585
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Aptamer Based Nanoprobes for Detection of Foodborne Virus in Food and Environment Samples: Recent Progress and Challenges

, ORCID Icon, , , & ORCID Icon

Reference

  • Odegard, I.; Van der Voet, E. The Future of Food—Scenarios and the Effect on Natural Resource Use in Agriculture in 2050. Ecol. Econ. 2014, 97, 51–59. DOI: 10.1016/j.ecolecon.2013.10.005.
  • Gibb, H.; Devleesschauwer, B.; Bolger, P. M.; Wu, F.; Ezendam, J.; Cliff, J.; Zeilmaker, M.; Verger, P.; Pitt, J.; Baines, J.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of Four Foodborne Chemical Toxins, 2010: A Data Synthesis. F1000Res. 2015, 4, 1393. DOI: 10.12688/f1000research.7340.1.
  • Van den Berg, M.; Birnbaum, L. S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds. Toxicol. Sci. 2006, 93, 223–241. DOI: 10.1093/toxsci/kfl055.
  • Ibrahim, O. O. Introduction to Hazard Analysis and Critical Control Points (HACCP). EC Microbiol. 2020, 16, 42.
  • Yoshida, N.; Tyler, K. M.; Llewellyn, M. S. Invasion Mechanisms among Emerging Food-Borne Protozoan Parasites. Trends Parasitol. 2011, 27, 459–466. DOI: 10.1016/j.pt.2011.06.006.
  • Fakruddin, M.; Mannan, K. S. B.; Andrews, S. Viable but Nonculturable Bacteria: food Safety and Public Health Perspective; International Scholarly Research Notices: London, 2013.
  • Dupont, J.; Dequin, S.; Giraud, T.; Le Tacon, F.; Marsit, S.; Ropars, J.; Richard, F.; Selosse, M.-A. Fungi as a Source of Food. Microbiol. Spectr. 2017, 5, 5.3. 09. DOI: 10.1128/microbiolspec.FUNK-0030-2016.
  • Bouwknegt, M.; Devleesschauwer, B.; Graham, H.; Robertson, L. J.; van der Giessen, J. W, the Euro-FBP workshop participants Prioritisation of Food-Borne Parasites in Europe, 2016. Eurosurveillance 2018, 23, 17. DOI: 10.2807/1560-7917.ES.2018.23.9.17-00161.
  • Greening, G. E.; Cannon, J. L. Human and Animal Viruses in Food (Including Taxonomy of Enteric Viruses). In Viruses in Foods; Springer: New York, 2016, 5.
  • Kirk, M.; Ford, L.; Glass, K.; Hall, G. Foodborne Illness, Australia, Circa 2000 and Circa 2010. Emerg. Infect. Dis. 2014, 20, 1857–1864. DOI: 10.3201/eid2011.131315.
  • Li, Y.; Wang, R. Aptasensors for Detection of Avian Influenza Virus H5N1. In Biosensors and Biodetection; Springer: New York, 2017, 379
  • Miranda, R. C.; Schaffner, D. W. Virus Risk in the Food Supply Chain. Curr. Opin. Food Sci. 2019, 30, 43–48. DOI: 10.1016/j.cofs.2018.12.002.
  • Gouvea, V.; Santos, N.; Timenetsky, M. D. C.; Estes, M. K. Identification of Norwalk Virus in Artificially Seeded Shellfish and Selected Foods. J. Virol. Methods. 1994, 48, 177–187. DOI: 10.1016/0166-0934(94)90117-1.
  • Pilevar, M.; Kim, K. T.; Lee, W. H. Recent Advances in Biosensors for Detecting Viruses in Water and Wastewater. J. Hazard. Mater. 2021, 410, 124656. DOI: 10.1016/j.jhazmat.2020.124656.
  • Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An Alternative Medical Diagnosis Method: Biosensors for Virus Detection. Biosensors 2019, 9, 65. DOI: 10.3390/bios9020065.
  • Liu, F.; Choi, K. S.; Park, T. J.; Lee, S. Y.; Seo, T. S. Graphene-Based Electrochemical Biosensor for Pathogenic Virus Detection. BioChip J. 2011, 5, 123–128. DOI: 10.1007/s13206-011-5204-2.
