431
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Synthesis of Copper Nanoclusters and Their Application for Environmental Pollutant Probes: A Review

, , , , &

References

  • Palkendo, J. A.; Kovach, J.; Betts, T. A. Determination of Wear Metals in Used Motor Oil by Flame Atomic Absorption Spectroscopy. J. Chem. Educ 2014, 91, 579–582. DOI: 10.1021/ed4004832.
  • Kumar, M.; Kaur, N.; Gautam, K.; Pathak, R. K.; Khasa, Y. P.; Gupta, L. R. Reporting Heavy Metal Resistance Bacterial Strains from Industrially Polluted Sites of Northern India Using Fatty Acid Methyl Ester (FAME) Analysis and Plasma-Atomic Emission Spectroscopy (ICP-AES). Adv. Sci. Lett. 2013, 19, 3311–3314. DOI: 10.1166/asl.2013.5159.
  • Mahmud, M. A. A.; Bhadra, S.; Haque, A.; Mamun, M. E. A.; Haider, S. S. Development and Validation of HPLC Method for Simultaneous Determination of Gliclazide and Enalapril Maleate in Tablet Dosage Form. Dhaka Univ. J. Pharm. Sci. 2014, 13, 51–56. DOI: 10.3329/dujps.v13i1.21859.
  • Li, Y. T.; Yang, G. R.; Zhao, J.; Yang, Y. L. Vortex-Assisted Hollow-Fiber Liquid-Phase Microextraction Coupled with High Performance Liquid Chromatography for the Determination of Three Synthetic Endocrine Disrupting Compounds in Milk. J. Brazil. Chem. Soc. 2014, 25, 1512–1519. DOI: 10.5935/0103-5053.20140134.
  • Amin, R. M.; Elfeky, S. A.; Verwanger, T.; Krammer, B. Fluorescence-Based CdTe Nanosensor for Sensitive Detection of Cytochrome C. Biosens. Bioelectron. 2017, 98, 415–420. DOI: 10.1016/j.bios.2017.07.020.
  • Dwiecki, K.; Piasecka, A.; Neunert, G.; Nogala-Kałucka, M.; Polewski, K. Mechanism Study of Selected Phenolic Compounds Determination Using Β-Cyclodextrin-Coated CdSe/ZnS Quantum Dots. J. Lumin. 2017, 192, 1119–1126. DOI: 10.1016/j.jlumin.2017.08.019.
  • Yue, J. P.; Lv, Q.; Wang, W.; Zhang, Q. Quantum-Dot-Functionalized Paper-Based Device for Simultaneous Visual Detection of Cu(II), Mn(II), and Hg(II). Talanta Open 2022, 5, 100099. DOI: 10.1016/j.talo.2022.100099.
  • Hoan, B. T.; Thanh, T. T.; Tam, P. D.; Trung, N. N.; Cho, S.; Pham, V. H. A Green Luminescence of Lemon Derived Carbon Quantum Dots and Their Applications for Sensing of V5+ Ions. Mat. Sci. Eng. B-Adv 2019, 251, 114455. DOI: 10.1016/j.mseb.2019.114455.
  • Xu, P. P.; Wang, C. F.; Sun, D.; Chen, Y. J.; Zhuo, K. L. Ionic Liquid as a Precursor to Synthesize Nitrogen- and Sulfur-Co-Doped Carbon Dots for Detection of Copper(II) Ions. Chem. Res. Chin. Univ 2015, 31, 730–735. DOI: 10.1007/s40242-015-5118-y.
  • Liu, R. H.; Li, H. T.; Kong, W. Q.; Liu, J.; Liu, Y.; Tong, C. Y.; Zhang, X.; Kang, Z. H. Ultra-Sensitive and Selective Hg2+ Detection Based on Fluorescent Carbon Dots. Mater. Res. Bull 2013, 48, 2529–2534. DOI: 10.1016/j.materresbull.2013.03.015.
  • Yangzhe, Z.; Min, Q.; Minghui, Y. Fluorescence Determination of Lactate Dehydrogenase Activity Based on Silicon Quantum Dots. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 268, 120697. DOI: 10.1016/j.saa.2021.120697.
