381
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Insights on the Extraction and Analysis of Phenolic Compounds from Citrus Fruits: Green Perspectives and Current Status

, , , , , , , , & ORCID Icon show all

References

  • Lado, J.; Gambetta, G.; Zacarias, L. Key Determinants of Citrus Fruit Quality: Metabolites and Main Changes during Maturation. Sci. Hortic. 2018, 233, 238–248. DOI: 10.1016/j.scienta.2018.01.055.
  • USDA/FAS. Citrus: World Markets and Trade. United States Department of Agriculture. Foreign Agricultural Service. 2019, 1–13.
  • USDA. 2021. Food and Agriculture Organization of the United Nations (FAO). Citrus: World Markets and Trade. 1–13. https://apps.fas.usda.gov/psdonline/circulars/Citrus.pdf.
  • FAOSTAT. 2021. http://www.fao.org/faostat/en/#data/QC.
  • Ledesma-Escobar, C. A.; Priego-Capote, F.; Robles Olvera, V. J.; Luque De Castro, M. D. Targeted Analysis of the Concentration Changes of Phenolic Compounds in Persian Lime (Citrus Latifolia) during Fruit Growth. J. Agric. Food Chem. 2018, 66, 1813–1820. DOI: 10.1021/acs.jafc.7b05535.
  • Haminiuk, C. W. I.; Maciel, G. M.; Plata-Oviedo, M. S. V.; Peralta, R. M. Phenolic Compounds in Fruits - An Overview. Int. J. Food Sci. Technol. 2012, 47, 2023–2044. DOI: 10.1111/j.1365-2621.2012.03067.x.
  • Turner, T.; Burri, B. J. Potential Nutritional Benefits of Current Citrus Consumption. Agriculture (Switzerland). 2013, 3, 170–187. DOI: 10.3390/agriculture3010170.
  • Sir Elkhatim, K. A.; Elagib, R. A. A.; Hassan, A. B. Content of Phenolic Compounds and Vitamin C and Antioxidant Activity in Wasted Parts of Sudanese Citrus Fruits. Food Sci. Nutr. 2018, 6, 1214–1219. DOI: 10.1002/fsn3.660.
  • Dixon, R. A.; Paiva, N. L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995, 7, 1085–1097. DOI: 10.1105/tpc.7.7.1085.
  • de la Rosa, L. A.; Moreno-Escamilla, J. O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elhadi M. Yahia, Ed.; WP : Cambridge, UK. 2019; pp 253–271. DOI: 10.1016/B978-0-12-813278-4.00012-9.
  • Abad-García, B.; Garmón-Lobato, S.; Sánchez-Ilárduya, M. B.; Berrueta, L. A.; Gallo, B.; Vicente, F.; Alonso-Salces, R. M. Polyphenolic Contents in Citrus Fruit Juices: Authenticity Assessment. Eur. Food Res. Technol. 2014, 238, 803–818. DOI: 10.1007/s00217-014-2160-9.
  • Olas, B. A Review of In Vitro Studies of the Anti-Platelet Potential of Citrus Fruit Flavonoids. Food Chem. Toxicol. 2021, 150, 112090. DOI: 10.1016/j.fct.2021.112090.
  • Albuquerque, B. R.; Heleno, S. A.; Oliveira, M. B. P. P.; Barros, L.; Ferreira, I. C. F. R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. DOI: 10.1039/d0fo02324h.
  • Hou, J.; Liang, L.; Su, M.; Yang, T.; Mao, X.; Wang, Y. Variations in Phenolic Acids and Antioxidant Activity of Navel Orange at Different Growth Stages. Food Chem. 2021, 360, 129980. DOI: 10.1016/j.foodchem.2021.129980.
  • Jaganathan, S. K.; Vellayappan, M. V.; Narasimhan, G.; Supriyanto, E, Role of Pomegranate and Citrus Fruit Juices in Colon Cancer Prevention. World J. Gastroenterol. 2014, 20, 4618–4625. DOI: 10.3748/wjg.v20.i16.4618.
  • Thi Tam, L.; Cam Ha, N.; Thi Thom, L.; Zhu, J.; Wakisaka, M.; Diem Hong, D. Ferulic Acid Extracted from Rice Bran as a Growth Promoter for the Microalga Nannochloropsis Oculata. 10th Asia-Pacific Conference on Algal Biotechnology. 2021. DOI: 10.1007/s10811-020-02166-5/Published.
  • Mir, I. A.; Tiku, A. B. “Chemopreventive and Therapeutic Potential of “Naringenin,” a Flavanone Present in Citrus Fruits. Nutr. Cancer. 2015, 67, 27–42. DOI: 10.1080/01635581.2015.976320.
  • Babu, V.; Binwal, M.; Kumari, R.; Sen, S.; Kumar, A.; Mugale, M. N.; Shanker, K.; Kumar, N.; Bawankule, D. U. Hesperidin-Rich Ethanol Extract from Waste Peels of Citrus Limetta Mitigates Rheumatoid Arthritis and Related Complications. Phytother. Res. 2021, 35, 3325–3336. DOI: 10.1002/ptr.7053.
  • Wang, J.; Li, T.; Cai, H.; Jin, L.; Li, R.; Shan, L.; Cai, W.; Jiang, J. Protective Effects of Total Flavonoids from Qu Zhi Qiao (Fruit of Citrus Paradisi cv. Changshanhuyou) on OVA-Induced Allergic Airway Inflammation and Remodeling through MAPKs and Smad2/3 Signaling Pathway. Biomed. Pharmacother. 2021, 138, 111421. DOI: 10.1016/j.biopha.2021.111421.
  • Williamson, G. Common Features in the Pathways of Absorption and Metabolism of Flavonoids. In Phytochemicals: Mechanisms of Action; CRC Press Inc. Boca Raton, USA, 2004; pp 21–33.
  • Khan, J.; Sakib, S. A.; Mahmud, S.; Khan, Z.; Islam, N.; Sakib, M. A.; Emran, T.; Bin; Simal-gandara, J. Identification of Potential Phytochemicals from Citrus Limon against Main Protease of SARS-CoV-2: Molecular Docking, Molecular Dynamic Simulations and Quantum Computations Identification of Potential Phytochemicals from Citrus Limon against Main Proteas. J. Biomol. Struct. Dyn. 2021, 0, 1–12. DOI: 10.1080/07391102.2021.1947893.
  • Sibhatu, H. K.; Anuradha Jabasingh, S.; Yimam, A.; Ahmed, S. Ferulic Acid Production from Brewery Spent Grains, an Agro-Industrial Waste. LWT. 2021, 135, 11009. DOI: 10.1016/j.lwt.2020.110009.
  • Singh, B.; Singh, J. P.; Kaur, A.; Singh, N. Phenolic Composition, Antioxidant Potential and Health Benefits of Citrus Peel. Food Res. Int. 2020, 132, 109114. DOI: 10.1016/j.foodres.2020.109114.
  • Achinivu, E. C.; Flourat, A. L.; Brunissen, F.; Allais, F. Valorization of Waste Biomass from Oleaginous “Oil-Bearing” Seeds through the Biocatalytic Production of Sinapic Acid from Mustard Bran. Biomass Bioenergy. 2021, 145, 105940. DOI: 10.1016/j.biombioe.2020.105940.
