441
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Anthocyanins in Different Food Matrices: Recent Updates on Extraction, Purification and Analysis Techniques

, ORCID Icon, & ORCID Icon

References

  • Seeram, N. P.; Nair, M. G. Inhibition of Lipid Peroxidation and Structure-Activity-Related Studies of the Dietary Constituents Anthocyanins, Anthocyanidins, and Catechins. J. Agric. Food Chem. 2002, 50, 5308–5312. DOI: 10.1021/jf025671q.
  • Delgado-Povedano, M. D. M.; de Villiers, A.; Hann, S.; Causon, T. Identity Confirmation of Anthocyanins in Berries by LC-DAD-IM-QTOFMS. Electrophoresis. 2021, 42, 473–481. DOI: 10.1002/elps.202000274.
  • Zhang, J.; Wu, J.; Liu, F.; Tong, L.; Chen, Z.; Chen, J.; He, H.; Xu, R.; Ma, Y.; Huang, C. Neuroprotective Effects of Anthocyanins and Its Major Component Cyanidin-3-O-Glucoside (C3G) in the Central Nervous System: An Outlined Review. Eur. J. Pharmacol. 2019, 858, 172500. DOI: 10.1016/j.ejphar.2019.172500.
  • Cai, J.; Zeng, F.; Zheng, S.; Huang, X.; Zhang, J.; Zhang, P.; Fei, P. Preparation of Lipid-Soluble Bilberry Anthocyanins through Acylation with Cinnamic Acids and Their Antioxidation Activities. J. Agric. Food Chem. 2020, 68, 7467–7473. DOI: 10.1021/acs.jafc.0c01912.
  • Tena, N.; Martín, J.; Asuero, A. G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants. 2020, 9, 451. DOI: 10.3390/antiox9050451.
  • Liu, Y.; Li, M.; Li, T.; Chen, Y.; Zhang, L.; Zhao, G.; Zhuang, J.; Zhao, W.; Gao, L.; Xia, T. Airborne Fungus-Induced Biosynthesis of Anthocyanins in Arabidopsis thaliana via Jasmonic Acid and Salicylic Acid Signaling. Plant Sci. 2020, 300, 110635. DOI: 10.1016/j.plantsci.2020.110635.
  • Gowd, V.; Jia, Z.; Chen, W. Anthocyanins as Promising Molecules and Dietary Bioactive Components against Diabetes – A Review of Recent Advances. Trends Food Sci. Technol. 2017, 68, 1–13. DOI: 10.1016/j.tifs.2017.07.015.
  • Kruger, M. J.; Davies, N.; Myburgh, K. H.; Lecour, S. Lecour. Proanthocyanidins, Anthocyanins and Cardiovascular Diseases. Food Res. Int. 2014, 59, 41–52. DOI: 10.1016/j.foodres.2014.01.046.
  • Lima, L. C. B.; Silva, F. C.; Silva-Filho, E. C.; Fonseca, M. G.; Zhuang, G.; Jaber, M. Saponite-Anthocyanin Derivatives: The Role of Organoclays in Pigment Photostability. Appl. Clay Sci. 2020, 191, 105604. DOI: 10.1016/j.clay.2020.105604.
  • Yousuf, B.; Gul, K.; Wani, A. A.; Singh, P. Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2223–2230. DOI: 10.1080/10408398.2013.805316.
  • Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother. Res. 2016, 30, 1265–1286. DOI: 10.1002/ptr.5642.
  • Patras, A.; Brunton, N. P.; O'Donnell, C.; Tiwari, B. K. Effect of Thermal Processing on Anthocyanin Stability in Foods; Mechanisms and Kinetics of Degradation. Trends Food Sci. Technol. 2010, 21, 3–11. DOI: 10.1016/j.tifs.2009.07.004.
  • Petersson, E. V.; Liu, J.; Sjoberg, P. J.; Danielsson, R.; Turner, C. Pressurized Hot Water Extraction of Anthocyanins from Red Onion: A Study on Extraction and Degradation Rates. Anal. Chim. Acta. 2010, 663, 27–32. DOI: 10.1016/j.aca.2010.01.023.
  • Ongkowijoyo, P.; Luna-Vital, D. A.; Gonzalez de Mejia, E. Extraction Techniques and Analysis of Anthocyanins from Food Sources by Mass Spectrometry: An Update. Food Chem. 2018, 250, 113–126. DOI: 10.1016/j.foodchem.2018.01.055.
  • Li, A.; Xiao, R.; He, S.; An, X.; He, Y.; Wang, C.; Yin, S.; Wang, B.; Shi, X.; He, J. Research Advances of Purple Sweet Potato Anthocyanins: Extraction, Identification, Stability, Bioactivity, Application, and Biotransformation. Molecules. 2019, 24, 3816. DOI: 10.3390/molecules24213816.
  • Farooq, S.; Shah, M. A.; Siddiqui, M. W.; Dar, B. N.; Mir, S. A.; Ali, A. Recent Trends in Extraction Techniques of Anthocyanins from Plant Materials. Food Meas. 2020, 14, 3508–3519. DOI: 10.1007/s11694-020-00598-8.
  • Chandra Singh, M.; Kelso, C.; Price, W. E.; Probst, Y. Validated Liquid Chromatography Separation Methods for Identification and Quantification of Anthocyanins in Fruit and Vegetables: A Systematic Review. Food Res. Int. 2020, 138, 109754. DOI: 10.1016/j.foodres.2020.109754.
  • Wathon, M. H.; Beaumont, N.; Benohoud, M.; Blackburn, R. S.; Rayner, C. M. Extraction of Anthocyanins from Aronia Melanocarpa Skin Waste as a Sustainable Source of Natural Colorants. Color. Technol. 2019, 135, 5–16. DOI: 10.1111/cote.12385.
  • Zhou, Y.-H.; Staniszewska, I.; Liu, Z.-L.; Zielinska, D.; Xiao, H.-W.; Pan, Z.; Nowak, K. W.; Zielinska, M. Microwave-Vacuum-Assisted Drying of Pretreated Cranberries: Drying Kinetics, Bioactive Compounds and Antioxidant Activity. LWT. 2021, 146, 111464. DOI: 10.1016/j.lwt.2021.111464.
  • Álvarez, A.; Terreros, S.; Cocero, M. J.; Mato, R. B. Microwave Pretreatment for the Extraction of Anthocyanins from Saffron Flowers: Assessment of Product Quality. Antioxidants (Basel). 2021, 10, 1054. DOI: 10.3390/antiox10071054.
  • Sui, X.; Dong, X.; Zhou, W. Combined Effect of pH and High Temperature on the Stability and Antioxidant Capacity of Two Anthocyanins in Aqueous Solution. Food Chem. 2014, 163, 163–170. DOI: 10.1016/j.foodchem.2014.04.075.
  • Cavalcanti, R. N.; Santos, D. T.; Meireles, M. A. A. Non-Thermal Stabilization Mechanisms of Anthocyanins in Model and Food Systems—An Overview. Food Res. Int. 2011, 44, 499–509. DOI: 10.1016/j.foodres.2010.12.007.
  • Luiza Koop, B.; Nascimento da Silva, M.; Diniz da Silva, F.; Thayres dos Santos Lima, K.; Santos Soares, L.; José de Andrade, C.; Ayala Valencia, G.; Rodrigues Monteiro, A. Flavonoids, Anthocyanins, Betalains, Curcumin, and Carotenoids: Sources, Classification and Enhanced Stabilization by Encapsulation and Adsorption. Food Res. Int. 2022, 153, 110929. DOI: 10.1016/j.foodres.2021.110929.
  • Askar, K. A.; Alsawad, Z. H.; Khalaf, M. N. Evaluation of the pH and Thermal Stabilities of Rosella Anthocyanin Extracts under Solar Light. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 262–268. DOI: 10.1016/j.bjbas.2015.06.001.
  • Blackhall, M. L.; Berry, R.; Davies, N. W.; Walls, J. T. Optimized Extraction of Anthocyanins from Reid Fruits' Prunus avium 'Lapins' Cherries. Food Chem. 2018, 256, 280–285. DOI: 10.1016/j.foodchem.2018.02.137.
  • Ryu, D.; Koh, E. Application of Response Surface Methodology to Acidified Water Extraction of Black Soybeans for Improving Anthocyanin Content, Total Phenols Content and Antioxidant Activity. Food Chem. 2018, 261, 260–266. DOI: 10.1016/j.foodchem.2018.04.061.
  • Lotfi, L.; Kalbasi-Ashtari, A.; Hamedi, M.; Ghorbani, F. Effects of Sulfur Water Extraction on Anthocyanins Properties of Tepals in Flower of Saffron (Crocus Sativus L). J. Food Sci. Technol. 2015, 52, 813–821. DOI: 10.1007/s13197-013-1058-z.
  • Karaaslan, N. M.; Yaman, M. Anthocyanin Profile of Strawberry Fruit as Affected by Extraction Conditions. Int. J. Food Prop. 2017, 20, S2313–S2322. DOI: 10.1080/10942912.2017.1368548.
