247
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Journey from the Drops of Mercury to the Mysterious Shores of the Brain: The 100-Year Adventure of Voltammetry

ORCID Icon

References

  • Bard, A.J., Faulkner, L.R., Eds. Electrochemical Methods: Principles and Applications, 2nd ed.; JohnWiley&Sons: New York, USA, 2000.
  • Wang, J., Ed. Analytical Electrochemistry: Methodology and Applications of Dynamic Techniques, 3th ed.; John Wiley&Sons: New Jersey, USA, 2006; p. 250
  • Brett, C. M. A.; Brett, A. M. O. Electrochemical Sensing in Solution-Origins, Applications and Future Perspectives. J Solid State Electrochem 2011, 15, 1487–1494. DOI: 10.1007/s10008-011-1447-z.
  • Piccolino, M. Luigi Galvani and Animal Electricity: Two Centuries after the Foundation of Electrophysiology. Trends Neurosci 1997, 20, 443–448. DOI: 10.1016/S0166-2236(97)01101-6.[PMC].[9347609].
  • Lubert, K.-H.; Kalcher, K. History of Electroanalytical Methods. Electroanalysis 2010, 22, 1937–1946. DOI: 10.1002/elan.201000087.
  • Heyrovský, M. https://knowledge.electrochem.org/encycl/art-p03-polarography.htm (accessed August 08, 2022).
  • Vyskočil, V.; Němcová, V.; Hájková, A.; Barek, J. The Current Role of Polarography in the Light of the Coming 90th Anniversary of İts Discovery (a Reflection). In: Sensing in Electroanalysis; Kalcher, K., Metelka, R.; Švancara, I.; Vytras, K., Eds; University Press Centre: Pardubice, Czech Republic, 2011; Vol 6, pp. 9–21. Doi: hdl.handle.net/10195/42539.
  • Heyrovský, J. Elektrolysa se Rtuťovou Kapkovou Kathodou. Chem. Listy 1922, 16, 256–264.
  • Heyrovský, J. Electrolysis with a Dropping Mercury Cathode. Part I. Deposition of Alkali and Alkaline Earth Metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1923, 45, 303–314.
  • Zuman, P. Electrolysis with a Dropping Mercury Electrode: J. Heyrovský's Contribution to Electrochemistry. Crit. Rev. Anal. Chem. 2001, 31, 281–289. DOI: 10.1080/20014091076767.
  • Barek, J.; Zima, J. Eighty Years of Polarography – History and Future. Electroanalysis 2003, 15, 467–472. DOI: 10.1002/elan.200390055.
  • Heyrovský, M. Polarography – Past, Present, and Future. J. Solid State Electrochem. 2011, 15, 1799–1803. DOI: 10.1007/s10008-010-1244-0.
  • Zuman, P. Past, Present, and Future of Applications of Electroanalytical Techniques in Analytical and Physical Organic Chemistry. J Solid State Electrochem. 2011, 15, 1753–1759. DOI: 10.1007/s10008-011-1370-3.
  • Barek, J. 50th Anniversary of the Nobel Prize for Polarography. Crit. Rev. Anal. Chem. 2009, 39, 128–130. DOI: 10.1080/10408340903011747.
  • Barek, J.; Fogg, A. G.; Muck, A.; Zima, J. Polarography and Voltammetry at Mercury Electrodes. Crit. Rev. Anal. Chem. 2001, 31, 291–309. DOI: 10.1080/20014091076776.
  • Švancara, I.; Mikysek, T.; Sýs, M. Polarography with Non-Mercury Electrodes: A Review. Elsa 2022, e2100205. DOI: 10.1002/elsa.202100205.
  • Uslu, B.; Özkan, S. A. Solid Electrodes in Electroanalytical Chemistry: Present Applications and Prospects for High Throughput Screening of Drug Compounds. Comb. Chem. High Throughput Screening 2007, 10, 495–513. DOI: 10.2174/138620707782152425.
  • Bard, A. J.; Zoski, C. G. Voltammetry Retrospective. Anal. Chem. 2000, 72, 346A–352A. DOI: 10.1021/ac002791t.
