219
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Update on Pretreatment and Analysis Methods of Buprenorphine in Different Matrix

, ORCID Icon, , , & ORCID Icon

References

  • Penno, J.; Young, J.; Ding, J.; Moushi, J.; Chou, J. Sublingual Buprenorphine for Acute Postoperative Cancer Pain: A Retrospective Study. J. Pharm. Pract. Res. 2021, 51, 390–395. DOI: 10.1002/jppr.1748.
  • Davis, M. P.; Pasternak, G.; Behm, B. Treating Chronic Pain: An Overview of Clinical Studies Centered on the Buprenorphine Option. Drugs 2018, 78 (12), 1211–1228. DOI: 10.1007/s40265-018-0953-z. Dalal, S.; Chitneni, A.; Berger, A. A.; Orhurhu, V.; Dar, B.; Kramer, B.; Nguyen, A.; Pruit, J.; Halsted, C.; Kaye, A. D. Buprenorphine for Chronic Pain: A Safer Alternative to Traditional Opioids. Health Psychol. Res. 2021, 9, 27241. DOI: 10.52965/001c.27241.
  • Tang, Y.; Zhang, Y.; Zhao, J.; Xue, F.; He, H.; Xue, F.; Liu, X.-Y.; Qin, Y. Asymmetric Total Synthesis of Buprenorphine and Dihydroetorphine. Tetrahedron Lett. 2022, 104, 154027. DOI: 10.1016/j.tetlet.2022.154027.
  • Belivanis, S.; Tzatzarakis, M. N.; Vakonaki, E.; Kovatsi, L.; Mantsi, M.; Alegakis, A.; Kavvalakis, M. P.; Vynias, D.; Tsatsakis, A. M. Buprenorphine and Nor-Buprenorphine Levels in Head Hair Samples from Former Heroin Users under Suboxone(R) Treatment. Drug Test. Anal. 2014, 6, 93–100. DOI: 10.1002/dta.1611.
  • McPhail, B. T.; Emoto, C.; Butler, D.; Fukuda, T.; Akinbi, H.; Vinks, A. A. Opioid Treatment for Neonatal Opioid Withdrawal Syndrome: Current Challenges and Future Approaches. J. Clin. Pharmacol. 2021, 61, 857–870. DOI: 10.1002/jcph.1811.
  • Davis, M. P.; Fudin, J. Buprenorphine Not a Silver Bullet But an Opioid of Choice for Chronic Pain. J. Opioid Manage. 2021, 17, 11–14. DOI: 10.5055/jom.2021.0619.
  • Meaden, C. W.; Mozeika, A.; Asri, R.; Santos, C. D. A Review of the Existing Literature on Buprenorphine Pharmacogenomics. Pharmacogenomics J. 2021, 21, 128–139. DOI: 10.1038/s41397-020-00198-1.
  • Chan, K.-W.; Harun, H. Liquid Chromatography Tandem Mass Spectrometric Method Validation for the Quantification of Buprenorphine and Norbuprenorphine in Whole Blood. Aust. J. Forensic Sci. 2017, 49, 186–200. DOI: 10.1080/00450618.2016.1153148.
  • Spreen, L. A.; Dittmar, E. N.; Quirk, K. C.; Smith, M. A. Buprenorphine Initiation Strategies for Opioid Use Disorder and Pain Management: A Systematic Review. Pharmacotherapy 2022, 42, 411–427. DOI: 10.1002/phar.2676.
  • Erosa, S. C.; Haffey, P. R.; Mehta, N.; Gulati, A. Tapentadol, Buprenorphine, and Levorphanol for the Treatment of Neuropathic Pain: A Systematic Review. Curr. Pain Headache Rep. 2021, 25, 18. DOI: 10.1007/s11916-020-00934-z.
  • Chilcoat, H. D.; Amick, H. R.; Sherwood, M. R.; Dunn, K. E. Buprenorphine in the United States: Motives for Abuse, Misuse, and Diversion. J. Subst. Abuse Treat. 2019, 104, 148–157. DOI: 10.1016/j.jsat.2019.07.005.
  • Hale, M.; Garofoli, M.; Raffa, R. B. Benefit-Risk Analysis of Buprenorphine for Pain Management. J. Pain Res. 2021, 14, 1359–1369. DOI: 10.2147/JPR.S305146.
  • DeWeese, J. P.; Krenz, J. R.; Wakeman, S. E.; Peckham, A. M. Rapid Buprenorphine Microdosing for Opioid Use Disorder in a Hospitalized Patient Receiving Very High Doses of Full Agonist Opioids for Acute Pain Management: Titration, Implementation Barriers, and Strategies to Overcomes. Subst. Abuse 2021, 42 (4), 506–511. DOI: 10.1080/08897077.2021.1915914; Mariottini, C.; Kriikku, P.; Ojanpera, I. Concomitant Drugs with Buprenorphine User Deaths. Drug Alcohol Depend. 2021, 218, 108345. DOI: 10.1016/j.drugalcdep.2020.108345; Mariottini, C.; Kriikku, P.; Ojanpera, I. Investigation of Buprenorphine-Related Deaths Using Urinary Metabolite Concentrations. Drug Test. Anal. 2022. DOI: 10.1002/dta.3347.
  • Jamalian, S. M.; Sotodeh, M.; Mohaghegh, F. Comparison of Sublingual Buprenorphine and Intravenous Morphine in Reducing Bone Metastases Associated Pain in Cancer Patients. Eur. J. Transl. Myol. 2019, 29, 8098–8129. DOI: 10.4081/ejtm.2019.8098.
