770
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection

, , , , ORCID Icon, & show all

References

  • Crosby, D.; Bhatia, S.; Brindle, K. M.; Coussens, L. M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R. C.; Gambhir, S. S.; Kuhn, P.; et al. Early Detection of Cancer. Science 2022, 375, 9040. DOI: 10.1126/science.aay9040.
  • Wu, L.; Qu, X. Cancer Biomarker Detection: Recent Achievements and Challenges. Chem. Soc. Rev. 2015, 44, 2963–2997.
  • Keller, L.; Belloum, Y.; Wikman, H.; Pantel, K. Clinical Relevance of Blood-Based ctDNA Analysis: Mutation Detection and Beyond. Br. J. Cancer 2021, 124, 345–358. DOI: 10.1038/s41416-020-01047-5.
  • Landegren, U.; Hammond, M. Cancer Diagnostics Based on Plasma Protein Biomarkers: Hard Times but Great Expectations. Mol. Oncol. 2021, 15, 15, 1715–1726.
  • Vasseur, A.; Kiavue, N.; Bidard, F.-C.; Pierga, J.-Y.; Cabel, L. Clinical Utility of Circulating Tumor Cells: An Update. Mol. Oncol. 2021, 15, 1647–1666.
  • Xiong, H.; Huang, Z.; Yang, Z.; Lin, Q.; Yang, B.; Fang, X.; Liu, B.; Chen, H.; Kong, J. Recent Progress in Detection and Profiling of Cancer Cell-Derived Exosomes. Small 2021, 17, 2007971. DOI: 10.1002/smll.202007971.
  • Jiang, Y.; Tang, Y.; Miao, P. Polydopamine Nanosphere@Silver Nanoclusters for Fluorescence Detection of Multiplex Tumor Markers. Nanoscale 2019, 11, 8119–8123. DOI: 10.1039/c9nr01307e.
  • Jiang, Y.; Miao, P. DNA Dumbbell and Chameleon Silver Nanoclusters for miRNA Logic Operations. Research (Wash D C) 2020, 2020, 1091605. DOI: 10.34133/2020/1091605.
  • Chakraborty, G.; Park, I.-H.; Medishetty, R.; Vittal, J. J. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021, 121, 3751–3891. DOI: 10.1021/acs.chemrev.0c01049.
  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. DOI: 10.1126/science.1230444.
  • Yang, J.; Yang, Y. W. Metal-Organic Frameworks for Biomedical Applications. Small 2020, 16, 1906846. DOI: 10.1002/smll.201906846.
  • Liang, W.; Wied, P.; Carraro, F.; Sumby, C. J.; Nidetzky, B.; Tsung, C.-K.; Falcaro, P.; Doonan, C. J. Metal-Organic Framework-Based Enzyme Biocomposites. Chem. Rev. 2021, 121, 1077–1129.
  • Ryu, U.; Jee, S.; Rao, P. C.; Shin, J.; Ko, C.; Yoon, M.; Park, K. S.; Choi, K. M. Recent Advances in Process Engineering and Upcoming Applications of Metal-Organic Frameworks. Coordin. Chem. Rev. 2021, 426, 213544. DOI: 10.1016/j.ccr.2020.213544.
  • Safaei, M.; Foroughi, M. M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A Review on Metal-Organic Frameworks: Synthesis and Applications. TrAC-Trend. Anal. Chem. 2019, 118, 401–425. DOI: 10.1016/j.trac.2019.06.007.
  • Afreen, S.; He, Z.; Xiao, Y.; Zhu, J. J. Nanoscale Metal-Organic Frameworks in Detecting Cancer Biomarkers. J. Mater. Chem. B 2020, 8, 1338–1349. DOI: 10.1039/c9tb02579k.
  • Mohan, B.; Kumar, S.; Xi, H.; Ma, S.; Tao, Z.; Xing, T.; You, H.; Zhang, Y.; Ren, P. Fabricated Metal-Organic Frameworks (MOFs) as Luminescent and Electrochemical Biosensors for Cancer Biomarkers Detection. Biosens. Bioelectron. 2022, 197, 113738.
  • Xu, W.; Jiao, L.; Wu, Y.; Hu, L.; Gu, W.; Zhu, C. Metal-Organic Frameworks Enhance Biomimetic Cascade Catalysis for Biosensing. Adv. Mater. 2021, 33, 2005172.
  • Xu, Q. Y.; Tan, Z.; Liao, X. W.; Wang, C. Recent Advances in Nanoscale Metal-Organic Frameworks Biosensors for Detection of Biomarkers. Chinese Chem. Lett. 2022, 33, 22–32. DOI: 10.1016/j.cclet.2021.06.015.
  • Zhang, S.; Rong, F.; Guo, C.; Duan, F.; He, L.; Wang, M.; Zhang, Z.; Kang, M.; Du, M. Metal–Organic Frameworks (MOFs) Based Electrochemical Biosensors for Early Cancer Diagnosis in Vitro. Coordin. Chem. Rev. 2021, 439, 213948. DOI: 10.1016/j.ccr.2021.213948.
  • Bao, T.; Fu, R. B.; Wen, W.; Zhang, X. H.; Wang, S. F. Target-Driven Cascade-Amplified Release of Loads from DNA-Gated Metal-Organic Frameworks for Electrochemical Detection of Cancer Biomarker. ACS Appl. Mater. Interfaces 2020, 12, 2087–2094. DOI: 10.1021/acsami.9b18805.