  • Zare, K.; Eidi, A.; Roghani, M.; Rohani, A. H. The Neuroprotective Potential of Sinapic Acid in the 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat. Metab. Brain Dis. 2015, 30, 205–213. DOI: 10.1007/s11011-014-9604-6.
  • Seidel, C.; Schnekenburger, M.; Mazumder, A.; Teiten, M. H.; Kirsch, G.; Dicato, M.; Diederich, M. 4-Hydroxybenzoic Acid Derivatives as HDAC6- Specific Inhibitors Modulating Microtubular Structure and HSP90α Chaperone Activity against Prostate Cancer. Biochem. Pharmacol. 2016, 99, 31–52. DOI: 10.1016/j.bcp.2015.11.005.
  • Wang, X. N.; Wang, K. Y.; Zhang, X. S.; Yang, C.; Li, X. Y. 4-Hydroxybenzoic Acid (4-HBA) Enhances the Sensitivity of Human Breast Cancer Cells to Adriamycin as a Specific HDAC6 Inhibitor by Promoting HIPK2/p53 Pathway. Biochem. Biophys. Res. Commun. 2018, 504, 812–819. DOI: 10.1016/j.bbrc.2018.08.043.
  • Ahmadi, N.; Safari, S.; Mirazi, N.; Karimi, S. A.; Komaki, A. Effects of Vanillic Acid on Aβ1-40-Induced Oxidative Stress and Learning and Memory Deficit in Male Rats. Brain Res. Bull. 2021, 170, 264–273. DOI: 10.1016/j.brainresbull.2021.02.024.
  • Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-Inflammatory Activities of Quercetin and Its Derivatives. J. Funct. Foods. 2018, 40, 68–75. DOI: 10.1016/j.jff.2017.10.047.
  • Kubina, R.; Iriti, M.; Kabała-Dzik, A. Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers. Nutrients. 2021, 13, 1–20. DOI: 10.3390/nu13030845.
  • Rho, H. S.; Ghimeray, A. K.; Yoo, D. S.; Ahn, S. M.; Kwon, S. S.; Lee, K. H.; Cho, D. H.; Cho, J. Y. Kaempferol and Kaempferol Rhamnosides with Depigmenting and Anti-Inflammatory Properties. Molecules. 2011, 16, 3338–3344. DOI: 10.3390/molecules16043338.
  • Bhia, M.; Motallebi, M.; Abadi, B.; Zarepour, A.; Pereira-Silva, M.; Saremnejad, F.; Santos, A. C.; Zarrabi, A.; Melero, A.; Jafari, S. M.; Shakibaei, M. In Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics. 2021, 13, 291. DOI: 10.3390/pharmaceutics13020291.
  • Guazelli, C. F. S.; Fattori, V.; Ferraz, C. R.; Borghi, S. M.; Casagrande, R.; Baracat, M. M.; Verri, W. A. Antioxidant and anti-Inflammatory Effects of Hesperidin Methyl Chalcone in Experimental Ulcerative Colitis. Chem. Biol. Interact. 2021, 333, 109315. DOI: 10.1016/j.cbi.2020.109315.
  • Franza, L.; Carusi, V.; Nucera, E.; Pandolfi, F. Luteolin, inflammation and cancer: Special emphasis on gut microbiota. BioFactors. 2021, 47, 181–189. DOI: 10.1002/biof.1710.
  • Abad-García, B.; Garmón-Lobato, S.; Berrueta, L. A.; Gallo, B.; Vicente, F. On Line Characterization of 58 Phenolic Compounds in Citrus Fruit Juices from Spanish Cultivars by High-Performance Liquid Chromatography with Photodiode-Array Detection Coupled to Electrospray Ionization Triple Quadrupole Mass Spectrometry. Talanta. 2012, 99, 213–224. DOI: 10.1016/j.talanta.2012.05.042.
  • Fu, C.; Zheng, Y.; Lin, K.; Wang, H.; Chen, T.; Li, L.; Huang, J.; Lin, W.; Zhu, J.; Li, P.; et al. Neuroprotective Effect of Apigenin against Hypoxic-Ischemic Brain Injury in Neonatal Rats via Activation of the PI3K/Akt/Nrf2 Signaling Pathway. Food Funct. 2021, 12, 2270–2281. DOI: 10.1039/D0FO02555K.
  • Chan, E. W. C.; Ng, Y. K.; Tan, C. Y.; Alessandro, L.; Wong, S. K.; Chan, H. T. Diosmetin and Tamarixetin (Methylated Flavonoids): A Review on Their Chemistry, Sources, Pharmacology, and Anticancer Properties. J. Appl. Pharm. Sci. 2021, 11, 022–028. DOI: 10.7324/JAPS.2021.110302.
  • Braidy, N.; Behzad, S.; Habtemariam, S.; Ahmed, T.; Daglia, M.; Nabavi, S. M.; Sobarzo-Sanchez, E.; Nabavi, S. F. Neuroprotective Effects of Citrus Fruit-Derived Flavonoids, Nobiletin and Tangeretin in Alzheimer’s and Parkinson’s Disease. CNSNDDT. 2017, 16, 387–397. DOI: 10.2174/1871527316666170328113309.
  • Raza, W.; Luqman, S.; Meena, A. Prospects of Tangeretin as a Modulator of Cancer Targets/Pathways. Pharmacol. Res. 2020, 161, 105202. DOI: 10.1016/j.phrs.2020.105202.
  • Matboli, M.; Hasanin, A. H.; Hussein, R.; El-Nakeep, S.; Habib, E. K.; Ellackany, R.; Saleh, L. A. Cyanidin 3-Glucoside Modulated Cell Cycle Progression in Liver Precancerous Lesion, In Vivo Study. World J. Gastroenterol. 2021, 27, 1435–1450. DOI: 10.3748/wjg.v27.i14.1435.
  • Ballistreri, G.; Fabroni, S.; Romeo, F. V.; Timpanaro, N.; Amenta, M.; Rapisarda, P. Anthocyanins and Other Polyphenols in Citrus Genus: Biosynthesis, Chemical Profile, and Biological Activity. In Polyphenols in Plants; Watson, R. R., Ed.; Academic Press: Cambridge, USA, 2019; pp 191–215. DOI: 10.1016/b978-0-12-813768-0.00014-1.
  • Ku, S. K.; Yoon, E. K.; Lee, W.; Kwon, S.; Lee, T.; Bae, J. S. Antithrombotic and Antiplatelet Activities of Pelargonidin In Vivo and In Vitro. APHRDQ. 2016, 39, 398–408. DOI: 10.1007/s12272-016-0708-x.
  • Hernández-Aquino, E.; Muriel, P. Beneficial Effects of Naringenin in Liver Diseases: Molecular Mechanisms. World J. Gastroenterol. 2018, 24, 1679–1707. DOI: 10.3748/wjg.v24.i16.1679.
