520
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Deep Eutectic Solvents for Extraction and Preconcentration of Organic and Inorganic Species in Water and Food Samples: A Review

, , , &

References

  • Lu, W.; Liu, S.; Wu, Z. Recent Application of Deep Eutectic Solvents as Green Solvent in Dispersive Liquid–Liquid Microextraction of Trace Level Chemical Contaminants in Food and Water. Crit. Rev. Anal. Chem. 2022, 52, 504–515. DOI: 10.1080/10408347.2020.1808947.
  • Jiang, H. L.; Li, N.; Cui, L.; Wang, X.; Zhao, R. S. Recent Application of Magnetic Solid Phase Extraction for Food Safety Analysis. TrAC, Trends Anal. Chem. 2019, 120, 115632. DOI: 10.1016/j.trac.2019.115632.
  • Dong, Y.-y.; Liu, J.-h.; Wang, S.; Chen, Q.-l.; Guo, T.-y.; Zhang, L.-y.; Jin, Y.; Su, H.-j.; Tan, T.-w. Emerging Frontier Technologies for Food Safety Analysis and Risk Assessment. J. Integr. Agr. 2015, 14, 2231–2242. DOI: 10.1016/S2095-3119(15)61123-6.
  • Farajzadeh, M. A.; Abbaspour, M.; Kazemian, R. Synthesis of a Green High Density Deep Eutectic Solvent and Its Application in Microextraction of Seven Widely Used Pesticides from Honey. J. Chromatogr. A. 2019a, 1603, 51–60. DOI: 10.1016/j.chroma.2019.06.051.
  • Campone, L.; Celano, R.; Piccinelli, A. L.; Pagano, I.; Cicero, N.; Sanzo, R. D.; Carabetta, S.; Russo, M.; Rastrelli, L. Ultrasound Assisted Dispersive Liquid-Liquid Microextraction for Fast and Accurate Analysis of Chloramphenicol in Honey. Food Res. Int. 2019, 115, 572–579. DOI: 10.1016/j.foodres.2018.09.006.
  • Huang, J.; Guo, X.; Xu, T.; Fan, L.; Zhou, X.; Wu, S. Ionic Deep Eutectic Solvents for the Extraction and Separation of Natural Products. J. Chromatogr. A. 2019a, 1598, 1–19. DOI: 10.1016/j.chroma.2019.03.046.
  • Sorouraddin, S. M.; Farajzadeh, M. A.; Dastoori, H. Development of a Dispersive Liquid-Liquid Microextraction Method Based on a Ternary Deep Eutectic Solvent as Chelating Agent and Extraction Solvent for Preconcentration of Heavy Metals from Milk Samples. Talanta 2020a, 208, 120485. DOI: 10.1016/j.talanta.2019.120485.
  • Carrão, D. B.; Habenchus, M. D.; de Albuquerque, N. C. P.; da Silva, R. M.; Lopes, N. P.; de Oliveira, A. R. M. In Vitro Inhibition of Human CYP2D6 by the Chiral Pesticide Fipronil and Its Metabolite Fipronil Sulfone: Prediction of Pesticide-Drug Interactions. Toxicol. Lett. 2019, 313, 196–204. DOI: 10.1016/j.toxlet.2019.07.005.
  • Fonseca, F. S.; Carrão, D. B.; de Albuquerque, N. C. P.; Nardini, V.; Dias, L. G.; da Silva, R. M.; Lopes, N. P.; de Oliveira, A. R. M. Myclobutanil Enantioselective Risk Assessment in Humans through in Vitro CYP450 Reactions: Metabolism and Inhibition Studies. Food Chem. Toxicol. 2019, 128, 202–211. DOI: 10.1016/j.fct.2019.04.009.
  • Habenschus, M. D.; Nardini, V.; Dias, L. G.; Rocha, B. A.; Barbosa Jr., F.; de Oliveira, A. R. M. In Vitro Enantioselective Study of the Toxicokinetic Effects of Chiral Fungicide Tebuconazole in Human Liver Microsomes. Ecotoxicol Environ Saf 2019, 181, 96–105. DOI: 10.1016/j.ecoenv.2019.05.071.
  • Pirsaheb, M.; Fattahi, N.; Karami, M.; Ghaffari, H. R. Simultaneous Determination of Deltamethrin, Permethrin and Malathion in Stored Wheat Samples Using Continuous Sample Drop Flow Microextraction Followed by HPLC–UV. Food Measure 2018, 12, 118–127. DOI: 10.1007/s11694-017-9622-2.
  • Zhuang, S.; Zhang, Z.; Zhang, W.; Bao, W.; Xu, C.; Zhang, H. Enantioselective Developmental Toxicity and Immunotoxicity of Pyraclofos toward Zebrafish (Danio Rerio). Aquat Toxicol. 2015, 159, 119–126. DOI: 10.1016/j.aquatox.2014.12.006.
  • Chang, J.; Hao, W.; Xu, Y.; Xu, P.; Li, W.; Li, J.; Wang, H. Stereoselective Degradation and Thyroid Endocrine Disruption of Lambda-Cyhalothrin in Lizards (Eremias Argus) following Oral Exposure. Environ. Pollut 2018, 232, 300–309. DOI: 10.1016/j.envpol.2017.09.072.
  • Xiang, D.; Zhong, L.; Shen, S.; Song, Z.; Zhu, G.; Wang, M.; Wang, Q.; Zhou, B. Chronic Exposure to Environmental Levels of Cis-Bifenthrin: Enantioselectivity and Reproductive Effects on Zebrafish (Danio Rerio). Environ Pollut 2019, 251, 175–184. DOI: 10.1016/j.envpol.2019.04.089.
  • Huang, T.; Tang, X.; Luo, K.; Wu, Y.; Hou, X.; Tang, T. An Overview of Graphene-Based Nanoadsorbent Materials for Environmental Contaminants Detection. TrAC, Trends Anal. Chem. 2021, 139, 116255. DOI: 10.1016/j.trac.2021.116255.
  • Chen, T. L.; Kim, H.; Pan, S. Y.; Tseng, P. C.; Lin, Y. P.; Chiang, P. C. Implementation of Green Chemistry Principles in Circular Economy System towards Sustainable Development Goals: Challenges and Perspectives. Sci. Total Environ. 2020, 716, 136998. DOI: 10.1016/j.scitotenv.2020.136998.
  • Schaeffer, N.; Passos, H.; Billard, I.; Papaiconomou, N.; Coutinho, J. A. Recovery of Metals from Waste Electrical and Electronic Equipment (WEEE) Using Unconventional Solvents Based on Ionic Liquids. Crit. Rev. Environ. Sci. Technol. 2018, 48, 859–922. DOI: 10.1080/10643389.2018.1477417.
  • Duo, H.; Lu, X.; Wang, S.; Liang, X.; Guo, Y. Preparation and Applications of Metal-Organic Framework Derived Porous Carbons as Novel Adsorbents in Sample Preparation. TrAC, Trends Anal. Chem. 2020, 133, 116093. DOI: 10.1016/j.trac.2020.116093.
  • Liu, S.; Huang, Y.; Qian, C.; Xiang, Z.; Ouyang, G. Physical Assistive Technologies of Solid-Phase Microextraction: Recent Trends and Future Perspectives. TrAC, Trends Anal. Chem. 2020, 128, 115916. DOI: 10.1016/j.trac.2020.115916.
  • Di, S.; Ning, T.; Yu, J.; Chen, P.; Yu, H.; Wang, J.; Yang, H.; Zhu, S. Recent Advances and Applications of Magnetic Nanomaterials in Environmental Sample Analysis. TrAC, Trends Anal. Chem. 2020, 126, 115864. DOI: 10.1016/j.trac.2020.115864.