  • Zhao, L.; Yang, J.; Gong, M.; Li, K.; Gu, J. Specific Screening of Prostate Cancer Individuals Using an Enzyme-Assisted Substrate Sensing Platform Based on Hierarchical MOFs with Tunable Mesopore Size. J. Am. Chem. Soc. 2021, 143, 15145–15151.
  • Liang, Z.; Hao, C.; Chen, C.; Ma, W.; Sun, M.; Xu, L.; Xu, C.; Kuang, H. Ratiometric FRET Encoded Hierarchical ZrMOF @ Au Cluster for Ultrasensitive Quantifying MicroRNA in Vivo. Adv. Mater. 2022, 34, 2107449. DOI: 10.1002/adma.202107449.
  • Li, Y.; Yuan, J.; Zhan, S.; Hu, J.; Guo, Y.; Ding, L.; Huang, X.; Xiong, Y. Dynamic Light Scattering Immunosensor Based on Metal-Organic Framework Mediated Gold Growth Strategy for the Ultra-Sensitive Detection of Alpha-Fetoprotein. Sensor Actuator B. Chem. 2021, 341, 130030. DOI: 10.1016/j.snb.2021.130030.
  • Liu, X.; Gao, X.; Yang, L.; Zhao, Y.; Li, F. Metal-Organic Framework-Functionalized Paper-Based Electrochemical Biosensor for Ultrasensitive Exosome Assay. Anal Chem. 2021, 93, 11792–11799.
  • Huang, Y.; Liang, R. Q.; Yu, H.; An, S. J.; Han, J.; Xie, G.; Chen, S. P. Thi-Au-Fe3O4 Confined in ZIF-8 Nanoreactor as Signal-Amplifying Tag for Constructing High-Efficiency Electrochemical Platform. Sensor Actuator B. Chem. 2020, 305, 127496. DOI: 10.1016/j.snb.2019.127496.
  • Gao, J.; Liu, Y.; Zheng, B.; Liu, J.; Fang, W.; Liu, D.; Sun, X.; Tang, H.; Li, C. Light-Activated and Self-Driven Autonomous DNA Nanomachine Enabling Fluorescence Imaging of MicroRNA in Living Cells with Exceptional Precision and Efficiency. ACS Appl. Mater. Interfaces 2021, 13, 31485–31494. DOI: 10.1021/acsami.1c07333.
  • Cao, Y.; Wang, Y.; Yu, X. M.; Jiang, X. H.; Li, G.; Zhao, J. Identification of Programmed Death Ligand-1 Positive Exosomes in Breast Cancer Based on DNA Amplification-Responsive Metal-Organic Frameworks. Biosens. Bioelectron. 2020, 166, 112452.
  • Wang, H. M.; Wang, A. J.; Yuan, P. X.; Feng, J. J. Flower-Like Metal-Organic Framework Microsphere as a Novel Enhanced ECL Luminophore to Construct the Coreactant-Free Biosensor for Ultrasensitive Detection of Breast Cancer 1 Gene. Sensor Actuator B. Chem. 2020, 320, 128395. DOI: 10.1016/j.snb.2020.128395.
  • Dong, X.; Du, Y.; Zhao, G. H.; Cao, W.; Fan, D. W.; Kuang, X.; Wei, Q.; Ju, H. X. Dual-Signal Electrochemiluminescence Immunosensor for Neuron-Specific Enolase Detection Based on “Dual-Potential” Emitter Ru(Bpy)32+ Functionalized Zinc-Based Metal-Organic Frameworks. Biosens. Bioelectron. 2021, 192, 113505. DOI: 10.1016/j.bios.2021.113505.
  • Guo, L.; Mu, Z. D.; Yan, B.; Wang, J.; Zhou, J.; Bai, L. J. A Novel Electrochemical Biosensor for Sensitive Detection of Non-Small Cell Lung Cancer ctDNA Using NG-PEI-COFTAPB-TFPB as Sensing Platform and Fe-MOF for Signal Enhancement. Sensor Actuator B. Chem. 2022, 350, 130874. DOI: 10.1016/j.snb.2021.130874.
  • Li, Y. L.; Zhang, C. L.; He, Y. J.; Gao, J. N.; Li, W.; Cheng, L.; Sun, F. J.; Xia, P. Y.; Wang, Q. A Generic and Non-Enzymatic Electrochemical Biosensor Integrated Molecular Beacon-Like Catalyzed Hairpin Assembly Circuit with MOF@Au@G-Triplex/Hemin Nanozyme for Ultrasensitive Detection of miR-721. Biosens. Bioelectron. 2022, 203, 114051.
  • Yang, J.; Yin, X.; Zhang, L.; Zhang, X.; Lin, Y.; Zhuang, L.; Liu, W.; Zhang, R.; Yan, X.; Shi, L.; et al. Defective Fe Metal-Organic Frameworks Enhance Metabolic Profiling for High-Accuracy Diagnosis of Human Cancers. Adv. Mater. 2022, 34, 2201422. DOI: 10.1002/adma.202201422.
  • Xue, Y.; Wang, Y.; Feng, S. N.; Yan, M. X.; Huang, J. S.; Yang, X. R. A Dual-Amplification Mode and Cu-Based Metal-Organic Frameworks Mediated Electrochemical Biosensor for Sensitive Detection of microRNA. Biosens. Bioelectron. 2022, 202, 113992.