  • Rahimi, F.; Anbia, M. Nitrogen-Rich Silicon Quantum Dots: Facile Synthesis and Application as a Fluorescent "on-off-on" Probe for Sensitive Detection of Hg2+ and Cyanide Ions. Luminescence 2022, 37, 598–609. DOI: 10.1002/bio.4195.
  • Song, W.; Zhang, X. P.; Lin, B.; Shu, Y.; Wang, J. H. Sensitivity Dependence on the Crystal Forms of a Fluorescence Quencher for Silicon Quantum Dots and Its Use in Acetylcholinesterase Assay. Anal. Chem. 2021, 93, 14900–14906. DOI: 10.1021/acs.analchem.1c04091.
  • Huang, X. M.; Lan, M. J.; Wang, J.; Guo, L. H.; Lin, Z. Y.; Sun, N.; Wu, C. M.; Qiu, B. A Fluorescence Signal Amplification and Specific Energy Transfer Strategy for Sensitive Detection of Beta-Galactosidase Based on the Effects of AIE and Host-Guest Recognition. Biosens Bioelectron. 2020, 169, 112655. DOI: 10.1016/j.bios.2020.112655.
  • Lian, N.; Zhang, Y. H.; Liu, D.; Tang, J. H.; Wu, H. Y. Copper Nanoclusters as a Turn-On Fluorescent Probe for Sensitive and Selective Detection of Quinolones. Microchem. J. 2021, 164, 105989. DOI: 10.1016/j.microc.2021.105989.
  • Yang, D. Y.; Zhou, T.; Tu, Y. F.; Yan, J. L. Detection of Silver through Amplified Quenching of Fluorescence from Polyvinyl Pyrrolidone-Stabilized Copper Nanoclusters. Mikrochim. Acta. 2021, 188, 212–212. DOI: 10.1007/s00604-021-04873-3.
  • Borse, S.; Murthy, Z. V. P.; Park, T. J.; Kailasa, S. K. Pepsin Mediated Synthesis of Blue Fluorescent Copper Nanoclusters for Sensing of Flutamide and Chloramphenicol Drugs. Microchem. J. 2021, 164, 105947. DOI: 10.1016/j.microc.2021.105947.
  • Wang, Y. T.; Wu, N.; Guo, F. N.; Gao, R. X.; Yang, T.; Wang, J. H. g-C3N4 Nanosheet-Based Ratiometric Fluorescent Probes for the Amplification and Imaging of miRNA in Living Cells. J. Mater. Chem. B. 2019, 7, 7566–7573. DOI: 10.1039/c9tb02021g.
  • Rajamanikandan, R.; Aazaad, B.; Lakshmipathi, S.; Ilanchelian, M. Glutathione Functionalized Copper Nanoclusters as a Fluorescence Platform for Specific Biosensing of Cysteine and Application in Cellular Imaging. Microchem. J. 2020, 158, 105253. DOI: 10.1016/j.microc.2020.105253.
  • Chen, S. H.; Li, Z.; Huang, Z. Z.; Jia, Q. Investigation of Efficient Synergistic and Protective Effects of Chitosan on Copper Nanoclusters: Construction of Highly Active and Stable Nanozyme for Colorimetric and Fluorometric Dual-Signal Biosensing. Sensor. Actuat. B-Chem. 2021, 332, 129522. DOI: 10.1016/j.snb.2021.129522.
  • Li, Z. Y.; Xue, Y.; Zhao, W. H.; Ye, D. X. Orange-Red Emitting Copper Nanoclusters for Endogenous GSH, Temperature Sensing, and Cellular Imaging. Analyst 2020, 145, 7063–7070. DOI: 10.1039/d0an01535k.
  • Deb, A. K.; Biswas, B.; Goswami, N.; Hilder, E. F.; Naidu, R.; Rahman, M. M. Synthesis of Environmentally Benign Ultra-Small Copper Nanoclusters-Halloysite Composites and Their Catalytic Performance on Contrasting Azo Dyes. Appl. Surf. Sci. 2021, 546, 149122. DOI: 10.1016/j.apsusc.2021.149122.