  • Langel, K.; Gunnar, T.; Ariniemi, K.; Rajamaki, O.; Lillsunde, P. A Validated Method for the Detection and Quantitation of 50 Drugs of Abuse and Medicinal Drugs in Oral Fluid by Gas Chromatography-Mass Spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2011, 879, 859–870. DOI: 10.1016/j.jchromb.2011.02.027.
  • Strano-Rossi, S.; Bermejo, A. M.; de la Torre, X.; Botre, F. Fast GC-MS Method for the Simultaneous Screening of THC-COOH, Cocaine, Opiates and Analogues Including Buprenorphine and Fentanyl, and Their Metabolites in Urine. Anal. Bioanal. Chem. 2011, 399, 1623–1630. DOI: 10.1007/s00216-010-4471-4.
  • Wang, Y. S.; Lin, D. L.; Yang, S. C.; Wu, M. Y.; Liu, R. H.; Su, L. W.; Cheng, P. S.; Liu, C.; Fuh, M. R. Issues Pertaining to the Analysis of Buprenorphine and Its Metabolites by Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2010, 1217, 1688–1694. DOI: 10.1016/j.chroma.2010.01.038.
  • Berg, T.; Jorgenrud, B.; Strand, D. H. Determination of Buprenorphine, Fentanyl and LSD in Whole Blood by UPLC-MS-MS. J. Anal. Toxicol. 2013, 37, 159–165. DOI: 10.1093/jat/bkt005.
  • Feliu, C.; Konecki, C.; Binet, L.; Vautier, D.; Haudecoeur, C.; Oget, O.; Fouley, A.; Marty, H.; Gozalo, C.; Cazaubon, Y.; et al. Quantification of Methadone, Buprenorphine, Naloxone, Opioids, and Their Derivates in Whole Blood by Liquid Chromatography-High-Resolution Mass Spectrometry: Analysis of Their Involvement in Fatal Forensic Cases. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2020, 1152, 122226. DOI: 10.1016/j.jchromb.2020.122226.
  • Pirro, V.; Fusari, I.; Corcia, D. D.; Gerace, E.; Vivo, E. D.; Salomone, A.; Vincenti, M. Hair Analysis for Long-Term Monitoring of Buprenorphine Intake in Opiate Withdrawal. Ther. Drug Monit. 2014, 36, 796–807.
  • Sørensen, L. K.; Hasselstrøm, J. B. A High-Throughput Multi-Class Liquid Chromatography Tandem Mass Spectrometry Method for Quantitative Determination of Licit and Illicit Drugs in Whole Blood. Anal. Methods 2013, 5, 3185. DOI: 10.1039/c3ay40443a.
  • Tikhomirov, M.; Poźniak, B.; Śniegocki, T. High-Performance Liquid Chromatography-Tandem Mass Spectrometry for Buprenorphine Evaluation in Plasma-Application to Pharmacokinetic Studies in Rabbits. Molecules 2021, 26, 437. DOI: 10.3390/molecules26020437.
  • Wang, Y. Y.; Shen, X. H.; Li, H.; Chen, F. J.; Fu, Y.; Ding, L. A Sensitive, Simple and Rapid HPLC-MS/MS Method for Simultaneous Quantification of Buprenorpine and Its N-Dealkylated Metabolite Norbuprenorphine in Human Plasma. J. Pharm. Anal. 2013, 3, 221–228. DOI: 10.1016/j.jpha.2012.12.002.
  • Chiang, T.-Y.; Pao, L.-H.; Hsiong, C.-H.; Huang, P.-W.; Lin, K.-W.; Hu, O. Y.-P. Simultaneous Determination of Buprenorphine, Norbuprenorphine and Naloxone in Human Plasma by LC-MS-MS. Chromatographia 2011, 74, 575–583. DOI: 10.1007/s10337-011-2095-2.
  • Lin, H. R.; Chen, C. L.; Huang, C. L.; Chen, S. T.; Lua, A. C. Simultaneous Determination of Opiates, Methadone, Buprenorphine and Metabolites in Human Urine by Superficially Porous Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2013, 925, 10–15. DOI: 10.1016/j.jchromb.2013.02.020.
  • Liu, Y.; Li, X.; Xu, A.; Nasser, A. F.; Heidbreder, C. Simultaneous Determination of Buprenorphine, Norbuprenorphine and Naloxone in Human Plasma by Liquid Chromatography/Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2016, 120, 142–152. DOI: 10.1016/j.jpba.2015.12.008.
  • Oechsler, S.; Skopp, G. Buprenorphine and Major Metabolites in Blood Specimens Collected for Drug Analysis in Law Enforcement Purposes. Forensic Sci. Int. 2010, 195, 73–77. DOI: 10.1016/j.forsciint.2009.11.015.
  • Saleh, A.; Stephanson, N. N.; Granelli, I.; Villen, T.; Beck, O. Evaluation of a Direct High-Capacity Target Screening Approach for Urine Drug Testing Using Liquid Chromatography-Time-of-Flight Mass Spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2012, 909, 6–13. DOI: 10.1016/j.jchromb.2012.10.006.
  • Farquharson, S.; Dana, K.; Shende, C.; Gladding, Z.; Newcomb, J.; Dascher, J.; Petrakis, I. L.; Arias, A. J. Rapid Identification of Buprenorphine in Patient Saliva. J. Anal. Bioanal. Tech. 2017, 08, 368. DOI: 10.4172/2155-9872.1000368.
  • Ensafi, A. A.; Khoddami, E.; Rezaei, B. A Combined Liquid Three-Phase Micro-Extraction and Differential Pulse Voltammetric Method for Preconcentration and Detection of Ultra-Trace Amounts of Buprenorphine Using a Modified Pencil Electrode. Talanta 2013, 116, 1113–1120. DOI: 10.1016/j.talanta.2013.08.016.