  • Kaanin-Boudraa, G.; Brahmi, F.; Wrona, M.; Nerín, C.; Moudache, M.; Mouhoubi, K.; Madani, K.; Boulekbache-Makhlouf, L. Response Surface Methodology and UPLC-QTOF-MS E Analysis of Phenolic Compounds from Grapefruit (Citrus ✕ Paradisi) By-Products as Novel Ingredients for New Antioxidant Packaging. LWT. 2021, 151, 112158. DOI: 10.1016/j.lwt.2021.112158.
  • Vandercook, C. E.; Stephenson, R. G. Lemon Juice Composition. Identification of Major Phenolic Compounds and Estimation by Paper Chromatography. J. Agric. Food Chem. 1966, 14, 450–454. DOI: 10.1021/jf60147a003.
  • Płotka-Wasylka, J. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta. 2018, 181, 204–209. DOI: 10.1016/j.talanta.2018.01.013.
  • Tobiszewski, M. Metrics for Green Analytical Chemistry. Anal. Methods. 2016, 8, 2993–2999. DOI: 10.1039/C6AY00478D.
  • Arslan, M.; Xiaobo, Z.; Tahir, H. E.; Shi, J.; Zareef, M.; Rakha, A.; Bilal, M. Rapid Screening of Phenolic Compounds from Wild Lycium Ruthenicum Murr. Using Portable near-Infrared (NIR) Spectroscopy Coupled Multivariate Analysis. Anal. Lett. 2021, 54, 512–526. DOI: 10.1080/00032719.2020.1772807.
  • Tian, W.; Chen, G.; Gui, Y.; Zhang, G.; Li, Y. Rapid Quantification of Total Phenolics and Ferulic Acid in Whole Wheat Using UV–Vis Spectrophotometry. Food Control. 2021, 123, 107691. DOI: 10.1016/j.foodcont.2020.107691.
  • Chen, Y.; Pan, H.; Hao, S.; Pan, D.; Wang, G.; Yu, W. Evaluation of Phenolic Composition and Antioxidant Properties of Different Varieties of Chinese Citrus. Food Chem. 2021, 364, 130413. DOI: 10.1016/j.foodchem.2021.130413.
  • Multari, S.; Licciardello, C.; Caruso, M.; Martens, S. Monitoring the Changes in Phenolic Compounds and Carotenoids Occurring during Fruit Development in the Tissues of Four Citrus Fruits. Food Res. Int. 2020, 134, 109228. DOI: 10.1016/j.foodres.2020.109228.
  • Alara, O. R.; Abdurahman, N. H.; Ukaegbu, C. I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. DOI: 10.1016/j.crfs.2021.03.011.
  • Borowiec, K.; Michalak, A. Flavonoids from Edible Fruits as Therapeutic Agents in Neuroinflammation–a Comprehensive Review and Update. Crit. Rev. Food Sci. Nutr. 2021, 1–19. DOI: 10.1080/10408398.2021.1905604.
  • Miles, E. A.; Calder, P. C. Effects of Citrus Fruit Juices and Their Bioactive Components on Inflammation and Immunity: A Narrative Review. Front. Immunol. 2021, 12, 712608–712618. DOI: 10.3389/fimmu.2021.712608.
  • Alu’datt, M. H.; Rababah, T.; Alhamad, M. N.; Al-Mahasneh, M. A.; Ereifej, K.; Al-Karaki, G.; Al-Duais, M.; Andrade, J. E.; Tranchant, C. C.; Kubow, S.; Ghozlan, K. A. Profiles of Free and Bound Phenolics Extracted from: Citrus Fruits and Their Roles in Biological Systems: Content, and Antioxidant, Anti-Diabetic and Anti-Hypertensive Properties. Food Funct. 2017, 8, 3187–3197. DOI: 10.1039/c7fo00212b.
  • Benelli, P.; Riehl, C. A. S.; Smânia, A.; Smânia, E. F. A.; Ferreira, S. R. S. Bioactive Extracts of Orange (Citrus Sinensis L. Osbeck) Pomace Obtained by SFE and Low Pressure Techniques: Mathematical Modeling and Extract Composition. J. Supercrit. Fluids. 2010, 55, 132–141. DOI: 10.1016/j.supflu.2010.08.015.
  • Sablani, S. S.; Kasapis, S.; Rahman, M. S. Evaluating Water Activity and Glass Transition Concepts for Food Stability. J. Food Eng. 2007, 78, 266–271. DOI: 10.1016/j.jfoodeng.2005.09.025.
  • Bureau, S.; Scibisz, I.; Le Bourvellec, C.; Renard, C. M. G. C. Effect of Sample Preparation on the Measurement of Sugars, Organic Acids, and Polyphenols in Apple Fruit by Mid-Infrared Spectroscopy. J. Agric. Food Chem. 2012, 60, 3551–3563. DOI: 10.1021/jf204785w.
  • Lad, J. D.; Kar, A. Supercritical CO2 Extraction of Lycopene from Pink Grapefruit (Citrus Paradise Macfad) and Its Degradation Studies during Storage. Food Chem. 2021, 361, 130113. DOI: 10.1016/j.foodchem.2021.130113.
  • Park, H.-Y.; Ryu, A.-R.; Kim, H. R.; Shin, K.-S.; Hong, J. S.; Choi, H.-D. Effects of Citrus Peel Hydrolysates on Retrogradation of Wheat Starch. Foods. 2021, 10, 2422. DOI: 10.3390/foods10102422.
  • Kawasaki, H.; Shimanouchi, T.; Kimura, Y. Recent Development of Optimization of Lyophilization Process. J. Chem. 2019, 2019, 1–14. DOI: 10.1155/2019/9502856.
  • Papoutsis, K.; Vuong, Q. V.; Golding, J. B.; Hasperué, J. H.; Pristijono, P.; Bowyer, M. C.; Scarlett, C. J.; Stathopoulos, C. E. Pretreatment of Citrus By-Products Affects Polyphenol Recovery: A Review. Food Rev. Int. 2018, 34, 770–795. DOI: 10.1080/87559129.2018.1438471.
  • Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M. E.; Madrid, Y. Citrus Peels Waste as a Source of Value-Added Compounds: Extraction and Quantification of Bioactive Polyphenols. Food Chem. 2019, 295, 289–299. DOI: 10.1016/j.foodchem.2019.05.136.
  • Ledesma-Escobar, C. A.; Priego-Capote, F.; Luque De Castro, M. D. Effect of Sample Pretreatment on the Extraction of Lemon (Citrus Limon) Components. Talanta. 2016, 153, 386–391. DOI: 10.1016/j.talanta.2016.03.024.
  • Klimczak, I.; Małecka, M.; Szlachta, M.; Gliszczyńska-Świgło, A. Effect of Storage on the Content of Polyphenols, Vitamin C and the Antioxidant Activity of Orange Juices. J. Food Compos. Anal. 2007, 20, 313–322. DOI: 10.1016/j.jfca.2006.02.012.
  • Ledesma-Escobar, C. A.; Priego-Capote, F.; Luque De Castro, M. D. Comparative Study of the Effect of Auxiliary Energies on the Extraction of Citrus Fruit Components. Talanta. 2015, 144, 522–528. DOI: 10.1016/j.talanta.2015.07.011.