  • Guliy, O.; Zaitsev, B.; Larionova, O.; Borodina, I. Virus Detection Methods and Biosensor Technologies. BIOPHYSICS. 2019, 64, 890–897. DOI: 10.1134/S0006350919060095.
  • Kholafazad-Kordasht, H.; Hasanzadeh, M.; Seidi, F. Smartphone Based Immunosensors as Next Generation of Healthcare Tools: Technical and Analytical Overview towards Improvement of Personalized Medicine. TrAC, Trends Anal. Chem. 2021, 145, 116455. DOI: 10.1016/j.trac.2021.116455.
  • Kholafazad kordasht, H.; Mirzaie, A.; Seidi, F.; Hasanzadeh, M. Low Fouling and Ultra-Sensitive Electrochemical Screening of Ractopamine Using Mixed Self-Assembly of PEG and Aptamer Immobilized on the Interface of Poly (Dopamine)/GCE: A New Apta-Platform towards Point of Care (POC) Analysis. Microchem. J. 2021, 171, 106853. DOI: 10.1016/j.microc.2021.106853.
  • Kordasht, H. K.; Hasanzadeh, M. Specific Monitoring of Aflatoxin M1 in Real Samples Using Aptamer Binding to DNFS Based on Turn‐on Method: A Novel Biosensor. J. Mol. Recognit. 2020, 33, e2832. DOI: 10.1002/jmr.2832.
  • Gupta, S.; Sharma, A.; Verma, R. S. Polymers in Biosensor Devices for Cardiovascular Applications. Curr. Opin. Biomed. Eng. 2020, 13, 69–75. DOI: 10.1016/j.cobme.2019.10.002.
  • Trilling, A. K.; Beekwilder, J.; Zuilhof, H. Antibody Orientation on Biosensor Surfaces: A Minireview. Analyst 2013, 138, 1619–1627. DOI: 10.1039/c2an36787d.
  • Santhanam, M.; Algov, I.; Alfonta, L. DNA/RNA Electrochemical Biosensing Devices a Future Replacement of PCR Methods for a Fast Epidemic Containment. Sensors 2020, 20, 4648. DOI: 10.3390/s20164648.
  • Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.; Fiore, V.; et al. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. Sensors 2016, 16, 780. DOI: 10.3390/s16060780.
  • Forouzanfar, S.; Alam, F.; Pala, N.; Wang, C. A Review of Electrochemical Aptasensors for Label-Free Cancer Diagnosis. J. Electrochem. Soc. 2020, 167, 067511. DOI: 10.1149/1945-7111/ab7f20.
  • Kordasht, H. K.; Hasanzadeh, M. Aptamer Based Recognition of Cancer Cells: Recent Progress and Challenges in Bioanalysis. Talanta 2020, 220, 121436. DOI: 10.1016/j.talanta.2020.121436.
  • Hahn, U. SDA and IDA–Two Aptamers to Inhibit Cancer Cell Adhesion. Biochimie 2018, 145, 84–90. DOI: 10.1016/j.biochi.2017.10.018.
  • Yi, J.; Xiao, W.; Li, G.; Wu, P.; He, Y.; Chen, C.; He, Y.; Ding, P.; Kai, T. The Research of Aptamer Biosensor Technologies for Detection of Microorganism. Appl. Microbiol. Biotechnol. 2020, 104, 9877–9890. DOI: 10.1007/s00253-020-10940-1.
  • Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y.; et al. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Appl. Mater. Interfaces. 2021, 13, 9500–9519. DOI: 10.1021/acsami.0c05750.
  • Stanciu, L. A.; Wei, Q.; Barui, A. K.; Mohammad, N. Recent Advances in Aptamer-Based Biosensors for Global Health Applications. Annu. Rev. Biomed. Eng. 2021, 23, 433–459. DOI: 10.1146/annurev-bioeng-082020-035644.
  • Lv, M.; Zhou, W.; Tavakoli, H.; Bautista, C.; Xia, J.; Wang, Z.; Li, X. Aptamer-Functionalized Metal-Organic Frameworks (MOFs) for Biosensing. Biosens. Bioelectron. 2021, 176, 112947. DOI: 10.1016/j.bios.2020.112947.