  • Nasiri, M.; Ahmadzadeh, H.; Amiri, A. Sample Preparation and Extraction Methods for Pesticides in Aquatic Environments: A Review. TrAC, Trends Anal. Chem. 2020, 123, 115772. DOI: 10.1016/j.trac.2019.115772.
  • Chormey, D. S.; Zaman, B.; Kasa, N. A.; Bakırdere, S. Liquid Phase Microextraction Strategies and Their Application in the Determination of Endocrine Disruptive Compounds in Food Samples. TrAC, Trends Anal. Chem. 2020, 128, 115917. DOI: 10.1016/j.trac.2020.115917.
  • Farajzadeh, M. A.; Mohebbi, A.; Pazhohan, A.; Nemati, M.; Mogaddam, M. R. A. Air–Assisted Liquid–Liquid Microextraction; Principles and Applications with Analytical Instruments. TrAC, Trends Anal. Chem. 2020, 122, 115734. DOI: 10.1016/j.trac.2019.115734.
  • Büyüktiryaki, S.; Keçili, R.; Hussain, C. M. Functionalized Nanomaterials in Dispersive Solid Phase Extraction: Advances & Prospects. TrAC, Trends Anal. Chem. 2020, 127, 115893. DOI: 10.1016/j.trac.2020.115893.
  • Arabi, M.; Ostovan, A.; Bagheri, A. R.; Guo, X.; Wang, L.; Li, J.; Wang, X.; Li, B.; Chen, L. Strategies of Molecular Imprinting-Based Solid-Phase Extraction Prior to Chromatographic Analysis. TrAC, Trends Anal. Chem. 2020, 128, 115923. DOI: 10.1016/j.trac.2020.115923.
  • Jarvas, G.; Guttman, A.; Miękus, N.; Bączek, T.; Jeong, S.; Chung, D. S.; Pätoprstý, V.; Masár, M.; Hutta, M.; Datinská, V.; Foret, F. Practical Sample Pretreatment Techniques Coupled with Capillary Electrophoresis for Real Samples in Complex Matrices. TrAC, Trends Anal. Chem. 2020, 122, 115702. DOI: 10.1016/j.trac.2019.115702.
  • Clarke, C.J.; Tu, W.C.; Levers, O.; Brohl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chemical Reviews, 2018, 118(2), 747–800.
  • Hashemi, B.; Zohrabi, P.; Dehdashtian, S. Application of Green Solvents as Sorbent Modifiers in Sorptive-Based Extraction Techniques for Extraction of Environmental Pollutants. TrAC, Trends Anal. Chem. 2018, 109, 50–61. DOI: 10.1016/j.trac.2018.09.026.
  • Santana-Mayor, A.; Rodríguez-Ramos, R.; Herrera-Herrera, A. V.; Socas-Rodríguez, B.; Rodríguez-Delgado, M. A. Deep Eutectic Solvents. The New Generation of Green Solvents in Analytical Chemistry. TrAC, Trends Anal. Chem. 2021, 134, 116108. DOI: 10.1016/j.trac.2020.116108.
  • Martins, M. A. R.; Pinho, S. P.; Coutinho, J. A. P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J Solution Chem 2019, 48, 962–982. DOI: 10.1007/s10953-018-0793-1.
  • Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2021, 121, 1232–1285. DOI: 10.1021/acs.chemrev.0c00385.
  • Huang, X.; Liu, Y.; Liu, H.; Liu, G.; Xu, X.; Li, L.; Xu, D. Magnetic Solid-Phase Extraction of Dichlorodiphenyltrichloroethane and Its Metabolites from Environmental Water Samples Using Ionic Liquid Modified Magnetic Multiwalled Carbon Nanotube/Zeolitic Imidazolate Framework-8 as Sorbent. Molecules 2019b, 24, 2758. DOI: 10.3390/molecules24152758.
  • Lee, J.; Kim, H.; Kang, S.; Baik, N.; Hwang, I.; Chung, D. S. Applications of Deep Eutectic Solvents to Quantitative Analyses of Pharmaceuticals and Pesticides in Various Matrices: A Brief Review. Arch. Pharm. Res. 2020a, 43, 900–919. DOI: 10.1007/s12272-020-01266-7.
  • Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V. Preparation of Novel, Moisture-Stable, Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains. Chem. Commun 2001, 10, 2010–2011. DOI: 10.1039/b106357j.
  • Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea mixturesElectronic Supplementary Information (ESI) Available: spectroscopic Data. See http://www.rsc.org/Suppdata/cc/b2/b210714g/. Chem. Commun 2003, 10, 70–71. DOI: 10.1039/b210714g.
  • Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: versatile Alternatives to Ionic Liquids. J Am Chem Soc 2004, 126, 9142–9147. DOI: 10.1021/ja048266j.
  • Ruß, C.; König, B. Low Melting Mixtures in Organic Synthesis – an Alternative to Ionic Liquids? Green Chem 2012, 14, 2969–2982. DOI: 10.1039/c2gc36005e.
  • Van Osch, D. L.; Zubeir, L. F.; Van den Bruinhorst, A.; Rocha, M. A.; Kroon, M. C. Hydrophobic Deep Eutectic Solvents as Water-Immiscible Extractants. Green Chem 2015, 17, 4518–4521. DOI: 10.1039/C5GC01451D.
  • Ribeiro, B. D.; Florindo, C.; Iff, L. C.; Coelho, M. A.; Marrucho, I. M. Menthol-Based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustainable Chem. Eng 2015, 3, 2469–2477. DOI: 10.1021/acssuschemeng.5b00532.
  • Imperato, G.; Eibler, E.; Niedermaier, J.; König, B. Low-melting sugar–urea–salt mixtures as solvents for Diels–Alder reactions. Chemical Communications, 2005, 1(9), 1170–1172. DOI: 10.1039/B414515A.
  • Gutierrez, M. C.; Ferrer, M. L.; Mateo, C. R.; del Monte, F. Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. Langmuir 2009, 25, 5509–5515. DOI: 10.1021/la900552b.
  • Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem Rev 2014, 114, 11060–11082. DOI: 10.1021/cr300162p.
  • Rodríguez-Ramos, R.; Santana-Mayor, A.; Socas-Rodríguez, B.; Rodríguez-Delgado, M. A. Recent Applications of Deep Eutectic Solvents in Environmental Analysis. Appl. Sci. 2021, 11, 4779. DOI: 10.3390/app11114779.
  • Cunha, S. C.; Fernandes, J. O. Extraction Techniques with Deep Eutectic Solvents. TrAC, Trends Anal. Chem. 2018, 105, 225–239. DOI: 10.1016/j.trac.2018.05.001.
  • Musarurwa, H.; Tavengwa, N. T. Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Micro-Extraction of Pesticides in Food Samples. Food Chem 2021, 342, 127943. DOI: 10.1016/j.foodchem.2020.127943.
  • MMogaddam, M.R.A.; Farajzadeh, M.A.; Tuzen, M.; Jouyban, A.; Khandaghi, J. Organic solvent-free elevated temperature liquid–liquid extraction combined with a new switchable deep eutectic solvent-based dispersive liquid–liquid microextraction of three phenolic antioxidants from oil samples. Microchemical Journal, 2021, 168, 106433.
  • Chen, J.; Li, Y.; Wang, X.; Liu, W. Application of Deep Eutectic Solvents in Food Analysis: A Review. Molecules 2019, 24, 4594. DOI: 10.3390/molecules24244594.
  • Tang, W.; An, Y.; Row, K. H. Emerging Applications of (Micro) Extraction Phase from Hydrophilic to Hydrophobic Deep Eutectic Solvents: opportunities and Trends. TrAC, Trends Anal. Chem. 2021, 136, 116187. DOI: 10.1016/j.trac.2021.116187.
  • Shishov, A.; Bulatov, A.; Locatelli, M.; Carradori, S.; Andruch, V. Application of Deep Eutectic Solvents in Analytical Chemistry. A Review. Microchem. J. 2017, 135, 33–38. DOI: 10.1016/j.microc.2017.07.015.
  • Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. Recent Advances in the Application of Deep Eutectic Solvents as Sustainable Media as Well as Catalysts in Organic Reactions. RSC Adv. 2015, 5, 48675–48704. DOI: 10.1039/C5RA05746A.
  • Chakrabarti, M. H.; Mjalli, F. S.; AlNashef, I. M.; Hashim, M. A.; Hussain, M. A.; Bahadori, L.; Low, C. T. J. Prospects of Applying Ionic Liquids and deep eutectic Solvents for Renewable Energy Storage by Means of Redox Flow Batteries. Renewable Sustainable Energy Rev. 2014, 30, 254–270. DOI: 10.1016/j.rser.2013.10.004.
  • Huang, Z. L.; Wu, B. P.; Wen, Q.; Yang, T. X.; Yang, Z. Deep Eutectic Solvents Can Be Viable Enzyme Activators and Stabilizers. J. Chem. Technol. Biotechnol. 2014, 89, 1975–1981. DOI: 10.1002/jctb.4285.
  • García, A.; Rodríguez-Juan, E.; Rodríguez-Gutiérrez, G.; Rios, J. J.; Fernández-Bolaños, J. Extraction of Phenolic Compounds from Virgin Olive Oil by Deep Eutectic Solvents (DESs). Food Chem 2016, 197, 554–561. DOI: 10.1016/j.foodchem.2015.10.131.
  • Juneidi, I.; Hayyan, M.; Hashim, M. A.; Hayyan, A. Pure and Aqueous Deep Eutectic Solvents for a Lipase-Catalysed Hydrolysis Reaction. Biochem. Eng. J. 2017, 117, 129–138. DOI: 10.1016/j.bej.2016.10.003.
  • Tang, B.; Zhang, H.; Row, K. H. Application of Deep Eutectic Solvents in the Extraction and Separation of Target Compounds from Various Samples. J Sep. Sci. 2015, 38, 1053–1064. DOI: 10.1002/jssc.201401347.
  • Ijardar, S. P.; Singh, V.; Gardas, R. L. Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents. Molecules 2022, 27, 1368. DOI: 10.3390/molecules27041368.
  • Zhang, Q.; Vigier, K. D. O.; Royer, S.; Jérôme, F. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chem Soc Rev 2012, 41, 7108–7146. DOI: 10.1039/c2cs35178a.
  • Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R. L.; Duarte, A. R. C. Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustainable Chem. Eng. 2014, 2, 1063–1071. DOI: 10.1021/sc500096j.
  • Shahbaz, K.; Bagh, F. G.; Mjalli, F. S.; AlNashef, 1M.; Hashim, M. A. Prediction of Refractive Index and Density of Deep Eutectic Solvents Using Atomic Contributions. Fluid Phase Equilib. 2013, 354, 304–311. DOI: 10.1016/j.fluid.2013.06.050.
  • Shahbaz, K.; Baroutian, S.; Mjalli, F. S.; Hashim, M. A.; AlNashef, I. M. Densities of Ammonium and Phosphonium Based Deep Eutectic Solvents: Prediction Using Artificial Intelligence and Group Contribution Techniques. Thermochim. Acta 2012, 527, 59–66. DOI: 10.1016/j.tca.2011.10.010.
  • Maugeri, Z.; de María, P. D. Novel Choline-Chloride-Based Deep-Eutectic-Solvents with Renewable Hydrogen Bond Donors: levulinic Acid and Sugar-Based Polyols. RSC Adv. 2012, 2, 421–425. DOI: 10.1039/C1RA00630D.
  • Yusof, R.; Abdulmalek, E.; Sirat, K.; Rahman, M. B. A. Tetrabutylammonium Bromide (TBABr)-Based Deep Eutectic Solvents (DESs) and Their Physical Properties. Molecules 2014, 19, 8011–8026. DOI: 10.3390/molecules19068011.
  • Xu, P.; Zheng, G. W.; Zong, M. H.; Li, N.; Lou, W. Y. Recent Progress on Deep Eutectic Solvents in Biocatalysis. Bioresour. Bioprocess 2017, 4, 1–18. DOI: 10.1186/s40643-017-0165-5.
  • Mohan, D.; Sarswat, A.; Ok, Y. S.; Pittman, C. U. Jr. Organic and Inorganic Contaminants Removal from Water with Biochar, a Renewable, Low Cost and Sustainable Adsorbent-a Critical Review. Bioresour Technol 2014, 160, 191–202. DOI: 10.1016/j.biortech.2014.01.120.
  • Pourhossein, M.; Heravizadeh, O.R.; Omidi, F.; Khadem, M.; Jamaleddin, S. Ultrasound-Assisted Emulsified Microextraction Based on Deep Eutectic Solvent for Trace Residue Analysis of Metribuzin in Urine Samples. Methods, 2021, 16(3), 153–161.
  • Van Osch, D. J.; Parmentier, D.; Dietz, C. H.; van den Bruinhorst, A.; Tuinier, R.; Kroon, M. C. Removal of Alkali and Transition Metal Ions from Water with Hydrophobic Deep Eutectic Solvents. Chem Commun (Camb) 2016, 52, 11987–11990. DOI: 10.1039/c6cc06105b.
  • Arain, M.B.; Yilmaz, E.; Soylak, M. Deep eutectic solvent based ultrasonic assisted liquid phase microextraction for the FAAS determination of cobalt. Journal of Molecular Liquids, 2016, 224, 538–543.
  • Herce-Sesa, B.; López-López, J. A.; Moreno, C. Advances in Ionic Liquids and Deep Eutectic Solvents-Based Liquid Phase Microextraction of Metals for Sample Preparation in Environmental Analytical Chemistry. TrAC, Trends Anal. Chem. 2021, 143, 116398. DOI: 10.1016/j.trac.2021.116398.
  • Altunay, N.; Tuzen, M. A Simple and Green Ultrasound Liquid-Liquid Microextraction Method Based on Low Viscous Hydrophobic Deep Eutectic Solvent for the Preconcentration and Separation of Selenium in Water and Food Samples Prior to HG-AAS Detection. Food Chem. 2021a, 364, 130371. DOI: 10.1016/j.foodchem.2021.130371.
  • ALOthman, Z. A.; Habila, Z. A.; Yilmaz, E.; Alabdullkarem, E. A.; Soylak, M. A Novel Deep Eutectic Solvent Microextraction Procedure for Enrichment, Separation and Atomic Absorption Spectrometric Determination of Palladium at Ultra-Trace Levels in Environmental Samples. Measurement 2020, 153, 107394. DOI: 10.1016/j.measurement.2019.107394.
  • Shi, Y.; Xiong, D.; Zhao, Y.; Li, T.; Zhang, K.; Fan, J. Highly Efficient Extraction/Separation of Cr (VI) by a New Family of Hydrophobic Deep Eutectic Solvents. Chemosphere 2020, 241, 125082. DOI: 10.1016/j.chemosphere.2019.125082.
  • Zhang, K.; Guo, R.; Wang, Y.; Nie, Q.; Zhu, G. One-Step Derivatization and Temperature-Controlled Vortex-Assisted Liquid-Liquid Microextraction Based on the Solidification of Floating Deep Eutectic Solvents Coupled to UV-Vis Spectrophotometry for the Rapid Determination of Total Iron in Water and Food Samples. Food Chem. 2022, 384, 132414. DOI: 10.1016/j.foodchem.2022.132414.
  • Kasa, N. A.; Zaman, B. T.; Bakırdere, S. Ultra-Trace Cadmium Determination in Eucalyptus and Rosemary Tea Samples Using a Novel Method: deep Eutectic Solvent Based Magnetic Nanofluid Liquid Phase Microextraction-Slotted Quartz Tube-Flame Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2020, 35, 2565–2572. DOI: 10.1039/D0JA00276C.