  • Rifna, E. J.; Misra, N. N.; Dwivedi, M. Recent Advances in Extraction Technologies for Recovery of Bioactive Compounds Derived from Fruit and Vegetable Waste Peels: A Review. Crit. Rev. Food Sci. Nutr. 2021, 1–34. DOI: 10.1080/10408398.2021.1952923.
  • Fabroni, S.; Ballistreri, G.; Amenta, M.; Rapisarda, P. Anthocyanins in Different Citrus Species: An UHPLC-PDA-ESI/MSn-Assisted Qualitative and Quantitative Investigation. J. Sci. Food Agric. 2016, 96, 4797–4808. DOI: 10.1002/jsfa.7916.
  • Czech, A.; Malik, A.; Sosnowska, B.; Domaradzki, P. Bioactive Substances, Heavy Metals, and Antioxidant Activity in Whole Fruit, Peel, and Pulp of Citrus Fruits. Int. J. Food Sci. 2021, 2021, 1–14. DOI: 10.1155/2021/6662259.
  • Yu, J.; Li, W.; You, B.; Yang, S.; Xian, W.; Deng, Y.; Huang, W.; Yang, R. Phenolic Profiles, Bioaccessibility and Antioxidant Activity of Plum (Prunus Salicina Lindl). Food Res. Int. 2021, 143, 110300. DOI: 10.1016/j.foodres.2021.110300.
  • Al-Juhaimi, F. Y.; Ghafoor, K.; Mohamed Ahmed, I. A.; Özcan, M. M.; Uslu, N.; Babiker, E. E. The Effect of Different Solvent Concentrations on Total Phenol, Antioxidant Activity Values, and Phenolic Compounds of Pomelo (Citrus Grandis L. Osbeck) Fruits. J. Food Process. Preserv. 2021, 45, 1–11. DOI: 10.1111/jfpp.15840.
  • Anticona, M.; Blesa, J.; Lopez-malo, D.; Frí, A. Analysis of Polyphenols Content and Antioxidant Capacity from Hybrids Mandarin Peel. Biol. Life Sci. Forum. 2021, 6, 4–9.
  • Xu, G.; Ye, X.; Chen, J.; Liu, D. Effect of Heat Treatment on the Phenolic Compounds and Antioxidant Capacity of Citrus Peel Extract. J. Agric. Food Chem. 2007, 55, 330–335. DOI: 10.1021/jf062517l.
  • Safdar, M. N.; Kausar, T.; Jabbar, S.; Mumtaz, A.; Ahad, K.; Saddozai, A. A. Extraction and Quantification of Polyphenols from Kinnow (Citrus Reticulate L.) Peel Using Ultrasound and Maceration Techniques. J. Food Drug Anal. 2017, 25, 488–500. DOI: 10.1016/j.jfda.2016.07.010.
  • Yang, L.; Zhao, Z.; Wang, G.; Ruan, X.; Wu, Q.; Luo, C.; Wu, Z.; Wei, F.; Zhao, Y.; Wang, Q. Supercritical Extraction and Antioxidant Activity of Major Ingredients in Puerariae Lobatae Root, Pinus Massoniana Needle, Citrus Reticulata Peel and Their Mixture. J. CO2 Util. 2021, 48, 101518. DOI: 10.1016/j.jcou.2021.101518.
  • Espinosa-Pardo, F. A.; Nakajima, V. M.; Macedo, G. A.; Macedo, J. A.; Martínez, J. Extraction of Phenolic Compounds from Dry and Fermented Orange Pomace Using Supercritical CO2 and Cosolvents. Food Bioprod. Process. 2017, 101, 1–10. DOI: 10.1016/j.fbp.2016.10.002.
  • Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-Dependent Extraction of Flavonoids from Citrus Peel Waste Using a Tailor-Made Deep Eutectic Solvent. Food Chem. 2019, 297, 124970. DOI: 10.1016/j.foodchem.2019.124970.
  • Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of Polyphenolic Antioxidants from Orange Peel Waste Using Deep Eutectic Solvents. Sep. Purif. Technol. 2018, 206, 1–13. DOI: 10.1016/j.seppur.2018.05.052.
  • Martí, E.; Malo, D. L.; Esteve, M. J.; Frigola, A. Assessment of the Use of a Selection of Natural Deep Eutectic Solvents in the Extraction of Polar Bioactive Compounds from Orange Peel. Biol. Life Sci. Forum. 2021, 6, 1–14. DOI: 10.3390/Foods2021-11102.
  • Barrales, F. M.; Silveira, P.; Barbosa, P. d. P. M.; Ruviaro, A. R.; Paulino, B. N.; Pastore, G. M.; Macedo, G. A.; Martinez, J. Recovery of Phenolic Compounds from Citrus By-Products Using Pressurized Liquids—An Application to Orange Peel. Food Bioprod. Process. 2018, 112, 9–21. DOI: 10.1016/j.fbp.2018.08.006.
  • Shui, G.; Leong, L. P. Separation and Determination of Organic Acids and Phenolic Compounds in Fruit Juices and Drinks by High-Performance Liquid Chromatography. J. Chromatogr. A. 2002, 977, 89–96. pdf. 977, 89–96. DOI: 10.1016/S0021-9673(02)01345-6.
  • Front Matter. 2017. pp. P001–P004. DOI: 10.1039/9781849737579-fp001.
  • Li, B. B., Smith, B., & Hossain, M. M. (2006). Extraction of Phenolics from Citrus Peels: I. Solvent Extraction Method. Sep. Purif. Technol., 48, 182–189, 196. DOI: 10.1016/j.seppur.2005.07.019.
  • Ehigbai, I.; Oikeh, M. A.; Irabor, F.; Oikeh, A. O.; Oviasogie, F. E.; Omoregie, E. S. Evaluation of the Phenolic Content, Antioxidant and Antimicrobial Activities of Oil and Non-Oil Extracts of Citrus Sinensis (L.) Osbeck Seeds. Prev. Nutr. Food Sci. 2020, 25, 280–285. DOI: 10.3746/pnf.2020.25.3.280.
  • Osorio-Tobón, J. F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. DOI: 10.1007/s13197-020-04433-2.
  • Osorio-Tobón, J. F.; Carvalho, P. I. N.; Rostagno, M. A.; Petenate, A. J.; Meireles, M. A. A. Extraction of Curcuminoids from Deflavored Turmeric (Curcuma Longa L.) Using Pressurized Liquids: Process Integration and Economic Evaluation. J. Supercrit. Fluids. 2014, 95, 167–174. DOI: 10.1016/j.supflu.2014.08.012.
  • da Silva, L. C.; Souza, M. C.; Sumere, B. R.; Silva, L. G.; da Cunha, D. T.; Barbero, G. F.; Rostagno, M. A. Simultaneous Extraction and Separation of Bioactive Compounds from Apple Pomace Using Pressurized Liquids Coupled On-line with Solid-Phase Extraction. Food Chem. 2020, 318, 126450. DOI: 10.1016/j.foodchem.2020.126450.