  • Hong, H. T.; Netzel, M. E.; O'Hare, T. J. Optimisation of Extraction Procedure and Development of LC-DAD-MS Methodology for Anthocyanin Analysis in Anthocyanin-Pigmented Corn Kernels. Food Chem. 2020, 319, 126515. DOI: 10.1016/j.foodchem.2020.126515.
  • Gómez-Plaza, E.; Gil-Muñoz, R.; López-Roca, J. M.; Martı́nez-Cutillas, A.; Fernández-Fernández, J. I. Maintenance of Colour Composition of a Red Wine during Storage. Influence of Prefermentative Practices, Maceration Time and Storage. LWT - Food Sci. Technol. 2002, 35, 46–53. DOI: 10.1006/fstl.2001.0809.
  • Cacace, J. E.; Mazza, G. Extraction of Anthocyanins and Other Phenolics from Black Currants with Sulfured Water. J. Agric. Food Chem. 2002, 50, 5939–5946. DOI: 10.1021/jf025614x.
  • Ju, Z.; Howard, L. R. Subcritical Water and Sulfured Water Extraction of Anthocyanins and Other Phenolics from Dried Red Grape Skin. J. Food Sci. 2006, 70, S270–S276. DOI: 10.1111/j.1365-2621.2005.tb07202.x.
  • Li, Q.; Singh; E, V.; de Mejia, G.; Somavat, P. Effect of Sulfur Dioxide and Lactic Acid in Steeping Water on the Extraction of Anthocyanins and Bioactives from Purple Corn Pericarp. Cereal Chem. 2019, 96, 575–589. DOI: 10.1002/cche.10157.
  • Ćurko, N.; Tomašević, M.; Cvjetko Bubalo, M.; Gracin, L.; Radojčić Redovniković, I.; Kovačević Ganić, K. Extraction of Proanthocyanidins and Anthocyanins from Grape Skin by Using Ionic Liquids. Food Technol. Biotechnol. 2017, 55, 429–437. DOI: 10.17113/ftb.55.03.17.5200.
  • Xue, H.; Tan, J.; Li, Q.; Tang, J.; Cai, X. Optimization Ultrasound-Assisted Deep Eutectic Solvent Extraction of Anthocyanins from Raspberry Using Response Surface Methodology Coupled with Genetic Algorithm. Foods. 2020, 9, 1409. DOI: 10.3390/foods9101409.
  • Sang, J.; Li, B.; Huang, Y.-y.; Ma, Q.; Liu, K.; Li, C.-q. Deep Eutectic Solvent-Based Extraction Coupled with Green Two-Dimensional HPLC-DAD-ESI-MS/MS for the Determination of Anthocyanins from Lycium Ruthenicum Murr. fruit. Anal. Methods. 2018, 10, 1247–1257. DOI: 10.1039/C8AY00101D.
  • Zeng, Y.-J.; Xu, P.; Yang, H.-R.; Zong, M.-H.; Lou, W.-Y. Purification of Anthocyanins from Saskatoon Berries and Their Microencapsulation in Deep Eutectic Solvents. LWT. 2018, 95, 316–325. DOI: 10.1016/j.lwt.2018.04.087.
  • Guo, N.; Ping, K.; Jiang, Y.-W.; Wang, L.-T.; Niu, L.-J.; Liu, Z.-M.; Fu, Y.-J. Natural Deep Eutectic Solvents Couple with Integrative Extraction Technique as an Effective Approach for Mulberry Anthocyanin Extraction. Food Chem. 2019, 296, 78–85. DOI: 10.1016/j.foodchem.2019.05.196.
  • Dai, Y.; Rozema, E.; Verpoorte, R.; Choi, Y. H. Application of Natural Deep Eutectic Solvents to the Extraction of Anthocyanins from Catharanthus Roseus with High Extractability and Stability Replacing Conventional Organic Solvents. J. Chromatogr. A. 2016, 1434, 50–56. DOI: 10.1016/j.chroma.2016.01.037.
  • Silva, D. T. d.; Pauletto, R.; Cavalheiro, S. d. S.; Bochi, V. C.; Rodrigues, E.; Weber, J.; Silva, C. d. B. d.; Morisso, F. D. P.; Barcia, M. T.; Emanuelli, T. Natural Deep Eutectic Solvents as a Biocompatible Tool for the Extraction of Blueberry Anthocyanins. J. Food Compos. Anal. 2020, 89, 103470. DOI: 10.1016/j.jfca.2020.103470.
  • Yang, F.-X.; Xu, P.; Yang, J.-G.; Liang, J.; Zong, M.-H.; Lou, W.-Y. Efficient Separation and Purification of Anthocyanins from Saskatoon Berry by Using Low Transition Temperature Mixtures. RSC Adv. 2016, 6, 104582–104590. DOI: 10.1039/C6RA22912C.
  • Durand, E.; Lecomte, J.; Villeneuve, P. From Green Chemistry to Nature: The Versatile Role of Low Transition Temperature Mixtures. Biochimie. 2016, 120, 119–123. DOI: 10.1016/j.biochi.2015.09.019.
  • Francisco, M.; van den Bruinhorst, A.; Kroon, M. C. Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents. Angew. Chem. Int. Ed. Engl. 2013, 52, 3074–3085. DOI: 10.1002/anie.201207548.
  • Francisco, M.; van den Bruinhorst, A.; Zubeir, L. F.; Peters, C. J.; Kroon, M. C. A New Low Transition Temperature Mixture (LTTM) Formed by Choline Chloride + Lactic Acid: Characterization as Solvent for CO2 Capture. Fluid Phase Equilib. 2013, 340, 77–84. DOI: 10.1016/j.fluid.2012.12.001.
  • Zubeir, L. F.; Lacroix, M. H.; Kroon, M. C. Low Transition Temperature Mixtures as Innovative and Sustainable CO2 Capture Solvents. J. Phys. Chem. B. 2014, 118, 14429–14441. DOI: 10.1021/jp5089004.
  • Vannuchi, N.; Braga, A. R. C.; De Rosso, V. V. High-Performance Extraction Process of Anthocyanins from Jussara (Euterpe Edulis) Using Deep Eutectic Solvents. Processes. 2022, 10, 615. DOI: 10.3390/pr10030615.
  • Fernandez, M. L. A.; Boiteux, J.; Espino, M.; Gomez, F. J. V.; Silva, M. F. Natural Deep Eutectic Solvents-Mediated Extractions: The Way Forward for Sustainable Analytical Developments. Anal. Chim. Acta. 2018, 1038, 1–10. DOI: 10.1016/j.aca.2018.07.059.
  • Radošević, K.; Ćurko, N.; Gaurina Srček, V.; Cvjetko Bubalo, M.; Tomašević, M.; Kovačević Ganić, K.; Radojčić Redovniković, I. Natural Deep Eutectic Solvents as Beneficial Extractants for Enhancement of Plant Extracts Bioactivity. LWT. 2016, 73, 45–51. DOI: 10.1016/j.lwt.2016.05.037.
  • Dai, Y.; Verpoorte, R.; Choi, Y. H. Natural Deep Eutectic Solvents Providing Enhanced Stability of Natural Colorants from Safflower (Carthamus tinctorius). Food Chem. 2014, 159, 116–121. DOI: 10.1016/j.foodchem.2014.02.155.
  • Cao, J.; Cao, J.; Wang, H.; Chen, L.; Cao, F.; Su, E. Solubility Improvement of Phytochemicals Using (Natural) Deep Eutectic Solvents and Their Bioactivity Evaluation. J. Mol. Liq. 2020, 318, 113997. DOI: 10.1016/j.molliq.2020.113997.
  • Panic, M.; Gunjevic, V.; Cravotto, G.; Radojcic Redovnikovic, I. Enabling Technologies for the Extraction of Grape-Pomace Anthocyanins Using Natural Deep Eutectic Solvents in Up-to-Half-Litre Batches Extraction of Grape-Pomace Anthocyanins Using NADES. Food Chem. 2019, 300, 125185. DOI: 10.1016/j.foodchem.2019.125185.
  • Grillo, G.; Gunjevic, V.; Radosevic, K.; Redovnikovic, I. R.; Cravotto, G. Deep Eutectic Solvents and Nonconventional Technologies for Blueberry-Peel Extraction: Kinetics, Anthocyanin Stability, and Antiproliferative Activity. Antioxidants (Basel). 2020, 9, 1069. DOI: 10.3390/antiox9111069.
  • Thakur, R.; Gupta, V.; Dhar, P.; Deka, S. C.; Das, A. B. Ultrasound‐Assisted Extraction of Anthocyanin from Black Rice Bran Using Natural Deep Eutectic Solvents: Optimization, Diffusivity, and Stability. Food Process. Preserv. 2022, 46, e16309. DOI: 10.1111/jfpp.16309.
  • Zhang, Y.; Chen, F.-f.; Sang, J. Green Approach for Sample Preparation and Determination of Anthocyanins from Lycium Ruthenicum Murr. Using a β-Cyclodextrin-Based Extraction Method Coupled with UPLC-DAD Analysis. Food Anal. Methods. 2018, 11, 2141–2148. DOI: 10.1007/s12161-018-1191-4.