  • Çıtak, D.; Sabancı, D. Response Surface Methodology and Hydrophobic Deep Eutectic Solvent Based Liquid Phase Microextraction Combination for Determination of Cadmium in Food and Water Samples. Food Measure 2021, 15, 1843–1850. DOI: 10.1007/s11694-020-00761-1.
  • Borahan, T.; Zaman, B. T.; Özzeybek, G.; Bakırdere, S. Accurate and Sensitive Determination of Cobalt in Urine Samples Using Deep Eutectic Solvent-Assisted Magnetic Colloidal Gel-Based Dispersive Solid Phase Extraction Prior to Slotted Quartz Tube Equipped Flame Atomic Absorption Spectrometry. Chem. Pap 2021, 75, 2937–2944. DOI: 10.1007/s11696-021-01542-w.
  • Tışlı, B.; Gösterişli, T. U.; Zaman, B. T.; Bakırdere, E. G.; Bakırdere, S. Determination of Manganese in Coffee and Wastewater Using Deep Eutectic Solvent Based Extraction and Flame Atomic Absorption Spectrometry. Anal. Lett. 2021, 54, 979–989. DOI: 10.1080/00032719.2020.1789871.
  • Seidi, S.; Alavi, L. Novel and Rapid Deep Eutectic Solvent (DES) Homogeneous Liquid–Liquid Microextraction (HLLME) with Flame Atomic Absorption Spectrometry (FAAS) Detection for the Determination of Copper in Vegetables. Anal. Lett. 2019, 52, 2092–2106. DOI: 10.1080/00032719.2019.1598425.
  • Habila, M. A.; AlMasoud, N.; Alomar, T. S.; AlOthman, Z. A.; Yilmaz, E.; Soylak, M. Deep Eutectic Solvent-Based Microextraction of Lead(II) Traces from Water and Aqueous Extracts before FAAS Measurements. Molecules 2020, 25, 4794. DOI: 10.3390/molecules25204794.
  • Ali, J.; Tuzen, M.; Citak, D.; Uluozlu, O. D.; Mendil, D.; Kazi, T. G.; Afridi, H. I. Separation and Preconcentration of Trivalent Chromium in Environmental Waters by Using Deep Eutectic Solvent with Ultrasound-Assisted Based Dispersive Liquid-Liquid Microextraction Method. J. Mol. Liq. 2019, 291, 111299. DOI: 10.1016/j.molliq.2019.111299.
  • Karimi, M.; Dadfarnia, S.; Haji Shabani, A. M. Hollow fibre-Supported Graphene Oxide Nanosheets Modified with a Deep Eutectic Solvent to Be Used for the Solid-Phase Microextraction of Silver Ions. Int. J. Environ. Anal. Chem. 2018, 98, 124–137. DOI: 10.1080/03067319.2018.1435781.
  • Panhwar, A. H.; Tuzen, M.; Kazi, T. G. Deep Eutectic Solvent Based Advance Microextraction Method for Determination of Aluminum in Water and Food Samples: Multivariate Study. Talanta 2018, 178, 588–593. DOI: 10.1016/j.talanta.2017.09.079.
  • Erbas, Z.; Soylak, M.; Yilmaz, E.; Dogan, M. Deep Eutectic Solvent Based Liquid Phase Microextraction of Nickel at Trace Level as Its Diethyldithiocarbamate Chelate from Environmental Samples. Microchem. J. 2019, 145, 745–750. DOI: 10.1016/j.microc.2018.11.039.
  • Thongsaw, A.; Udnan, Y.; Ross, G. M.; Chaiyasith, W. C. Speciation of Mercury in Water and Biological Samples by Eco-Friendly Ultrasound-Assisted Deep Eutectic Solvent Based on Liquid Phase Microextraction with Electrothermal Atomic Absorption Spectrometry. Talanta 2019, 197, 310–318. DOI: 10.1016/j.talanta.2019.01.018.
  • Zounr, R. A.; Tuzen, M.; Khuhawar, M. Y. Ultrasound Assisted Deep Eutectic Solvent Based on Dispersive Liquid Liquid Microextraction of Arsenic Speciation in Water and Environmental Samples by Electrothermal Atomic Absorption Spectrometry. J. Mol. Liq. 2017, 242, 441–446. DOI: 10.1016/j.molliq.2017.07.053.
  • Altunay, N.; Elik, A.; Gürkan, R. Innovative and Practical Deep Eutectic Solvent Based Vortex Assisted Microextraction Procedure for Separation and Preconcentration of Low Levels of Arsenic and Antimony from Sample Matrix Prior to Analysis by Hydride Generation-Atomic Absorption Spectrometry. Food Chem. 2019a, 293, 378–386. DOI: 10.1016/j.foodchem.2019.05.019.
  • Karimi, M.; Shabani, A. M. H.; Dadfarnia, S. Deep Eutectic Solvent-Mediated Extraction for Ligand-Less Preconcentration of Lead and Cadmium from Environmental Samples Using Magnetic Nanoparticles. Microchim Acta 2016, 183, 563–571. DOI: 10.1007/s00604-015-1671-9.
  • Sorouraddin, S. M.; Farajzadeh, M. A.; Okhravi, T. Application of Deep Eutectic Solvent as a Disperser in Reversed-Phase Dispersive Liquid-Liquid Microextraction for the Extraction of Cd(II) and Zn(II) Ions from Oil Samples. J. Food Compos. Anal. 2020b, 93, 103590. DOI: 10.1016/j.jfca.2020.103590.
  • Almeida, J.; Craveiro, R.; Faria, P.; Silva, A. S.; Mateus, E. P.; Barreiros, S.; Paiva, A.; Ribeiro, A. B. Electrodialytic Removal of Tungsten and Arsenic from Secondary Mine resources - Deep Eutectic Solvents Enhancement. Sci. Total Environ. 2020, 710, 136364. DOI: 10.1016/j.scitotenv.2019.136364.
  • Ezoddin, M.; Lamei, N.; Siami, F.; Abdi, K.; Karimi, M. A. Deep Eutectic Solvent Based Air Assisted Ligandless Emulsification Liquid-Liquid Microextraction for Preconcentration of Some Heavy Metals in Biological and Environmental Samples. Bull. Environ. Contam. Toxicol. 2018, 101, 814–819. DOI: 10.1007/s00128-018-2456-8.
  • Werner, J. Ligandless, Deep Eutectic Solvent-Based Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction with Solidification of the Aqueous Phase for Preconcentration of Lead, Cadmium, Cobalt and Nickel in Water Samples. J Sep Sci. 2020, 43, 1297–1305. DOI: 10.1002/jssc.201901184.
  • Menghwar, P.; Yilmaz, E.; Sherazi, S. T. H.; Soylak, M. A Sensitive and Selective Deep Eutectic Solvent-Based Ultrasound-Assisted Liquid Phase Microextraction Procedure for Separation-Preconcentration and Determination of Copper in Olive Oil and Water Samples. M. Soylak. Separ. Sci. Technol. 2019, 54, 2431–2439. DOI: 10.1080/01496395.2018.1547317.
  • Rad, A. S.; Rahnama, R.; Zakeri, M.; Jamali, M. R. Dispersive Liquid–Liquid Microextraction Based on Green Type Solvents—"Deep Eutectic Solvents"—for Highly Selective Separation and Efficient Preconcentration of Nickel in Water Samples. J Iran Chem. SOC 2019, 16, 1715–1722. DOI: 10.1007/s13738-019-01643-0.
  • Zounr, R. A.; Tuzen, M.; Khuhawar, M. Y. A Simple and Green Deep Eutectic Solvent Based Air Assisted Liquid Phase Microextraction for Separation, Preconcentration and Determination of Lead in Water and Food Samples by Graphite Furnace Atomic Absorption Spectrometry. J. Mol. Liq. 2018a, 259, 220–226. DOI: 10.1016/j.molliq.2018.03.034.