  • Kohler, I.; Schappler, J.; Sierro, T.; Rudaz, S. Dispersive Liquid-Liquid Microextraction Combined with Capillary Electrophoresis and Time-of-Flight Mass Spectrometry for Urine Analysis. J. Pharm. Biomed. Anal. 2013, 73, 82–89. DOI: 10.1016/j.jpba.2012.03.036.
  • Hasheminasab, K. S.; Fakhari, A. R. Development and Application of Carbon Nanotubes Assisted Electromembrane Extraction (CNTs/EME) for the Determination of Buprenorphine as a Model of Basic Drugs from Urine Samples. Anal. Chim. Acta 2013, 767, 75–80. DOI: 10.1016/j.aca.2012.12.046.
  • Fisichella, M.; Odoardi, S.; Strano-Rossi, S. High-Throughput Dispersive Liquid/Liquid Microextraction (DLLME) Method for the Rapid Determination of Drugs of Abuse, Benzodiazepines and Other Psychotropic Medications in Blood Samples by Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) and Application to Forensic Cases. Microchem. J. 2015, 123, 33–41. DOI: 10.1016/j.microc.2015.05.009.
  • Sun, W.; Qu, S.; Du, Z. Hollow Fiber Liquid-Phase Microextraction Combined with Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry for the Simultaneous Determination of Naloxone, Buprenorphine and Norbuprenorphine in Human Plasma. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2014, 951–952, 157–163. DOI: 10.1016/j.jchromb.2014.01.029.
  • Anzillotti, L.; Odoardi, S.; Strano-Rossi, S. Cleaning up Blood Samples Using a Modified "QuEChERS" Procedure for the Determination of Drugs of Abuse and Benzodiazepines by UPLC-MSMS. Forensic Sci. Int. 2014, 243, 99–106. DOI: 10.1016/j.forsciint.2014.05.005.
  • Alves, M. N.; Piccinotti, A.; Tameni, S.; Polettini, A. Evaluation of Buprenorphine LUCIO Immunoassay versus GC-MS Using Urines from a Workplace Drug Testing Program. J. Anal. Toxicol. 2013, 37, 175–178. DOI: 10.1093/jat/bkt006.
  • Castro, A. L.; Tarelho, S.; Silvestre, A.; Teixeira, H. M. Simultaneous Analysis of Some Club Drugs in Whole Blood Using Solid Phase Extraction and Gas Chromatography-Mass Spectrometry. J Forensic Legal Med. 2012, 19, 77–82. DOI: 10.1016/j.jflm.2011.12.006.
  • Chiadmi, F.; Schlatter, J. Buprenorphine and Norbuprenorphine Determination in Mice Plasma and Brain by Gas Chromatography-Mass Spectrometry. Anal. Chem. Insights 2014, 9, 9–16. DOI: 10.4137/ACI.S13515.
  • Gervais, J. R.; Hobbs, G. A. Use of an Acetyl Derivative to Improve GC-MS Determination of Norbuprenorphine in the Presence of High Concentrations of Buprenorphine in Urine. J. Anal. Toxicol. 2016, 40, 208–212. DOI: 10.1093/jat/bkw001.
  • Nahar, L. K.; Andrews, R.; Paterson, S. Validated Method for the Quantification of Buprenorphine in Postmortem Blood Using Solid-Phase Extraction and Two-Dimensional Gas Chromatography-Mass Spectrometry. J. Anal. Toxicol. 2015, 39, 519–525. DOI: 10.1093/jat/bkv051.
  • Papoutsis, I. I.; Nikolaou, P. D.; Athanaselis, S. A.; Pistos, C. M.; Spiliopoulou, C. A.; Maravelias, C. P. Development and Validation of a Highly Sensitive GC/MS Method for the Determination of Buprenorphine and nor-Buprenorphine in Blood. J. Pharm. Biomed. Anal. 2011, 54, 588–591. DOI: 10.1016/j.jpba.2010.09.023.
  • Schubert, B.; Pitterl, F.; Saxl, B.; Pavlic, M. A Novel Enzyme Immunoassay for the Detection of Buprenorphine, Norbuprenorphine and Their Glucuronides in Urine. J. Anal. Toxicol. 2019, 43, 364–368. DOI: 10.1093/jat/bkz003.
  • Boogaerts, T.; Quireyns, M.; Covaci, A.; De Loof, H.; van Nuijs, A. L. N. Analytical Method for the Simultaneous Determination of a Broad Range of Opioids in Influent Wastewater: Optimization, Validation and Applicability to Monitor Consumption Patterns. Talanta 2021, 232, 122443. DOI: 10.1016/j.talanta.2021.122443.
  • Bade, R.; Ghetia, M.; Nguyen, L.; Tscharke, B. J.; White, J. M.; Gerber, C. Simultaneous Determination of 24 Opioids, Stimulants and New Psychoactive Substances in Wastewater. MethodsX 2019, 6, 953–960. DOI: 10.1016/j.mex.2019.04.016.
  • Bjork, M. K.; Nielsen, M. K.; Markussen, L. O.; Klinke, H. B.; Linnet, K. Determination of 19 Drugs of Abuse and Metabolites in Whole Blood by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2010, 396, 2393–2401. DOI: 10.1007/s00216-009-3268-9.
  • Christoffersen, D. J.; Brasch-Andersen, C.; Thomsen, J. L.; Worm-Leonhard, M.; Damkier, P.; Brosen, K. Quantification of Morphine, Morphine 6-Glucuronide, Buprenorphine, and the Enantiomers of Methadone by Enantioselective Mass Spectrometric Chromatography in Whole Blood. Forensic Sci. Med. Pathol. 2015, 11, 193–201. DOI: 10.1007/s12024-015-9673-9.