  • Leichtweis, M. G.; Pereira, C.; Prieto, M. A.; Barreiro, M. F.; Baraldi, I. J.; Barros, L.; Ferreira, I. Ultrasound as a Rapid and Low-Cost Extraction Procedure to Obtain Anthocyanin-Based Colorants from Prunus Spinosa L. Fruit Epicarp: Comparative Study with Conventional Heat-Based Extraction. Molecules. 2019, 24, 573. DOI: 10.3390/molecules24030573.
  • Romero-Diez, R.; Matos, M.; Rodrigues, L.; Bronze, M. R.; Rodriguez-Rojo, S.; Cocero, M. J.; Matias, A. A. Microwave and Ultrasound Pre-Treatments to Enhance Anthocyanins Extraction from Different Wine Lees. Food Chem. 2019, 272, 258–266. DOI: 10.1016/j.foodchem.2018.08.016.
  • Pataro, G.; Bobinaitė, R.; Bobinas, Č.; Šatkauskas, S.; Raudonis, R.; Visockis, M.; Ferrari, G.; Viškelis, P. Improving the Extraction of Juice and Anthocyanins from Blueberry Fruits and Their by-Products by Application of Pulsed Electric Fields. Food Bioproc. Technol. 2017, 10, 1595–1605. DOI: 10.1007/s11947-017-1928-x.
  • Haining, Z.; Yongkun, M. Optimisation of High Hydrostatic Pressure Assisted Extraction of Anthocyanins from Rabbiteye Blueberry Pomace. Czech J. Food Sci. 2017, 35, 180–187. DOI: 10.17221/189/2016-CJFS.
  • Liu, C.; Xue, H.; Shen, L.; Liu, C.; Zheng, X.; Shi, J.; Xue, S. Improvement of Anthocyanins Rate of Blueberry Powder under Variable Power of Microwave Extraction. Sep. Purif. Technol. 2019, 226, 286–298. DOI: 10.1016/j.seppur.2019.05.096.
  • Zhang, L.; Fan, G.; Khan, M. A.; Yan, Z.; Beta, T. Ultrasonic-Assisted Enzymatic Extraction and Identification of Anthocyanin Components from Mulberry Wine Residues. Food Chem. 2020, 323, 126714. DOI: 10.1016/j.foodchem.2020.126714.
  • Jiang, Y.; Ding, Y.; Wang, D.; Deng, Y.; Zhao, Y. Radio Frequency-Assisted Enzymatic Extraction of Anthocyanins from Akebia Trifoliata (Thunb.) Koidz. Flowers: Process Optimization, Structure, and Bioactivity Determination. Ind. Crops Prod. 2020, 149, 112327. DOI: 10.1016/j.indcrop.2020.112327.
  • Li, Y.; Wang, X.-Y.; Jiang, X.-P.; Ye, J.-J.; Zhang, Y.-W.; Zhang, X.-Y. Fabrication of Graphene Oxide Decorated with Fe3O4@SiO2 for Immobilization of Cellulase. J. Nanopart. Res. 2015, 17, 1–12. DOI: 10.1007/s11051-014-2826-z.
  • Basso, A.; Serban, S. Industrial Applications of Immobilized Enzymes—A Review. Mol. Catal. 2019, 479, 110607. DOI: 10.1016/j.mcat.2019.110607.
  • DiCosimo, R.; McAuliffe, J.; Poulose, A. J.; Bohlmann, G. Industrial Use of Immobilized Enzymes. Chem. Soc. Rev. 2013, 42, 6437–6474. DOI: 10.1039/c3cs35506c.
  • Mohamad, N. R.; Marzuki, N. H.; Buang, N. A.; Huyop, F.; Wahab, R. A. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. DOI: 10.1080/13102818.2015.1008192.
  • Sojitra, U. V.; Nadar, S. S.; Rathod, V. K. A Magnetic Tri-Enzyme Nanobiocatalyst for Fruit Juice Clarification. Food Chem. 2016, 213, 296–305. DOI: 10.1016/j.foodchem.2016.06.074.
  • Hu, T.-G.; Cheng, J.-H.; Zhang, B.-B.; Lou, W.-Y.; Zong, M.-H. Immobilization of Alkaline Protease on Amino-Functionalized Magnetic Nanoparticles and Its Efficient Use for Preparation of Oat Polypeptides. Ind. Eng. Chem. Res. 2015, 54, 4689–4698. DOI: 10.1021/ie504691j.
  • Soozanipour, A.; Taheri-Kafrani, A.; Landarani Isfahani, A. Covalent Attachment of Xylanase on Functionalized Magnetic Nanoparticles and Determination of Its Activity and Stability. Chem. Eng. J. 2015, 270, 235–243. DOI: 10.1016/j.cej.2015.02.032.
  • Yuan, B.; Yang, X. Q.; Xue, L. W.; Feng, Y. N.; Jiang, J. H. A Novel Recycling System for Nano-Magnetic Molecular Imprinting Immobilised Cellulases: Synergistic Recovery of Anthocyanin from Fruit and Vegetable Waste. Bioresour. Technol. 2016, 222, 14–23. DOI: 10.1016/j.biortech.2016.09.088.
  • Rajnish, K. N.; Samuel, M. S.; John, J. A.; Datta, S.; Chandrasekar, N.; Balaji, R.; Jose, S.; Selvarajan, E. Immobilization of Cellulase Enzymes on Nano and Micro-Materials for Breakdown of Cellulose for Biofuel Production - A Narrative Review. Int. J. Biol. Macromol. 2021, 182, 1793–1802. DOI: 10.1016/j.ijbiomac.2021.05.176.
  • Fang, G.; Chen, H.; Zhang, Y.; Chen, A. Immobilization of Pectinase onto Fe3O4@SiO2-NH2 and Its Activity and Stability. Int. J. Biol. Macromol. 2016, 88, 189–195. DOI: 10.1016/j.ijbiomac.2016.03.059.
  • Dal Magro, L.; Silveira, V. C. C.; de Menezes, E. W.; Benvenutti, E. V.; Nicolodi, S.; Hertz, P. F.; Klein, M. P.; Rodrigues, R. C. Magnetic Biocatalysts of Pectinase and Cellulase: Synthesis and Characterization of Two Preparations for Application in Grape Juice Clarification. Int. J. Biol. Macromol. 2018, 115, 35–44. DOI: 10.1016/j.ijbiomac.2018.04.028.
  • Yi, J.; Qiu, M.; Zhu, Z.; Dong, X.; Andrew Decker, E.; McClements, D. J. Robust and Recyclable Magnetic Nanobiocatalysts for Extraction of Anthocyanin from Black Rice. Food Chem. 2021, 364, 130447. DOI: 10.1016/j.foodchem.2021.130447.
  • Liu, D.-M.; Chen, J.; Shi, Y.-P. Advances on Methods and Easy Separated Support Materials for Enzymes Immobilization. TrAC, Trends Anal. Chem. 2018, 102, 332–342. DOI: 10.1016/j.trac.2018.03.011.
  • Ding, S.; Cargill, A. A.; Medintz, I. L.; Claussen, J. C. Increasing the Activity of Immobilized Enzymes with Nanoparticle Conjugation. Curr. Opin. Biotechnol. 2015, 34, 242–250. DOI: 10.1016/j.copbio.2015.04.005.
  • Bilal, M.; Zhao, Y.; Rasheed, T.; Iqbal, H. M. N. Magnetic Nanoparticles as Versatile Carriers for Enzymes Immobilization: A Review. Int. J. Biol. Macromol. 2018, 120, 2530–2544. DOI: 10.1016/j.ijbiomac.2018.09.025.
  • Su, H.; Tian, Q.; Hurd Price, C.-A.; Xu, L.; Qian, K.; Liu, J. Nanoporous Core@Shell Particles: Design, Preparation, Applications in Bioadsorption and Biocatalysis. Nano Today. 2020, 31, 100834. DOI: 10.1016/j.nantod.2019.100834.
  • Zhang, Y.; Yue, Q.; Zagho, M. M.; Zhang, J.; Elzatahry, A. A.; Jiang, Y.; Deng, Y. Core-Shell Magnetic Mesoporous Silica Microspheres with Large Mesopores for Enzyme Immobilization in Biocatalysis. ACS Appl. Mater. Interfaces. 2019, 11, 10356–10363. DOI: 10.1021/acsami.8b18721.
  • Garcia-Mendoza, M. d. P.; Espinosa-Pardo, F. A.; Baseggio, A. M.; Barbero, G. F.; Maróstica Jr., M. R.; Rostagno, M. A.; Martínez, J. Extraction of Phenolic Compounds and Anthocyanins from Juçara (Euterpe Edulis Mart.) Residues Using Pressurized Liquids and Supercritical Fluids. J. Supercrit. Fluids. 2017, 119, 9–16. DOI: 10.1016/j.supflu.2016.08.014.
  • Cai, Z.; Qu, Z.; Lan, Y.; Zhao, S.; Ma, X.; Wan, Q.; Jing, P.; Li, P. Conventional, Ultrasound-Assisted, and Accelerated-Solvent Extractions of Anthocyanins from Purple Sweet Potatoes. Food Chem. 2016, 197, 266–272. DOI: 10.1016/j.foodchem.2015.10.110.
  • Aliaño-González, M. J.; Ferreiro-González, M.; Espada-Bellido, E.; Carrera, C.; Palma, M.; Álvarez, J. A.; Ayuso, J.; Barbero, G. F. Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe Oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. Agronomy. 2020, 10, 183. DOI: 10.3390/agronomy10020183.