  • Panhwar, A. H.; Tuzen, M.; Kazi, T. G. Ultrasonic Assisted Dispersive Liquid-Liquid Microextraction Method Based on Deep Eutectic Solvent for Speciation, Preconcentration and Determination of Selenium Species (IV) and (VI) in Water and Food Samples. Talanta 2017, 175, 352–358. DOI: 10.1016/j.talanta.2017.07.063.
  • Ortega-Zamora, C.; González-Sálamo, J.; Hernández-Borges, J. Deep Eutectic Solvents Application in Food Analysis. Molecules 2021, 26, 6846. DOI: 10.3390/molecules26226846.
  • Guo, J. H.; Liu, X. J.; Zhang, Y.; Shen, J. L.; Han, W. X.; Zhang, W. F.; Christie, P.; Goulding, K. W. T.; Vitousek, P. M.; Zhang, F. S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. DOI: 10.1126/science.1182570.
  • Motesharrei, S.; Rivas, J.; Kalnay, E.; Asrar, G. R.; Busalacchi, A. J.; Cahalan, R. F.; Cane, M. A.; Colwell, R. R.; Feng, K.; Franklin, R. S.; et al. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems. Natl. Sci. Rev. 2016, 3, 470–494. DOI: 10.1093/nsr/nww081.
  • Zheng, S.; Wang, Q.; Yuan, Y.; Sun, W. Human Health Risk Assessment of Heavy Metals in Soil and Food Crops in the Pearl River Delta Urban Agglomeration of China. Food Chem. 2020, 316, 126213. DOI: 10.1016/j.foodchem.2020.126213.
  • Li, X.; Liu, L.; Wang, Y.; Luo, G.; Chen, X.; Yang, X.; Hall, M. H.; Guo, R.; Wang, H.; Cui, J.; He, X. Heavy Metal Contamination of Urban Soil in an Old Industrial City (Shenyang) in Northeast China. Geoderma 2013, 192, 50–58. DOI: 10.1016/j.geoderma.2012.08.011.
  • Friedlingstein, P.; Andrew, R. M.; Rogelj, J.; Peters, G. P.; Canadell, J. G.; Knutti, R.; Luderer, G.; Raupach, M. R.; Schaeffer, M.; van Vuuren, D. P.; Le Quéré, C. Persistent Growth of CO2 Emissions and Implications for Reaching Climate Targets. Nature Geosci 2014, 7, 709–715. DOI: 10.1038/ngeo2248.
  • Shahid, R.; Kazi, T.G.; Afridi, H.I.; Talpur, F.N.; Akhtar, A.; Baig, J.A. Deep-eutectic-solvent-based dispersive and emulsification liquid–liquid microextraction methods for the speciation of selenium in water and determining its total content levels in milk formula and cereals. Analytical Methods, 2020, 12(43), 5186–5194.
  • Ali, J.; Tuzen, M.; Kazi, T. G. Green and Innovative Technique Develop for the Determination of Vanadium in Different Types of Water and Food Samples by Eutectic Solvent Extraction Method. Food Chem. 2020, 306, 125638. DOI: 10.1016/j.foodchem.2019.125638.
  • Abbaszadehbezi, M.; Kahkha, M. R. R.; Khammar, A.; Rabouri, M. M. Application of pipette-tip solid-phase extraction technique for fast determination of levofloxacin from wastewater sample using cobalt metal-organic framework. Analytical Methods in Environmental Chemistry Journal, 2022, 5(2), 51–59.
  • Elik, A.; Demirbaş, A.; Altunay, N. Experimental Design of Ligandless Sonication-Assisted Liquid- Phases Microextraction Based on Hydrophobic Deep Eutectic Solvents for Accurate Determination of Pb(II) and Cd(II) from Waters and Food Samples at Trace Levels. Food Chem. 2022a, 371, 131138. DOI: 10.1016/j.foodchem.2021.131138.
  • Shirani, M.; Habibollahi, S.; Akbari, A. Centrifuge-less deep eutectic solvent based magnetic nanofluid-linked air-agitated liquid–liquid microextraction coupled with electrothermal atomic absorption spectrometry for simultaneous determination of cadmium, lead, copper, and arsenic in food samples and non-alcoholic beverages. Food chemistry, 2019, 281, 304–311.
  • Altunay, N.; Elik, A.; Katin, K. Optimization of Vortex-Assisted Ionic Liquid Dispersive Liquid–Liquid Microextraction by Experimental Design Prior to Hydride Generation Atomic Absorption Spectrometry for Determination of Selenium Species in Food, Beverage and Water Samples. J. Food Compos. Anal. 2021, 99, 103871. DOI: 10.1016/j.jfca.2021.103871.
  • Tekin, Z.; Unutkan, T.; Erulaş, F.; Bakırdere, E. G.; Bakırdere, S. A Green, Accurate and Sensitive Analytical Method Based on Vortex Assisted Deep Eutectic Solvent-Liquid Phase Microextraction for the Determination of Cobalt by Slotted Quartz Tube Flame Atomic Absorption Spectrometry. Food Chem 2020, 310, 125825. DOI: 10.1016/j.foodchem.2019.125825.
  • Arain, M. B.; Yilmaz, E.; Soylak, M. Deep Eutectic Solvent Based Ultrasonic Assisted Liquid Phase Microextraction for the FAAS Determination of Cobalt. J. Mol. Liq. 2016, 224, 538–543. DOI: 10.1016/j.molliq.2016.10.005.
  • Shirani, M.; Salari, M.; Habibollahi, S.; Akbari, A. Needle Hub in-Syringe Solid Phase Extraction Based a Novel Functionalized Biopolyamide for Simultaneous Green Separation/Preconcentration and Determination of Cobalt, Nickel, and Chromium (III) in Food and Environmental Samples with Micro Sampling Flame Atomic Absorption Spectrometry. Microchem. J. 2020, 152, 104340. DOI: 10.1016/j.microc.2019.104340.
  • Ataee, M.; Ahmadi-Jouibari, T.; Noori, N.; Fattahi, N. The Speciation of Inorganic Arsenic in Soil and Vegetables Irrigated with Treated Municipal Wastewater. RSC Adv. 2020, 10, 1514–1521. DOI: 10.1039/c9ra08031g.
  • Memon, Z. M.; Yilmaz, E.; Shah, A. M.; Kazi, T. G.; Devrajani, B. R.; Soylak, M. A Green Ultrasonic-Assisted Liquid–Liquid Microextraction Technique Based on Deep Eutectic Solvents for Flame Atomic Absorption Spectrometer Determination of Trace Level of Lead in Tobacco and Food Samples. J. Iran Chem. SOC 2019, 16, 687–694. DOI: 10.1007/s13738-018-1547-0.
  • Zounr, R. A.; Tuzen, M.; Deligonul, N.; Khuhawar, M. Y. A Highly Selective and Sensitive 2Ultrasonic Assisted Dispersive Liquid Phase Microextraction Based on Deep Eutectic Solvent for Determination of Cadmium in Food and Water Samples Prior to Electrothermal Atomic Absorption Spectrometry. Food Chem 2018b, 253, 277–283. DOI: 10.1016/j.foodchem.2018.01.167.
  • Huang, Y.; Feng, F.; Chen, Z. G.; Wu, T.; Wang, Z. H. Green and Efficient Removal of Cadmium from Rice Flour Using Natural Deep Eutectic Solvents. Food Chem 2018, 244, 260–265. DOI: 10.1016/j.foodchem.2017.10.060.
  • Elik, A.; Demirbas, A.; Altunay, N. Developing a New and Simple Natural Deep Eutectic Solvent Based Ultrasonic-Assisted Microextraction Procedure for Determination and Preconcentration of as and Se from Rice Samples. Anal. Methods 2019a, 11, 3429–3438. DOI: 10.1039/C9AY00916G.