  • Ramadurai, M.; Rajendran, G.; Bama, T. S.; Prabhu, P.; Kathiravan, K. Biocompatible Thiolate Protected Copper Nanoclusters for an Efficient Imaging of Lung Cancer Cells. J. Photochem. Photobiol. B Biol. 2020, 205, 111845. DOI: 10.1016/j.jphotobiol.2020.111845.
  • Fang, X. M.; Huang, Y. H.; Yu, D.; Shi, C. W.; Liu, M. Highly Stable Folic Acid Functionalized Copper-Nanocluster/Silica Nanoparticles for Selective Targeting of Cancer Cells. RSC Adv. 2020, 10, 31463–31469. DOI: 10.1039/d0ra06523d.
  • Li, Y. T.; Tang, D. H.; Zhu, L.; Cai, J. T.; Chu, C. N.; Wang, J.; Xia, M.; Cao, Z. Z.; Zhu, H. Label-Free Detection of miRNA Cancer Markers Based on Terminal Deoxynucleotidyl Transferase-Induced Copper Nanoclusters. Anal. Biochem. 2019, 585, 113346. DOI: 10.1016/j.ab.2019.113346.
  • Yang, J. L.; Li, Z.; Jia, Q. Anchoring Copper Nanoclusters to Zn-Containing Hydroxy Double Salt: Construction of 2D Surface Confinement Induced Enhanced Emission toward Bio-Enzyme Sensing and Light-Emitting Diode Fabrication. Chem. Commun. (Camb) 2020, 56, 3081–3084. DOI: 10.1039/d0cc00389a.
  • Deng, H. H.; Zhuang, Q. Q.; Huang, K. Y.; Balasubramanian, P.; Lin, Z.; Peng, H. P.; Xia, X. H.; Chen, W. Solid-State Thiolate-Stabilized Copper Nanoclusters with Ultrahigh Photoluminescence Quantum Yield for White Light-Emitting Devices. Nanoscale 2020, 12, 15791–15799. DOI: 10.1039/d0nr03640d.
  • An, X. X.; Tan, Q.; Pan, S.; Zhen, S. J.; Hu, Y. M.; Hu, X. L. Determination of Xanthine Using a Ratiometric FL Probe Based on Boron-Doped Carbon Quantum Dots and Gold Nanoclusters. Mikrochim. Acta. 2022, 189, 148. DOI: 10.1007/s00604-021-05139-8.
  • Chang, X.; Gao, P.; Li, Q. F.; Liu, H. M.; Hou, H. H.; Wu, S.; Chen, J.; Gan, L.; Zhao, M.; Zhang, D. J.; et al. Fluorescent Papain-Encapsulated Platinum Nanoclusters for Sensing Lysozyme in Biofluid and Gram-Positive Bacterial Identification. Sensor. Actuat. B-Chem. 2021, 345, 130363. DOI: 10.1016/j.snb.2021.130363.
  • Jin, M. M.; Liu, W.; Sun, J. Q.; Wang, X. Z.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly Dispersed Ag Clusters for Active and Stable Hydrogen Peroxide Production. Nano Res. 2022, 15, 5842–5847. DOI: 10.1007/s12274-022-4208-7.
  • Jo, Y.; Choi, M.; Kim, M.; Yoo, J. S.; Choi, W.; Lee, D. Promotion of Alkaline Hydrogen Production via Ni‐Doping of Atomically Precise Ag Nanoclusters. Bull. Korean Chem. Soc. 2021, 42, 1672–1677. DOI: 10.1002/bkcs.12404.
  • Busi, K. B.; Palanivel, M.; Ghosh, K. K.; Ball, W. B.; Gulyas, B.; Padmanabhan, P.; Chakrabortty, S. The Multifarious Applications of Copper Nanoclusters in Biosensing and Bioimaging and Their Translational Role in Early Disease Detection. Nanomaterials 2022, 12, 301. DOI: 10.3390/nano12030301.
  • Tan, N. D.; Yin, J. H.; Yuan, Y. Q.; Meng, L.; Xu, N. One-Pot Hydrothermal Synthesis of Highly Fluorescent Polyethyleneimine-Capped Copper Nanoclusters for Specific Detection of Rifampicin. Bull. Korean Chem. Soc. 2018, 39, 657–664. DOI: 10.1002/bkcs.11449.