  • Andrade, T. A.; Hamerski, F.; López Fetzer, D. E.; Roda-Serrat, M. C.; Corazza, M. L.; Norddahl, B.; Errico, M. Ultrasound-Assisted Pressurized Liquid Extraction of Anthocyanins from Aronia Melanocarpa Pomace. Sep. Purif. Technol. 2021, 276, 119290. DOI: 10.1016/j.seppur.2021.119290.
  • He, L.; Zhang, X.; Xu, H.; Xu, C.; Yuan, F.; Knez, Ž.; Novak, Z.; Gao, Y. Subcritical Water Extraction of Phenolic Compounds from Pomegranate (Punica Granatum L.) Seed Residues and Investigation into Their Antioxidant Activities with HPLC–ABTS + Assay. Food Bioprod. Process. 2012, 90, 215–223. DOI: 10.1016/j.fbp.2011.03.003.
  • Wang, Y.; Luan, G.; Zhou, W.; Meng, J.; Wang, H.; Hu, N.; Suo, Y. Subcritical Water Extraction, UPLC-Triple-TOF/MS Analysis and Antioxidant Activity of Anthocyanins from Lycium Ruthenicum Murr. Food Chem. 2018, 249, 119–126. DOI: 10.1016/j.foodchem.2017.12.078.
  • Nunes, A. N.; Borges, A.; Matias, A. A.; Bronze, M. R.; Oliveira, J. Alternative Extraction and Downstream Purification Processes for Anthocyanins. Molecules. 2022, 27, 368. DOI: 10.3390/molecules27020368.
  • Hsieh-Lo, M.; Castillo-Herrera, G.; Mojica, L. Black Bean Anthocyanin-Rich Extract from Supercritical and Pressurized Extraction Increased In Vitro Antidiabetic Potential, While Having Similar Storage Stability. Foods. 2020, 9, 655. DOI: 10.3390/foods9050655.
  • Jiao, G.; Kermanshahi pour, A. Extraction of Anthocyanins from Haskap Berry Pulp Using Supercritical Carbon Dioxide: Influence of Co-Solvent Composition and Pretreatment. LWT. 2018, 98, 237–244. DOI: 10.1016/j.lwt.2018.08.042.
  • Vinitha, U. G.; Sathasivam, R.; Muthuraman, M. S.; Park, S. U. Intensification of Supercritical Fluid in the Extraction of Flavonoids: A Comprehensive Review. Physiol. Mol. Plant Pathol. 2022, 118, 101815. DOI: 10.1016/j.pmpp.2022.101815.
  • Khaw, K. Y.; Parat, M. O.; Shaw, P. N.; Falconer, J. R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules. 2017, 22, 1186. DOI: 10.3390/molecules22071186.
  • da Silva, R. P. F. F.; Rocha-Santos, T. A. P.; Duarte, A. C. Supercritical Fluid Extraction of Bioactive Compounds. TrAC, Trends Anal. Chem. 2016, 76, 40–51. DOI: 10.1016/j.trac.2015.11.013.
  • Paula, J. T.; Paviani, L. C.; Foglio, M. A.; Sousa, I. M. O.; Cabral, F. A. Extraction of Anthocyanins from Arrabidaea Chica in Fixed Bed Using CO2 and CO2/Ethanol/Water Mixtures as Solvents. J. Supercrit. Fluids. 2013, 81, 33–41. DOI: 10.1016/j.supflu.2013.04.009.
  • Idham, Z.; Putra, N. R.; Aziz, A. H. A.; Zaini, A. S.; Rasidek, N. A. M.; Mili, N.; Yunus, M. A. C. Improvement of Extraction and Stability of Anthocyanins, the Natural Red Pigment from Roselle Calyces Using Supercritical Carbon Dioxide Extraction. J. CO2 Util. 2022, 56, 101839. DOI: 10.1016/j.jcou.2021.101839.
  • Sang, J.; Dang, K.-k.; Ma, Q.; Li, B.; Huang, Y.-y.; Li, C.-q. Partition Behaviors of Different Polar Anthocyanins in Aqueous Two-Phase Systems and Extraction of Anthocyanins from Nitraria Tangutorun Bobr. and Lycium Ruthenicum Murr. Food Anal. Methods. 2018, 11, 980–991. DOI: 10.1007/s12161-017-1071-3.
  • Yang, Y.; Yuan, X.; Xu, Y.; Yu, Z. Purification of Anthocyanins from Extracts of Red Raspberry Using Macroporous Resin. Int. J. Food Prop. 2015, 18, 1046–1058. DOI: 10.1080/10942912.2013.862632.
  • Liu, P.; Li, W.; Hu, Z.; Qin, X.; Liu, G. Isolation, Purification, Identification, and Stability of Anthocyanins from Lycium Ruthenicum Murr. LWT. 2020, 126, 109334. DOI: 10.1016/j.lwt.2020.109334.
  • Shen, M.; Liu, K.; Liang, Y.; Liu, G.; Sang, J.; Li, C. Extraction Optimization and Purification of Anthocyanins from Lycium Ruthenicum Murr. and Evaluation of Tyrosinase Inhibitory Activity of the Anthocyanins. J. Food Sci. 2020, 85, 696–706. DOI: 10.1111/1750-3841.15037.
  • Zhao, Z.; Wu, M.; Zhan, Y.; Zhan, K.; Chang, X.; Yang, H.; Li, Z. Characterization and Purification of Anthocyanins from Black Peanut (Arachis hypogaea L.) Skin by Combined Column Chromatography. J. Chromatogr. A. 2017, 1519, 74–82. DOI: 10.1016/j.chroma.2017.08.078.
  • Xue, H.; Shen, L.; Wang, X.; Liu, C.; Liu, C.; Liu, H.; Zheng, X. Isolation and Purification of Anthocyanin from Blueberry Using Macroporous Resin Combined Sephadex LH-20 Techniques. FSTR. 2019, 25, 29–38. DOI: 10.3136/fstr.25.29.
  • Tian, Y.; Liimatainen, J.; Puganen, A.; Alakomi, H. L.; Sinkkonen, J.; Yang, B. Sephadex LH-20 Fractionation and Bioactivities of Phenolic Compounds from Extracts of Finnish Berry Plants. Food Res. Int. 2018, 113, 115–130. DOI: 10.1016/j.foodres.2018.06.041.
  • Mottaghipisheh, J.; Iriti, M. Sephadex((R)) LH-20, Isolation, and Purification of Flavonoids from Plant Species: A Comprehensive Review. Molecules. 2020, 25, 4146. DOI: 10.3390/molecules25184146.
  • Wang, E.; Yin, Y.; Xu, C.; Liu, J. Isolation of High-Purity Anthocyanin Mixtures and Monomers from Blueberries Using Combined Chromatographic Techniques. J. Chromatogr. A. 2014, 1327, 39–48. DOI: 10.1016/j.chroma.2013.12.070.
  • Chen, Y.; Zhang, W.; Zhao, T.; Li, F.; Zhang, M.; Li, J.; Zou, Y.; Wang, W.; Cobbina, S. J.; Wu, X.; Yang, L. Adsorption Properties of Macroporous Adsorbent Resins for Separation of Anthocyanins from Mulberry. Food Chem. 2016, 194, 712–722. DOI: 10.1016/j.foodchem.2015.08.084.
  • Yue, D.; Yang, L.; Liu, S.; Li, J.; Li, W.; Ma, C. A Continuous Procedure Based on Column Chromatography to Purify Anthocyanins from Schisandra Chinensis by a Macroporous Resin plus Gel Filtration Chromatography. Molecules. 2016, 21, 204. DOI: 10.3390/molecules21020204.
  • He, Y.; Wen, L.; Yu, H.; Cao, Y.; Nan, H.; Gou, M.; Xie, C.; Xue, H. Isolation and Structural Identification of the Main Anthocyanin Monomer in Vitis Amurensis Rupr. Nat. Prod. Res. 2018, 32, 867–870. DOI: 10.1080/14786419.2017.1361956.
  • Zhang, J.-L.; Luo, C.-L.; Zhou, Q.; Zhang, Z.-C. Isolation and Identification of Two Major Acylated Anthocyanins from Purple Sweet Potato (Ipomoea batatas L. cultivar Eshu No. 8) by UPLC-QTOF-MS/MS and NMR. Int. J. Food Sci. Technol. 2018, 53, 1932–1941. DOI: 10.1111/ijfs.13780.
  • Zhao, X.; Zhang, S. S.; Zhang, X. K.; He, F.; Duan, C. Q. An Effective Method for the Semi-Preparative Isolation of High-Purity Anthocyanin Monomers from Grape Pomace. Food Chem. 2020, 310, 125830. DOI: 10.1016/j.foodchem.2019.125830.
  • Chen, Y.; Wang, Z.; Zhang, H.; Liu, Y.; Zhang, S.; Meng, Q.; Liu, W. Isolation of High Purity Anthocyanin Monomers from Red Cabbage with Recycling Preparative Liquid Chromatography and Their Photostability. Molecules. 2018, 24, 23. DOI: 10.3390/molecules23050991.