  • Souza, M. C.; Silva, L. C.; Chaves, J. O.; Salvador, M. P.; Sanches, V. L.; da Cunha, D. T.; Foster Carneiro, T.; Rostagno, M. A. Simultaneous Extraction and Separation of Compounds from Mate (Ilex Paraguariensis) Leaves by Pressurized Liquid Extraction Coupled with Solid-Phase Extraction and In-Line UV Detection. Food Chem. (Oxf.). 2021, 2, 100008. DOI: 10.1016/j.fochms.2020.100008.
  • Chaves, J. O.; Sanches, V. L.; Viganó, J.; de Souza Mesquita, L. M.; de Souza, M. C.; da Silva, L. C.; Acunha, T.; Faccioli, L. H.; Rostagno, M. A. Integration of Pressurized Liquid Extraction and In-Line Solid-Phase Extraction to Simultaneously Extract and Concentrate Phenolic Compounds from Lemon Peel (Citrus Limon L.). Food Res. Int. 2022, 157, 111252. DOI: 10.1016/j.foodres.2022.111252.
  • Koel, M.; Kaljurand, M. Application of the Principles of Green Chemistry in Analytical Chemistry. Pure Appl. Chem. 2006, 78, 1993–2002. DOI: 10.1351/pac200678111993.
  • Nakajima, V. M.; Madeira, J. V.; Macedo, G. A.; Macedo, J. A. Biotransformation Effects on Anti Lipogenic Activity of Citrus Extracts. Food Chem. 2016, 197, 1046–1053. DOI: 10.1016/j.foodchem.2015.11.109.
  • Milescu, R. A.; Segatto, M. L.; Stahl, A.; Mcelroy, C. R.; Farmer, T. J.; Clark, J. H.; Zuin, V. G. Sustainable Single-Stage Solid-Liquid Extraction of Hesperidin and Rutin from Agro-Products Using Cyrene. ACS Sustain. Chem. Eng. 2020, 8, 18245–18257. DOI: 10.1021/acssuschemeng.0c06751.
  • Shukla, S. K.; Mikkola, J. P. Intermolecular Interactions upon Carbon Dioxide Capture in Deep-Eutectic Solvents. Phys. Chem. Chem. Phys. 2018, 20, 24591–24601. DOI: 10.1039/c8cp03724h.
  • Zimmerman, J. B.; Anastas, P. T.; Erythropel, H. C.; Leitner, W. Designing for a Green Chemistry Future. Science. 2020, 367, 397–400. DOI: 10.1126/science.aay3060.
  • Li, P.; Sirviö, J. A.; Asante, B.; Liimatainen, H. Recyclable Deep Eutectic Solvent for the Production of Cationic Nanocelluloses. Carbohydr. Polym. 2018, 199, 219–227. DOI: 10.1016/j.carbpol.2018.07.024.
  • Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. DOI: 10.1021/cr300162p.
  • Tang, W.; Row, K. H. Design and Evaluation of Polarity Controlled and Recyclable Deep Eutectic Solvent Based Biphasic System for the Polarity Driven Extraction and Separation of Compounds. J. Cleaner Prod. 2020, 268, 122306. DOI: 10.1016/j.jclepro.2020.122306.
  • Murador, D. C.; De Souza Mesquita, L. M.; Neves, B. V.; Braga, A. R. C.; Martins, P. L. G.; Zepka, L. Q.; De Rosso, V. V. Bioaccessibility and Cellular Uptake by Caco-2 Cells of Carotenoids and Chlorophylls from Orange Peels: A Comparison between Conventional and Ionic Liquid Mediated Extractions. Food Chem. 2021, 339, 127818. DOI: 10.1016/j.foodchem.2020.127818.
  • Murador, D. C.; de Souza Mesquita, L. M.; Vannuchi, N.; Braga, A. R. C.; de Rosso, V. V. Bioavailability and Biological Effects of Bioactive Compounds Extracted with Natural Deep Eutectic Solvents and Ionic Liquids: Advantages over Conventional Organic Solvents. Curr. Opin. Food Sci. 2019, 26, 25–34. DOI: 10.1016/j.cofs.2019.03.002.
  • Zgajnar Gotvajn, A.; Tratar-Pirc, E.; Bukovec, P.; Znidaršič Plazl, P. Evaluation of Biotreatability of Ionic Liquids in Aerobic and Anaerobic Conditions. Water Sci. Technol. 2014, 70, 698–704. DOI: 10.2166/wst.2014.283.
  • Xu, J. J.; Yang, R.; Ye, L. H.; Cao, J.; Cao, W.; Hu, S. S.; Peng, L. Q. Application of Ionic Liquids for Elution of Bioactive Flavonoid Glycosides from Lime Fruit by Miniaturized Matrix Solid-Phase Dispersion. Food Chem. 2016, 204, 167–175. DOI: 10.1016/j.foodchem.2016.02.012.
  • Rao, M. V.; Sengar, A. S.; Sunil, C. K.; Rawson, A. Ultrasonication - A Green Technology Extraction Technique for Spices: A Review. Trends Food Sci. Technol. 2021, 116, 975–991. DOI: 10.1016/j.tifs.2021.09.006.
  • Damiano, S.; Lombari, P.; Salvi, E.; Papale, M.; Giordano, A.; Amenta, M.; Ballistreri, G.; Fabroni, S.; Rapisarda, P.; Capasso, G.; et al. A Red Orange and Lemon by-Products Extract Rich in Anthocyanins Inhibits the Progression of Diabetic Nephropathy. J. Cell. Physiol. 2019, 234, 23268–23278. DOI: 10.1002/jcp.28893.
  • Mozos, I.; Flangea, C.; Vlad, D. C.; Gug, C.; Mozos, C.; Stoian, D.; Luca, C. T.; Horbańczuk, J. O.; Horbańczuk, O. K.; Atanasov, A. G. Effects of Anthocyanins on Vascular Health. Biomolecules. 2021, 11, 811–822. DOI: 10.3390/biom11060811.
  • Chiechio, S.; Zammataro, M.; Barresi, M.; Amenta, M.; Ballistreri, G.; Fabroni, S.; Rapisarda, P. 2021. Hyperlipidemia in Mice.
  • Lee, H. S. Characterization of Major Anthocyanins and the Color of Red-Fleshed Budd Blood Orange (Citrus Sinensis). J. Agric. Food Chem. 2002, 50, 1243–1246. DOI: 10.1021/jf011205+.
  • Sánchez-Rangel, J. C.; Benavides, J.; Heredia, J. B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. A. The Folin-Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination. Anal. Methods. 2013, 5, 5990–5999. DOI: 10.1039/c3ay41125g.
  • Chanivet, M.; Durán-Guerrero, E.; Rodríguez-Dodero, M. d. C.; Barroso, C. G.; Castro, R. Application of Accelerating Energies to the Maceration of Sherry Vinegar with Citrus Fruits. J. Sci. Food Agric. 2021, 101, 2235–2246. DOI: 10.1002/jsfa.10843.
  • Hijaz, F.; Al-Rimawi, F.; Manthey, J. A.; Killiny, N. Phenolics, Flavonoids and Antioxidant Capacities in Citrus Species with Different Degree of Tolerance to Huanglongbing. Plant Signal. Behav. 2020, 15, 1752447. DOI: 10.1080/15592324.2020.1752447.