  • Concheiro, M.; Jones, H.; Johnson, R. E.; Shakleya, D. M.; Huestis, M. A. Confirmatory Analysis of Buprenorphine, Norbuprenorphine, and Glucuronide Metabolites in Plasma by LCMSMS. Application to Umbilical Cord Plasma from Buprenorphine-Maintained Pregnant Women. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2010, 878, 13–20. DOI: 10.1016/j.jchromb.2009.11.005.
  • Concheiro, M.; Shakleya, D. M.; Huestis, M. A. Simultaneous Analysis of Buprenorphine, Methadone, Cocaine, Opiates and Nicotine Metabolites in Sweat by Liquid Chromatography Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2011, 400, 69–78. DOI: 10.1007/s00216-010-4392-2.
  • Dubois, N.; Debrus, B.; Hubert, P.; Charlier, C. Validated Quantitative Simultaneous Determination of Cocaine, Opiates and Amphetamines in Serum by U-Hplc Coupled to Tandem Mass Spectrometry. Acta Clin. Belgica 2010, 65(supl 1), 75–84. DOI: 10.1179/acb.2010.113.
  • Eckart, K.; Rohrich, J.; Breitmeier, D.; Ferner, M.; Laufenberg-Feldmann, R.; Urban, R. Development of a New Multi-Analyte Assay for the Simultaneous Detection of Opioids in Serum and Other Body Fluids Using Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2015, 1001, 1–8. DOI: 10.1016/j.jchromb.2015.06.028.
  • Guo, Q.; Du, Z. Development of a Rapid and Simultaneous Detection Method for Buprenorphine, Norbuprenorphine and Naloxone in Human Plasma Using Ultra-High Performance Liquid Chromatographytandem Mass Spectrometer with Solid-Phase Extraction. Chin. J. Chem. 2011, 29, 1922–1926. DOI: 10.1002/cjoc.201180334.
  • Kyle, A. R.; Carmical, J.; Shah, D.; Pryor, J.; Brown, S. UHPLC-MS/MS Quantification of Buprenorphine, Norbuprenorphine, Methadone, and Glucuronide Conjugates in Umbilical Cord Plasma. Biomed. Chromatogr. 2015, 29, 1567–1574. DOI: 10.1002/bmc.3460.
  • Marin, S. J.; McMillin, G. A. Quantitation of Buprenorphine, Norbuprenorphine, Buprenorphine Glucuronide, Norbuprenorphine Glucuronide, and Naloxone in Urine by LC-MS/MS. Methods Mol. Biol. 2016, 1383, 69–78. DOI: 10.1007/978-1-4939-3252-8_8.
  • Mariottini, C.; Gergov, M.; Ojanpera, I. Determination of Buprenorphine, Norbuprenorphine, Naloxone, and Their Glucuronides in Urine by Liquid Chromatography-Tandem Mass Spectrometry. Drug Test. Anal. 2021, 13, 1658–1667. DOI: 10.1002/dta.3104.
  • Øiestad, E. L.; Johansen, U.; Øiestad, Å. M. L.; Christophersen, A. S. * Drug Screening of Whole Blood by Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Anal. Toxicol. 2011, 35, 280–293. DOI: 10.1093/anatox/35.5.280.
  • Ramírez Fernández, MdM.; Van Durme, F.; Wille, S. M.; di Fazio, V.; Kummer, N.; Samyn, N. Validation of an Automated Solid-Phase Extraction Method for the Analysis of 23 Opioids, Cocaine, and Metabolites in Urine with Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Toxicol. 2014, 38, 280–288. DOI: 10.1093/jat/bku024.
  • Ransohoff, J. R.; Petrides, A. K.; Piscitello, G. J.; Flood, J. G.; Melanson, S. E. F. Urine is Superior to Oral Fluid for Detecting Buprenorphine Compliance in Patients Undergoing Treatment for Opioid Addiction. Drug Alcohol Depend. 2019, 203, 8–12. DOI: 10.1016/j.drugalcdep.2019.06.015.
  • Regina, K. J.; Kharasch, E. D. High-Sensitivity Analysis of Buprenorphine, Norbuprenorphine, Buprenorphine Glucuronide, and Norbuprenorphine Glucuronide in Plasma and Urine by Liquid Chromatography-Mass Spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2013, 939, 23–31. DOI: 10.1016/j.jchromb.2013.09.004.
  • Ristimaa, J.; Gergov, M.; Pelander, A.; Halmesmaki, E.; Ojanpera, I. Broad-Spectrum Drug Screening of Meconium by Liquid Chromatography with Tandem Mass Spectrometry and Time-of-Flight Mass Spectrometry. Anal. Bioanal. Chem. 2010, 398, 925–935. DOI: 10.1007/s00216-010-3942-y.
  • Stephenson, J. B. Analysis of Buprenorphine in Whole Blood Using Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Toxicol. 2013, 37, 495–499. DOI: 10.1093/jat/bkt074.
  • Swortwood, M. J.; Scheidweiler, K. B.; Barnes, A. J.; Jansson, L. M.; Huestis, M. A. Simultaneous Quantification of Buprenorphine, Naloxone and Phase I and II Metabolites in Plasma and Breastmilk by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1446, 70–77. DOI: 10.1016/j.chroma.2016.03.076.
  • Truver, M. T.; Swortwood, M. J. Quantitative Analysis of Novel Synthetic Opioids, Morphine and Buprenorphine in Oral Fluid by LC-MS-MS. J. Anal. Toxicol. 2018, 42, 554–561. DOI: 10.1093/jat/bky053.
  • Tzatzarakis, M. N.; Vakonaki, E.; Kovatsi, L.; Belivanis, S.; Mantsi, M.; Alegakis, A.; Liesivuori, J.; Tsatsakis, A. M. Determination of Buprenorphine, Norbuprenorphine and Naloxone in Fingernail Clippings and Urine of Patients under Opioid Substitution Therapy. J. Anal. Toxicol. 2015, 39, 313–320. DOI: 10.1093/jat/bkv003.