  • Kordasht, H. K.; Moosavy, M.-H.; Hasanzadeh, M.; Soleymani, J.; Mokhtarzadeh, A. Determination of Aflatoxin M1 Using an Aptamer-Based Biosensor Immobilized on the Surface of Dendritic Fibrous Nano-Silica Functionalized by Amine Groups. Anal. Methods 2019, 11, 3910–3919. DOI: 10.1039/C9AY01185D.
  • Kou, X.; Zhang, X.; Shao, X.; Jiang, C.; Ning, L. Recent Advances in Optical Aptasensor Technology for Amplification Strategies in Cancer Diagnostics. Anal. Bioanal. Chem. 2020, 412, 6691–6705. DOI: 10.1007/s00216-020-02774-7.
  • Kaur, H.; Shorie, M. Nanomaterial Based Aptasensors for Clinical and Environmental Diagnostic Applications. Nanoscale Adv. 2019, 1, 2123–2138. DOI: 10.1039/C9NA00153K.
  • Sengupta, J.; Hussain, C. M. Carbon Nanomaterials to Combat Virus: A Perspective in View of COVID-19. Carbon Trends 2021, 2, 100019. DOI: 10.1016/j.cartre.2020.100019.
  • Li, S.; Guo, X.; Gao, R.; Sun, M.; Xu, L.; Xu, C.; Kuang, H. Recent Progress on Biomaterials Fighting against Viruses. Adv. Mater. 2021, 33, 2005424. DOI: 10.1002/adma.202005424.
  • Jackman, J. A.; Yoon, B. K.; Ouyang, L.; Wang, N.; Ferhan, A. R.; Kim, J.; Majima, T.; Cho, N. J. Biomimetic Nanomaterial Strategies for Virus Targeting: Antiviral Therapies and Vaccines. Adv. Funct. Mater. 2021, 31, 2008352. DOI: 10.1002/adfm.202008352.
  • kholafazad Kordasht, H.; Hassanpour, S.; Baradaran, B.; Nosrati, R.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Biosensing of Microcystins in Water Samples; Recent Advances. Biosens. Bioelectron. 2020, 165, 112403. DOI: 10.1016/j.bios.2020.112403.
  • Janik, M.; Brzozowska, E.; Czyszczoń, P.; Celebańska, A.; Koba, M.; Gamian, A.; Bock, W. J.; Śmietana, M. Optical Fiber Aptasensor for Label-Free Bacteria Detection in Small Volumes. Sens. Actuators, B 2021, 330, 129316. DOI: 10.1016/j.snb.2020.129316.
  • Tian, Y.; Zhu, P.; Chen, Y.; Bai, X.; Du, L.; Chen, W.; Wu, C.; Wang, P. Piezoelectric Aptasensor with Gold Nanoparticle Amplification for the Label-Free Detection of Okadaic Acid. Sens. Actuators, B 2021, 346, 130446. DOI: 10.1016/j.snb.2021.130446.
  • Mahmoudpour, M.; Kholafazad-Kordasht, H.; Dolatabadi, J. E. N.; Hasanzadeh, M.; Rad, A. H.; Torbati, M. Sensitive Aptasensing of Ciprofloxacin Residues in Raw Milk Samples Using Reduced Graphene Oxide and Nanogold-Functionalized Poly (Amidoamine) Dendrimer: An Innovative Apta-Platform towards Electroanalysis of Antibiotics. Anal. Chim. Acta. 2021, 1174, 338736. DOI: 10.1016/j.aca.2021.338736.
  • Pei, X.; Xu, Z.; Zhang, J.; Liu, Z.; Tian, J. Electroactive Dendrimer-Encapsulated Silver Nanoparticles for Sensing Low-Abundance Proteins with Signal Amplification. Anal. Methods 2013, 5, 3235. DOI: 10.1039/c3ay40518d.
  • Chung, S.; Breshears, L. E.; Gonzales, A.; Jennings, C. M.; Morrison, C. M.; Betancourt, W. Q.; Reynolds, K. A.; Yoon, J.-Y. Norovirus Detection in Water Samples at the Level of Single Virus Copies per Microliter Using a Smartphone-Based Fluorescence Microscope. Nat. Protoc. 2021, 16, 1452–1475. DOI: 10.1038/s41596-020-00460-7.