  • Uslu, B.; Özkan, S. A. Electroanalytical Application of Carbon Based Electrodes to the Pharmaceuticals. Anal. Lett. 2007, 40, 817–853. DOI: 10.1080/00032710701242121.
  • Švancara, I.; Walcarius, A.; Kalcher, K.; Vytřas, K. Carbon Paste Electrodes in the New Millennium. Cent. Eur. J. Chem. 2009, 7, 598–656. DOI: 10.2478/s11532-009-0097-9.
  • Kalcher, K.; Svancara, I.; Buzuk, M.; Vytras, K.; Walcarius, W. Electrochemical Sensors and Biosensors Based on Heterogeneous Carbon Materials. Monatsh. Chem. 2009, 140, 861–889. DOI: 10.1007/s00706-009-0131-9.
  • Cavalheiro, É. T. G.; Brett, C. M. A.; Brett, A. M. O.; Filho, O. F. Bioelectroanalysis of Pharmaceutical Compounds. Bioanal. Rev. 2012, 4, 31–53. DOI: 10.1007/s12566-012-0027-8.
  • Özkan, S.A.; Kauffmann, J.M.; Zuman, P., Eds. Electroanalysis in Biomedical and Pharmaceutical Sciences Voltammetry, Amperometry, Biosensors, Applications; Springer-Verlag: Berlin Heidelberg, 2015; p. 350
  • Ribeiro, J. A.; Fernandes, P. M. V.; Pereira, C. M.; Silva, F. Electrochemical Sensors and Biosensors for Determination of Catecholamine Neurotransmitters: A Review. Talanta 2016, 160, 653–679. DOI: 10.1016/j.talanta.2016.06.066.
  • Özkan, S. A.; Uslu, B. From Mercury to Nanosensors: Past, Present and the Future Perspective of Electrochemistry in Pharmaceutical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2016, 130, 126–140. DOI: 10.1016/j.jpba.2016.05.006.
  • Dindar, Ç. K.; Erkmen, C.; Uslu, B. Electroanalytical Methods Based on Bimetallic Nanomaterials for Determination of Pesticides: Past, Present, and Future. Trends Environ. Anal. Chem. 2021, 32, e00145. DOI: 10.1016/j.teac.2021.e00145.
  • Wang, J. Analytical Electrochemistry, 3rd; Wiley: New Jersey, 2006; p. 272.
  • Squire, L.; Berg, D.; Bloom, F.E.; du Lac, S.; Ghosh, A.; Spitzer, N.C., Eds. Fundamental Neuroscience, 4th ed.; Elsevier Inc.: Oxford, UK, 2013; p. 1127
  • Pradhan, T.; Jung, H. S.; Jang, J. H.; Kim, T. W.; Kang, C. K.; Kim, J. S. Chemical Sensing of Neurotransmitters. Chem. Soc. Rev. 2014, 43, 4684–4713. DOI: 10.1039/C3CS60477B.
  • Carlsson, A. The Occurrence, Distribution and Physiological Role of Catecholamines in the Nervous System. Pharmacol. Rev. 1959, 11, 490–493.
  • Perry, M.; Li, Q.; Kennedy, R. T. Review of Recent Advances in Analytical Techniques for the Determination of Neurotransmitters. Anal. Chim. Acta 2009, 653, 1–22. DOI: 10.1016/j.aca.2009.08.038.
  • Clark, L. C.; Jr.; Lyons, C. Studies of a Glassy Carbon Electrode for Brain Polarography with Observations on the Effect of Carbonic Anhydrase Inhibition. Alabama J. Med. Sci. 1965, 2, 353–359.
  • Hawley, M. D.; Tatawawadi, S. V.; Piekarski, S.; Adams, R. N. Electrochemical Studies of the Oxidation Pathways of Catecholamines. J. Am. Chem. Soc. 1967, 89, 447–450. DOI: 10.1021/ja00978a051.
  • Millar, J.; Stamford, J. A.; Kruk, Z. L.; Wightman, R. M. Electrochemical, Pharmacological and Electrophysiological Evidence of Rapid Dopamine Release and Removal in the Rat Caudate Nucleus Following Electrical Stimulation of the Median Forebrain Bundle. Eur. J. Pharmacol. 1985, 109, 341–348. DOI: 10.1016/0014-2999(85)90394-2.[PMC][3872803].
