D.; Guo, H.; Chen, J.; Weng, W. Facile Fabrication of Cauliflower-like MIL-100(Cr) and Its Simultaneous Determination of Cd2+, Pb2+, Cu2+ and Hg2+ from Aqueous Solution. Sensors Actuators, B Chem 2015, 216, 504–510. DOI: 10.1016/j.snb.2015.04.054.
  • Ye, W.; Li, Y.; Wang, J.; Li, B.; Cui, Y.; Yang, Y.; Qian, G. Electrochemical Detection of Trace Heavy Metal Ions Using a Ln-MOF Modified Glass Carbon Electrode. J. Solid State Chem. 2020, 281, 121032. DOI: 10.1016/j.jssc.2019.121032.
  • Lu, Z.; Dai, W.; Liu, B.; Mo, G.; Zhang, J.; Ye, J.; Ye, J. One Pot Synthesis of Dandelion-like Polyaniline Coated Gold Nanoparticles Composites for Electrochemical Sensing Applications. J Colloid Interface Sci 2018, 525, 86–96. DOI: 10.1016/j.jcis.2018.04.065.
  • Zhou, S. F.; Han, X. J.; Liu, Y. Q. SWASV Performance toward Heavy Metal Ions Based on a High-Activity and Simple Magnetic Chitosan Sensing Nanomaterials. J. Alloys Compd. 2016, 684, 1–7. DOI: 10.1016/j.jallcom.2016.05.152.
  • Guo, H.; Wang, D.; Chen, J.; Weng, W.; Huang, M.; Zheng, Z. Simple Fabrication of Flake-like NH2-MIL-53(Cr) and Its Application as an Electrochemical Sensor for the Detection of Pb2. +Chem. Eng. J 2016, 289, 479–485. DOI: 10.1016/j.cej.2015.12.099.
  • Guo, H.; Zheng, Z.; Zhang, Y.; Lin, H.; Xu, Q. Highly Selective Detection of Pb2+ by a Nanoscale Ni-Based Metal–Organic Framework Fabricated through One-Pot Hydrothermal Reaction. Sensors Actuators, B Chem. 2017, 248, 430–436. DOI: 10.1016/j.snb.2017.03.147.
  • Wan, J.; Shen, Y.; Xu, L.; Xu, R.; Zhang, J.; Sun, H.; Zhang, C.; Yin, C.; Wang, X. Ferrocene-Functionalized Ni(II)-Based Metal-Organic Framework as Electrochemical Sensing Interface for Ratiometric Analysis of Cu2+, Pb2+ and Cd2+. J. Electroanal. Chem. 2021, 895, 115374. DOI: 10.1016/j.jelechem.2021.115374.
  • Singh, S.; Numan, A.; Zhan, Y.; Singh, V.; Van Hung, T.; Nam, N. D. A Novel Highly Efficient and Ultrasensitive Electrochemical Detection of Toxic Mercury (II) Ions in Canned Tuna Fish and Tap Water Based on a Copper Metal-Organic Framework. J. Hazard Mater. 2020, 399, 123042. DOI: 10.1016/j.jhazmat.2020.123042.
  • Roushani, M.; Valipour, A.; Saedi, Z. Electroanalytical Sensing of Cd2+ Based on Metal-Organic Framework Modified Carbon Paste Electrode. Sensors Actuators, B. Chem. 2016, 233, 419–425. DOI: 10.1016/j.snb.2016.04.106.
  • Wang, X. Q.; Tang, J.; Ma, X.; Wu, D.; Yang, J. A Novel Copper(I) metal-Organic Framework as a Highly Efficient and Ultrasensitive Electrochemical Platform for Detection of Hg(II) Ions in Aqueous Solution. CrystEngComm 2021, 23, 3043–3051. DOI: 10.1039/D1CE00197C.
  • Wang, Y.; Ma, J. X.; Zhang, Y.; Xu, N.; Wang, X. L. A Series of Cobalt-Based Coordination Polymer Crystalline Materials as Highly Sensitive Electrochemical Sensors for Detecting Trace Cr(VI), Fe(III) Ions, and Ascorbic Acid. Cryst. Growth Des. 2021, 21, 4390–4397. DOI: 10.1021/acs.cgd.1c00311.