  • Zaczek-Moczydlowska, M. A.; Beizaei, A.; Dillon, M.; Campbell, K. Current State-of-the-Art Diagnostics for Norovirus Detection: Model Approaches for Point-of-Care Analysis. Trends in Food Science & Technology 2021, 114, 684–695. DOI: 10.1016/j.tifs.2021.06.027.
  • Kim, T.-H.; Lee, S.-W. Aptamers for anti-Viral Therapeutics and Diagnostics. IJMS. 2021, 22, 4168. DOI: 10.3390/ijms22084168.
  • Chand, R.; Neethirajan, S. Microfluidic Platform Integrated with Graphene-Gold Nano-Composite Aptasensor for One-Step Detection of Norovirus. Biosens. Bioelectron. 2017, 98, 47–53. DOI: 10.1016/j.bios.2017.06.026.
  • Giamberardino, A.; Labib, M.; Hassan, E. M.; Tetro, J. A.; Springthorpe, S.; Sattar, S. A.; Berezovski, M. V.; DeRosa, M. C. Ultrasensitive Norovirus Detection Using DNA Aptasensor Technology. PLoS One. 2013, 8, e79087. DOI: 10.1371/journal.pone.0079087.
  • Wang, N.; Kitajima, M.; Mani, K.; Kanhere, E.; Whittle, A. J.; Triantafyllou, M. S.; Miao, J. Miniaturized Electrochemical Sensor Modified with Aptamers for Rapid Norovirus Detection. In 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); IEEE: New York, 2016; p 587. DOI: 10.1109/NEMS.2016.7758320.
  • mondiale de la Santé, O.; Organization, W. H. Human Cases of Influenza at the Human-Animal Interface, January 2014–April 2015. Weekly Epidemiological Record = Relevé Épidémiologique Hebdomadaire 2015, 90, 349.
  • Bailey, E. S.; Choi, J. Y.; Fieldhouse, J. K.; Borkenhagen, L. K.; Zemke, J.; Zhang, D.; Gray, G. C. The Continual Threat of Influenza Virus Infections at the Human–Animal Interface: What is New from a One Health Perspective? Evol. Med. Public Health. 2018, 2018, 192–198. DOI: 10.1093/emph/eoy013.
  • Chen, T.; Li, Y.; Meng, S.; Liu, C.; Liu, D.; Dong, D.; You, T. Temperature and pH Tolerance Ratiometric Aptasensor: Efficiently Self-Calibrating Electrochemical Detection of Aflatoxin B1. Talanta 2022, 242, 123280. DOI: 10.1016/j.talanta.2022.123280.
  • Guerrieri, A. Novel Electrochemical Biosensors for Clinical Assays. 2021.
  • Lee, I.; Kim, S.-E.; Lee, J.; Woo, D. H.; Lee, S.; Pyo, H.; Song, C.-S.; Lee, J. A Self-Calibrating Electrochemical Aptasensing Platform: Correcting External Interference Errors for the Reliable and Stable Detection of Avian Influenza Viruses. Biosens. Bioelectron. 2020, 152, 112010. DOI: 10.1016/j.bios.2020.112010.
  • Bai, C.; Lu, Z.; Jiang, H.; Yang, Z.; Liu, X.; Ding, H.; Li, H.; Dong, J.; Huang, A.; Fang, T.; et al. Aptamer Selection and Application in Multivalent Binding-Based Electrical Impedance Detection of Inactivated H1N1 Virus. Biosens. Bioelectron. 2018, 110, 162–167. DOI: 10.1016/j.bios.2018.03.047.
  • Diba, F. S.; Kim, S.; Lee, H. J. Amperometric Bioaffinity Sensing Platform for Avian Influenza Virus Proteins with Aptamer Modified Gold Nanoparticles on Carbon Chips. Biosens. Bioelectron. 2015, 72, 355–361. DOI: 10.1016/j.bios.2015.05.020.
  • Lum, J.; Wang, R.; Hargis, B.; Tung, S.; Bottje, W.; Lu, H.; Li, Y. An Impedance Aptasensor with Microfluidic Chips for Specific Detection of H5N1 Avian Influenza Virus. Sensors (Basel) 2015, 15, 18565–18578. DOI: 10.3390/s150818565.