  • Bucher, E. S.; Wightman, R. M. Electrochemical Analysis of Neurotransmitters. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 2015, 8, 239–261. DOI: 10.1146/annurev-anchem-071114-040426.
  • Roberts, J. G.; Sombers, L. A. Fast Scan Cyclic Voltammetry: Chemical Sensing in the Brain and Beyond. Anal. Chem. 2018, 90, 490–504. DOI: 10.1021/acs.analchem.7b04732.
  • Stamford, J. A.; Justice, J. B. Jr. Probing Chemistry: Voltammetry Comes of Age. Anal. Chem. 1996, 68, 359A–363A. DOI: 10.1021/ac961943a.
  • Patel, B.A., Eds. Electrochemistry for Bioanalysis, 2nd ed.; Elsevier Inc.: Amsterdam, Netherlands, 2001; p. 330
  • Millar, J.; Pelling, C. W. A. Improved Methods for Construction of Carbon Fibre Electrodes for Extracellular Spike Recording. J. Neurosci. Methods 2001, 110, 1–8. DOI: 10.1016/S0165-0270(01)00411-3.
  • Dressman, S. F.; Peters, J. L.; Michael, A. C. Carbon Fiber Microelectrodes with Multiple Sensing Elements for In-Vivo Voltammetry. J. Neurosci. Methods 2002, 119, 75–81. DOI: 10.1016/S0165-0270(02)00180-2.
  • Crespi, F.; Dalessandro, D.; Annovazzi-Lodi, V.; Heidbreder, C.; Norgia, M. In Vivo Voltammetry: From Wire to Wireless Measurements. J. Neurosci. Methods 2004, 140, 153–161. DOI: 10.1016/j.jneumeth.2004.06.018.
  • Swamy, B. E. K.; Venton, B. J. Carbon Nanotube-Modified Microelectrodes for Simultaneous Detection of Dopamine and Serotonin In Vivo. Analyst 2007, 132, 876–884. DOI: 10.1039/B705552H.
  • Hermans, A.; Keithley, R. B.; Kita, J. M.; Sombers, L. A.; Wightman, R. M. Dopamine Detection with Fast-Scan Cyclic Voltammetry Used with Analog Background Subtraction. Anal. Chem. 2008, 80, 4040–4048. DOI: 10.1021/ac800108j.
  • Huffman, M. L.; Venton, B. J. Electrochemical Properties of Different Carbon-Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry. Electroanalysis 2008, 20, 2422–2428. DOI: 10.1002/elan.200804343.
  • Zachek, M. K.; Hermans, A.; Wightman, R. M.; McCarty, G. S. Electrochemical Dopamine Detection: Comparing Gold and Carbon Fiber Microelectrodes Using Background Subtracted Fast Scan Cyclic Voltammetry. J. Electroanal. Chem. (Lausanne) 2008, 614, 113–120. DOI: 10.1016/j.jelechem.2007.11.007.
  • Johnson, M. A. In Vivo Electrochemical Measurements: Past, Present and Future. Bioanalysis 2013, 5, 119–122. DOI: 10.4155/bio.12.322.
  • Xiao, T.; Wu, F.; Hao, J.; Zhang, M.; Yu, P.; Mao, L. In Vivo Analysis with Electrochemical Sensors and Biosensors. Anal. Chem. 2017, 89, 300–313. DOI: 10.1021/acs.analchem.6b04308.
  • Durairaj, S.; Sidhureddy, B.; Cirone, J.; Chen, A. Nanomaterials-Based Electrochemical Sensors for In Vitro and In Vivo Analyses of Neurotransmitter. Appl. Sci. 2018, 8, 1504. DOI: 10.3390/app8091504.
  • Azzouz, A.; Goud, K. Y.; Raza, N.; Ballesteros, E.; Lee, S.-E.; Hong, J.; Deep, A.; Kim, K.-H. Nanomaterial-Based Electrochemical Sensors for the Detection of Neurochemicals in Biological Matrices. Trends Anal. Chem. 2019, 110, 15–34. DOI: 10.1016/j.trac.2018.08.002.