  • Kong, W. S.; Xiang, M. H.; Xia, L.; Zhang, M. Y.; Kong, R. M.; Qu, F. L. In-Situ Synthesis of 3D Cu2O@Cu-Based MOF Nanobelt Arrays with Improved Conductivity for Sensitive Photoelectrochemical Detection of Vascular Endothelial Growth Factor 165. Biosens. Bioelectron. 2020, 167, 112481.
  • Wang, Y. D.; Mao, Z. H.; Chen, Q.; Koh, K.; Hu, X. J.; Chen, H. X. Rapid and Sensitive Detection of PD-L1 Exosomes Using Cu-TCPP 2D MOF as a SPR Sensitizer. Biosens. Bioelectron. 2022, 201, 113954.
  • Kouzegaran, V. J.; Farhadi, K.; Forough, M.; Bahram, M.; Çetinkol, Ö. P. Highly-Sensitive and Fast Detection of Human Telomeric G-Quadruplex DNA Based on a Hemin-Conjugated Fluorescent Metal-Organic Framework Platform. Biosens. Bioelectron. 2021, 178, 112999.
  • Wang, C.; Li, Z. H.; Ju, H. X. Copper-Doped Terbium Luminescent Metal Organic Framework as an Emitter and a Co-Reaction Promoter for Amplified Electrochemiluminescence Immunoassay. Anal. Chem. 2021, 93, 14878–14884. DOI: 10.1021/acs.analchem.1c03988.
  • Wang, M. H.; Hu, M. Y.; Li, Z. Z.; He, L. H.; Song, Y. P.; Jia, Q. J.; Zhang, Z. H.; Du, M. Construction of Tb-MOF-On-Fe-MOF Conjugate as a Novel Platform for Ultrasensitive Detection of Carbohydrate Antigen 125 and Living Cancer Cells. Biosens. Bioelectron. 2019, 142, 111536. DOI: 10.1016/j.bios.2019.111536.
  • Zhou, N.; Su, F. F.; Guo, C. P.; He, L. H.; Jia, Z. K.; Wang, M. H.; Jia, Q. J.; Zhang, Z. H.; Lu, S. Y. Two-Dimensional Oriented Growth of Zn-MOF-on-Zr-MOF Architecture: A Highly Sensitive and Selective Platform for Detecting Cancer Markers. Biosens. Bioelectron. 2019, 123, 51–58.
  • Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.
  • Bai, Y.; Dou, Y. B.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-Based Metal-Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev. 2016, 45, 2327–2367. DOI: 10.1039/C5CS00837A.
  • Yu, K. H.; Wei, T. X.; Li, Z. J.; Li, J. Y.; Wang, Z. Y.; Dai, Z. H. Construction of Molecular Sensing and Logic Systems Based on Site-Occupying Effect-Modulated MOF–DNA Interaction. J. Am. Chem. Soc. 2020, 142, 21267–21271.
  • Dai, Y. F.; Liu, C. C. Recent Advances on Electrochemical Biosensing Strategies toward Universal Point-of-Care Systems. Angew. Chem. Int. Ed. Engl. 2019, 58, 12355–12368.
  • Chang, J. F.; Wang, X.; Wang, J.; Li, H. Y.; Li, F. Nucleic Acid-Functionalized Metal-Organic Framework-Based Homogeneous Electrochemical Biosensor for Simultaneous Detection of Multiple Tumor Biomarkers. Anal. Chem. 2019, 91, 3604–3610.
  • Gu, C. X.; Guo, C. P.; Li, Z. Z.; Wang, M. H.; Zhou, N.; He, L. H.; Zhang, Z. H.; Du, M. Bimetallic ZrHf-Based Metal-Organic Framework Embedded with Carbon Dots: Ultra-Sensitive Platform for Early Diagnosis of HER2 and HER2-Overexpressed Living Cancer Cells. Biosens. Bioelectron. 2019, 134, 8–15.
  • Gu, C. C.; Bai, L. P.; Pu, L.; Gai, P. P.; Li, F. Highly Sensitive and Stable Self-Powered Biosensing for Exosomes Based on Dual Metal-Organic Frameworks Nanocarriers. Biosens. Bioelectron. 2021, 176, 112907.
  • Yang, H. S.; Zhao, J. Y.; Dong, J. B.; Wen, L.; Hu, Z. K.; He, C. J.; Xu, F. L.; Huo, D. Q.; Hou, C. J. Simultaneous Detection of Exosomal MicroRNAs by Nucleic Acid Functionalized Disposable Paper-Based Sensors. Chem. Eng. J. 2022, 438, 135594. DOI: 10.1016/j.cej.2022.135594.
  • Han, Q. Y.; Zhang, D. D.; Zhang, R.; Tang, J. P.; Xu, K. Y.; Shao, M. Z.; Li, Y. Y.; Du, P. Y.; Zhang, R. Z.; Yang, D. Y.; et al. DNA-Functionalized Metal-Organic Framework Ratiometric Nanoprobe for MicroRNA Detection and Imaging in Live Cells. Sensor Actuator B. Chem. 2022, 361, 131676. DOI: 10.1016/j.snb.2022.131676.
  • Li, C. L.; Feng, X. Q.; Yang, S. H.; Xu, H.; Yin, X. X.; Yu, Y. Y. Capture, Detection, and Simultaneous Identification of Rare Circulating Tumor Cells Based on a Rhodamine 6G-Loaded Metal-Organic Framework. ACS Appl. Mater. Interfaces 2021, 13, 52406–52416. DOI: 10.1021/acsami.1c15838.