  • Khansili, N.; Rattu, G.; Krishna, P. M. Label-Free Optical Biosensors for Food and Biological Sensor Applications. Sens. Actuators, B 2018, 265, 35–49. DOI: 10.1016/j.snb.2018.03.004.
  • Liao, Z.; Zhang, Y.; Li, Y.; Miao, Y.; Gao, S.; Lin, F.; Deng, Y.; Geng, L. Microfluidic Chip Coupled with Optical Biosensors for Simultaneous Detection of Multiple Analytes: A Review. Biosens. Bioelectron. 2019, 126, 697–706. DOI: 10.1016/j.bios.2018.11.032.
  • Chiu, N.-F.; Kuo, C.-T.; Chen, C.-Y. High-Affinity Carboxyl-Graphene Oxide-Based SPR Aptasensor for the Detection of hCG Protein in Clinical Serum Samples. Int. J. Nanomed. 2019, 14, 4833–4847. DOI: 10.2147/IJN.S208292.
  • Kordasht, H. K.; Hasanzadeh, M.; Seidi, F.; Alizadeh, P. M. Poly (Amino Acids) towards Sensing: Recent Progress and Challenges. TrAC, Trends Anal. Chem. 2021, 140, 116279. DOI: 10.1016/j.trac.2021.116279.
  • Kim, S.; Lee, S.; Lee, H. J. An Aptamer-Aptamer Sandwich Assay with Nanorod-Enhanced Surface Plasmon Resonance for Attomolar Concentration of Norovirus Capsid Protein. Sens. Actuators, B 2018, 273, 1029–1036. DOI: 10.1016/j.snb.2018.06.108.
  • Kim, B.; Chung, K. W.; Lee, J. H. Non-Stop Aptasensor Capable of Rapidly Monitoring Norovirus in a Sample. J. Pharm. Biomed. Anal. 2018, 152, 315–321. DOI: 10.1016/j.jpba.2018.02.022.
  • Weng, X.; Neethirajan, S. Aptamer-Based Fluorometric Determination of Norovirus Using a Paper-Based Microfluidic Device. Microchim. Acta 2017, 184, 4545–4552. DOI: 10.1007/s00604-017-2467-x.
  • Stevens, K. B.; Gilbert, M.; Pfeiffer, D. U. Modeling Habitat Suitability for Occurrence of Highly Pathogenic Avian Influenza Virus H5N1 in Domestic Poultry in Asia: A Spatial Multicriteria Decision Analysis Approach. Spat. Spatiotemporal. Epidemiol. 2013, 4, 1–14. DOI: 10.1016/j.sste.2012.11.002.
  • Phan, H. T.; Pham, V. T.; Ho, T. T.; Pham, N. B.; Chu, H. H.; Vu, T. H.; Abdelwhab, E. M.; Scheibner, D.; Mettenleiter, T. C.; Hanh, T. X.; et al. Immunization with Plant-Derived Multimeric H5 Hemagglutinins Protect Chicken against Highly Pathogenic Avian Influenza Virus H5N1. Vaccines 2020, 8, 593. DOI: 10.3390/vaccines8040593.
  • Zhao, Q.; Du, P.; Wang, X.; Huang, M.; Sun, L.-D.; Wang, T.; Wang, Z. Upconversion Fluorescence Resonance Energy Transfer Aptasensors for H5N1 Influenza Virus Detection. ACS Omega. 2021, 6, 15236–15245. DOI: 10.1021/acsomega.1c01491.
  • Pang, Y.; Rong, Z.; Wang, J.; Xiao, R.; Wang, S. A Fluorescent Aptasensor for H5N1 Influenza Virus Detection Based-on the Core–Shell Nanoparticles Metal-Enhanced Fluorescence (MEF). Biosens. Bioelectron. 2015, 66, 527–532. DOI: 10.1016/j.bios.2014.10.052.
  • Xu, L.; Wang, R.; Kelso, L. C.; Ying, Y.; Li, Y. A Target-Responsive and Size-Dependent Hydrogel Aptasensor Embedded with QD Fluorescent Reporters for Rapid Detection of Avian Influenza Virus H5N1. Sens. Actuators, B 2016, 234, 98–108. DOI: 10.1016/j.snb.2016.04.156.