  • Bojczuk, M.; Żyżelewicz, D.; Hodurek, P. Centrifugal Partition chromatography - A Review of Recent Applications and Some Classic References. J. Sep. Sci. 2017, 40, 1597–1609. DOI: 10.1002/jssc.201601221.
  • Bouju, E.; Berthod, A.; Faure, K. Scale-up in Centrifugal Partition Chromatography: The "Free-Space between Peaks" Method. J. Chromatogr. A. 2015, 1409, 70–78. DOI: 10.1016/j.chroma.2015.07.020.
  • Malca Garcia, G. R.; Friesen, J. B.; Liu, Y.; Nikolic, D.; Lankin, D. C.; McAlpine, J. B.; Chen, S. N.; Pauli, G. F. Preparation of DESIGNER Extracts of Red Clover (Trifolium pratense L.) by Centrifugal Partition Chromatography. J. Chromatogr. A. 2019, 1605, 360277. DOI: 10.1016/j.chroma.2019.05.057.
  • Nor Syaidatul Akmal Mohd, Y.; Nikos, X.; Evanthia, D.; Maizatul Hashima, O.; Choong Yew, K.; Mohd Isa, W.; Nektarios, A. Comparison of Standard Elution and Displacement Modes in Centrifugal Partition Chromatography for an Efficient Purification of Four Anthocyanins from Hibiscus Sabdariffa L. J. Pharm. Pharmacol. 2018, 6, 701–711. DOI: 10.17265/2328-2150/2018.08.001.
  • Lima, Á. S.; Oliveira, B. S. d.; Shabudin, S. V.; Almeida, M.; Freire, M. G.; Bica, K. Purification of Anthocyanins from Grape Pomace by Centrifugal Partition Chromatography. J. Mol. Liq. 2021, 326, 115324. DOI: 10.1016/j.molliq.2021.115324.
  • Paissoni, M. A.; Waffo-Teguo, P.; Ma, W.; Jourdes, M.; Rolle, L.; Teissedre, P. Chemical and Sensorial Investigation of in-Mouth Sensory Properties of Grape Anthocyanins. Sci. Rep. 2018, 8, 17098. DOI: 10.1038/s41598-018-35355-x.
  • Renault, J.-H.; Thépenier, P.; Zéches-Hanrot, M.; Le Men-Olivier, L.; Durand, A.; Foucault, A.; Margraff, R. Preparative Separation of Anthocyanins by Gradient Elution Centrifugal Partition Chromatography. J. Chromatogr. A. 1997, 763, 345–352. DOI: 10.1016/S0021-9673(96)00880-1.
  • Hu, R.; Pan, Y. Recent Trends in Counter-Current Chromatography. TrAC, Trends Anal. Chem. 2012, 40, 15–27. DOI: 10.1016/j.trac.2012.07.018.
  • Gong, Y.; Huang, X. Y.; Pei, D.; Duan, W. D.; Zhang, X.; Sun, X.; Di, D. L. The Applicability of High-Speed Counter Current Chromatography to the Separation of Natural Antioxidants. J. Chromatogr. A. 2020, 1623, 461150. DOI: 10.1016/j.chroma.2020.461150.
  • Li, L.; Zhao, J.; Yang, T.; Sun, B. High-Speed Countercurrent Chromatography as an Efficient Technique for Large Separation of Plant Polyphenols: A Review. Food Res. Int. 2022, 153, 110956. DOI: 10.1016/j.foodres.2022.110956.
  • Yang, Y.; Khan, B. M.; Zhang, X.; Zhao, Y.; Cheong, K. L.; Liu, Y. Advances in Separation and Purification of Bioactive Polysaccharides through High-Speed Counter-Current Chromatography. J. Chromatogr. Sci. 2020, 58, 992–1000. DOI: 10.1093/chromsci/bmaa063.
  • Li, Y.; Li, L.; Cui, Y.; Zhang, S.; Sun, B. Separation and Purification of Polyphenols from Red Wine Extracts Using High Speed Counter Current Chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1054, 105–113. DOI: 10.1016/j.jchromb.2017.03.006.
  • Zou, H.; Ma, Y.; Xu, Z.; Liao, X.; Chen, A.; Yang, S. Isolation of Strawberry Anthocyanins Using High-Speed Counter-Current Chromatography and the Copigmentation with Catechin or Epicatechin by High Pressure Processing. Food Chem. 2018, 247, 81–88. DOI: 10.1016/j.foodchem.2017.11.102.
  • Abdin, M.; Hamed, Y. S.; Akhtar, H. M. S.; Chen, D.; Chen, G.; Wan, P.; Zeng, X. Antioxidant and Anti-Inflammatory Activities of Target Anthocyanins Di-Glucosides Isolated from Syzygium Cumini Pulp by High Speed Counter-Current Chromatography. J. Food Biochem. 2020, 44, 1050–1062. DOI: 10.1111/jfbc.13209.
  • Liu, W.; Zhang, X.; Siems, W. F.; Hill, H. H., Jr.; Yin, D. Rapid Profiling and Identification of Anthocyanins in Fruits with Hadamard Transform Ion Mobility Mass Spectrometry. Food Chem. 2015, 177, 225–232. DOI: 10.1016/j.foodchem.2015.01.034.
  • Willemse, C. M.; Stander, M. A.; Vestner, J.; Tredoux, A. G.; de Villiers, A. Comprehensive Two-Dimensional Hydrophilic Interaction Chromatography (HILIC) x Reversed-Phase Liquid Chromatography Coupled to High-Resolution Mass Spectrometry (RP-LC-UV-MS) Analysis of Anthocyanins and Derived Pigments in Red Wine. Anal. Chem. 2015, 87, 12006–12015. DOI: 10.1021/acs.analchem.5b03615.
  • Ahmadiani, N.; Sigurdson, G. T.; Robbins, R. J.; Collins, T. M.; Giusti, M. M. Solid Phase Fractionation Techniques for Segregation of Red Cabbage Anthocyanins with Different Colorimetric and Stability Properties. Food Res. Int. 2019, 120, 688–696. DOI: 10.1016/j.foodres.2018.11.026.
  • Xu, Y.; Hu, D.; Bao, T.; Xie, J.; Chen, W. A Simple and Rapid Method for the Preparation of Pure Delphinidin-3-O-Sambubioside from Roselle and Its Antioxidant and Hypoglycemic Activity. J. Funct. Foods. 2017, 39, 9–17. DOI: 10.1016/j.jff.2017.10.002.
  • Johnson, M. C.; Thomas, A. L.; Greenlief, C. M. Impact of Frozen Storage on the Anthocyanin and Polyphenol Contents of American Elderberry Fruit Juice. J. Agric. Food Chem. 2015, 63, 5653–5659. DOI: 10.1021/acs.jafc.5b01702.
  • Büyüktiryaki, S.; Keçili, R.; Hussain, C. M. Functionalized Nanomaterials in Dispersive Solid Phase Extraction: Advances & Prospects. TrAC, Trends Anal. Chem. 2020, 127, 115893. DOI: 10.1016/j.trac.2020.115893.
  • Islas, G.; Ibarra, I. S.; Hernandez, P.; Miranda, J. M.; Cepeda, A. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review. Int. J. Anal. Chem. 2017, 2017, 8215271. DOI: 10.1155/2017/8215271.
  • Senes, C. E. R.; Nicácio, A. E.; Rodrigues, C. A.; Manin, L. P.; Maldaner, L.; Visentainer, J. V. Evaluation of Dispersive Solid-Phase Extraction (d-SPE) as a Clean-up Step for Phenolic Compound Determination of Myrciaria Cauliflora Peel. Food Anal. Methods. 2020, 13, 155–165. DOI: 10.1007/s12161-019-01566-9.
  • Yari, A.; Rashnoo, S. Optimization of a New Method for Extraction of Cyanidin Chloride and Pelargonidin Chloride Anthocyanins with Magnetic Solid Phase Extraction and Determination in Fruit Samples by HPLC with Central Composite Design. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1067, 38–44. DOI: 10.1016/j.jchromb.2017.09.040.
  • Zhao, Q. Y.; Zhao, H. T.; Yang, X.; Zhang, H.; Dong, A. J.; Wang, J.; Li, B. Selective Recognition and Fast Enrichment of Anthocyanins by Dummy Molecularly Imprinted Magnetic Nanoparticles. J. Chromatogr. A. 2018, 1572, 9–19. DOI: 10.1016/j.chroma.2018.08.029.
  • Anastassiades, M.; Lehotay, S. J.; Štajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. DOI: 10.1093/jaoac/86.2.412.
  • Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J. A. M.; Silva, C.; Medina, S.; Camara, J. S. QuEChERS - Fundamentals, Relevant Improvements, Applications and Future Trends. Anal. Chim. Acta. 2019, 1070, 1–28. DOI: 10.1016/j.aca.2019.02.036.
  • González-Curbelo, M. Á.; Socas-Rodríguez, B.; Herrera-Herrera, A. V.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M. Á. Evolution and Applications of the QuEChERS Method. TrAC, Trends Anal. Chem. 2015, 71, 169–185. DOI: 10.1016/j.trac.2015.04.012.