  • Alves, J.; Antonio, L.; Alves Da Costa, M.; Reis Da Silva, S. J.; Flach, A. Color, Phenolic and Flavonoid Content, and Antioxidant Activity of Honey from Roraima, Brazil. Food Sci. Technol. Campinas. 2019, 34, 69–73.
  • Chen, Q.; Wang, D.; Tan, C.; Hu, Y.; Sundararajan, B.; Zhou, Z. Profiling of Flavonoid and Antioxidant Activity of Fruit Tissues from 27 Chinese Local Citrus Cultivars. Plants. 2020, 9, 196. DOI: 10.3390/plants9020196.
  • Sicilia, A.; Catara, V.; Scialò, E.; Piero, A. R. L. Fungal Infection Induces Anthocyanin Biosynthesis and Changes in Dna Methylation Configuration of Blood Orange [Citrus Sinensis l. (Osbeck)]. Plants. 2021, 10, 244–210. DOI: 10.3390/plants10020244.
  • Magalhães, L. M.; Santos, F.; Segundo, M. A.; Reis, S.; Lima, J. L. F. C. Rapid Microplate High-Throughput Methodology for Assessment of Folin-Ciocalteu Reducing Capacity. Talanta. 2010, 83, 441–447. DOI: 10.1016/j.talanta.2010.09.042.
  • López-Froilán, R.; Hernández-Ledesma, B.; Cámara, M.; Pérez-Rodríguez, M. L. Evaluation of the Antioxidant Potential of Mixed Fruit-Based Beverages: A New Insight on the Folin-Ciocalteu Method. Food Anal. Methods. 2018, 11, 2897–2906. DOI: 10.1007/s12161-018-1259-1.
  • Aleixandre-Tudo, J. L.; Nieuwoudt, H.; Olivieri, A.; Aleixandre, J. L.; du Toit, W. Phenolic Profiling of Grapes, Fermenting Samples and Wines Using UV-Visible Spectroscopy with Chemometrics. Food Control. 2018, 85, 11–22. DOI: 10.1016/j.foodcont.2017.09.014.
  • Souza, M.; José Comin, J.; Moresco, R.; Maraschin, M.; Kurtz, C.; Emílio Lovato, P.; Rogério Lourenzi, C.; Kokowicz Pilatti, F.; Loss, A.; Kuhnen, S. Exploratory and Discriminant Analysis of Plant Phenolic Profiles Obtained by UV–Vis Scanning Spectroscopy. J. Integr. Bioinf. 2021, 18, 1–11. DOI: 10.1515/jib-2019-0056.
  • Mesquita, E.; Monteiro, M. Simultaneous HPLC Determination of Flavonoids and Phenolic Acids Profile in Pêra-Rio Orange Juice. Food Res. Int. 2018, 106, 54–63. DOI: 10.1016/j.foodres.2017.12.025.
  • Coelho, E. M.; da Silva Haas, I. C.; de Azevedo, L. C.; Bastos, D. C.; Fedrigo, I. M. T.; dos Santos Lima, M.; de Mello Castanho Amboni, R. D. Multivariate Chemometric Analysis for the Evaluation of 22 Citrus Fruits Growing in Brazil’s Semi-Arid Region. J. Food Compos. Anal. 2021, 101, 103964. DOI: 10.1016/j.jfca.2021.103964.
  • Wen, L.; He, M.; Yin, C.; Jiang, Y.; Luo, D.; Yang, B. Phenolics in Citrus Aurantium Fruit Identified by UHPLC-MS/MS and Their Bioactivities. LWT. 2021, 147, 111671. DOI: 10.1016/j.lwt.2021.111671.
  • Shehata, M. G.; Awad, T. S.; Asker, D.; El Sohaimy, S. A. A.; El-Aziz, N. M.; Youssef, M. M. Antioxidant and Antimicrobial Activities and UPLC-ESI-MS/MS Polyphenolic Profile of Sweet Orange Peel Extracts. Curr. Res. Food Sci. 2021, 4, 326–335. DOI: 10.1016/j.crfs.2021.05.001.
  • Modica, G.; Pannitteri, C.; Di Guardo, M.; La Malfa, S.; Gentile, A.; Ruberto, G.; Pulvirenti, L.; Parafati, L.; Continella, A.; Siracusa, L. Influence of Rootstock Genotype on Individual Metabolic Responses and Antioxidant Potential of Blood Orange cv. Tarocco Scirè. J. Food Compos. Anal. 2022, 105, 104246. DOI: 10.1016/j.jfca.2021.104246.
  • Guo, P.; Pang, W.; Zhao, X.; Chen, X.; Zhang, Y.; Zhao, Q.; Jiao, B. A Rapid UPLC-QqQ-MS/MS Method for Targeted Screening and Quantitative Analysis of Secondary Metabolites in Satsuma Mandarin. Eur. Food Res. Technol. 2021, 247, 1725–1736. DOI: 10.1007/s00217-021-03742-w.
  • Morales, J.; Bermejo, A.; Navarro, P.; Forner-Giner, M. Á.; Salvador, A. Rootstock Effect on Fruit Quality, Anthocyanins, Sugars, Hydroxycinnamic Acids and Flavanones Content during the Harvest of Blood Oranges ‘Moro’ and ‘Tarocco Rosso’ Grown in Spain. Food Chem. 2021, 342, 128305. DOI: 10.1016/j.foodchem.2020.128305.
  • Šafranko, S.; Ćorković, I.; Jerković, I.; Jakovljević, M.; Aladić, K.; Šubarić, D.; Jokić, S. Green Extraction Techniques for Obtaining Bioactive Compounds from Mandarin Peel (Citrus Unshiu Var. Kuno): Phytochemical Analysis and Process Optimization. Foods. 2021, 10, 1043. DOI: 10.3390/foods10051043.
  • Tavallali, H.; Bahmanzadegan, A.; Rowshan, V.; Tavallali, V. Essential Oil Composition, Antioxidant Activity, Phenolic Compounds, Total Phenolic and Flavonoid Contents from Pomace of Citrus Aurantifolia. J. Med. Plants By-Prod. 2021, 1, 103–116.
  • Sanches, V. L.; Cunha, T. A.; Viganó, J.; de Souza Mesquita, L. M.; Faccioli, L. H.; Breitkreitz, M. C.; Rostagno, M. A. Comprehensive Analysis of Phenolics Compounds in Citrus Fruits Peels by UPLC-PDA and UPLC-Q/TOF MS Using a Fused-Core Column. Food Chem. X. 2022, 14, 100262. DOI: 10.1016/j.fochx.2022.100262.
  • Schneider, F.; Kläy, A.; Zimmermann, A. B.; Buser, T.; Ingalls, M.; Messerli, P. How Can Science Support the 2030 Agenda for Sustainable Development? Four Tasks to Tackle the Normative Dimension of Sustainability. Sustain. Sci. 2019, 14, 1593–1604. DOI: 10.1007/s11625-019-00675-y.