  • Altunay, N.; Elik, A.; Gürkan, R. Monitoring of Some Trace Metals in Honeys by Flame Atomic Absorption Spectrometry after Ultrasound Assisted-Dispersive Liquid Liquid Microextraction Using Natural Deep Eutectic Solvent. Microchem. J. 2019b, 147, 49–59. DOI: 10.1016/j.microc.2019.03.003.
  • Habibollahi, M. H.; Karimyan, K.; Arfaeinia, H.; Mirzaei, N.; Safari, Y.; Akramipour, R.; Sharafi, H.; Fattahi, N. Extraction and Determination of Heavy Metals in Soil and Vegetables Irrigated with Treated Municipal Wastewater Using New Mode of Dispersive Liquid-Liquid Microextraction Based on the Solidified Deep Eutectic Solvent Followed by GFAAS. J. Sci. Food Agric. 2019, 99, 656–665. DOI: 10.1002/jsfa.9230.
  • Arpa, C.; Albayati, S.; Yahya, M. Effervescence-Assisted Dispersive Liquid-Liquid Microextraction Based on Deep Eutectic Solvent for Preconcentration and FAAS Determination of Copper in Aqueous Samples. Int. J. Environ. Anal. Chem. 2018, 98, 938–953. DOI: 10.1080/03067319.2018.1517872.
  • Bağda, E.; Altundağ, H.; Soylak, M. Highly Simple Deep Eutectic Solvent Extraction of Manganese in Vegetable Samples Prior to Its ICP-OES Analysis. Biol. Trace Elem. Res. 2017, 179, 334–339. DOI: 10.1007/s12011-017-0967-5.
  • Altunay, N.; Elik, A.; Kaya, S. Alcohol-DES Based Vortex Assisted Homogenous Liquid-Liquid Microextraction Approach for the Determination of Total Selenium in Food Samples by Hydride Generation AAS: Insights from Theoretical and Experimental Studies. Talanta 2020a, 215, 120903. DOI: 10.1016/j.talanta.2020.120903.
  • Altunay, N.; Elik, A.; Bingöl, D. Simple and Green Heat-Induced Deep Eutectic Solvent Microextraction for Determination of Lead and Cadmium in Vegetable Samples by Flame Atomic Absorption Spectrometry: A Multivariate Study. Biol. Trace Elem. Res. 2020b, 198, 324–331. DOI: 10.1007/s12011-020-02064-4.
  • Richardson, H. Y.; Nichols, G.; Lane, C.; Lake, I. R.; Hunter, P. R. Microbiological Surveillance of Private Water Supplies in England: The Impact of Environmental and Climate Factors on Water Quality. Water Res. 2009, 43, 2159–2168. DOI: 10.1016/j.watres.2009.02.035.
  • Henderson, R. K.; Baker, A.; Murphy, K. R.; Hambly, A.; Stuetz, R. M.; Khan, S. J. Fluorescence as a Potential Monitoring Tool for Recycled Water Systems: A Review. Water Res. 2009, 43, 863–881. DOI: 10.1016/j.watres.2008.11.027.
  • Stedmon, C. A.; Seredyńska-Sobecka, B.; Boe-Hansen, R.; Tallec, N. L.; Waul, C. K.; Arvin, E. A Potential Approach for Monitoring Drinking Water Quality from Groundwater Systems Using Organic Matter Fluorescence as an Early Warning for Contamination Events. Water Res. 2011, 45, 6030–6038. DOI: 10.1016/j.watres.2011.08.066.
  • Yasser, E. N.; Shawkat, E. N.; Samir, A. Impact of Organic Contamination on Some Aquatic Organisms. Toxicol. Int. 2015, 22, 45–53. DOI: 10.4103/0971-6580.172256.
  • An, Y.; Row, K. H. Evaluation of Menthol-Based Hydrophobic Deep Eutectic Solvents for the Extraction of Bisphenol a from Environment Water. Anal. Lett. 2021, 54, 1533–1545. DOI: 10.1080/00032719.2020.1811716.
  • Tang, W.; Dai, Y.; Row, K. H. Evaluation of Fatty Acid/Alcohol-Based Hydrophobic Deep Eutectic Solvents as Media for Extracting Antibiotics from Environmental Water. Anal. Bioanal. Chem. 2018, 410, 7325–7336. DOI: 10.1007/s00216-018-1346-6.
  • Makoś, P.; Przyjazny, A.; Boczkaj, G. Hydrophobic Deep Eutectic Solvents as “Green” Extraction Media for Polycyclic Aromatic Hydrocarbons in Aqueous Samples. J. Chromatogr. A 2018, 1570, 28–37. DOI: 10.1016/j.chroma.2018.07.070.
  • Ahmadi, R.; Kazemi, G.; Ramezani, A. M.; Safavi, A. Shaker-Assisted Liquid-Liquid Microextraction of Methylene Blue Using Deep Eutectic Solvent Followed by Back-Extraction and Spectrophotometric Determination. Microchem. J. 2019, 145, 501–507. DOI: 10.1016/j.microc.2018.11.005.
  • Zhao, W.; Jing, X.; Tian, Y.; Feng, C. Magnetic Fe3O4 @ Porous Activated Carbon Effervescent Tablet-Assisted Deep Eutectic Solvent-Based Dispersive Liquid–Liquid Microextraction of Phenolic Endocrine Disrupting Chemicals in Environmental Water. Microchem. J. 2020, 159, 105416. DOI: 10.1016/j.microc.2020.105416.
  • Qiao, L.; Sun, R.; Tao, Y.; Yan, Y. New Low Viscous Hydrophobic Deep Eutectic Solvents for the Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction of Endocrine-Disrupting Phenols in Water, Milk and Beverage. J. Chromatogr. A. 2022, 1662, 462728. DOI: 10.1016/j.chroma.2021.462728.
  • Soylak, M.; Gorucu, H. H.; Yilmaz, E. Micelle-Based Restricted Access Ion-Pair Microextraction of Phosphate at Trace Levels in Water Samples for Separation, Preconcentration and Determination. EuroBiotech. J. 2020a, 4, 89–96. DOI: 10.2478/ebtj-2020-0010.
  • Soylak, M.; Baran, S.; Uzcan, F. Ultrasound Assisted Deep Eutectic Solvent Based Liquid Phase Microextraction for the Preconcentration and Spectrophotometric Determination of Amaranth (E123) in Water and Food Samples. Instrumentation Sci. Technol. 2022, 50, 203–218. DOI: 10.1080/10739149.2021.1982726.
  • Shah, S. N.; Uzcan, F.; Soylak, M. Ultrasound-Assisted Deep Eutectic Solvent Microextraction Procedure for Traces Ponceau 4R in Water and Cosmetic Samples. Int. J. Environ. Sci. Technol. 2022, 19, 189–196. DOI: 10.1007/s13762-021-03154-z.
  • Mohammad, R.E.A.; Elbashir, A.A.; Karim, J.; Yahaya, N.; Rahim, N.Y.; Miskam, M. Development of deep eutectic solvents based ferrofluid for liquid phase microextraction of ofloxacin and sparfloxacin in water samples. Microchemical Journal, 2022, 7(181), 1–13.
  • Sereshti, H.; Abdolhosseini, G.; Soltani, S.; Jamshidi, F.; Nouri, N. Natural Thymol-Based Ternary Deep Eutectic Solvents: Application in Air-Bubble Assisted-Dispersive Liquid-Liquid Microextraction for the Analysis of Tetracyclines in Water. J. Sep. Sci. 2021, 44, 3626–3635. DOI: 10.1002/jssc.202100495.
  • Qiao, L.; Sun, R.; Yu, C.; Tao, Y.; Yan, Y. Novel Hydrophobic Deep Eutectic Solvents for Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction of Trace Non-Steroidal anti-Inflammatory Drugs in Water and Milk Samples. Microchem. J. 2021, 170, 106686. DOI: 10.1016/j.microc.2021.106686.