  • Zhang, P.; Ouyang, Y.; Sohn, Y. S.; Fadeev, M.; Karmi, O.; Nechushtai, R.; Stein, I.; Pikarsky, E.; Willner, I. miRNA-Guided Imaging and Photodynamic Therapy Treatment of Cancer Cells Using Zn (II)-Protoporphyrin IX-Loaded Metal–Organic Framework Nanoparticles. ACS Nano. 2022, 16, 1791–1801. DOI: 10.1021/acsnano.1c04681.
  • Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Photoelectrochemical Bioanalysis: The State of the Art. Chem. Soc. Rev. 2015, 44, 729–741.
  • Liu, X. J.; Zhao, Y. C.; Li, F. Nucleic Acid-Functionalized Metal-Organic Famework for Ultrasensitive Immobilization-Free Photoelectrochemical Biosensing. Biosens. Bioelectron. 2021, 173, 112832. DOI: 10.1016/j.bios.2020.112832.
  • Chen, J.; Hao, L. W.; Hu, J. Q.; Zhu, K.; Li, Y.; Xiong, S. C.; Huang, X. L.; Xiong, Y. H.; Tang, B. Z. A Universal Boronate-Affinity Crosslinking-Amplified Dynamic Light Scattering Immunoassay for Point-of-Care Glycoprotein Detection. Angew Chem. Int. Ed. Engl. 2022, 61, e202112031.
  • Li, Y.; Hu, M. Y.; Huang, X. Y.; Wang, M. H.; He, L. H.; Song, Y. P.; Jia, Q. J.; Zhou, N.; Zhang, Z. H.; Du, M. Multicomponent Zirconium-Based Metal-Organic Frameworks for Impedimetric Aptasensing of Living Cancer Cells. Sensor Actuator B. Chem. 2020, 306, 127608. DOI: 10.1016/j.snb.2019.127608.
  • Song, Y. X.; Lu, S. Y.; Sun, S. H.; Guo, W. T.; Su, J. X.; Meng, G. P.; Hai, J.; Wang, B. D. A Fluorometric and Optical Signal Dual-Readout Detection of Alkaline Phosphatase Activity in Living Cells Based on ATP-Mediated Porphyrin MOFs. Sensor Actuator B. Chem. 2021, 342, 130017. DOI: 10.1016/j.snb.2021.130017.
  • Yang, C.; Wang, K.; Li, Z. H.; Mo, L. T.; Lin, W. Y. A Two-Photon Metal-Organic Framework Nanoprobe with Catalytic Hairpin Assembly for Amplified MicroRNA Imaging in Living Cells and Tissues. Sensor Actuator B. Chem. 2022, 359, 131593. DOI: 10.1016/j.snb.2022.131593.
  • Zhang, N.; Sun, N. R.; Deng, C. H. A Hydrophilic Magnetic MOF for the Consecutive Enrichment of Exosomes and Exosomal Phosphopeptides. Chem. Commun. (Camb.) 2020, 56, 13999–14002.
  • Biswas, S.; Lan, Q. C.; Xie, Y.; Sun, X.; Wang, Y. Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Carbohydrate Antigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT. ACS Appl. Mater. Interfaces 2021, 13, 3295–3302. DOI: 10.1021/acsami.0c14946.
  • Kong, X. J.; Ji, X. T.; He, T.; Xie, L. H.; Zhang, Y. Z.; Lv, H. Y.; Ding, C. F.; Li, J. R. A Green-Emission Metal-Organic Framework-Based Nanoprobe for Imaging Dual Tumor Biomarkers in Living Cells. ACS Appl. Mater. Interfaces 2020, 12, 35375–35384. DOI: 10.1021/acsami.0c10038.
  • Wu, S.; Han, Y. W.; Wang, L.; Li, J. L.; Sun, Z. W.; Zhang, M. L.; Liu, P.; Li, G. X. Sensor Array Fabricated with Nanoscale Metal-Organic Frameworks for the Histopathological Examination of Colon Cancer. Anal. Chem. 2019, 91, 10772–10778.
  • Wu, Y. W.; Chen, X. L.; Luo, X. G.; Yang, M.; Hou, C. J.; Huo, D. Q. Bimetallic Organic Framework Cu/UiO-66 Mediated “Fluorescence Turn-On” Method for Ultrasensitive and Rapid Detection of Carcinoembryonic Antigen (CEA). Anal. Chim. Acta 2021, 1183, 339000. DOI: 10.1016/j.aca.2021.339000.
  • Du, L. P.; Chen, W.; Wang, J.; Cai, W.; Kong, S.; Wu, C. S. Folic Acid-Functionalized Zirconium Metal-Organic Frameworks Based Electrochemical Impedance Biosensor for the Cancer Cell Detection. Sensor Actuator B. Chem. 2019, 301, 127073. DOI: 10.1016/j.snb.2019.127073.
  • Sha, L. J.; Zhu, M. C.; Lin, F. Q.; Yu, X. M.; Dong, L. J.; Wu, L. C.; Ding, R.; Wu, S. A.; Xu, J. J. Stable DNA Aptamer-Metal-Organic Framework as Horseradish Peroxidase Mimic for Ultra-Sensitive Detection of Carcinoembryonic Antigen in Serum. Gels 2021, 7, 181. DOI: 10.3390/gels7040181.