  • Koo, W. T.; Kim, S. J.; Jang, J. S.; Kim, D. H.; Kim, I. D. Catalytic Metal Nanoparticles Embedded in Conductive Metal–Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials. Adv Sci (Weinh) 2019, 6, 1900250. DOI: 10.1002/advs.201900250.
  • Koo, W. T.; Yu, S.; Choi, S. J.; Jang, J. S.; Cheong, J. Y.; Kim, I. D. Nanoscale PdO Catalyst Functionalized Co3O4 Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath. ACS Appl. Mater. Interfaces 2017, 9, 8201–8210. DOI: 10.1021/acsami.7b01284.
  • Bodkhe, G. A.; Hedau, B. S.; Deshmukh, M. A.; Patil, H. K.; Shirsat, S. M.; Phase, D. M.; Pandey, K. K.; Shirsat, M. D. Detection of Pb(II): Au Nanoparticle Incorporated CuBTC MOFs. Front. Chem. 2020, 8, 803–811. DOI: 10.3389/fchem.2020.00803.
  • Bodkhe, G. A.; Hedau, B. S.; Deshmukh, M. A.; Patil, H. K.; Shirsat, S. M.; Phase, D. M.; Pandey, K. K.; Shirsat, M. D. Selective and Sensitive Detection of Lead Pb(II) Ions: Au/SWNT Nanocomposite-Embedded MOF-199. J. Mater. Sci. 2021, 56, 474–487. DOI: 10.1007/s10853-020-05285-z.
  • Duan, S.; Huang, Y. Electrochemical Sensor Using NH2-MIL-88(Fe)-rGO Composite for Trace Cd2+, Pb2+, and Cu2+ Detection. J. Electroanal. Chem. 2017, 807, 253–260. DOI: 10.1016/j.jelechem.2017.11.051.
  • Zhang, Y.; Yu, H.; Liu, T.; Li, W.; Hao, X.; Lu, Q.; Liang, X.; Liu, F.; Liu, F.; Wang, C.; et al. Highly Sensitive Detection of Pb2+ and Cu2+ Based on ZIF-67/MWCNT/Nafion-Modified Glassy Carbon Electrode. Anal. Chim. Acta. 2020, 1124, 166–175. DOI: 10.1016/j.aca.2020.05.023.
  • Ma, L.; Zhang, X.; Ikram, M.; Ullah, M.; Wu, H.; Shi, K. Controllable Synthesis of an Intercalated ZIF-67/EG Structure for the Detection of Ultratrace Cd2+, Cu2+, Hg2+ and Pb2+ Ions. Chem. Eng. J. 2020, 395, 125216. DOI: 10.1016/j.cej.2020.125216.
  • Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X.; Perman, J. A.; Ma, S. A Metal-Organic Framework and Conducting Polymer Based Electrochemical Sensor for High Performance Cadmium Ion Detection. J. Mater. Chem. A 2017, 5, 8385–8393. DOI: 10.1039/C7TA01066D.
  • Yu, L.; Wan, J. W.; Meng, X. Z.; Gu, H. W.; Chen, Y.; Yi, H. C. A Simple Electrochemical Method for Cd(II) Determination in Real Samples Based on Carbon Nanotubes and Metal-Organic Frameworks. Int. J. Environ. Anal. Chem 2020, 1–11. DOI: 10.1080/03067319.2020.1789611.
  • Wang, X.; Qi, Y.; Shen, Y.; Yuan, Y.; Zhang, L.; Zhang, C.; Sun, Y. A Ratiometric Electrochemical Sensor for Simultaneous Detection of Multiple Heavy Metal Ions Based on Ferrocene-Functionalized Metal-Organic Framework. Sensors Actuators, B. Chem. 2020, 310, 127756. DOI: 10.1016/j.snb.2020.127756.
  • Lu, M.; Deng, Y.; Luo, Y.; Lv, J.; Li, T.; Xu, J.; Chen, S. W.; Wang, J. Graphene Aerogel-Metal-Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions. Anal. Chem. 2019, 91, 888–895. DOI: 10.1021/acs.analchem.8b03764.