  • Atsever, N.; Borahan, T.; Girgin, A.; Selali Chormey, D.; Bakırdere, S. A Simple and Effective Determination of Methyl Red in Wastewater Samples by UV–Vis Spectrophotometer with Matrix Matching Calibration Strategy after Vortex Assisted Deep Eutectic Solvent Based Liquid Phase Extraction and Evaluation of Green Profile. Bakırdere. Microchem. J. 2021, 162, 105850. DOI: 10.1016/j.microc.2020.105850.
  • Soylak, M.; Uzcan, F. A Novel Ultrasonication-Assisted Deep Eutectic Solvent Microextraction Procedure for Tartrazine at Trace Levels from Environmental Samples. J Iran Chem. SOC 2020b, 17, 461–467. DOI: 10.1007/s13738-019-01781-5.
  • Shah, S. N.; Erbas, Z.; Soylak, M. A Novel-Easy Deep Eutectic Solvent-Based Microextraction Procedure for the Separation, Preconcentration and Spectrophotometric Determination of Chromotrope 2R in Water, Detergent and Food Samples. Int. J. Environ. Anal. Chem. 2020, 100, 1–10. DOI: 10.1080/03067319.2020.1768249.
  • Kachangoon, R.; Vichapong, J.; Santaladchaiyakit, Y.; Burakham, R.; Srijaranai, S. An Eco-Friendly Hydrophobic Deep Eutectic Solvent-Based Dispersive Liquid–Liquid Microextraction for the Determination of Neonicotinoid Insecticide Residues in Water, Soil and Egg Yolk Samples. Molecules 2020, 25, 2785. DOI: 10.3390/molecules25122785.
  • Faraji, M.; Noormohammadi, F.; Adeli, M. Preparation of a Ternary Deep Eutectic Solvent as Extraction Solvent for Dispersive Liquid-Liquid Microextraction of Nitrophenols in Water Samples. M. J. Environ. Chem. Engin. 2020, 8, 103948. DOI: 10.1016/j.jece.2020.103948.
  • El-Deen, A. K.; Shimizu, K. A Green Air Assisted-Dispersive Liquid-Liquid Microextraction Based on Solidification of a Novel Low Viscous Ternary Deep Eutectic Solvent for the Enrichment of Endocrine Disrupting Compounds from Water. J. Chromatogr. A 2020, 1629, 461498. DOI: 10.1016/j.chroma.2020.461498.
  • Li, K.; Jin, Y.; Jung, D.; Park, K.; Kim, H.; Lee, J. In Situ Formation of Thymol-Based Hydrophobic Deep Eutectic Solvents: Application to Antibiotics Analysis in Surface Water Based on Liquid-Liquid Microextraction Followed by Liquid Chromatography. J. Chromatogr. A 2020, 1614, 460730. DOI: 10.1016/j.chroma.2019.460730.
  • Yang, D.; Wang, Y.; Peng, J.; Xun, C.; Yang, Y. A Green Deep Eutectic Solvents Microextraction Coupled with Acid-Base Induction for Extraction of Trace Phenolic Compounds in Large Volume Water Samples. Ecotoxicol. Environ. Saf 2019, 178, 130–136. DOI: 10.1016/j.ecoenv.2019.04.021.
  • Najafi, A.; Hashemi, M. Vortex-Assisted Natural Deep Eutectic Solvent Microextraction Using Response Surface Methodology Optimization for Determination of Orthophosphate in Water Samples by Molybdenum Blue Method. J. Sep. Sci. 2019, 42, 3102–3109. DOI: 10.1002/jssc.201900457.
  • Kanberoglu, G. S.; Yilmaz, E.; Soylak, M. Developing a New and Simple Ultrasound-Assisted Emulsification Liquid Phase Microextraction Method Built upon Deep Eutectic Solvents for Patent Blue V in Syrup and Water Samples. Microchem. J. 2019a, 145, 813–818. DOI: 10.1016/j.microc.2018.11.053.
  • Liu, Y.; Xu, W.; Zhang, H.; Xu, W. Hydrophobic Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction for the Simultaneous Enantiomeric Analysis of Five β-Agonists in the Environmental Samples. Electrophoresis 2019a, 40, 2828–2836. DOI: 10.1002/elps.201900149.
  • Yilmaz, E.; Soylak, M. A Novel and Simple Deep Eutectic Solvent Based Liquid Phase Microextraction Method for Rhodamine B in Cosmetic Products and Water Samples Prior to Its Spectrophotometric Determination. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 202, 81–86. DOI: 10.1016/j.saa.2018.04.073.
  • Ge, D.; Zhang, Y.; Dai, Y.; Yang, S. Air-Assisted Dispersive Liquid-Liquid Microextraction Based on a New Hydrophobic Deep Eutectic Solvent for the Preconcentration of Benzophenone-Type UV Filters from Aqueous Samples. J. Sep. Sci. 2018, 41, 1635–1643. DOI: 10.1002/jssc.201701282.
  • Lamei, N.; Ezoddin, M.; Abdi, K. Air Assisted Emulsification Liquid-Liquid Microextraction Based on Deep Eutectic Solvent for Preconcentration of Methadone in Water and Biological Samples. Talanta 2017, 165, 176–181. DOI: 10.1016/j.talanta.2016.11.036.
  • Aydin, F.; Yilmaz, E.; Soylak, M. A Simple and Novel Deep Eutectic Solvent Based Ultrasound-Assisted Emulsification Liquid Phase Microextraction Method for Malachite Green in Farmed and Ornamental Aquarium Fish Water Samples. Microchem. J. 2017, 132, 280–285. DOI: 10.1016/j.microc.2017.02.014.
  • Tadeo, J. L.; Sánchez-Brunete, C.; Albero, B.; García-Valcárcel, A. I. Application of Ultrasound-Assisted Extraction to the Determination of Contaminants in Food and Soil Samples. J Chromatogr A 2010, 1217, 2415–2440. DOI: 10.1016/j.chroma.2009.11.066.
  • Zhu, S.; Zhou, J.; Jia, H.; Zhang, H. Liquid–Liquid Microextraction of Synthetic Pigments in Beverages Using a Hydrophobic Deep Eutectic Solvent. Food Chem. 2018, 243, 351–356. DOI: 10.1016/j.foodchem.2017.09.141.
  • Farajzadeh, M. A.; Sohrabi, H.; Mohebbi, A.; Afshar Mogaddam, M. R. Combination of a Modified Quick, Easy, Cheap, Efficient, Rugged, and Safe Extraction Method with a Deep Eutectic Solvent Based Microwave-Assisted Dispersive Liquid-Liquid Microextraction: Application in Extraction and Preconcentration of Multiclass Pesticide Residues in Tomato Samples. J Sep Sci 2019b, 42, 1273–1280. DOI: 10.1002/jssc.201801107.
  • Wang, X.; Lu, Y.; Shi, L.; Yang, D.; Yang, Y. Novel Low Viscous Hydrophobic Deep Eutectic Solvents Liquid-Liquid Microextraction Combined with Acid Base Induction for the Determination of Phthalate Esters in the Packed Milk Samples. Microchem. J. 2020, 159, 105332. DOI: 10.1016/j.microc.2020.105332.
  • Ji, Y.; Meng, Z.; Zhao, J.; Zhao, H.; Zhao, L. Eco-Friendly Ultrasonic Assisted Liquid-Liquid Microextraction Method Based on Hydrophobic Deep Eutectic Solvent for the Determination of Sulfonamides in Fruit Juices. J. Chromatogr. A. 2020, 1609, 460520. DOI: 10.1016/j.chroma.2019.460520.