  • Wolfender, J. L.; Terreaux, C.; Hostettmann, K. The Importance of LC-MS and LC-NMR in the Discovery of New Lead Compounds from Plants. Pharm. Biol. 2000, 38, 41–54. DOI: 10.1076/phbi.38.6.41.5957.
  • Seger, C.; Sturm, S.; Stuppner, H. Mass Spectrometry and NMR Spectroscopy: Modern High-End Detectors for High Resolution Separation Techniques-State of the Art in Natural Product HPLC-MS, HPLC-NMR, and CE-MS Hyphenations. Nat. Prod. Rep. 2013, 30, 970–987. DOI: 10.1039/c3np70015a.
  • Weber, B.; Hartmann, B.; Stöckigt, D.; Schreiber, K.; Roloff, M.; Bertram, H. J.; Schmidt, C. O. Liquid Chromatography/Mass Spectrometry and Liquid Chromatography/Nuclear Magnetic Resonance as Complementary Analytical Techniques for Unambiguous Identification of Polymethoxylated Flavones in Residues from Molecular Distillation of Orange Peel Oils (Citrus sinensis). J. Agric. Food Chem. 2006, 54, 274–278. DOI: 10.1021/jf051606f.
  • Formisano, C.; Rigano, D.; Lopatriello, A.; Sirignano, C.; Ramaschi, G.; Arnoldi, L.; Riva, A.; Sardone, N.; Taglialatela-Scafati, O. Detailed Phytochemical Characterization of Bergamot Polyphenolic Fraction (BPF) by UPLC-DAD-MS and LC-NMR. J. Agric. Food Chem. 2019, 67, 3159–3167. DOI: 10.1021/acs.jafc.8b06591.
  • Klesper, K.; Corwin, A. H.; Turner, D. A. High Pressure Gas Chromatography above Critical Temperatures. J. Org. Cher. 1962, 27, 700–701. DOI: 10.1021/jo01049a069.
  • Lesellier, E.; West, C. The Many Faces of Packed Column Supercritical Fluid chromatography - A Critical Review. J. Chromatogr. A. 2015, 1382, 2–46. DOI: 10.1016/j.chroma.2014.12.083.
  • Nováková, L.; Grand-Guillaume Perrenoud, A.; Francois, I.; West, C.; Lesellier, E.; Guillarme, D. Modern Analytical Supercritical Fluid Chromatography Using Columns Packed with Sub-2 μm Particles: A Tutorial. Anal. Chim. Acta. 2014, 824, 18–35. DOI: 10.1016/j.aca.2014.03.034.
  • Dispas, A.; Lebrun, P.; Sassiat, P.; Ziemons, E.; Thiébaut, D.; Vial, J.; Hubert, P. Innovative Green Supercritical Fluid Chromatography Development for the Determination of Polar Compounds. J. Chromatogr. A. 2012, 1256, 253–260. DOI: 10.1016/j.chroma.2012.07.043.
  • Si-Hung, L.; Bamba, L. Current State and Future Perspectives of Supercritical Fluid Chromatography. Trends Anal. Chem. 2022, 149, 116550. DOI: 10.1016/j.trac.2022.116550.
  • West, C. Current Trends in Supercritical Fluid Chromatography. Anal. Bioanal. Chem. 2018, 410, 6441–6457. DOI: 10.1007/s00216-018-1267-4.
  • Ganzera, M.; Zwerger, M. Analysis of Natural Products by SFC e Applications from 2015 to 2021. Trends Anal. Chem. 2021, 145, 116463. DOI: 10.1016/j.trac.2021.116463.
  • Wang, B.; Liu, X.; Zhou, W.; Hong, Y.; Feng, S. Fast Separation of Flavonoids by Supercritical Fluid Chromatography Using a Column Packed with a Sub-2 μm Particle Stationary Phase. J. Sep. Sci. 2017, 40, 1410–1420. DOI: 10.1002/jssc.201601021.
  • Huang, Y.; Feng, Y.; Tang, G.; Li, M.; Zhang, T.; Fillet, M.; Crommen, J.; Jiang, Z. Development and Validation of a Fast SFC Method for the Analysis of Flavonoids in Plant Extracts. J. Pharm. Biomed. Anal. 2017, 140, 384–391. DOI: 10.1016/j.jpba.2017.03.012.
  • Kamangerpour, A.; Ashraf-Khorassani, M.; Taylor, L. T.; McNair, H. M.; Chorida, L. Supercritical Fluid Chromatography of Polyphenolic Compounds in Grape Seed Extract. Chromatographia. 2002, 55, 417–421. DOI: 10.1007/BF02492270.
  • Sun, X.; Yang, J.; Zhao, Y.; Zheng, W.; Pang, X.; Wang, B.; Wang, J.; Li, Q.; Chen, X.; Zhang, J.; et al. Comprehensive Analysis and Quality Assessment of Herba Epimedii from Multiple Botanical Origins Based on Ultra-High Performance Supercritical Fluid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry and Photodiode Array Detector. J. Supercrit. Fluids. 2019, 149, 1–9. DOI: 10.1016/j.supflu.2019.03.017. .
  • Huang, Y.; Tang, G.; Zhang, T.; Fillet, M.; Crommen, J.; Jiang, Z. Supercritical Fluid Chromatography in Traditional Chinese Medicine Analysis. J. Pharm. Biomed. Anal. 2018, 147, 65–80. DOI: 10.1016/j.jpba.2017.08.021.
  • Lesellier, E.; West, C. Supercritical Fluid Chromatography for the Analysis of Natural Dyes: From Carotenoids to Flavonoids. J. Sep. Sci. 2022, 45, 382–393. DOI: 10.1002/jssc.202100567.
  • Liu, J.; Ji, F.; Chen, F.; Guo, W.; Yang, M.; Huang, S.; Zhang, F.; Liu, Y. Determination of Garlic Phenolic Compounds Using Supercritical Fluid Extraction Coupled to Supercritical Fluid Chromatography/Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2018, 159, 513–523. DOI: 10.1016/j.jpba.2018.07.020.
  • Gao, W.; Dong, X.; Wang, R.; Liu, X. G.; Li, P.; Yang, H. The Use of Ionic Liquid as a Mobile Phase Modifier in Analytical Supercritical Fluid Chromatography for the Separation of Flavonoids. RSC Adv. 2016, 6, 61418–61422. DOI: 10.1039/C6RA10975F.
  • Kalambate, P. K.; Rao, Z.; Wu, J.; Shen, Y.; Boddula, R.; Huang, Y. Electrochemical (Bio) Sensors Go Green. Biosens. Bioelectron. 2020, 163, 112270. DOI: 10.1016/j.bios.2020.112270.
  • Gupta, A. K.; Mishra, P.; Senapati, M.; Sahu, P. P. A Novel Electrochemical Device for Naringin Quantification and Removal from Bitter Variety of Citrus Fruits. J. Food Eng. 2021, 306, 110637. DOI: 10.1016/j.jfoodeng.2021.110637.