  • Demirhan, B. E.; Kara, H.; Demirhan, B. One-Step Green Aqueous Synthesis of Blue Light Emitting Copper Nanoclusters for Quantitative Determination of Food Color Ponceau 4R. J. Photochem. Photobiol. A Chem. 2021, 417, 113356. DOI: 10.1016/j.jphotochem.2021.113356.
  • Guo, Y. Y.; Li, W. J.; Guo, P. Y.; Han, X. R.; Deng, Z. R.; Zhang, S.; Cai, Z. F. One Facile Fluorescence Strategy for Sensitive Determination of Baicalein Using Trypsin-Templated Copper Nanoclusters. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 268, 120689. DOI: 10.1016/j.saa.2021.120689.
  • Lin, H. J.; Wang, C. C.; Kou, H. S.; Cheng, C. W.; Wu, S. M. Stable Luminescent Poly(Allylaminehydrochloride)-Templated Copper Nanoclusters for Selectively Turn-Off Sensing of Deferasirox in beta-Thalassemia Plasma. Pharmaceuticals 2021, 14, 1314. DOI: 10.3390/ph14121314.
  • Yang, M. R.; Wang, Y. Q.; Gu, Y. F.; Xue, Z. L.; Shi, J. H.; An, W.; Rui, Y. C. Electro-Deposited Copper Nanoclusters on Leaf-Shaped Cobalt Phosphide for Boosting Hydrogen Evolution Reaction. J. Alloys Compd. 2022, 902, 163771. DOI: 10.1016/j.jallcom.2022.163771.
  • Zhu, X. L.; Liu, S. Y.; Cao, J. P.; Mao, X. X.; Li, G. X. Switchable DNA Wire: Deposition-Stripping of Copper Nanoclusters as an "on-off" Nanoswitch. Sci. Rep. 2016, 6, 19515. DOI: 10.1038/srep19515.
  • El-Sayed, N.; Schneider, M. Advances in Biomedical and Pharmaceutical Applications of Protein-Stabilized Gold Nanoclusters. J. Mater. Chem. B. 2020, 8, 8952–8971. DOI: 10.1039/D0TB01610A.
  • Sabarinathan, D.; Sharma, A. S.; Agyekum, A. A.; Murugavelu, M.; Sabapathy, P. C.; Ali, S.; Hassan, H.; Li, H. H.; Chen, Q. S. Thunnus Albacares Protein-Mediated Synthesis of Water-Soluble Copper Nanoclusters as Sensitive Fluorescent Probe for Ferric Ion Detection. J. Mol. Struct. 2022, 1254, 132333. DOI: 10.1016/j.molstruc.2022.132333.
  • Wang, B.; Gui, R.; Jin, H.; He, W.; Wang, Z. Red-Emitting BSA-Stabilized Copper Nanoclusters Acted as a Sensitive Probe for Fluorescence Sensing and Visual Imaging Detection of Rutin. Talanta 2018, 178, 1006–1010. DOI: 10.1016/j.talanta.2017.08.102..[PMC][29136788
  • Jayasree, M.; Aparna, R. S.; Anjana, R. R.; Devi, J.; John, N.; Abha, K.; Manikandan, A.; George, S. Fluorescence Turn on Detection of Bilirubin Using Fe (III) Modulated BSA Stabilized Copper Nanocluster; a Mechanistic Perception. Anal Chim Acta 2018, 1031, 152–160. DOI: 10.1016/j.aca.2018.05.026.
  • Wang, Z. G.; Chen, B. K.; Rogach, A. L. Synthesis, Optical Properties and Applications of Light-Emitting Copper Nanoclusters. Nanoscale Horiz. 2017, 2, 135–146. DOI: 10.1039/c7nh00013h.
  • Wang, H.; Tao, B.; Wu, N.; Zhang, H.; Liu, Y. Glutathione-Stabilized Copper Nanoclusters Mediated-Inner Filter Effect for Sensitive and Selective Determination of P-Nitrophenol and Alkaline Phosphatase Activity. Spectrochim. Acta - Part A: Mol. Biomol. Spectrosc 2022, 271, 120948. doi:10.1016/j.saa.2022.120948.