  • Verplaetse, R.; Tytgat, J. Development and Validation of a Sensitive UPLC-MS/MS Method for the Analysis of Narcotic Analgesics in Urine and Whole Blood in Forensic Context. Forensic Sci. Int. 2012, 215, 136–145. DOI: 10.1016/j.forsciint.2011.01.047.
  • Viaene, J.; Lanckmans, K.; Dejaegher, B.; Mangelings, D.; Vander Heyden, Y. Comparison of a Triple-Quadrupole and a Quadrupole Time-of-Flight Mass Analyzer to Quantify 16 Opioids in Human Plasma. J. Pharm. Biomed. Anal. 2016, 127, 49–59. DOI: 10.1016/j.jpba.2015.12.055.
  • Valen, A.; Leere Oiestad, A. M.; Strand, D. H.; Skari, R.; Berg, T. Determination of 21 Drugs in Oral Fluid Using Fully Automated Supported Liquid Extraction and UHPLC-MS/MS. Drug Test. Analysis 2017, 9, 808–823. DOI: 10.1002/dta.2045.
  • Hernandez, A.; Lacroze, V.; Doudka, N.; Becam, J.; Pourriere-Fabiani, C.; Lacarelle, B.; Solas, C.; Fabresse, N. Determination of Prenatal Substance Exposure Using Meconium and Orbitrap Mass Spectrometry. Toxics 2022, 10, 55. DOI: 10.3390/toxics10020055.
  • Gomar, F.; Afkhami, A.; Madrakian, T. Highly Sensitive Simultaneous Quantification of Buprenorphine and Norbuprenorphine in Human Plasma by Magnetic Solid-Phase Extraction Based on PpPDA/Fe3O4 Nanocomposite and High-Performance Liquid Chromatography. J Iran Chem SOC 2018, 15, 575–585. DOI: 10.1007/s13738-017-1257-z.
  • Birch, M. A.; Couchman, L.; Pietromartire, S.; Karna, T.; Paton, C.; McAllister, R.; Marsh, A.; Flanagan, R. J. False-Positive Buprenorphine by CEDIA in Patients Prescribed Amisulpride or Sulpiride. J. Anal. Toxicol. 2013, 37, 233–236. DOI: 10.1093/jat/bkt016.
  • Thirukumaran, M.; Singh, V.; Arao, Y.; Fujito, Y.; Nishimura, M.; Ogura, T.; Pawliszyn, J. Solid-Phase Microextraction- Probe Electrospray Ionization Devices for Screening and Quantitating Drugs of Abuse in Small Amounts of Biofluids. Talanta 2021, 231, 122317. DOI: 10.1016/j.talanta.2021.122317.
  • Somaini, L.; Saracino, M. A.; Marcheselli, C.; Zanchini, S.; Gerra, G.; Raggi, M. A. Combined Liquid Chromatography-Coulometric Detection and Microextraction by Packed Sorbent for the Plasma Analysis of Long Acting Opioids in Heroin Addicted Patients. Anal. Chim. Acta 2011, 702, 280–287. DOI: 10.1016/j.aca.2011.06.032.
  • Habibi, B.; Rostamkhani, S.; Hamidi, M. Magnetic Molecularly Imprinted Polymer Nanoparticles for Dispersive Micro Solid-Phase Extraction and Determination of Buprenorphine in Human Urine Samples by HPLC-FL. J. Iran Chem. SOC 2018, 15, 1569–1580. DOI: 10.1007/s13738-018-1355-6.
  • Montesano, C.; Simeoni, M. C.; Curini, R.; Sergi, M.; Lo Sterzo, C.; Compagnone, D. Determination of Illicit Drugs and Metabolites in Oral Fluid by Microextraction on Packed Sorbent Coupled with LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 3647–3658. DOI: 10.1007/s00216-015-8583-8.
  • Ares, A. M.; Fernandez, P.; Regenjo, M.; Fernandez, A. M.; Carro, A. M.; Lorenzo, R. A. A Fast Bioanalytical Method Based on Microextraction by Packed Sorbent and UPLC-MS/MS for Determining New Psychoactive Substances in Oral Fluid. Talanta 2017, 174, 454–461. DOI: 10.1016/j.talanta.2017.06.022.
  • Ganjavi, F.; Ansari, M.; Kazemipour, M.; Zeidabadinejad, L. Computational Design, Synthesis and Utilization of a Magnetic Molecularly Imprinted Polymer on Graphene Oxide Nanosheets for Highly Selective Extraction and Determination of Buprenorphine in Biological Fluids and Tablets. Anal. Methods 2018, 10, 5214–5226. DOI: 10.1039/C8AY01757C.
  • Mohammadi, F.; Shabani, A. M. H.; Dadfarnia, S.; Ansari, M.; Asgharinezhad, A. A. Dispersive Solid-Phase Extraction of Buprenorphine from Biological Fluids Using Metal-Organic Frameworks and Its Determination by Ultra-Performance Liquid Chromatography. J. Sep. Sci. 2020, 43, 3045–3052. DOI: 10.1002/jssc.202000221.
  • Gomez-Rios, G. A.; Liu, C.; Tascon, M.; Reyes-Garces, N.; Arnold, D. W.; Covey, T. R.; Pawliszyn, J. Open Port Probe Sampling Interface for the Direct Coupling of Biocompatible Solid-Phase Microextraction to Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem. 2017, 89, 3805–3809. DOI: 10.1021/acs.analchem.6b04737.
  • Gholivand, M. B.; Jalalvand, A. R.; Goicoechea, H. C.; Skov, T. Fabrication of an Ultrasensitive Impedimetric Buprenorphine Hydrochloride Biosensor from Computational and Experimental Angles. Talanta 2014, 124, 27–35. DOI: 10.1016/j.talanta.2014.02.017.