  • Shirani, M.; Akbari-adergani, B.; Shahdadi, F.; Faraji, M.; Akbari, A. A Hydrophobic Deep Eutectic Solvent-Based Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction for Determination of β-Lactam Antibiotics Residues in Food Samples. Food Anal. Methods 2022, 15, 391–400. DOI: 10.1007/s12161-021-02122-0.
  • Elik, A.; Altunay, N. Chemometric Approach for the Spectrophotometric Determination of Chloramphenicol in Various Food Matrices: Using Natural Deep Eutectic Solvents. Spectrochim. Acta, Part A 2022b, 276, 121198. DOI: 10.1016/j.saa.2022.121198.
  • Rostami-Javanroudi, S.; Moradi, M.; Sharafi, K.; Fattahi, N. Novel hydrophobic deep eutectic solvent for vortex-assisted liquid phase microextraction of common acaricides in fruit juice followed by HPLC-UV determination. RSC advances, 2021, 11(48), 30102–30108.
  • Tuzen, M.; Altunay, N.; Elik, A.; Mogaddam, M. R. A.; Katin, K. Experimental and Theoretical Investigation for the Spectrophotometric Determination of Thiabendazole in Fruit Samples. Microchem. J. 2021, 168, 106488. DOI: 10.1016/j.microc.2021.106488.
  • Taşpınar, H.; Elik, A.; Kaya, S.; Altunay, N. Optimization of Green and Rapid Analytical Procedure for the Extraction of Patulin in Fruit Juice and Dried Fruit Samples by Air-Assisted Natural Deep Eutectic Solvent-Based Solidified Homogeneous Liquid Phase Microextraction Using Experimental Design and Computational Chemistry Approach. Food Chem 2021, 358, 129817. DOI: 10.1016/j.foodchem.2021.129817.
  • Altunay, N.; Elik, A.; Gürkan, R. A Novel, Green and Safe Ultrasound-Assisted Emulsification Liquid Phase Microextraction Based on Alcohol-Based Deep Eutectic Solvent for Determination of Patulin in Fruit Juices by Spectrophotometry. J. Food Compos. Anal. 2019c, 82, 103256. DOI: 10.1016/j.jfca.2019.103256.
  • Nia, N.N.; Hadjmohammadi, M.R. Development of magnetic dispersive micro-solid phase extraction based on magnetic adipic acid nanoparticles and deep eutectic solvents for the isolation and pre-concentration of phenolic compounds in fruit juice samples prior to determination by HPLC-UV. Microchemical Journal, 2021, 170(11), 1–9.
  • Ge, D.; Shan, Z.; Pang, T.; Lu, X.; Wang, B. Preparation of New Hydrophobic Deep Eutectic Solvents and Their Application in Dispersive Liquid–Liquid Microextraction of Sudan Dyes from Food Samples. Anal Bioanal Chem 2021, 413, 3873–3880. DOI: 10.1007/s00216-021-03337-0.
  • Altunay, N. An Optimization Approach for Fast, Simple and Accurate Determination of Indigo-Carmine in Food Samples. Spectrochim. Acta A Mol Biomol Spectrosc 2021b, 257, 119791. DOI: 10.1016/j.saa.2021.119791.
  • Altunay, N.; Elik, A.; Unal, Y.; Kaya, S. Optimization of an Ultrasound-Assisted Alcohol-Based Deep Eutectic Solvent Dispersive Liquid-Phase Microextraction for Separation and Preconcentration of Quercetin in Wine and Food Samples with Response Surface Methodology. J Sep Sci 2021c, 44, 1998–2005. DOI: 10.1002/jssc.202100048.
  • Kanberoglu, G. S.; Yilmaz, E.; Soylak, M. Application of Deep Eutectic Solvent in Ultrasound-Assisted Emulsification Microextraction of Quercetin from Some Fruits and Vegetables. J. Mol. Liq. 2019b, 279, 571–577. DOI: 10.1016/j.molliq.2019.01.130.
  • Shishov, A.; Gorbunov, A.; Baranovskii, E.; Bulatov, A. Microextraction of Sulfonamides from Chicken Meat Samples in Three-Component Deep Eutectic Solvent. Microchem. J. 2020, 158, 105274. DOI: 10.1016/j.microc.2020.105274.
  • Afshar Mogaddam, A. R.; Nemati, M.; Farajzadeh, M. A.; Lotfipour, F.; Alizadeh Nabil, A. A.; Mohebbi, A.; Ghorbanpour, H. Application of Natural Deep Eutectic Solvents-Based in-Syringe Dispersive Liquid-Liquid Microextraction for the Extraction of Five Acaricides in Egg Samples. Int. J. Environ. Anal. Chem. 2020, 100, 1–16. DOI: 10.1080/03067319.2020.1774568.
  • Altunay, N.; Elik, A.; Gürkan, R. Preparation and Application of Alcohol Based Deep Eutectic Solvents for Extraction of Curcumin in Food Samples Prior to Its Spectrophotometric Determination. Food Chem 2020b, 310, 125933. DOI: 10.1016/j.foodchem.2019.125933.
  • Liu, W.; Zong, B.; Wang, X.; Cai, J.; Yu, J. A Highly Efficient Vortex-Assisted Liquid-Liquid Microextraction Based on Natural Deep Eutectic Solvent for the Determination of Sudan I in Food Samples. RSC Adv 2019, 9, 17432–17439. DOI: 10.1039/c9ra01405e.
  • Li, H.; Zhao, C.; Tian, H.; Yang, Y.; Li, W. Liquid–Liquid Microextraction Based on Acid–Base-Induced Deep Eutectic Solvents for Determination of β-Carotene and Lycopene in Fruit Juices. Food Anal. Methods 2019, 12, 2777–2784. DOI: 10.1007/s12161-019-01639-9.
  • Elik, A.; Unal, Y.; Altunay, N. Development of a Chemometric-Assisted Deep Eutectic Solvent-Based Microextraction Procedure for Extraction of Caffeine in Foods and Beverages. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019b, 36, 1139–1150. DOI: 10.1080/19440049.2019.1619941.
  • Ravandi, M. G.; Fat’hi, M. R. Green Effervescence Assisted Dispersive Liquid–Liquid Microextraction Based on a Hydrophobic Deep Eutectic Solvent for Determination of Sunset Yellow and Brilliant Blue FCF in Food Samples. New J. Chem 2018, 42, 14901–14908. DOI: 10.1039/C8NJ00782A.
  • Zhao, W.; Jing, X.; Tian, Y.; Feng, C.Magnetic Fe3O4@ porous activated carbon effervescent tablet-assisted deep eutectic solvent-based dispersive liquid–liquid microextraction of phenolic endocrine disrupting chemicals in environmental water. Microchemical Journal, 2020, 159, 105416.
  • Safavi, A.; Ahmadi, R.; Ramezani, A. M. Vortex-Assisted Liquid-Liquid Microextraction Based on Hydrophobic Deep Eutectic Solvent for Determination of Malondialdehyde and Formaldehyde by HPLC-UV Approach. Microchem. J. 2018, 143, 166–174. DOI: 10.1016/j.microc.2018.07.036.
  • Zhang, K.; Liu, C.; Li, S.; Fan, J. A Hydrophobic Deep Eutectic Solvent Based Vortex-Assisted Liquid-Liquid Microextraction for the Determination of Formaldehyde from Biological and Indoor Air Samples by High Performance Liquid Chromatography. J Chromatogr A 2019, 1589, 39–46. DOI: 10.1016/j.chroma.2018.12.063.
  • Zhang, K.; Liu, C.; Li, S.; Wang, Y.; Zhu, G.; Fan, J. Vortex-Assisted Liquid-Liquid Microextraction Based on a Hydrophobic Deep Eutectic Solvent for the Highly Efficient Determination of Sudan I in Food Samples. Anal. Lett. 2020, 53, 1204–1217. DOI: 10.1080/00032719.2019.1700422.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.