  • Yuan, J.; Wang, L.; Wang, Y. T.; Hao, J. C. Stimuli-Responsive Fluorescent Nanoswitches: Solvent-Induced Emission Enhancement of Copper Nanoclusters. Chemistry 2020, 26, 3545–3554. DOI: 10.1002/chem.201905094.
  • Han, Y. Y.; Gao, X. Q.; Wang, D. W.; Zhuang, X. M.; Tian, C. Y.; Fu, X. L. Synthesis of Copper Nanoclusters and Its Application in Determination of Pyrophosphate. Chinese J. Anal. Chem. 2021, 49, 1300–1307. DOI: 10.19756/j.issn.0253-3820.201742.
  • Wang, C.; Yao, Y.; Song, Q. Interfacial Synthesis of Polyethyleneimine-Protected Copper Nanoclusters: Size-Dependent Tunable Photoluminescence, pH Sensor and Bioimaging. Colloids Surf B Biointerfaces 2016, 140, 373–381. doi:https://doi.org/10.1016/j.colsurfb.2016.01.001.[PMC][26774573.
  • Jiao, T.; Wen, H. X.; Li, Z. P. Selective Detection of Doxorubicin Hydrochloride Based on Fluorescence Quenching of Copper Nanoclusters. Chinese J. Anal. Chem. 2022, 50, 235–243. DOI: 10.19756/j.issn.0253-3820.210770.
  • Guan, L.; Liu, W.; Kang, H.; Tian, D. Fabrication and Cell Imaging of Konjac Glucomannan-Copper Nanocluster Conjugates with Aggregation-Induced Emission. Polymer 2021, 225, 123796. doi:10.1016/j.polymer.2021.123796.
  • Jisu, Y.; JongBack, G. Detection of AluI Endonuclease Activity by Using Double Stranded DNA-Templated Copper Nanoclusters. Microbiol. and Biotechnol. Lett 2021, 49, 316–319. DOI: 10.48022/mbl.2103.03001.
  • Li, L.; Liu, T.; Wang, M.; Ren, Y.; Jia, N.; Bu, H.; Xie, G.; Xu, H.; Wu, Y.; Ouyang, X. Snowflake-Like DNA Crystals Templated Cu Clusters as a Fluorescent Turn-On Probe for Sensing Actin. Anal. Chim. Acta. 2021, 1173, 338700. DOI: 10.1016/j.aca.2021.338700.[PMC][34172154.
  • Zhang, Y. L.; Lai, Y. Q.; Teng, X.; Pu, S. F.; Yang, Z.; Pang, P. F.; Wang, H. B.; Yang, C.; Yang, W. R.; Barrow, C. J. Facile Fluorescence Strategy for Sensitive Detection of microcystin-LR Based on dsDNA-Templated Copper Nanoclusters. Anal. Methods 2020, 12, 1752–1758. DOI: 10.1039/C9AY02250C.
  • Fan, Y. C.; Yu, W. H.; Liao, Y. N.; Jiang, X. H.; Wang, Z. H.; Cheng, Z. J. Ratiometric Detection of Doxycycline in Pharmaceutical Based on Dual Ligands-Enhanced Copper Nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc 2022, 267, 120509. DOI: 10.1016/j.saa.2021.120509.
  • Bhardwaj, V.; Bothra, S.; Upadhyay, Y.; Sahoo, S. K. Cascade Detection of Pyridoxal 5 '-Phosphate and Al3+ Ions Based on Dual-Functionalized Red-Emitting Copper Nanoclusters. ACS Appl. Nano Mater 2021, 4, 6231–6238. DOI: 10.1021/acsanm.1c01019.
  • Cao, X. L.; Bai, Y. G.; Liu, F. X.; Li, F.; Luo, Y. A. Turn-Off' Fluorescence Strategy for Determination of Hexavalent Chromium Ions Based on Copper Nanoclusters. Luminescence 2021, 36, 229–236. DOI: 10.1002/bio.3942.