  • Xia, Z. P.; Li, D.; Deng, W. Identification and Detection of Volatile Aldehydes as Lung Cancer Biomarkers by Vapor Generation Combined with Paper-Based Thin-Film Microextraction. Anal. Chem. 2021, 93, 4924–4931.
  • Su, Y. C.; Cockerill, I.; Wang, Y. D.; Qin, Y. X.; Chang, L. Q.; Zheng, Y. F.; Zhu, D. H. Zinc-Based Biomaterials for Regeneration and Therapy. Trends Biotechnol. 2019, 37, 428–441.
  • Safdar Ali, R.; Meng, H. M.; Li, Z. H. Zinc-Based Metal-Organic Frameworks in Drug Delivery, Cell Imaging, and Sensing. Molecules 2022, 27, 100. DOI: 10.3390/molecules27010100.
  • Huang, S.; Kou, X.; Shen, J.; Chen, G.; Ouyang, G. “Armor-Plating” Enzymes with Metal-Organic Frameworks (MOFs). Angew Chem. Int. Ed. Engl. 2020, 59, 8786–8798.
  • Wang, C.; Liao, K. Recent Advances in Emerging Metal- and Covalent-Organic Frameworks for Enzyme Encapsulation. ACS Appl. Mater. Interfaces 2021, 13, 56752–56776. DOI: 10.1021/acsami.1c13408.
  • Wang, X. L.; Lan, P. C.; Ma, S. Q. Metal-Organic Frameworks for Enzyme Immobilization: Beyond Host Matrix Materials. ACS Cent. Sci. 2020, 6, 1497–1506.
  • Li, F. L.; Xu, M. D.; Zhuang, J. Y. Dual Biomineralized Metal-Organic Frameworks-Mediated Conversion of Chemical Energy to Electricity Enabling Portable Pec Sensing of Telomerase Activity in Bladder Cancer Tissues. Biosens. Bioelectron. 2022, 204, 114070.
  • Feng, J. J.; Liang, X. Y.; Ma, Z. F. New Immunoprobe: Dual-Labeling ZIF-8 Embellished with Multifunctional Bovine Serum Albumin Lamella for Electrochemical Immunoassay of Tumor Marker. Biosens. Bioelectron. 2021, 175, 112853.
  • Kong, L. Y.; Lv, S. Z.; Qiao, Z. J.; Yan, Y. C.; Zhang, J.; Bi, S. Metal-Organic Framework Nanoreactor-Based Electrochemical Biosensor Coupled with Three-Dimensional DNA Walker for Label-Free Detection of MicroRNA. Biosens. Bioelectron. 2022, 207, 114188.
  • Zhang, Z.; Xu, Y.; Zhang, Y.; Ma, B. C.; Ma, Z. F.; Han, H. L. Antifouling and Sensitive Biosensor Based on Multifunctional Peptide and Urease@ZIFs for Metal Matrix Protease-7. Sensor Actuator B. Chem. 2022, 364, 131844. DOI: 10.1016/j.snb.2022.131844.
  • Hang, T. X.; Li, C. P.; Liang, D. D.; Li, S. R.; Zhou, H.; Ge, P.; Zhu, X. D.; Liu, T. F. Metal-Organic Frameworks-Based Hierarchical Heterojunction Coupling with Plasmonic Nanoshells for Self-Powered Photoelectrochemical Immunoassay. Chem. Eng. J. 2022, 431, 133465. DOI: 10.1016/j.cej.2021.133465.
  • Wang, Y. H.; Shao, Z. S.; Cheng, C.; Wang, J. L.; Song, Z.; Song, W. J.; Zheng, F.; Wang, H. S. Fluorescent Oligonucleotide Indicators for Ratiometric MicroRNA Sensing on Metal-Organic Frameworks. Chem. Eng. J. 2022, 437, 135296. DOI: 10.1016/j.cej.2022.135296.
  • Gao, J. L.; Yuheng, L.; Liu, J. X.; Tang, H. W.; Li, C. Y. A Photoresponsive and Metal-Organic Framework Encapsulated DNA Tetrahedral Entropy-Driven Amplifier for High-Performance Imaging Intracellular MicroRNA. Anal. Chem. 2021, 93, 16638–16645.
  • Wang, D. D.; Zhang, J.; Yu, Q. Q.; Zhang, K.; Chen, T. T.; Chu, X. Biomineralized Zeolitic Imidazolate Framework-8 Nanoparticles Enable Polymerase-Driven DNA Biocomputing for Reliable Cell Identification. Anal. Chem. 2022, 94, 4794–4802.
  • Wang, Y.; Sha, L. J.; Mao, H. R.; Zhao, J.; Tu, M. Metal-Organic Framework-Encapsulated Micellar Silver Nanoparticles for Tumor Microenvironment-Adaptive Electrochemical Determination of Matrix Metalloproteinase-2. Electrochim. Acta 2022, 411, 140100. DOI: 10.1016/j.electacta.2022.140100.
  • Wu, S.; Sun, Z. W.; Peng, Y.; Han, Y. W.; Li, J. L.; Zhu, S.; Yin, Y. M.; Li, G. X. Peptide-Functionalized Metal-Organic Framework Nanocomposite for Ultrasensitive Detection of Secreted Protein Acidic and Rich in Cysteine with Practical Application. Biosens. Bioelectron. 2020, 169, 112613. DOI: 10.1016/j.bios.2020.112613.