  • Chauhan, N.; Soni, S.; Agrawal, P.; Balhara, Y. P. S.; Jain, U. Recent Advancement in Nanosensors for Neurotransmitters Detection: Present and Future Perspective. Process Biochem. 2020, 91, 241–259. DOI: 10.1016/j.procbio.2019.12.016.
  • Puthongkham, P.; Venton, B. J. Recent Advances in Fast-Scan Cyclic Voltammetry. Analyst 2020, 145, 1087–1102. DOI: 10.1039/C9AN01925A.
  • Grinevich, V. P.; Zakirov, A. N.; Berseneva, U. V.; Gerasimova, E. V.; Gainetdinov, R. R.; Budygin, E. A. Applying a Fast-Scan Cyclic Voltammetry to Explore Dopamine Dynamics in Animal Models of Neuropsychiatric Disorders. Cells 2022, 11, 1533. DOI: 10.3390/cells11091533.
  • Kennedy, R. T.; Watson, C. J.; Haskins, W. E.; Powell, D. H.; Strecker, R. E. In Vivo Neurochemical Monitoring by Microdialysis and Capillary Separations. Curr. Opin. Chem. Biol. 2002, 6, 659–665. DOI: 10.1016/S1367-5931(02)00373-3.[PMC][12413551].
  • Müller, M. Science, Medicine, and the Future: Microdialysis. BMJ 2002, 324, 588–591. DOI: 10.1136/bmj.324.7337.588.
  • Tunçel, N.; Sener, E.; Cerit, C.; Karasu, U.; Gürer, F.; Sahintürk, V.; Bayçu, C.; Ak, D.; Filiz, Z. Brain Mast Cells and Therapeutic Potential of Vasoactive Intestinal Peptide in a Parkinson's Disease Model in Rats: Brain Microdialysis, Behavior and Microscopy. Peptides 2005, 26, 827–836. DOI: 10.1016/j.peptides.2004.12.019.
  • Anderzhanova, E.; Wotjak, C. T. Brain Microdialysis and İts Applications in Experimental Neurochemistry. Cell Tissue Res. 2013, 354, 27–39. DOI: 10.1007/s00441-013-1709-4.
  • Garris, P. A.; Ensman, R.; Poehlman, J.; Alexander, A.; Langley, P. E.; Sandberg, S.; Greco, P. G.; Wightman, R. M.; Rebec, G. V. Wireless Transmission of Fast-Scan Cyclic Voltammetry at a Carbon-Fiber Microelectrode: Proof of Principle. J. Neurosci. Methods 2004, 140, 103–115. DOI: 10.1016/j.jneumeth.2004.04.043.
  • Garris, P. A.; Greco, P. G.; Sandberg, S. G.; Howes, G.; Pongmaytegul, S.; Heidenreich, B. A.; Casto, J. M.; Ensman, R.; Poehlman, J.; Alexander, A.; Rebec, G. V. In Vivo Voltammetry with Telemetry. In Electrochemical Methods for Neuroscience Ch 12; Michael, A.C.; Borland, L.M., Eds. CRC Press/Taylor&Francis: NewYork, USA, 2007.
  • Diaz-Ballote, L.; Alpuche-Aviles, M.; Wipf, D. O. Fast-Scan Cyclic Voltammetry–Scanning Electrochemical Microscopy. J. Electroanal. Chem. 2007, 604, 17–25. DOI: 10.1016/j.jelechem.2007.02.023.
  • Schrock, D. S.; Baur, J. E. Chemical Imaging with Combined Fast-Scan Cyclic Voltammetry-Scanning Electrochemical Microscopy. Anal. Chem. 2007, 79, 7053–7061. DOI: 10.1021/ac071155t.
  • Kasasbeh, A.; Lee, K.; Bieber, A.; Bennet, K.; Chang, S.-Y. Wireless Neurochemical Monitoring in Humans. Stereotactic Funct. Neurosurg. 2013, 91, 141–147. DOI: 10.1159/000345111.
  • Lohrenz, T.; Kishida, K. T.; Montague, P. R. BOLD and İts Connection to Dopamine Release in Human Striatum: A Cross-Cohort Comparison. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2016, 371, 0150352. DOI: 10.1098/rstb.2015.0352.