  • Liu, Z.; Qi, J.; Hu, C.; Zhang, L.; Song, W.; Liang, R.; Qiu, J. Cu Nanoclusters-Based Ratiometric Fluorescence Probe for Ratiometric and Visualization Detection of Copper Ions. Anal. Chim. Acta 2015, 895, 95–103. doi:10.1016/j.aca.2015.09.002.
  • Luo, T. T.; Zhang, S. T.; Wang, Y. J.; Wang, M. N.; Liao, M.; Kou, X. M. Glutathione-Stabilized Cu Nanocluster-Based Fluorescent Probe for Sensitive and Selective Detection of Hg2+ in Water. Luminescence 2017, 32, 1092–1099. DOI: 10.1002/bio.3296.
  • Saleh, S. M.; El-Sayed, W. A.; El-Manawaty, M. A.; Gassoumi, M.; Ali, R. An Eco-Friendly Synthetic Approach for Copper Nanoclusters and Their Potential in Lead Ions Sensing and Biological Applications. Biosensors (Basel) 2022, 12, 197. DOI: 10.3390/bios12040197.
  • Hu, X.; Mao, X. X.; Zhang, X. D.; Huang, Y. M. One-Step Synthesis of Orange Fluorescent Copper Nanoclusters for Sensitive and Selective Sensing of Al3+ Ions in Food Samples. Sens. Actuat., B. Chem 2017, 247, 312–318. DOI: 10.1016/j.snb.2017.03.050.
  • Wang, D.; Wang, Z.; Wang, X.; Zhuang, X.; Tian, C.; Luan, F.; Fu, X. Functionalized Copper Nanoclusters-Based Fluorescent Probe with Aggregation-Induced Emission Property for Selective Detection of Sulfide Ions in Food Additives. J. Agric. Food Chem. 2020, 68, 11301–11308. DOI: 10.1021/acs.jafc.0c04275.
  • Lei, T.; Huang, T.; Wang, T. Z.; Yu, P.; Qing, T. P.; Nie, B. X. Nano-Fluorescent Probes Based on DNA-Templated Copper Nanoclusters for Fast Sensing of Thiocyanate. New J. Chem 2020, 44, 17296–17301. DOI: 10.1039/D0NJ03742G.
  • Dong, W.; Sun, C.; Sun, M.; Ge, H.; Asiri, A. M.; Marwani, H. M.; Ni, R.; Wang, S. Fluorescent Copper Nanoclusters for the Iodide-Enhanced Detection of Hypochlorous Acid. ACS Appl. Nano Mater. 2020, 3, 312–318. DOI: 10.1021/acsanm.9b01958.
  • Tai, Y. T.; Simon, T.; Chu, Y. Y.; Ko, F. H. One-Pot Synthesis of Copper Nanoconjugate Materials as Luminescent Sensor for Fe3+ and I− Detection in Human Urine Sample. Sens. Bio-Sensing Res. 2020, 27, 100319. DOI: 10.1016/j.sbsr.2019.100319.
  • Du, Q. Q.; Zhang, X. D.; Cao, H. Y.; Huang, Y. M. Polydopamine Coated Copper Nanoclusters with Aggregation-Induced Emission for Fluorometric Determination of Phosphate Ion and Acid Phosphatase Activity. Mikrochim. Acta. 2020, 187, 357. DOI: 10.1007/s00604-020-04335-2.
  • Sonaimuthu, M.; Nerthigan, Y.; Swaminathan, N.; Sharma, N.; Wu, H. F. Photoluminescent Hydrophilic Cyclodextrin-Stabilized Cysteine-Protected Copper Nanoclusters for Detecting Lysozyme. Anal. Bioanal. Chem. 2020, 412, 7141–7154. DOI: 10.1007/s00216-020-02847-7.
  • Rajamanikandan, R.; Ilanchelian, M. Red Emitting Human Serum Albumin Templated Copper Nanoclusters as Effective Candidates for Highly Specific Biosensing of Bilirubin. Mater. Sci. Eng. C 2019, 98, 1064–1072. doi:10.1016/j.msec.2019.01.048.