  • Yao, T.; Feng, J. J.; Chu, C. S.; Ma, Z. F.; Han, H. L. Cascade Controlled Release System Based on pH-Responsive ZIF-8 Capsule and Enzyme-Responsive Hyaluronic Acid Hydrogel for Tumor Marker Detection Using Electro-Readout-Mode. Sensor Actuator B. Chem. 2021, 348, 130701. DOI: 10.1016/j.snb.2021.130701.
  • Zhang, J.; Fu, H. Q.; Chu, X. Metal-Organic Framework Nanoparticles Power DNAzyme Logic Circuits for Aberrant MicroRNA Imaging. Anal. Chem. 2021, 93, 14675–14684.
  • Ma, X. G.; Gao, W. Y.; Du, F. X.; Yuan, F.; Yu, J.; Guan, Y. R.; Sojic, N.; Xu, G. B. Rational Design of Electrochemiluminescent Devices. Acc. Chem. Res. 2021, 54, 2936–2945.
  • Bahari, D.; Babamiri, B.; Moradi, K.; Salimi, A.; Hallaj, R. Graphdiyne Nanosheet as a Novel Sensing Platform for Self-Enhanced Electrochemiluminescence of MOF Enriched Ruthenium (II) in the Presence of Dual Co-Reactants for Detection of Tumor Marker. Biosens. Bioelectron. 2022, 195, 113657.
  • Huang, L. Y.; Hu, X.; Shan, H. Y.; Yu, L.; Gu, Y. X.; Wang, A. J.; Shan, D.; Yuan, P. X.; Feng, J. J. High-Performance Electrochemiluminescence Emitter of Metal Organic Framework Linked with Porphyrin and Its Application for Ultrasensitive Detection of Biomarker Mucin-1. Sensor Actuator B. Chem. 2021, 344, 130300. DOI: 10.1016/j.snb.2021.130300.
  • Wang, X. Y.; Xiao, S. Y.; Yang, C. P.; Hu, C. Y.; Wang, X.; Zhen, S. J.; Huang, C. Z.; Li, Y. F. Zinc-Metal Organic Frameworks: A Coreactant-Free Electrochemiluminescence Luminophore for Ratiometric Detection of miRNA-133a. Anal. Chem. 2021, 93, 14178–14186.
  • Jiang, L.; He, C. H.; Chen, H. Y.; Xi, C. Y.; Fodjo, E. K.; Zhou, Z. R.; Qian, R. C.; Li, D. W.; Hafez, M. E. In Situ Monitoring of Hydrogen Peroxide Released from Living Cells Using a ZIF-8-Based Surface-Enhanced Raman Scattering Sensor. Anal. Chem. 2021, 93, 12609–12616.
  • Pei, C. C.; Liu, C.; Wang, Y.; Cheng, D.; Li, R. X.; Shu, W. K.; Zhang, C. Q.; Hu, W. L.; Jin, A. H.; Yang, Y. N.; et al. FeOOH@Metal-Organic Framework Core-Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angew Chem. Int. Ed. Engl. 2020, 59, 10831–10835.
  • Wang, F.; Gui, Y. Y.; Liu, W. T.; Li, C.; Yang, Y. C. Precise Molecular Profiling of Circulating Exosomes Using a Metal-Organic Framework-Based Sensing Interface and an Enzyme-Based Electrochemical Logic Platform. Anal. Chem. 2022, 94, 875–883. DOI: 10.1021/acs.analchem.1c03644.
  • Wei, Q. X.; Wang, C.; Li, P.; Wu, T.; Yang, N. J.; Wang, X.; Wang, Y. Y.; Li, C. Y. ZnS/C/MoS2 Nanocomposite Derived from Metal-Organic Framework for High-Performance Photo-Electrochemical Immunosensing of Carcinoembryonic Antigen. Small 2019, 15, 1902086. DOI: 10.1002/smll.201902086.
  • Szaniawska, A.; Kudelski, A. Applications of Surface-Enhanced Raman Scattering in Biochemical and Medical Analysis. Front Chem. 2021, 9, 664134. DOI: 10.3389/fchem.2021.664134.
  • Xia, Q.; Wang, H.; Huang, B. B.; Yuan, X. Z.; Zhang, J. J.; Zhang, J.; Jiang, L. B.; Xiong, T.; Zeng, G. M. State-of-the-Art Advances and Challenges of Iron-Based Metal Organic Frameworks from Attractive Features, Synthesis to Multifunctional Applications. Small 2019, 15, 1803088. DOI: 10.1002/smll.201803088.
  • Zhang, S.; Zhang, Y.; Baig, F.; Liu, T. F. Synthesis and Applications of Stable Iron-Based Metal-Organic Framework Materials. Cryst. Growth Des. 2021, 21, 3100–3122. DOI: 10.1021/acs.cgd.0c01500.
  • Dong, H.; Liu, S. H.; Liu, Q.; Li, Y. Y.; Li, Y. Y.; Zhao, Z. D. A Dual-Signal Output Electrochemical Immunosensor Based on Au–MoS2/MOF Catalytic Cycle Amplification Strategy for Neuron-Specific Enolase Ultrasensitive Detection. Biosens. Bioelectron. 2022, 195, 113648.