  • Montague, P. R.; Kishida, K. T. Computational Underpinnings of Neuromodulation in Humans. Cold Spring Harb Symp. Quant. Biol. 2018, 83, 71–82. DOI: 10.1101/sqb.2018.83.038166.
  • Cho, Y.-W.; Park, J.-H.; Lee, K.-H.; Lee, T.; Luo, Z.; Kim, T.-H. Recent Advances in Nanomaterial-Modifed Electrical Platforms for the Detection of Dopamine in Living Cell. Nano Convergence 2020, 7, 40. DOI: 10.1186/s40580-020-00250-7.
  • Kishida, K. T.; Sandberg, S. G.; Lohrenz, T.; Comair, Y. G.; Saez, I.; Phillips, P. E. M.; Montague, P. R. Sub-Second Dopamine Detection in Human Striatum. PLoS One. 2011, 6, e23291. DOI: 10.1371/journal.pone.0023291.
  • Lucio Boschen, S.; Trevathan, J.; Hara, S. A.; Asp, A.; Lujan, J. L. Defining a Path toward the Use of Fast-Scan Cyclic Voltammetry in Human Studies. Front. Neurosci. 2021, 15, 728092. DOI: 10.3389/fnins.2021.728092.
  • Yardım, Y. 2004. Determination of Antihypertensive Drug, Acebutolol by Polarographic Method. MS Dissertation, Yuzuncu Yil University, Institute of Natural and Applied Sciences, Van, Turkey.
  • Özkan, S.; Uslu, B.; Sentürk, Z. Electroanalytical Characteristics of Amisulpride and Voltammetric Determination of the Drug in Pharmaceuticals and Biological Media. Electroanalysis 2004, 16, 231–237. DOI: 10.1002/elan.200402828.
  • Uslu, B.; Özkan, S. A.; Şentürk, Z. Electrooxidation of the Antiviral Drug Valacyclovir and İts Square-Wave and Differential Pulse Voltammetric Determination in Pharmaceuticals and Human Biological Fluids. Anal. Chim. Acta 2006, 555, 341–347. DOI: 10.1016/j.aca.2005.09.034.
  • Levent, A.; Yardim, Y.; Senturk, Z. Voltammetric Behavior of Nicotine at Pencil Graphite Electrode and İts Enhancement Determination in the Presence of Anionic Surfactant. Electrochim. Acta 2009, 55, 190–195. DOI: 10.1016/j.electacta.2009.08.035.
  • Calışkan, N.; Sögüt, E.; Saka, C.; Yardım, Y.; Sentürk, Z. The Natural Diatomite from Çaldıran-Van (Turkey): Electroanalytical Application to Naratriptan, Antimigraine Compound, at Modified Carbon Paste Electrode. Comb. Chem. High Throughput Screening 2010, 13, 703–711. DOI: 10.2174/138620710791920356.
  • Yardim, Y.; Keskin, E.; Levent, A.; Ozsöz, M.; Sentürk, Z. Voltammetric Studies on the Potent Carcinogen, 7,12-Dimethylbenz[a]Anthracene: Adsorptive Stripping Voltammetric Determination in Bulk Aqueous Forms and Human Urine Samples and Detection of DNA Interaction on Pencil Graphite Electrode. Talanta 2010, 80, 1347–1355. DOI: 10.1016/j.talanta.2009.09.035.
  • Yardım, Y.; Levent, A.; Keskin, E.; Şentürk, Z. Voltammetric Behavior of Benzo[a]Pyrene at Boron-Doped Diamond Electrode: A Study of İts Determination by Adsorptive Transfer Stripping Voltammetry Based on the Enhancement Effect of Anionic Surfactant, Sodium Dodecylsulfate. Talanta 2011, 85, 441–448. DOI: 10.1016/j.talanta.2011.04.005.
  • Yardim, Y.; Levent, A.; Ekin, S.; Keskin, E.; Oto, G.; Senturk, Z. Determination of 7,12-Dimethylbenz[a]Anthracene in Orally Treated Rats by High-Performance Liquid Chromatography and Transfer Stripping Voltammetry. Comb. Chem. High Throughput Screening 2012, 15, 418–426. DOI: 10.2174/138620712800194440.