  • Wang, N.; Zhao, W.; Shen, Z.; Sun, S.; Dai, H.; Ma, H.; Lin, M. Sensitive and Selective Detection of Pb (II) and Cu (II) Using a Metal-Organic Framework/Polypyrrole Nanocomposite Functionalized Electrode. Sensors Actuators, B Chem. 2020, 304, 127286. DOI: 10.1016/j.snb.2019.127286.
  • Ru, J.; Wang, X.; Cui, X.; Wang, F.; Ji, H.; Du, X.; Lu, X. GaOOH-Modified Metal-Organic Frameworks UiO-66-NH2: Selective and Sensitive Sensing Four Heavy-Metal Ions in Real Wastewater by Electrochemical Method. Talanta 2021, 234, 122679. DOI: 10.1016/j.talanta.2021.122679.
  • Lu, Z.; Zhao, W.; Wu, L.; He, J.; Dai, W.; Zhou, C.; Du, H.; Ye, J. Tunable Electrochemical of Electrosynthesized Layer-by-Layer Multilayer Films Based on Multi-Walled Carbon Nanotubes and Metal-Organic Framework as High-Performance Electrochemical Sensor for Simultaneous Determination Cadmium and Lead. Sensors Actuators, B. Chem. 2021, 326, 128957. DOI: 10.1016/j.snb.2020.128957.
  • Cai, F.; Wang, Q.; Chen, X.; Qiu, W.; Zhan, F.; Gao, F.; Wang, Q. Selective Binding of Pb2+ with Manganese-Terephthalic Acid MOF/SWCNTs: Theoretical Modeling, Experimental Study and Electroanalytical Application. Biosens. Bioelectron. 2017, 98, 310–316. DOI: 10.1016/j.bios.2017.07.007.
  • Singh, C.; Mukhopadhyay, S.; Hod, I. Metal–Organic Framework Derived Nanomaterials for Electrocatalysis: recent Developments for CO2 and N2 Reduction. Nano Converg. 2021, 8, 1–10. DOI: 10.1186/s40580-020-00251-6.[PMC].[33403521].
  • Zhang, X.; Wang, Q.; Li, J.; Huang, L.; Yu, D.; Dong, S. In Situ Fabrication of Hollow ZnO@NC Polyhedra from ZIF-8 for the Determination of Trace Cd(II). Analyst 2018, 143, 2837–2843. DOI: 10.1039/c8an00515j.
  • Cui, L.; Wu, J.; Ju, H. Nitrogen-Doped Porous Carbon Derived from Metal-Organic Gel for Electrochemical Analysis of Heavy-Metal Ion. ACS Appl. Mater. Interfaces 2014, 6, 16210–16216. DOI: 10.1021/am504367t.
  • Nguyen, M. B.; Nga, D. T. N.; Thu, V. T.; Piro, B.; Truong, T. N. P.; Yen, P. T. H.; Le, G. H.; Hung, L. Q.; Vu, T. A.; Ha, V. T. T. Novel Nanoscale Yb-MOF Used as Highly Efficient Electrode for Simultaneous Detection of Heavy Metal Ions. J. Mater. Sci. 2021, 56, 8172–8185. DOI: 10.1007/s10853-021-05815-3.
  • Wang, Y.; Du, K.; Chen, Y.; Li, Y.; He, X. Electrochemical Determination of Lead Based on Metal-Organic Framework MIL-101(Cr) by Differential Pulse Anodic Stripping Voltammetry. Anal. Methods 2016, 8, 3263–3269. DOI: 10.1039/C6AY00183A.
  • Tran, H. V.; Dang, H. T. M.; Tran, L. T.; Van Tran, C.; Huynh, C. D. Metal-Organic Framework MIL-53(Fe): Synthesis, Electrochemical Characterization, and Application in Development of a Novel and Sensitive Electrochemical Sensor for Detection of Cadmium Ions in Aqueous Solutions. Adv. Polym. Technol. 2020, 2020, 1–10. DOI: 10.1155/2020/6279278.
  • Baghayeri, M.; Ghanei-Motlagh, M.; Tayebee, R.; Fayazi, M.; Narenji, F. Application of Graphene/Zinc-Based Metal-Organic Framework Nanocomposite for Electrochemical Sensing of as(III) in Water Resources; Elsevier B.V.: Amsterdam, Netherlands, 2020. DOI: 10.1016/j.aca.2019.11.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.