  • Kul, A.; Ozdemir, M.; Ozilhan, S.; Sagirli, O. A Rapid Method for the Determination of Buprenorphine and Norbuprenorphine in Urine by UPLC-MS/MS. Curr. Pharm. Anal. 2021, 17, 926–931. DOI: 10.2174/1573412916999200627010536.
  • Terrell, A. R.; Adhlakha, V.; Reddy, P. Measurement of Buprenorphine and Norbuprenorphine in Urine. Methods Mol. Biol. 2019, 1872, 51–59. DOI: 10.1007/978-1-4939-8823-5_5.
  • Phillips, S. J.; Oliveto, A.; Mancino, M. J.; Hendrickson, H. P. Development and Validation of a Rapid Liquid Chromatography/Tandem Mass Spectrometry Method to Quantitate Gabapentin and Buprenorphine in Human Serum. Rapid Commun. Mass Spectrom. 2021, 35, e9104. DOI: 10.1002/rcm.9104.
  • Coulter, C.; Garnier, M.; Moore, C. Rapid Extraction and Qualitative Screening of 30 Drugs in Oral Fluid at Concentrations Recommended for the Investigation of DUID Cases. J. Anal. Toxicol. 2022, DOI: 10.1093/jat/bkac031.
  • Liu, H. C.; Lee, H. T.; Hsu, Y. C.; Huang, M. H.; Liu, R. H.; Chen, T. J.; Lin, D. L. Direct Injection LC-MS-MS Analysis of Opiates, Methamphetamine, Buprenorphine, Methadone and Their Metabolites in Oral Fluid from Substitution Therapy Patients. J. Anal. Toxicol. 2015, 39, 472–480. DOI: 10.1093/jat/bkv041.
  • Massarini, E.; Wästerby, P.; Landström, L.; Lejon, C.; Beck, O.; Andersson, P. O. Methodologies for Assessment of Limit of Detection and Limit of Identification Using Surface-Enhanced Raman Spectroscopy. Sens. Actuators, B 2015, 207, 437–446. DOI: 10.1016/j.snb.2014.09.116.
  • Berg, J. A.; Schjott, J.; Fossan, K. O.; Riedel, B. Cross-Reactivity of the CEDIA Buprenorphine Assay in Drugs-of-Abuse Screening: Influence of Dose and Metabolites of Opioids. Subst. Abuse Rehabil 2015, 6, 131–139. DOI: 10.2147/SAR.S88935.
  • Plattner, S.; Pavlic, M.; Pitterl, F.; Schubert, B. Consumption of the Sugar Substitute Stevia Leads to Cross-Reactivity of CEDIA(R) Buprenorphine II Immunoassay. J. Anal. Toxicol. 2021, 45, 1052–1057. DOI: 10.1093/jat/bkaa167.
  • Yahyapour, M.; Ranjbar, M.; Mohadesi, A.; Rejaeinegad, M. Determination of Buprenorphine (BUP) with Molecularly Imprinted Polymer Zn/La 3 + Metal Organic Framework on Modified Glassy Carbon Electrode (GCE). Electroanalysis 2021, 34, 1012–1020. DOI: 10.1002/elan.202100266.
  • Alizadeh, T.; Atashi, F.; Akhoundian, M.; Ganjali, M. R. Highly Selective Extraction and Voltammetric Determination of the Opioid Drug Buprenorphine via a Carbon Paste Electrode Impregnated with Nano-Sized Molecularly Imprinted Polymer. Mikrochim. Acta 2019, 186, 654. DOI: 10.1007/s00604-019-3736-7.
  • Hatefi-Mehrjardi, A.; Boldaji, S. R.; Yaftian, M. R.; Shayani-Jam, H. Anion-Doped Overoxidized Polypyrrole/Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode as a New Electrochemical Sensing Platform for Buprenorphine Opioid Drug. Iran. J. Anal. Chem. 2021, 8, 56–64. DOI: 10.30473/ijac.2021.59410.1194.
  • Behpour, M.; Valipour, A.; Keshavarz, M. Determination of Buprenorphine by Differential Pulse Voltammetry on Carbon Paste Electrode Using SDS as an Enhancement Factor. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 42, 500–505. DOI: 10.1016/j.msec.2014.05.067.
  • Fakhari, A. R.; Sahragard, A.; Ahmar, H. Development of an Electrochemical Sensor Based on Reduced Graphene Oxide Modified Screen-Printed Carbon Electrode for the Determination of Buprenorphine. Electroanalysis 2014, 26, 2474–2483. DOI: 10.1002/elan.201400196.
  • Jahanbakhshi, M. In Situ Synthesis of Rhodium nanoparticles - Mesoporous Carbon Hybrid via a Novel and Facile Nanocasting Method for Simultaneous Determination of Morphine and Buprenorphine. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 479–485. DOI: 10.1016/j.msec.2018.12.019.
  • Greene, D. N.; Lehman, C. M.; McMillin, G. A. Evaluation of the Integrated E-Z Split Key® Cup II for Rapid Detection ofTwelve Drug Classes in Urine. J. Anal. Toxicol. 2011, 35, 46–53. DOI: 10.1093/anatox/35.1.46.
  • Li, S. J.; Wang, D.; Zhang, J.; Zheng, J.; Chen, W. X. Development of Test Strips for Rapid Buprenorphine Detection in Vitro. Clin. Biochem. 2013, 46, 1093–1098. DOI: 10.1016/j.clinbiochem.2013.05.001.