  • Li, Y. L.; Feng, L. Y.; Yan, W.; Hussain, I.; Su, L.; Tan, B. PVP- Templated Highly Luminescent Copper Nanoclusters for Sensing Trinitrophenol and Living Cell Imaging. Nanoscale 2019, 11, 1286–1294. DOI: 10.1039/c8nr07142j.
  • Zhang, M.; Qiao, J.; Zhang, S.; Qi, L. Copper Nanoclusters as Probes for Turn-on Fluorescence Sensing of L-Lysine. Talanta 2018, 182, 595–599. doi:10.1016/j.talanta.2018.02.035.
  • Li, L.; Fu, M. L.; Yang, D. Y.; Tu, Y. F.; Yan, J. L. Sensitive Detection of Glutathione through Inhibiting Quenching of Copper Nanoclusters Fluorescence. Spectrochim. Acta A. Mol. Biomol. Spectrosc 2022, 267, 120563. doi:10.1016/j.saa.2021.120563.
  • Lettieri, M.; Palladino, P.; Scarano, S.; Minunni, M. Protein-Templated Copper Nanoclusters for Fluorimetric Determination of Human Serum Albumin. Mikrochim Acta 2021, 188, 116. DOI: 10.1007/s00604-021-04764-7.
  • Cheng, Y.; Sun, F. F.; Zhou, Y. H. Synthesis of Copper Nanoclusters Stabilized by 2-Amino-5-Mercapto-1, 3, 4 -Thiadiazole and Acetate Simultaneously and as a Sensitive Sensor for Detecting Trace Water in Organic Solvents. J. Lumin 2018, 197, 376–382. doi:10.1016/j.jlumin.2018.01.055.
  • Luo, Y. W.; Miao, H.; Yang, X. M. Glutathione-Stabilized Cu Nanoclusters as Fluorescent Probes for Sensing pH and Vitamin B-1. Talanta 2015, 144, 488–495. DOI: 10.1016/j.talanta.2015.07.001.
  • Ye, J.; Dong, X. W.; Jiang, H.; Wang, X. M. An Intracellular Temperature Nanoprobe Based on Biosynthesized Fluorescent Copper Nanoclusters. J. Mater. Chem. B 2017, 5, 691–696. DOI: 10.1039/c6tb02751b.
  • Kasera, N.; Kolar, P.; Hall, S. G. Nitrogen-Doped Biochars as Adsorbents for Mitigation of Heavy Metals and Organics from Water: A Review. Biochar 2022, 4, 17. DOI: 10.1007/s42773-022-00145-2.
  • Peng, Y. B.; Ren, Y.; Zhu, H.; An, Y.; Chang, B. S.; Sun, T. L. Ultrasmall Copper Nanoclusters with Multi-Enzyme Activities. RSC Adv. 2021, 11, 14517–14526. DOI: 10.1039/d1ra01410b.
  • Li, S. Y.; Zeng, Z. H.; Zhao, C. C.; Wang, H. Y.; Ye, X. S.; Qing, T. P. Nucleoside-Regulated Catalytic Activity of Copper Nanoclusters and Their Application for Mercury Ion Detection. New J. Chem. 2022, 46, 4687–4692. DOI: 10.1039/d1nj05525a.
  • Zhang, Z. F.; Xue, W. M.; Yang, J. J.; Zhao, Y.; Guo, J. P. Discriminating Detection of Dissolved Ferrous and Ferric Ions Using Copper Nanocluster-Based Fluorescent Probe. Anal. Biochem. 2021, 623, 114171. doi:10.1016/j.ab.2021.114171.
  • Guo, S.; Guo, C. X.; Lu, Z.; Du, L. L.; Gao, M.; Liu, S. J.; Liu, Y. L.; Zhao, Q. A Novel Phosphorescent Iridium(III) Complex Bearing Formamide for Quantitative Fluorine Anion Detection. Crystals 2021, 11, 1190. DOI: 10.3390/cryst11101190.