  • Aguiar, J.; Goncalves, J. L.; Alves, V. L.; Camara, J. S. Chemical Fingerprint of Free Polyphenols and Antioxidant Activity in Dietary Fruits and Vegetables Using a Non-Targeted Approach Based on QuEChERS Ultrasound-Assisted Extraction Combined with UHPLC-PDA. Antioxidants (Basel). 2020, 9, 305. DOI: 10.3390/antiox9040305.
  • Oki, T.; Sato-Furukawa, M.; Terahara, N. A Modified Method for the Determination of Acylated Anthocyanins in Purple-Fleshed Sweet Potato (Ipomoea batatas (L).) Tubers by High-Performance Liquid Chromatography with Visible Absorption. FSTR. 2017, 23, 855–862. DOI: 10.3136/fstr.23.855.
  • Smidova, B.; Satinsky, D.; Dostalova, K.; Solich, P. The Pentafluorophenyl Stationary Phase Shows a Unique Separation Efficiency for Performing Fast Chromatography Determination of Highbush Blueberry Anthocyanins. Talanta. 2017, 166, 249–254. DOI: 10.1016/j.talanta.2017.01.061.
  • Yıldırım, S.; Kadıoğlu, A.; Sağlam, A.; Yaşar, A.; Sellitepe, H. E. Fast Determination of Anthocyanins and Free Pelargonidin in Fruits, Fruit Juices, and Fruit Wines by High-Performance Liquid Chromatography Using a Core-Shell Column. J. Sep. Sci. 2016, 39, 3927–3935. DOI: 10.1002/jssc.201600661.
  • Opletala, L.; Chocholousova-Havlikova, L.; Siatka, T.; Cahlikova, L.; Locarek, M.; Ali, B. H.; Manoj, P.; Ramkumar, A.; Al Suleimani, Y. M.; Al Za'abi, M.; et al. Preparation and Validated Analysis of Anthocyanin Concentrate from the Calyces of Hibiscus Sabdariffa. Nat. Prod. Commun. 2017, 12, 43–45. DOI.
  • Sang, J.; Ma, Q.; Li, C.-q. Development and Validation of Green Chromatography for the Determination of Anthocyanins in Haskap Berry, Mulberry and Blackberry. Anal. Methods. 2017, 9, 2535–2545. DOI: 10.1039/C7AY00229G.
  • Zhang, P. P.; Zhang, M. L.; He, S. D.; Cao, X. D.; Sun, H. J.; Chen, X. Y.; Xie, Y. P.; Lou, Q. Y.; Wang, X.; Ye, Y. K. Extraction and Probiotic Properties of New Anthocyanins from Purple Sweet Potato (Solanum Tuberosum). Curr. Top. Nutraceut. Res. 2016, 14, 153–160.
  • Pereira, R. N.; Coelho, M. I.; Genisheva, Z.; Fernandes, J. M.; Vicente, A. A.; Pintado, M. E.; Teixeira, e. J. A. Using Ohmic Heating Effect on Grape Skins as a Pretreatment for Anthocyanins Extraction. Food Bioprod. Process. 2020, 124, 320–328. DOI: 10.1016/j.fbp.2020.09.009.
  • Lotfi, L.; Kalbasi-Ashtari, A.; Hamedi, M.; Ghorbani, F. Effects of Enzymatic Extraction on Anthocyanins Yield of Saffron Tepals (Crocos Sativus) along with Its Color Properties and Structural Stability. J. Food Drug Anal. 2015, 23, 210–218. DOI: 10.1016/j.jfda.2014.10.011.
  • Wang, W.; Jung, J.; Tomasino, E.; Zhao, Y. Optimization of Solvent and Ultrasound-Assisted Extraction for Different Anthocyanin Rich Fruit and Their Effects on Anthocyanin Compositions. LWT - Food Sci. Technol. 2016, 72, 229–238. DOI: 10.1016/j.lwt.2016.04.041.
  • Yao, L.; Zhang, N.; Wang, C.; Wang, C. Highly Selective Separation and Purification of Anthocyanins from Bilberry Based on a Macroporous Polymeric Adsorbent. J. Agric. Food Chem. 2015, 63, 3543–3550. DOI: 10.1021/jf506107m.
  • Belwal, T.; Li, L.; Yanqun, X.; Cravotto, G.; Luo, Z. Ultrasonic-Assisted Modifications of Macroporous Resin to Improve Anthocyanin Purification from a Pyrus communis Var. Starkrimson Extract. Ultrason. Sonochem. 2020, 62, 104853. DOI: 10.1016/j.ultsonch.2019.104853.
  • Ferarsa, S.; Zhang, W.; Moulai-Mostefa, N.; Ding, L.; Jaffrin, M. Y.; Grimi, N. Recovery of Anthocyanins and Other Phenolic Compounds from Purple Eggplant Peels and Pulps Using Ultrasonic-Assisted Extraction. Food Bioprod. Process. 2018, 109, 19–28. DOI: 10.1016/j.fbp.2018.02.006.
  • Belwal, T.; Huang, H.; Li, L.; Duan, Z.; Zhang, X.; Aalim, H.; Luo, Z. Optimization Model for Ultrasonic-Assisted and Scale-up Extraction of Anthocyanins from Pyrus communis 'Starkrimson' Fruit Peel. Food Chem. 2019, 297, 124993. DOI: 10.1016/j.foodchem.2019.124993.
  • Sang, J.; Ma, Q.; Ren, M.-j.; He, S.-t.; Feng, D.-d.; Yan, X.-l.; Li, C.-q. Extraction and Characterization of Anthocyanins from Nitraria Tangutorun Bobr. Dry Fruit and Evaluation of Their Stability in Aqueous Solution and Taurine-Contained Beverage. Food Meas. 2018, 12, 937–948. DOI: 10.1007/s11694-017-9709-9.
  • Jin, Y.; Liu, Z.; Liu, D.; Shi, G.; Liu, D.; Yang, Y.; Gu, H.; Yang, L.; Zhou, Z. Natural Antioxidant of Rosemary Extract Used as an Additive in the Ultrasound-Assisted Extraction of Anthocyanins from Lingonberry (Vaccinium Vitis-Idaea L.) Pomace. Ind. Crops Prod. 2019, 138, 111425. DOI: 10.1016/j.indcrop.2019.05.074.
  • Sang, J.; Ma, Q.; Li, B.; Li, C.-q. An Approach for Extraction, Purification, Characterization and Quantitation of Acylated-Anthocyanins from Nitraria Tangutorun Bobr. fruit. Food Meas. 2018, 12, 45–55. DOI: 10.1007/s11694-017-9615-1.
  • Peanparkdee, M.; Patrawart, J.; Iwamoto, S. Effect of Extraction Conditions on Phenolic Content, Anthocyanin Content and Antioxidant Activity of Bran Extracts from Thai Rice Cultivars. J. Cereal Sci. 2019, 86, 86–91. DOI: 10.1016/j.jcs.2019.01.011.
  • González-de-Peredo, A. V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Álvarez, J. Á.; Barbero, G. F.; Ayuso, J. Optimization of Analytical Ultrasound-Assisted Methods for the Extraction of Total Phenolic Compounds and Anthocyanins from Sloes (Prunus Spinosa L.). Agronomy. 2020, 10, 966. DOI: 10.3390/agronomy10070966.
  • Swer, T. L.; Mukhim, C.; Bashir, K.; Chauhan, K. Optimization of Enzyme Aided Extraction of Anthocyanins from Prunus Nepalensis L. LWT. 2018, 91, 382–390. DOI: 10.1016/j.lwt.2018.01.043.
  • Xue, H.; Xu, H.; Wang, X.; Shen, L.; Liu, H.; Liu, C.; Qin, Q.; Zheng, X.; Li, Q. Effects of Microwave Power on Extraction Kinetic of Anthocyanin from Blueberry Powder considering Absorption of Microwave Energy. J. Food Qual. 2018, 20182018, 1–13. DOI: 10.1155/2018/9680184.
  • Tan, J.; Li, Q.; Xue, H.; Tang, J. Ultrasound‐Assisted Enzymatic Extraction of Anthocyanins from Grape Skins: Optimization, Identification, and Antitumor Activity. J. Food Sci. 2020, 85, 3731–3744. DOI: 10.1111/1750-3841.15497.
  • Chen, L.; Yang, M.; Mou, H.; Kong, Q. Ultrasound-Assisted Extraction and Characterization of Anthocyanins from Purple Corn Bran. J. Food Process. Preserv. 2018, 42, e13377. DOI: 10.1111/jfpp.13377.
  • Rodrigues, S.; Fernandes, F. A. N.; de Brito, E. S.; Sousa, A. D.; Narain, N. Ultrasound Extraction of Phenolics and Anthocyanins from Jabuticaba Peel. Ind. Crops Prod. 2015, 69, 400–407. DOI: 10.1016/j.indcrop.2015.02.059.
  • Gras, C. C.; Carle, R.; Schweiggert, R. M. Determination of Anthocyanins from Black Carrots by UHPLC-PDA after Ultrasound-Assisted Extraction. J. Food Compos. Anal. 2015, 44, 170–177. DOI: 10.1016/j.jfca.2015.08.011.