  • Yardım, Y.; Gülcan, M.; Şentürk, Z. Determination of Vanillin in Commercial Food Product by Adsorptive Stripping Voltammetry Using a Boron-Doped Diamond Electrode. Food Chem. 2013, 141, 1821–1827. DOI: 10.1016/j.foodchem.2013.04.085.
  • Levent, A.; Altun, A.; Yardım, Y.; Şentürk, Z. Sensitive Voltammetric Determination of Testosterone in Pharmaceuticals and Human Urine Using a Glassy Carbon Electrode in the Presence of Cationic Surfactant. Electrochim. Acta 2014, 128, 54–60. DOI: 10.1016/j.electacta.2013.10.024.
  • Levent, A.; Altun, A.; Taş, S.; Yardım, Y.; Şentürk, Z. Voltammetric Behavior of Testosterone on Bismuth Film Electrode: Highly Sensitive Determination in Pharmaceuticals and Human Urine by Square-Wave Adsorptive Stripping Voltammetry. Electroanalysis 2015, 27, 1219–1228. 2015. DOI: 10.1002/elan.201400627.
  • Yiğit, A. I.; Yardım, Y.; Çelebi, M.; Levent, A.; Şentürk, Z. Graphene/Nafion Composite Film Modified Glassy Carbon Electrode for Simultaneous Determination of Paracetamol, Aspirin and Caffeine in Pharmaceutical Formulations. Talanta 2016, 158, 21–695. DOI: 10.1016/j.talanta.2016.05.046.
  • Yardım, Y.; Vandeput, M.; Çelebi, M.; Şentürk, Z.; Kauffmann, J.-M. A Reduced Graphene Oxide-Based Electrochemical DNA Biosensor for the Detection of Interaction between Cisplatin and DNA Based on Guanine and Adenine Oxidation Signals. Electroanalysis 2017, 29, 1451–1458. DOI: 10.1002/elan.201600804.
  • Abdullah, A. A.; Yardım, Y.; Şentürk, Z. The Performance of Cathodically Pretreated Boron-Doped Diamond Electrode in Cationic Surfactant Media for Enhancing the Adsorptive Stripping Voltammetric Determination of Catechol-Containing Favonoid Quercetin in Apple Juice. Talanta 2018, 187, 156–164. DOI: 10.1016/j.talanta.2018.05.016.
  • Talay Pınar, P.; Yardım, Y.; Şentürk, Z. Electrochemical Oxidation of Ranitidine at Poly(Dopamine) Modified Carbon Paste Electrode: Its Voltammetric Determination in Pharmaceutical and Biological Samples Based on the Enhancement Effect of Anionic Surfactant. Sens. Actuators B: Chem. 2018, 273, 1463–1473. DOI: 10.1016/j.snb.2018.07.068.
  • Allahverdiyeva, S.; Yunusoğlu, O.; Yardım, Y.; Şentürk, Z. First Electrochemical Evaluation of Favipiravir Used as an Antiviral Option in the Treatment of COVID-19: A Study of İts Enhanced Voltammetric Determination in Cationic Surfactant Media Using a Boron-Doped Diamond Electrode. Anal. Chim. Acta 2021, 1159, 338418. DOI: 10.1016/j.aca.2021.338418.
  • Saadi Ali, H.; Barzani, H. A. H.; Yardım, Y.; Şentürk, Z. The Effect of CTAB, a Cationic Surfactant, on the Adsorption Ability of the Boron-Doped Diamond Electrode: Application for Voltammetric Sensing of Bisphenol A and Hydroquinone in Water Samples. Colloids Surf. A: Physicochem. Eng. Asp 2021, 610, 125916. DOI: 10.1016/j.colsurfa.2020.125916.
  • Talay Pınar, P. 2013. Determination of Some Neurochemical Compounds from Brain Tissue by Voltammetry. PhD Dissertation. Yuzuncu Yil University, Institute of Natural and Applied Sciences, Van, Turkey.
  • Web of Science (WOS) database. https://webofscience.com (accessed August 08, 2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.