  • Dong, J. B.; Wen, L.; Yang, H. S.; Zhao, J. Y.; He, C. J.; Hu, Z. K.; Peng, L.; Hou, C. J.; Huo, D. Q. Catalytic Hairpin Assembly-Driven Ratiometric Dual-Signal Electrochemical Biosensor for Ultrasensitive Detection of MicroRNA Based on the Ratios of Fe-MOFs and MB-GA-UiO-66-NH2. Anal. Chem. 2022, 94, 5846–5855.
  • Li, J. F.; Liu, L.; Ai, Y. J.; Liu, Y.; Sun, H. B.; Liang, Q. L. Self-Polymerized Dopamine-Decorated Au NPs and Coordinated with Fe-MOF as a Dual Binding Sites and Dual Signal-Amplifying Electrochemical Aptasensor for the Detection of CEA. ACS Appl. Mater. Interfaces 2020, 12, 5500–5510. DOI: 10.1021/acsami.9b19161.
  • Song, Z.; Li, Y.; Teng, H.; Ding, C. F.; Xu, G. Y.; Luo, X. L. Designed Zwitterionic Peptide Combined with Sacrificial Fe-MOF for Low Fouling and Highly Sensitive Electrochemical Detection of T4 Polynucleotide Kinase. Sensor Actuator B. Chem. 2020, 305, 127329. DOI: 10.1016/j.snb.2019.127329.
  • Tang, J.; Liu, L. P.; Qin, J.; Lv, X. T.; Li, J. J.; Tang, D. P.; Zhuang, J. Y. Biocatalysis-Mediated MOF-To-Prussian Blue Transformation Enabling Sensitive Detection of NSCLC-Associated miRNAs with Dual-Readout Signals. Biosens. Bioelectron. 2022, 206, 114139.
  • Ding, Z. L.; Lu, Y. B.; Wei, Y. Y.; Song, D.; Xu, Z. R.; Fang, J. DNA-Engineered Iron-Based Metal-Organic Framework Bio-Interface for Rapid Visual Determination of Exosomes. J. Colloid. Interf. Sci. 2022, 612, 424–433. DOI: 10.1016/j.jcis.2021.12.133.
  • Li, X. X.; Kulkarni, A. S.; Liu, X.; Gao, W.-Q.; Huang, L.; Hu, Z. Q.; Qian, K. Metal-Organic Framework Hybrids Aid Metabolic Profiling for Colorectal Cancer. Small Methods 2021, 5, 2001001. DOI: 10.1002/smtd.202001001.
  • Singh, N.; Thakur, A. Applications of Copper Based Metal Organic Frameworks. Mater. Today Proc. 2022, 50, 1906–1911. DOI: 10.1016/j.matpr.2021.09.264.
  • Sun, Y. M.; Jiang, X. D.; Liu, Y. W.; Liu, D.; Chen, C.; Lu, C. Y.; Zhuang, S.; Kumar, A.; Liu, J. Q. Recent Advances in Cu(II)/Cu(I)-MOFs Based Nano-Platforms for Developing New Nano-Medicines. J. Inorg. Biochem. 2021, 225, 111599.
  • Cun, J. E.; Fan, X.; Pan, Q. Q.; Gao, W. X.; Luo, K.; He, B.; Pu, Y. J. Copper-Based Metal-Organic Frameworks for Biomedical Applications. Adv. Colloid Interface Sci. 2022, 305, 102686.
  • Xue, L.; Yang, Y.; Wu, S.; Huang, Y.; Li, J. L.; Xiang, Y.; Li, G. X. In Situ Reduction of Porous Copper Metal-Organic Frameworks for Three-Dimensional Catalytic Click Immunoassay. Anal. Chem. 2020, 92, 2972–2978.
  • Zeng, F.; Pan, Y. C.; Luan, X. W.; Gao, Y. F.; Yang, J. J.; Wang, Y. Z.; Song, Y. J. Copper Metal-Organic Framework Incorporated Mesoporous Silica as a Bioorthogonal Biosensor for Detection of Glutathione. Sensor Actuator B. Chem. 2021, 345, 130382. DOI: 10.1016/j.snb.2021.130382.
  • Zhang, C.; Zhang, D. S.; Ma, Z. F.; Han, H. L. Cascade Catalysis-Initiated Radical Polymerization Amplified Impedimetric Immunosensor for Ultrasensitive Detection of Carbohydrate Antigen 15-3. Biosens. Bioelectron. 2019, 137, 1–7.
  • Hu, X. J.; Huang, Y. J.; Chen, J.; Zhu, X. Y.; Mao, Z. H.; Wang, Y. D.; Hu, R. H.; Chen, H. X. MOFs Supported Nanonetworks Hybrid Flower-Like Catalysts via Supramolecular-Mediated Cascade Self-Assembly for Sensitive Sensing of H2O2. Sensor Actuator B. Chem. 2021, 342, 130076. DOI: 10.1016/j.snb.2021.130076.
  • Alizadeh, N.; Salimi, A.; Sham, T. K. CuO/Cu-MOF Nanocomposite for Highly Sensitive Detection of Nitric Oxide Released from Living Cells Using an Electrochemical Microfluidic Device. Microchim. Acta 2021, 188, 240.
  • Liu, X. B.; Yue, T.; Qi, K.; Qiu, Y. B.; Guo, X. P. Porous Graphene Based Electrochemical Immunosensor Using Cu3(BTC)2 Metal-Organic Framework as Nonenzymatic Label. Talanta 2020, 217, 121042. DOI: 10.1016/j.talanta.2020.121042.