  • Hutabarat, R. P.; Xiao, Y. D.; Wu, H.; Wang, J.; Li, D. J.; Huang, W. Y. Identification of Anthocyanins and Optimization of Their Extraction from Rabbiteye Blueberry Fruits in Nanjing. J. Food Qual. 2019, 20192019, 1–10. DOI: 10.1155/2019/6806790.
  • Liu, W.; Yang, C.; Zhou, C.; Wen, Z.; Dong, X. An Improved Microwave-Assisted Extraction of Anthocyanins from Purple Sweet Potato in Favor of Subsequent Comprehensive Utilization of Pomace. Food Bioprod. Process. 2019, 115, 1–9. DOI: 10.1016/j.fbp.2019.02.003.
  • Pinela, J.; Prieto, M. A.; Pereira, E.; Jabeur, I.; Barreiro, M. F.; Barros, L.; Ferreira, I. C. F. R. Optimization of Heat- and Ultrasound-Assisted Extraction of Anthocyanins from Hibiscus Sabdariffa Calyces for Natural Food Colorants. Food Chem. 2019, 275, 309–321. DOI: 10.1016/j.foodchem.2018.09.118.
  • Zhang, Y.; Sang, J.; Chen, F.-f.; Sang, J.; Li, C.-q. β-Cyclodextrin-Assisted Extraction and Green Chromatographic Analysis of Hibiscus Sabdariffa L. Anthocyanins and the Effects of Gallic/Ferulic/Caffeic Acids on Their Stability in Beverages. Food Meas. 2018, 12, 2475–2483. DOI: 10.1007/s11694-018-9864-7.
  • Sang, J.; Sang, J.; Ma, Q.; Hou, X. F.; Li, C. Q. Extraction Optimization and Identification of Anthocyanins from Nitraria Tangutorun Bobr. Seed Meal and Establishment of a Green Analytical Method of Anthocyanins. Food Chem. 2017, 218, 386–395. DOI: 10.1016/j.foodchem.2016.09.093.
  • Jampani, C.; Raghavarao, K. S. M. S. Differential Partitioning for Purification of Anthocyanins from Brassica Oleracea L. Sep. Purif. Technol. 2015, 151, 57–65. DOI: 10.1016/j.seppur.2015.07.030.
  • Fernandez‐Aulis, F.; Hernandez‐Vazquez, L.; Aguilar‐Osorio, G.; Arrieta‐Baez, D.; Navarro‐Ocana, A. Extraction and Identification of Anthocyanins in Corn Cob and Corn Husk from Cacahuacintle Maize. J. Food Sci. 2019, 84, 954–962. DOI: 10.1111/1750-3841.14589.
  • Lopez, C. J.; Caleja, C.; Prieto, M. A.; Barreiro, M. F.; Barros, L.; Ferreira, I. Optimization and Comparison of Heat and Ultrasound Assisted Extraction Techniques to Obtain Anthocyanin Compounds from Arbutus Unedo L. Fruits. Food Chem. 2018, 264, 81–91. DOI: 10.1016/j.foodchem.2018.04.103.
  • Nistor, M.; Diaconeasa, Z.; Frond, A. D.; Stirbu, I.; Socaciu, C.; Pintea, A.; Rugina, D. Comparative Efficiency of Different Solvents for the Anthocyanins Extraction from Chokeberries and Black Carrots, to Preserve Their Antioxidant Activity. Chem. Pap. 2021, 75, 813–822. DOI: 10.1007/s11696-020-01344-6.
  • Chen, F. F.; Sang, J.; Zhang, Y.; Sang, J. Development of a Green Two-Dimensional HPLC-DAD/ESI-MS Method for the Determination of Anthocyanins from Prunus Cerasifera Var. Atropurpurea Leaf and Improvement of Their Stability in Energy Drinks. Int. J. Food Sci. Technol. 2018, 53, 1494–1502. DOI: 10.1111/ijfs.13730.
  • Sun, H.; Zhang, P.; Zhu, Y.; Lou, Q.; He, S. Antioxidant and Prebiotic Activity of Five Peonidin-Based Anthocyanins Extracted from Purple Sweet Potato (Ipomoea batatas (L.) Lam.). Sci. Rep. 2018, 8, 5018. DOI: 10.1038/s41598-018-23397-0.
  • Wang, J.; Wu, G.; Wang, Z.; Shu, B.; Li, L.; Zhang, R.; Huang, F.; Dong, L.; Zhang, M.; Chen, S.; Su, D. The Influence of Processing Conditions on Kinetics, Anthocyanin Profile and Antioxidant Activity of Purple Sweet Potato Subjected to Hot Air Drying. J. Food Process Eng. 2020, 43, e13472. DOI: 10.1111/jfpe.13472.
  • Schweiggert, R. M.; Vargas, E.; Conrad, J.; Hempel, J.; Gras, C. C.; Ziegler, J. U.; Mayer, A.; Jimenez, V.; Esquivel, P.; Carle, R. Carotenoids, Carotenoid Esters, and Anthocyanins of Yellow-, Orange-, and Red-Peeled Cashew Apples (Anacardium occidentale L.). Food Chem. 2016, 200, 274–282. DOI: 10.1016/j.foodchem.2016.01.038.
  • Li, S. Y.; He, F.; Zhu, B. Q.; Xing, R. R.; Reeves, M. J.; Duan, C. Q. A Systematic Analysis Strategy for Accurate Detection of Anthocyanin Pigments in Red Wines. Rapid Commun. Mass Spectrom. 2016, 30, 1619–1626. DOI: 10.1002/rcm.7584.
  • Huang, H.; Xu, Q.; Belwal, T.; Li, L.; Aalim, H.; Wu, Q.; Duan, Z.; Zhang, X.; Luo, Z. Ultrasonic Impact on Viscosity and Extraction Efficiency of Polyethylene Glycol: A Greener Approach for Anthocyanins Recovery from Purple Sweet Potato. Food Chem. 2019, 283, 59–67. DOI: 10.1016/j.foodchem.2019.01.017.
  • Yang, H.; Kim, H. W.; Kwon, Y. S.; Kim, H. K.; Sung, S. H. Fast and Simple Discriminative Analysis of Anthocyanins-Containing Berries Using LC/MS Spectral Data. Phytochem. Anal. 2017, 28, 416–423. DOI: 10.1002/pca.2689.
  • Karaaslan, N. M.; Yaman, M. Determination of Anthocyanins in Cherry and Cranberry by High-Performance Liquid Chromatography–Electrospray Ionization–Mass Spectrometry. Eur. Food Res. Technol. 2016, 242, 127–135. DOI: 10.1007/s00217-015-2524-9.
  • Stuppner, S.; Mayr, S.; Beganovic, A.; Bec, K.; Grabska, J.; Aufschnaiter, U.; Groeneveld, M.; Rainer, M.; Jakschitz, T.; Bonn, G. K.; Huck, C. W. Near-Infrared Spectroscopy as a Rapid Screening Method for the Determination of Total Anthocyanin Content in Sambucus Fructus. Sensors (Basel). 2020, 20, 4983. DOI: 10.3390/s20174983.
  • Alecu, A.; Albu, C.; Litescu, S. C.; Eremia, S. A. V.; Radu, G. L. Phenolic and Anthocyanin Profile of Valea Calugareasca Red Wines by HPLC-PDA-MS and MALDI-TOF Analysis. Food Anal. Methods. 2016, 9, 300–310. DOI: 10.1007/s12161-015-0197-4.
  • Vieira, G. S.; Marques, A. S. F.; Machado, M. T. C.; Silva, V. M.; Hubinger, M. D. Determination of Anthocyanins and Non-Anthocyanin Polyphenols by Ultra Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry (UPLC/ESI-MS) in Jussara (Euterpe Edulis) Extracts. J. Food Sci. Technol. 2017, 54, 2135–2144. DOI: 10.1007/s13197-017-2653-1.
  • Maldini, M.; Chessa, M.; Petretto, G. L.; Montoro, P.; Rourke, J. P.; Foddai, M.; Nicoletti, M.; Pintore, G. Profiling and Simultaneous Quantitative Determination of Anthocyanins in Wild Myrtus Communis L. Berries from Different Geographical Areas in Sardinia and Their Comparative Evaluation. Phytochem. Anal. 2016, 27, 249–256. DOI: 10.1002/pca.2623.
  • Machado, A.; Pereira, A. L. D.; Barbero, G. F.; Martinez, J. Recovery of Anthocyanins from Residues of Rubus Fruticosus, Vaccinium Myrtillus and Eugenia Brasiliensis by Ultrasound Assisted Extraction, Pressurized Liquid Extraction and Their Combination. Food Chem. 2017, 231, 1–10. DOI: 10.1016/j.foodchem.2017.03.060.
  • Wu, C.-Y.; Wang, H.; Fan, X.-H.; Yue, W.; Wu, Q.-N. Waste Euryale Ferox Salisb. Leaves as a Potential Source of Anthocyanins: Extraction Optimization, Identification and Antioxidant Activities Evaluation. Waste Biomass Valor. 2020, 11, 4327–4340. DOI: 10.1007/s12649-019-00762-2.
  • Park, C. H.; Chae, S. C.; Park, S. Y.; Kim, J. K.; Kim, Y. J.; Chung, S. O.; Arasu, M. V.; Al-Dhabi, N. A.; Park, S. U. Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema Grandiflorum Ramat.) Flower. Molecules. 2015, 20, 11090–11102. DOI: 10.3390/molecules200611090.