  • Hernandez, J. D.; Castell, A.; Arroyo-Manzanares, N.; Guillen, I.; Vizcaino, P.; Lopez-Garcia, I.; Hernandez-Cordoba, M.; Vinas, P. Toward Nitrite-Free Curing: Evaluation of a New Approach to Distinguish Real Uncured Meat from Cured Meat Made with Nitrite. Foods 2021, 10, 313. DOI: 10.3390/foods10020313.
  • Li, X.; Zhang, X. D.; Cao, H. Y.; Huang, Y. M.; Feng, P. Tb3+ Tuning AIE Self-Assembly of Copper Nanoclusters for Sensitively Sensing Trace Fluoride Ions. Sens. Actuat., B. Chem 2021, 342, 130071. doi:10.1016/j.snb.2021.130071.
  • Han, S.; Chen, X. Copper Nanoclusters-Enhanced Chemiluminescence for Folic Acid and Nitrite Detection. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc 2019, 210, 315–320. doi:10.1016/j.saa.2018.11.051.
  • Rodrigues, C. S. D.; Madeira, L. M. P-Nitrophenol Degradation by Activated Persulfate. Environ. Technol. Innov. 2021, 21, 101265. DOI: 10.1016/j.eti.2020.101265.
  • Lin, Q.; Chu, H. T.; Chen, J. Q.; Gao, L. D.; Zong, W.; Han, S.; Li, J. L. Dual-Emission Ratiometric Fluorescence Probe Based on Copper Nanoclusters for the Detection of Rutin and Picric Acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 270, 120829. DOI: 10.1016/j.saa.2021.120829.
  • Zhang, Q.; Mei, H.; Zhou, W. T.; Wang, X. D. Cerium Ion(III)-Triggered Aggregation-Induced Emission of Copper Nanoclusters for Trace-Level P-Nitrophenol Detection in Water. Microchem. J. 2021, 162, 105842. doi:10.1016/j.microc.2020.105842.
  • Mei, H.; Ma, Y. G.; Wu, H. M.; Wang, X. D. Fluorescent and Visual Assay of H2O2 and Glucose Based on a Highly Sensitive Copper nanoclusters-Ce(III) Fluoroprobe. Anal. Bioanal. Chem. 2021, 413, 2135–2146. DOI: 10.1007/s00216-021-03181-2.
  • Yao, Z. N.; Wang, K. G.; Jin, A. Z.; Li, J. J.; Yang, H. F.; Zhang, Y. G.; Gu, C. Z. Fabrication of Nanopores for Biomacromolecule Detection. J. Nanosci. Nanotechnol. 2010, 10, 7300–7302. DOI: 10.1166/jnn.2010.2867.
  • Thammajinno, S.; Buranachai, C.; Kanatharana, P.; Thavarungkul, P.; Thammakhet-Buranachai, C. A Copper Nanoclusters Probe for Dual Detection of Microalbumin and Creatinine. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2022, 270, 120816. doi:10.1016/j.saa.2021.120816.
  • Korostynska, O.; Arshak, K.; Gill, E.; Arshak, A. Review Paper: Materials and Techniques for in Vivo pH Monitoring. IEEE Sensors J. 2008, 8, 20–28. DOI: 10.1109/JSEN.2007.912522..
  • Hammoudi, N.; Torre, C.; Ghigo, E.; Drancourt, M. Temperature Affects the Biology of Schmidtea Mediterranea. Sci. Rep. 2018, 8, 14934. DOI: 10.1038/s41598-018-33355-5.
  • Hu, X.; Zhang, X.; Cao, H.; Huang, Y. Cu-Based Metal-Organic Frameworks-Derived Copper Nanoclusters with Tunable Emission for Ratiometric pH Sensing. Senser. Actuat. B-Chem 2022, 353, 131130. DOI: 10.1016/j.snb.2021.131130.
  • Cai, Z. F.; Li, H. Y.; Gao, H. Y.; Wang, X. H.; Min, C.; Wen, J. Q.; Fu, R. X.; Dai, Z. Y.; Chen, J.; Guo, M. Z.; et al. Highly Luminescent Copper Nanoclusters as Temperature Sensors and "Turn off" Detection of Oxytetracycline. Colloid. Surafce. A 2022, 647, 129202. DOI: 10.1016/j.colsurfa.2022.129202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.