  • Melanson, S. E.; Snyder, M. L.; Jarolim, P.; Flood, J. G. A New Highly Specific Buprenorphine Immunoassay for Monitoring Buprenorphine Compliance and Abuse. J. Anal. Toxicol. 2012, 36, 201–206. DOI: 10.1093/jat/bks003.
  • Vindenes, V.; Yttredal, B.; Øiestad, E. L.; Waal, H.; Bernard, J. P.; Mørland, J. G.; Christophersen, A. S. Oral Fluid is aViable Alternative for Monitoring Drug Abuse: Detection of Drugs in Oral Fluid by Liquid Chromatography–TandemMass Spectrometry and Comparison to the Results from Urine Samples from Patients Treated with Methadone or Buprenorphine. J. Anal. Toxicol. 2011, 35, 32–39. DOI: 10.1093/anatox/35.1.32.
  • Bassotti, E.; Merone, G. M.; D'Urso, A.; Savini, F.; Locatelli, M.; Tartaglia, A.; Dossetto, P.; D'Ovidio, C.; de Grazia, U. A New LC-MS/MS Confirmation Method for the Determination of 17 Drugs of Abuse in Oral Fluid and Its Application to Real Samples. Forensic Sci. Int. 2020, 312, 110330. DOI: 10.1016/j.forsciint.2020.110330.
  • Belsey, S. L.; Couchman, L.; Flanagan, R. J. Buprenorphine Detection in Urine Using Liquid Chromatography-High-Resolution Mass Spectrometry: Comparison with Cloned Enzyme Donor Immunoassay (ThermoFisher) and Homogeneous Enzyme Immunoassay (Immunalysis). J. Anal. Toxicol. 2014, 38, 438–443. DOI: 10.1093/jat/bku060.
  • Danso, D.; Langman, L. J.; Jannetto, P. J. Targeted Opioid Screening Assay for Pain Management Using High-Resolution Mass Spectrometry. Methods Mol. Biol. 2019, 1872, 41–50. DOI: 10.1007/978-1-4939-8823-5_4.
  • Rochani, A.; Nguyen, V.; Becker, R.; Kraft, W.; Kaushal, G. Stability-Indicating LC-MS Method for Determination of Stability of Extemporaneously Compounded Buprenorphine Oral Syringes for Neonatal Abstinence Syndrome. J. Pediatr. Pharmacol. Ther. 2021, 26, 395–404. DOI: 10.5863/1551-6776-26.4.395.
  • Wang, J.; Yang, Z.; Lechago, J. Rapid and Simultaneous Determination of Multiple Classes of Abused Drugs and Metabolites in Human Urine by a Robust LC-MS/MS Method - Application to Urine Drug Testing in Pain Clinics. Biomed. Chromatogr. 2013, 27, 1463–1480. DOI: 10.1002/bmc.2945.
  • Guo, A. Y.; Ma, J. D.; Best, B. M.; Atayee, R. S. Urine Specimen Detection of Concurrent Nonprescribed Medicinal and Illicit Drug Use in Patients Prescribed Buprenorphine. J. Anal. Toxicol. 2013, 37, 636–641. DOI: 10.1093/jat/bkt082.
  • Bakke, E.; Hoiseth, G.; Arnestad, M.; Gjerde, H. Detection of Drugs in Simultaneously Collected Samples of Oral Fluid and Blood. J. Anal. Toxicol. 2019, 43, 228–232. DOI: 10.1093/jat/bky079.
  • Agostini, M.; Renzoni, C.; Pierini, E.; Piergiovanni, M.; Termopoli, V.; Famiglini, G.; Palma, P.; Cappiello, A. Rapid, Hydrolysis-Free, Dilute-and-Shoot Method for the Determination of Buprenorphine, Norbuprenorphine and Their Glucuronides in Urine Samples Using UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2019, 166, 236–243. DOI: 10.1016/j.jpba.2019.01.014.
  • Hegstad, S.; Hermansson, S.; Betner, I.; Spigset, O.; Falch, B. M. Screening and Quantitative Determination of Drugs of Abuse in Diluted Urine by UPLC-MS/MS. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2014, 947–948, 83–95. DOI: 10.1016/j.jchromb.2013.12.014.
  • Kirk, L. M.; Brown, S. D. Beyond-Use Date Determination of Buprenorphine Buccal Solution Using a Stability-Indicating High-Performance Liquid Chromatographic Assay. J. Feline Med. Surg. 2015, 17, 1035–1040. DOI: 10.1177/1098612X15569329.
  • Sisco, E.; Verkouteren, J.; Staymates, J.; Lawrence, J. Rapid Detection of Fentanyl, Fentanyl Analogues, and Opioids for on-Site or Laboratory Based Drug Seizure Screening Using Thermal Desorption DART-MS and Ion Mobility Spectrometry. Forensic Chem. 2017, 4, 108–115. DOI: 10.1016/j.forc.2017.04.001.
  • Alizadeh, S.; Hasanzadeh, M.; Irandoost, A. Tramadol, Methadone and Buprenorphine-AuNPs Kit Based on Chemometrics Tools and Software. Sens Lett. 2020, 18, 227–235. DOI: 10.1166/sl.2020.4212.
  • Mundhey, D.; Rajkondawar, V.; Daud, A.; Sapkal, N. A Study of Method Development, Validation and Forced Degradation for Quantification of Buprenorphine Hydrochloride in a Microemulsion Formulation. J. Appl. Pharm. Sci. 2016, 6, 159–169. DOI: 10.7324/JAPS.2016.601022.
  • Concheiro, M.; Gray, T. R.; Shakleya, D. M.; Huestis, M. A. High-Throughput Simultaneous Analysis of Buprenorphine, Methadone, Cocaine, Opiates, Nicotine, and Metabolites in Oral Fluid by Liquid Chromatography Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2010, 398, 915–924. DOI: 10.1007/s00216-010-3903-5.