  • Jia, Q.; Dong, Q.; Sang, Q.; Wang, M.; Zhang, H.; Zhou, Y.; Li, Y.; Xiao, T.; Hu, P.; Zhang, S. Rapid Qualitative and Quantitative Analyses of Anthocyanin Composition in Berries from the Tibetan Plateau with UPLC-Quadruple-Orbitrap MS and Their Antioxidant Activities. Eur. J. Mass Spectrom. (Chichester). 2020, 26, 301–308. DOI: 10.1177/1469066720926435.
  • Periat, A.; Fekete, S.; Cusumano, A.; Veuthey, J.-L.; Beck, A.; Lauber, M.; Guillarme, D. Potential of Hydrophilic Interaction Chromatography for the Analytical Characterization of Protein Biopharmaceuticals. J. Chromatogr. A. 2016, 1448, 81–92. DOI: 10.1016/j.chroma.2016.04.056.
  • Marrubini, G.; Appelblad, P.; Maietta, M.; Papetti, A. Hydrophilic Interaction Chromatography in Food Matrices Analysis: An Updated Review. Food Chem. 2018, 257, 53–66. DOI: 10.1016/j.foodchem.2018.03.008.
  • Willemse, C. M.; Stander, M. A.; de Villiers, A. Hydrophilic Interaction Chromatographic Analysis of Anthocyanins. J. Chromatogr. A. 2013, 1319, 127–140. DOI: 10.1016/j.chroma.2013.10.045.
  • Periat, A.; Krull, I. S.; Guillarme, D. Applications of Hydrophilic Interaction Chromatography to Amino Acids, Peptides, and Proteins. J. Sep. Sci. 2015, 38, 357–367. DOI: 10.1002/jssc.201400969.
  • Cao, J. L.; Wang, S. S.; Hu, H.; He, C. W.; Wan, J. B.; Su, H. X.; Wang, Y. T.; Li, P. Online Comprehensive Two-Dimensional Hydrophilic Interaction Chromatographyxreversed-Phase Liquid Chromatography Coupled with Hybrid Linear Ion Trap Orbitrap Mass Spectrometry for the Analysis of Phenolic Acids in Salvia Miltiorrhiza. J. Chromatogr. A. 2018, 1536, 216–227. DOI: 10.1016/j.chroma.2017.09.041.
  • Sommella, E.; Ismail, O. H.; Pagano, F.; Pepe, G.; Ostacolo, C.; Mazzoccanti, G.; Russo, M.; Novellino, E.; Gasparrini, F.; Campiglia, P. Development of an Improved Online Comprehensive Hydrophilic Interaction Chromatography x Reversed-Phase Ultra-High-Pressure Liquid Chromatography Platform for Complex Multiclass Polyphenolic Sample Analysis. J. Sep. Sci. 2017, 40, 2188–2197. DOI: 10.1002/jssc.201700134.
  • Yıldırım, S.; Yaşar, A. A Core-Shell Column Approach to Fast Determination of Synthetic Dyes in Foodstuffs by High-Performance Liquid Chromatography. Food Anal. Methods. 2018, 11, 1581–1590. DOI: 10.1007/s12161-017-1138-1.
  • González-Ruiz, V.; Olives, A. I.; Martín, M. A. Core-Shell Particles Lead the Way to Renewing High-Performance Liquid Chromatography. TrAC, Trends Anal. Chem. 2015, 64, 17–28. DOI: 10.1016/j.trac.2014.08.008.
  • Destefano, J. J.; Schuster, S. A.; Lawhorn, J. M.; Kirkland, J. J. Performance Characteristics of New Superficially Porous Particles. J. Chromatogr. A. 2012, 1258, 76–83. DOI: 10.1016/j.chroma.2012.08.036.
  • Fekete, S.; Olah, E.; Fekete, J. Fast Liquid Chromatography: The Domination of Core-Shell and Very Fine Particles. J. Chromatogr. A. 2012, 1228, 57–71. DOI: 10.1016/j.chroma.2011.09.050.
  • Preti, R. Core-Shell Columns in High-Performance Liquid Chromatography: Food Analysis Applications. Int. J. Anal. Chem. 2016, 2016, 3189724. DOI: 10.1155/2016/3189724.
  • Tanaka, N.; McCalley, D. V. Core-Shell, Ultrasmall Particles, Monoliths, and Other Support Materials in High-Performance Liquid Chromatography. Anal. Chem. 2016, 88, 279–298. DOI: 10.1021/acs.analchem.5b04093.
  • Grebenstein, N.; Frank, J. Rapid Baseline-Separation of All Eight Tocopherols and Tocotrienols by Reversed-Phase Liquid-Chromatography with a Solid-Core Pentafluorophenyl Column and Their Sensitive Quantification in Plasma and Liver. J. Chromatogr. A. 2012, 1243, 39–46. DOI: 10.1016/j.chroma.2012.04.042.
  • Slobodchikova, I.; Vuckovic, D. Liquid Chromatography - High Resolution Mass Spectrometry Method for Monitoring of 17 Mycotoxins in Human Plasma for Exposure Studies. J. Chromatogr. A. 2018, 1548, 51–63. DOI: 10.1016/j.chroma.2018.03.030.
  • Fibigr, J.; Satinsky, D.; Solich, P. A New Approach to the Rapid Separation of Isomeric Compounds in a Silybum Marianum Extract Using UHPLC Core-Shell Column with F5 Stationary Phase. J. Pharm. Biomed. Anal. 2017, 134, 203–213. DOI: 10.1016/j.jpba.2016.11.042.
  • Nakazono, Y.; Tsujikawa, K.; Kuwayama, K.; Kanamori, T.; Iwata, Y. T.; Miyamoto, K.; Kasuya, F.; Inoue, H. Differentiation of Regioisomeric Fluoroamphetamine Analogs by Gas Chromatography–Mass Spectrometry and Liquid Chromatography–Tandem Mass Spectrometry. Forensic Toxicol. 2013, 31, 241–250. DOI: 10.1007/s11419-013-0184-7.
  • Russo, M.; Cacciola, F.; Arena, K.; Mangraviti, D.; de Gara, L.; Dugo, P.; Mondello, L. Characterization of the Polyphenolic Fraction of Pomegranate Samples by Comprehensive Two-Dimensional Liquid Chromatography Coupled to Mass Spectrometry Detection. Nat. Prod. Res. 2020, 34, 39–45. DOI: 10.1080/14786419.2018.1561690.
  • Liang, L.; Duan, W.; Zhao, C.; Zhang, Y.; Sun, B. Recent Development of Two-Dimensional Liquid Chromatography in Food Analysis. Food Anal. Methods. 2022, 15, 1214–1225. DOI: 10.1007/s12161-021-02190-2.
  • Jin, H.; Zhao, J.; Zhou, W.; Shen, A.; Yang, F.; Liu, Y.; Guo, Z.; Zhang, X.; Tao, Y.; Peng, X.; Liang, X. Preparative Separation of a Challenging Anthocyanin from Lycium Ruthenicum Murr. by Two-Dimensional Reversed-Phase Liquid Chromatography/Hydrophilic Interaction Chromatography. RSC Adv. 2015, 5, 62134–62141. DOI: 10.1039/C5RA08713A.
  • Kaiser, M.; Muller-Ehl, L.; Passon, M.; Schieber, A. Development and Validation of Methods for the Determination of Anthocyanins in Physiological Fluids via UHPLC-MS(n). Molecules. 2020, 25, 518. DOI: 10.3390/molecules25030518.
  • Esquivel-Alvarado, D.; Alfaro-Viquez, E.; Krueger, C. G.; Vestling, M. M.; Reed, J. D. Classification of Proanthocyanidin Profiles Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) Spectra Data Combined with Multivariate Analysis. Food Chem. 2021, 336, 127667. DOI: 10.1016/j.foodchem.2020.127667.
  • Cody, R. B.; Tamura, J.; Downard, K. M. Quantitation of Anthocyanins in Elderberry Fruit Extracts and Nutraceutical Formulations with Paper Spray Ionization Mass Spectrometry. J. Mass Spectrom. 2018, 53, 58–64. DOI: 10.1002/jms.4033.
  • Izcara, S.; Morante-Zarcero, S.; de Andrés, M. T.; Arroyo, T.; Sierra, I. A Comparative Study of Phenolic Composition and Antioxidant Activity in Commercial and Experimental Seedless Table Grapes Cultivated in a Mediterranean Climate. Food Meas. 2021, 15, 1916–1930. DOI: 10.1007/s11694-020-00760-2.
  • Taghavi, T.; Patel, H.; Rafie, R. Comparing pH Differential and Methanol‐Based Methods for Anthocyanin Assessments of Strawberries. Food Sci. Nutr. 2022, 10, 2123–2131. DOI: 10.1002/fsn3.2065.
  • Bennett, C.; Sookwong, P.; Jakmunee, J.; Mahatheeranont, S. Smartphone Digital Image Colorimetric Determination of the Total Monomeric Anthocyanin Content in Black Rice via the pH Differential Method. Anal. Methods. 2021, 13, 3348–3358. DOI: 10.1039/D1AY00719J.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.