  • Sousa, C. S.; Lima, K. C. M. S.; Botelho, C. N.; Pereira, N. M.; Fernandes, R. N.; Silva, G. G.; Damos, F. S.; Luz, R. C. S. Photoelectrochemical Sensor for Determination of Naringin at Low Oxidation Potential Using a Modified FTO Electrode with Cadmium Sulfide and Titanium Dioxide Sensitized with Chloroprotoporphyrin IX Iron(III). J. Solid State Electrochem. 2020, 24, 1715–1726. DOI: 10.1007/s10008-020-04568-4.
  • Porep, J. U.; Kammerer, D. R.; Carle, R. On-Line Application of near Infrared (NIR) Spectroscopy in Food Production. Trends Food Sci. Technol. 2015, 46, 211–230. DOI: 10.1016/j.tifs.2015.10.002.
  • Milczarek, R. R.; Liang, P. S.; Wong, T.; Augustine, M. P.; Smith, J. L.; Woods, R. D.; Sedej, I.; Olsen, C. W.; Vilches, A. M.; Haff, R. P.; et al. Nondestructive Determination of the Astringency of Pollination-Variant Persimmons (Diospyros Kaki) Using near-Infrared (NIR) Spectroscopy and Nuclear Magnetic Resonance (NMR) Relaxometry. Postharvest Biol. Technol. 2019, 149, 50–57. DOI: 10.1016/j.postharvbio.2018.11.006.
  • Ncama, K.; Opara, U. L.; Tesfay, S. Z.; Fawole, O. A.; Magwaza, L. S. Application of Vis/NIR Spectroscopy for Predicting Sweetness and Flavour Parameters of ‘Valencia’ Orange (Citrus Sinensis) and ‘Star Ruby’ Grapefruit (Citrus x Paradisi Macfad). J. Food Eng. 2017, 193, 86–94. DOI: 10.1016/j.jfoodeng.2016.08.015.
  • Magwaza, L. S.; Opara, U. L.; Nieuwoudt, H.; Cronje, P. J. R.; Saeys, W.; Nicolaï, B. NIR Spectroscopy Applications for Internal and External Quality Analysis of Citrus Fruit - A Review. Food Bioprocess Technol. 2012, 5, 425–444. DOI: 10.1007/s11947-011-0697-1.
  • Ruggiero, L.; Amalfitano, C.; Di Vaio, C.; Adamo, P. Use of Near-Infrared Spectroscopy Combined with Chemometrics for Authentication and Traceability of Intact Lemon Fruits. Food Chem. 2022, 375, 131822. DOI: 10.1016/j.foodchem.2021.131822.
  • Shawky, E.; Selim, D. A. NIR Spectroscopy-Multivariate Analysis for Discrimination and Bioactive Compounds Prediction of Different Citrus Species Peels. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 219, 1–7. DOI: 10.1016/j.saa.2019.04.026.
  • Ferrer-Gallego, R.; Hernández-Hierro, J. M.; Rivas-Gonzalo, J. C.; Escribano-Bailón, M. T. Determination of Phenolic Compounds of Grape Skins during Ripening by NIR Spectroscopy. LWT - Food Sci. Technol. 2011, 44, 847–853. DOI: 10.1016/j.lwt.2010.12.001.
  • Wang, A.; Xie, L. Technology Using near Infrared Spectroscopic and Multivariate Analysis to Determine the Soluble Solids Content of Citrus Fruit. J. Food Eng. 2014, 143, 17–24. DOI: 10.1016/j.jfoodeng.2014.06.023.
  • Queiroz, S. C. d. N.; Jardim, I. C. S. F. Capillar Electrohoresis. Chemkeys. 2001, 8, 1–9. DOI: 10.20396/chemkeys.v0i8.9649.
  • Cancalon, P. F.; Bryan, C. R. Use of Capillary Electrophoresis for Monitoring Citrus Juice Composition. J. Chromatogr. A. 1993, 652, 555–561. DOI: 10.1016/0021-9673(93)83278-Z.
  • Wu, T.; Guan, Y.; Ye, J. Determination of Flavonoids and Ascorbic Acid in Grapefruit Peel and Juice by Capillary Electrophoresis with Electrochemical Detection. Food Chem. 2007, 100, 1573–1579. DOI: 10.1016/j.foodchem.2005.12.042.
  • Gerzon, G.; Sheng, Y.; Kirkitadze, M. Process Analytical Technologies – Advances in Bioprocess Integration and Future Perspectives. J. Pharm. Biomed. Anal. 2022, 207, 114379. DOI: 10.1016/j.jpba.2021.114379.
  • Trevisan, M. G.; Poppi, R. J. Química Analítica de Processos. Quím. Nova. 2006, 29, 1065–1071. DOI: 10.1590/S0100-40422006000500029.
  • Viganó, J.; Sanches, V. L.; de Souza Mesquita, L. M.; de Souza, M. C.; da Silva, L. C.; Chaves, J. O.; Forster-Carneiro, T.; Rostagno, M. A. Comprehensive Analysis of Phenolic Compounds from Natural Products: Integrating Sample Preparation and Analysis. Anal. Chim. Acta. 2021, 1178, 338845. DOI: 10.1016/j.aca.2021.338845.
  • Grazieli, C.; Beatriz, C.; Bottoli, G. Hydrofilic Interaction Chromatography HILIC: State of the Art and Applications. Quim. Nova. 2016, 39, 210–220. DOI: 10.5935/0100-4042.2016000.
  • Lanças, F. M. Hydrophilic-Interaction Liquid Chromatography (HILIC). Sci. Chromatogr. 2010, 2, 49–57.
  • De Villiers, A.; Venter, P.; Pasch, H. Recent Advances and Trends in the Liquid-Chromatography-Mass Spectrometry Analysis of Flavonoids. J. Chromatogr. A. 2016, 1430, 16–78. DOI: 10.1016/j.chroma.2015.11.077.
  • Lea, A. G. H. High Performance Liquid Chromatography of Cider Procyanidins. J. Sci. Food Agric. 1979, 30, 833–838. DOI: 10.1002/jsfa.2740300815.
  • Alpert, A. J. Hydrophilic-Interaction Chromatography for the Separation of Peptides, Nucleic Acids and Other Polar Compounds. J. Chromatogr. A. 1990, 499, 177–196. DOI: 10.1016/S0021-9673(00)96972-3.
  • Bian, Y.; Zhang, Y.; Zhou, Y.; Li, G. H.; Feng, X. S. Progress in the Pretreatment and Analysis of Flavonoids: An Update since 2013. Sep. Purif. Rev. 2022, 51, 11–37. DOI: 10.1080/15422119.2020.1801469.
  • Sentkowska, A.; Biesaga, M.; Pyrzynska, K. Effects of the Operation Parameters on HILIC Separation of Flavonoids on Zwitterionic Column. Talanta. 2013, 115, 284–290. DOI: 10.1016/j.talanta.2013.05.005.
  • Lacalle-Bergeron, L.; Ortega-azor, C.; Asensio, E. M.; Coltell, O.; Corella, D. Performance Liquid Chromatography-Ion Mobility Separation-Quadruple Time-of-Flight MS (UHPLC-IMS-QTOF MS) Metabolomics for Short-Term Biomarker Discovery of Orange Intake. Nutrients. 2020, 12, 1916–1936. DOI: 10.3390/nu12071916

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.