  • Kwon, J.; Lee, Y.; Lee, T.; Ahn, J.-H. Aptamer-Based Field-Effect Transistor for Detection of Avian Influenza Virus in Chicken Serum. Anal. Chem. 2020, 92, 5524–5531. DOI: 10.1021/acs.analchem.0c00348.
  • Bai, H.; Wang, R.; Hargis, B.; Lu, H.; Li, Y. A SPR Aptasensor for Detection of Avian Influenza Virus H5N1. Sensors 2012, 12, 12506–12518. DOI: 10.3390/s120912506.
  • Nakhlband, A.; Kholafazad-Kordasht, H.; Rahimi, M.; Mokhtarzadeh, A.; Soleymani, J. Applications of Magnetic Materials in the Fabrication of Microfluidic-Based Sensing Systems: Recent Advances. Microchem. J. 2022, 173, 107042. DOI: 10.1016/j.microc.2021.107042.
  • Kordasht, H. K.; Saadati, A.; Hasanzadeh, M. A Flexible Paper Based Electrochemical Portable Biosensor towards Recognition of Ractopamine as Animal Feed Additive: Low Cost Diagnostic Tool towards Food Analysis Using Aptasensor Technology. Food Chem. 2022, 373, 131411. DOI: 10.1016/j.foodchem.2021.131411.
  • Mao, H.; Zuo, Z.; Yang, N.; Huang, J. S.; Yan, Y. A Microfluidic Colorimetric Biosensor for Chlorpyrifos Determination Based on Peroxidase-like CuFe 2 O 4/GQDs Magnetic Nanoparticles. Journal of Residuals Science & Technology 2017, 14, 255–269.
  • Saadati, A.; Kholafazad kordasht, H.; Ehsani, M.; Hasanzadeh, M.; Seidi, F.; Shadjou, N. An Innovative Flexible and Portable DNA Based Biodevice towards Sensitive Identification of Haemophilus influenzae Bacterial Genome: A New Platform for the Rapid and Low Cost Recognition of Pathogenic Bacteria Using Point of Care (POC) Analysis. Microchem. J. 2021, 169, 106610. DOI: 10.1016/j.microc.2021.106610.
  • Wang, R.; Li, Y. Hydrogel Based QCM Aptasensor for Detection of Avian Influenzavirus. Biosens. Bioelectron. 2013, 42, 148–155. DOI: 10.1016/j.bios.2012.10.038.
  • Wang, R.; Wang, L.; Callaway, Z. T.; Lu, H.; Huang, T. J.; Li, Y. A Nanowell-Based QCM Aptasensor for Rapid and Sensitive Detection of Avian Influenza Virus. Sens. Actuators, B 2017, 240, 934–940. DOI: 10.1016/j.snb.2016.09.067.
  • Brockman, L. QCM Aptasensor for Rapid and Specific Detection of Avian Influenza Virus. 2013.
  • Kitajima, M.; Wang, N.; Tay, M. Q.; Miao, J.; Whittle, A. J. Development of a MEMS-Based Electrochemical Aptasensor for Norovirus Detection. Micro Nano Lett. 2016, 11, 582–585. DOI: 10.1049/mnl.2016.0295.
  • Karash, S.; Wang, R.; Kelso, L.; Lu, H.; Huang, T. J.; Li, Y. Rapid Detection of Avian Influenza Virus H5N1 in Chicken Tracheal Samples Using an Impedance Aptasensor with Gold Nanoparticles for Signal Amplification. J. Virol. Methods. 2016, 236, 147–156. DOI: 10.1016/j.jviromet.2016.07.018.
  • Xu, L.; Wang, R.; Wang, A.; Li, Y. Rapid and Label-Free Detection of Avian Influenza Virus H5N1 Using a Target-Responsive Hydrogel Based Fluorescence Aptasensor. In 2015 ASABE Annual International Meeting: American Society of Agricultural and Biological Engineers,Michigan; 2015, p 1.
  • Kukushkin, V. I.; Ivanov, N. M.; Novoseltseva, A. A.; Gambaryan, A. S.; Yaminsky, I. V.; Kopylov, A. M.; Zavyalova, E. G. Highly Sensitive Detection of Influenza Virus with SERS Aptasensor. PLoS One. 2019, 14, e0216247. DOI: 10.1371/journal.pone.0216247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.