  • Di Corcia, D.; Lisi, S.; Pirro, V.; Gerace, E.; Salomone, A.; Vincenti, M. Determination of Pharmaceutical and Illicit Drugs in Oral Fluid by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2013, 927, 133–141. DOI: 10.1016/j.jchromb.2013.01.025.
  • Luthi, G.; Blangy, V.; Eap, C. B.; Ansermot, N. Buprenorphine and Norbuprenorphine Quantification in Human Plasma by Simple Protein Precipitation and Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2013, 77, 1–8. DOI: 10.1016/j.jpba.2012.12.023.
  • Zhurkovich, I. K.; Rudenko, A. O.; Chelovechkova, V. V.; Merkusheva, I. A.; Lugovkina, N. V.; Kovrov, N. G.; Pchelintsev, M. V.; Verbitskaya, E. V.; Zvartau, É. É. Determination of Buprenorphine and Naloxone in Patient Blood Plasma Using HPLC-MS. Pharm. Chem. J. 2015, 48, 690–695. DOI: 10.1007/s11094-015-1161-8.
  • Cohier, C.; Salle, S.; Fontova, A.; Megarbane, B.; Roussel, O. Determination of Buprenorphine, Naloxone and Phase I and Phase II Metabolites in Rat Whole Blood by LC-MS/MS. J. Pharm. Biomed. Anal. 2020, 180, 113042. DOI: 10.1016/j.jpba.2019.113042.
  • Joshi, A.; Parris, B.; Liu, Y.; Heidbreder, C.; Gerk, P. M.; Halquist, M. Quantitative Determination of Buprenorphine, Naloxone and Their Metabolites in Rat Plasma Using Hydrophilic Interaction Liquid Chromatography Coupled with Tandem Mass Spectrometry. Biomed. Chromatogr. 2017, 31, e3785. DOI: 10.1002/bmc.3785.
  • Bassan, D. M.; Erdmann, F.; Krull, R. Quantitative Determination of 43 Common Drugs and Drugs of Abuse in Human Serum by HPLC-MS/MS. Anal. Bioanal. Chem. 2011, 400, 43–50. DOI: 10.1007/s00216-011-4784-y.
  • Farmany, A.; Shamsara, M.; Mahdavi, H. Enhanced Electrochemical Biosensing of Buprenorphine Opioid Drug by Highly Stabilized Magnetic Nanocrystals. Sens. Actuators, B 2017, 239, 279–285. DOI: 10.1016/j.snb.2016.08.007.
  • Asimakopoulos, A. G.; Kannan, P.; Higgins, S.; Kannan, K. Determination of 89 Drugs and Other Micropollutants in Unfiltered Wastewater and Freshwater by LC-MS/MS: An Alternative Sample Preparation Approach. Anal. Bioanal. Chem. 2017, 409, 6205–6225. DOI: 10.1007/s00216-017-0561-x.
  • Patel, V. N.; Jasani, M. H.; Chaudhary, A. B.; Pate, B. D. Stability Indicating Analytical Method Development and Validation for Estimation of Buprenorphine HCL and Naloxone HCL Dihydrate. World J. Pharm. Pharm. Sci. 2016, 5, 789–805. DOI: 10.20959/wjpps20166-6672.
  • Di Corcia, D.; D'Urso, F.; Gerace, E.; Salomone, A.; Vincenti, M. Simultaneous Determination in Hair of Multiclass Drugs of Abuse (Including THC) by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2012, 899, 154–159. DOI: 10.1016/j.jchromb.2012.05.003.
  • Favretto, D.; Vogliardi, S.; Stocchero, G.; Nalesso, A.; Tucci, M.; Ferrara, S. D. High Performance Liquid Chromatography-High Resolution Mass Spectrometry and Micropulverized Extraction for the Quantification of Amphetamines, Cocaine, Opioids, Benzodiazepines, Antidepressants and Hallucinogens in 2.5 mg Hair Samples. J. Chromatogr. A 2011, 1218, 6583–6595. DOI: 10.1016/j.chroma.2011.07.050.
  • Pichini, S.; Gottardi, M.; Marchei, E.; Svaizer, F.; Pellegrini, M.; Rotolo, M. C.; Algar, O. G.; Pacifici, R. Rapid Extraction, Identification and Quantification of Drugs of Abuse in Hair by Immunoassay and Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. Clin. Chem. Lab. Med. 2014, 52, 679–686. DOI: 10.1515/cclm-2013-0784.
  • Svaizer, F.; Lotti, A.; Gottardi, M.; Miozzo, M. P. Buprenorphine Detection in Hair Samples by Immunometric Screening Test: Preliminary Experience. Forensic Sci. Int. 2010, 196, 118–120. DOI: 10.1016/j.forsciint.2009.12.047.
  • Mundhey, D. A.; Sapkal, N. P.; Daud, A. S. Simultaneous Quantification of Buprenorphine Hcl and Naloxone HCL by Vierordt’s Method. Pharm. Pharm. Sci. 2016, 8, 101–107.
  • Pathy, K. Route Evaluation and Analytical HPLC Method Development of Buprenorphine, Naloxone, and Comparison Overall Efficiency of Naltrexone Nalbuphine Traces the Evolution of Various Approaches. Scholarly J. Food Nutr. 2018, 1, 17–33. DOI: 10.32474/sjfn.2018.01.000105.
  • Norman, C.; McKirdy, B.; Walker, G.; Dugard, P.; NicDaeid, N.; McKenzie, C. Large-Scale Evaluation of Ion Mobility Spectrometry for the Rapid Detection of Synthetic Cannabinoid Receptor Agonists in Infused Papers in Prisons. Drug Test. Anal. 2021, 13, 644–663. DOI: 10.1002/dta.2945.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.