  • Wang, J. Y.; Li, W. Y.; Zheng, Y. Q. Nitro-Functionalized Metal-Organic Frameworks with Catalase Mimic Properties for Glutathione Detection. Analyst 2019, 144, 6041–6047. DOI: 10.1039/c9an00813f.
  • Zeng, Y. J.; Wang, M. H.; Sun, Z. W.; Sha, L. J.; Yang, J.; Li, G. X. Colorimetric Immunosensor Constructed Using 2D Metal-Organic Framework Nanosheets as Enzyme Mimics for the Detection of Protein Biomarkers. J. Mater. Chem. B 2022, 10, 450–455. DOI: 10.1039/d1tb02192c.
  • Meng, X. D.; Zhang, K.; Yang, F.; Dai, W. H.; Lu, H. T.; Dong, H. F.; Zhang, X. J. Biodegradable Metal-Organic Frameworks Power DNAzyme for in Vivo Temporal-Spatial Control Fluorescence Imaging of Aberrant MicroRNA and Hypoxic Tumor. Anal. Chem. 2020, 92, 8333–8339.
  • Sun, Y. J.; Jin, H.; Jiang, X. W.; Gui, R. Black Phosphorus Nanosheets Adhering to Thionine-Doped 2D MOF as a Smart Aptasensor Enabling Accurate Capture and Ratiometric Electrochemical Detection of Target MicroRNA. Sensor Actuator B. Chem. 2020, 309, 127777. DOI: 10.1016/j.snb.2020.127777.
  • Cui, Y. J.; Chen, B. L.; Qian, G. D. Lanthanide Metal-Organic Frameworks for Luminescent Sensing and Light-Emitting Applications. Coord. Chem. Rev. 2014, 273, 76–86.
  • Chai, L. L.; Pan, J. Q.; Hu, Y.; Qian, J. J.; Hong, M. C. Rational Design and Growth of MOF-on-MOF Heterostructures. Small 2021, 17, 2100607. DOI: 10.1002/smll.202100607.
  • Sun, G. T.; Xie, Y.; Sun, L. N.; Zhang, H. J. Lanthanide Upconversion and Downshifting Luminescence for Biomolecules Detection. Nanoscale Horiz. 2021, 6, 766–780.
  • Afzalinia, A.; Mirzaee, M. Ultrasensitive Fluorescent miRNA Biosensor Based on a “Sandwich” Oligonucleotide Hybridization and Fluorescence Resonance Energy Transfer Process Using an Ln(III)-MOF and Ag Nanoparticles for Early Cancer Diagnosis: Application of Central Composite Design. ACS Appl. Mater. Interfaces 2020, 12, 16076–16087. DOI: 10.1021/acsami.0c00891.
  • Hao, J. N.; Niu, D. C.; Gu, J. L.; Lin, S. L.; Li, Y. S.; Shi, J. L. Structure Engineering of a Lanthanide-Based Metal-Organic Framework for the Regulation of Dynamic Ranges and Sensitivities for Pheochromocytoma Diagnosis. Adv. Mater. 2020, 32, 2000791. DOI: 10.1002/adma.202000791.
  • Zhang, Y.; Lu, H. F.; Yan, B. Determination of Urinary N-Acetylneuraminic Acid for Early Diagnosis of Lung Cancer by a Boric Acid Covalently Functionalized Lanthanide MOFs and Its Intelligent Visual Molecular Robot Application. Sensor Actuator B. Chem. 2021, 349, 130736. DOI: 10.1016/j.snb.2021.130736.
  • Dong, P. F.; Zhu, L. Y.; Huang, J.; Ren, J. J.; Lei, J. P. Electrocatalysis of Cerium Metal-Organic Frameworks for Ratiometric Electrochemical Detection of Telomerase Activity. Biosens. Bioelectron. 2019, 138, 111313.
  • Biswas, S.; Lan, Q. C.; Li, C. R.; Xia, X. H. Morphologically Flex Sm-MOF Based Electrochemical Immunosensor for Ultrasensitive Detection of a Colon Cancer Biomarker. Anal. Chem. 2022, 94, 3013–3019.
  • Zhang, Y.; Li, N.; Xu, Y.; Lu, P.; Qi, N.; Yang, M.; Hou, C. J.; Huo, D. An Ultrasensitive Dual-Signal Aptasensor Based on Functionalized Sb@ZIF-67 Nanocomposites for Simultaneously Detect Multiple Biomarkers. Biosens. Bioelectron. 2022, 214, 114508.
  • Li, X. Y.; Li, X. M.; Li, D. D.; Zhao, M.; Wu, H. P.; Shen, B.; Liu, P.; Ding, S. J. Electrochemical Biosensor for Ultrasensitive Exosomal miRNA Analysis by Cascade Primer Exchange Reaction and MOF@Pt@MOF Nanozyme. Biosens. Bioelectron. 2020, 168, 112554.
  • Zheng, J. L.; Zhao, P.; Zhou, S. Y.; Chen, S.; Liang, Y.; Tian, F. C.; Zhou, J.; Huo, D. Q.; Hou, C. J. Development of Au–Pd@UiO-66-on-ZIF-L/CC as a Self-Supported Electrochemical Sensor for in Situ Monitoring of Cellular Hydrogen Peroxide. J. Mater. Chem. B 2021, 9, 9031–9040. DOI: 10.1039/d1tb01120k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.