382
Views
0
CrossRef citations to date
0
Altmetric
Review Article

End-of-Shift Monitoring of Respirable Crystalline Silica: A Critical Review of Measurement Techniques and Factors Influencing Accurate Measurements

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Cauda, E.; Chubb, L.; Reed, R.; Stepp, R. Evaluating the Use of a Field-Based Silica Monitoring Approach with Dust from Copper Mines. J. Occup. Environ. Hyg. 2018, 15, 732–742. DOI: 10.1080/15459624.2018.1495333.
  • WHO IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Silica; IARC Monographs 68. Lyon, France: International Agency for Research on Cancer, 1997.
  • Xiaowei, Z.; Qinyuan, H.; Jinzi, H.; Jiaojiao, W. The Current State of Chinese Coal Mining Dust Hazard and Prevention. Proceedings of the 11th International Mine Ventilation Congress, Xi’an, China, September 14–20, 2018; Xintan, C., Ed.; Springer: Singapore, 2018; pp. 231–240.
  • Coggins, M. A.; Healy, C. B.; Lee, T.; Harper, M. Performance of High-Flow-Rate Samplers for Respirable Crystalline Silica Measurement under Field Conditions: Preliminary Study. Silica Assoc. Respirable Miner. Part. 2012, 1565, 125–138. DOI: 10.1520/STP156520130141.
  • Hoy, R. F.; Baird, T.; Hammerschlag, G.; Hart, D.; Johnson, A. R.; King, P.; Putt, M.; Yates, D. H. Artificial Stone-Associated Silicosis: A Rapidly Emerging Occupational Lung Disease. Occup. Environ. Med. 2018, 75, 3–5. DOI: 10.1136/oemed-2017-104428.
  • Leso, V.; Fontana, L.; Romano, R.; Gervetti, P.; Iavicoli, I. Artificial Stone Associated Silicosis: A Systematic Review. IJERPH. 2019, 16, 568. DOI: 10.3390/ijerph16040568.
  • Miller, A. L.; Murphy, N. C.; Bayman, S. J.; Briggs, Z. P.; Kilpatrick, A. D.; Quinn, C. A.; Wadas, M. R.; Cauda, E. G.; Griffiths, P. R. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of Alpha-Quartz in Coal Dust Samples. J. Occup. Environ. Hyg. 2015, 12, 421–430. DOI: 10.1080/15459624.2015.1011328.
  • Occupational Safety and Health Administration. Silica, Crystalline. https://www.osha.gov/silica-crystalline (accessed Aug 16, 2021).
  • Cauda, E.; Miller, A.; Drake, P. Promoting Early Exposure Monitoring for Respirable Crystalline Silica: Taking the Laboratory to the Mine Site. J. Occup. Environ. Hyg. 2016, 13, D39–D45. DOI: 10.1080/15459624.2015.1116691.
  • Miller, A. L.; Weakley, A. T.; Griffiths, P. R.; Cauda, E. G.; Bayman, S. Direct-on-Filter Alpha-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression. Appl. Spectrosc. 2017, 71, 1014–1024. DOI: 10.1177/0003702816666288.
  • Terra II Portable XRD Analyzer. https://www.olympus-ims.com/en/xrf-xrd/mobile-benchtop-xrd/terra/.
  • Foster, R. D.; Walker, R. F. Quantitative Determination of Crystalline Silica in Respirable-Size Dust Samples by Infrared Spectrophotometry. Analyst. 1984, 109, 1117–1127. DOI: 10.1039/AN9840901117.
  • Lee, T.; Chisholm, W. P.; Kashon, M.; Key-Schwartz, R. J.; Harper, M. Consideration of Kaolinite Interference Correction for Quartz Measurements in Coal Mine Dust. J. Occup. Environ. Hyg. 2013, 10, 425–434. DOI: 10.1080/15459624.2013.801819.
  • Miller, A. L.; Drake, P. L.; Murphy, N. C.; Noll, J. D.; Volkwein, J. C. Evaluating Portable Infrared Spectrometers for Measuring the Silica Content of Coal Dust. J. Environ. Monit. 2012, 14, 48–55. DOI: 10.1039/clem10678c.
  • Chien, C. H.; Huang, G.; Lopez, B.; Morea, A.; Sing, S. Y.; Wu, C. Y.; Kashon, M. L.; Harper, M. Application of End-of-Shift Respirable Crystalline Silica Monitoring to Construction. J. Occup. Environ. Hyg. 2020, 17, 416–425. DOI: 10.1080/15459624.2020.1779275.
  • Salehi, M.; Zare, A.; Taheri, A. Artificial Neural Networks (ANNs) and Partial Least Squares (PLS) Regression in the Quantitative Analysis of Respirable Crystalline Silica by Fourier-Transform Infrared Spectroscopy (FTIR). Ann. Work Expo. Health. 2020, 65(3), 346–357. DOI: 10.1039/annweh/wxaa097.
  • HSE Methods for determination of hazardous substances (MDHS) 101. Crystalline Silica in Respirable Airborne Dusts: direct-on-Filter Analyses by Infrared Spectroscopy and X-Ray. Health and Safety Executive: London, UK, 2015.
  • Ojima, J. Determination of Crystalline Silica in Respirable Dust Samples by Infrared Spectrophotometry in the Presence of Interferences. J. Occup. Health. 2003, 45, 94–103. DOI: 10.1539/joh.45.94.
  • Anderson, P. L. Free Silica Analysis of Environmental Samples—A Critical Literature Review. Am. Ind. Hyg. Assoc. J. 1975, 36, 767–778. DOI: 10.1080/0002889758507338.
  • Dodgson, J.; Whittaker, W. The Determination of Quartz in Respirable Dust Samplesby Infrared Spectrophotometry-1: The Potassium Bromide Disc Method. Ann. Occup. Hyg. 1973, 16, 373–387. DOI: 10.1093/annhyg/16.4.373.
  • Hlavay, J.; Antal, L.; Vassanyi, I.; Karpati, J. Quantitative Determination of the Quartz Content of Respirable Dust by Infrared Spectrophotometry. Acta Phys. Hung. 1988, 63, 109–113. DOI: 10.1007/BF03155760.
  • Taylor, D. G.; Nenadic, C. M.; Crable, J. V. Infrared Spectra for Mineral Identification. Am. Ind. Hyg. Assoc. J. 1970, 31, 100–108. DOI: 10.1080/0002889708506215.
  • Pickard, K. J.; Walker, R. F.; West, N. G. A Comparison of X-Ray Diffraction and Infra-Red Spectrophotometric Methods for the Analysis of α-Quartz in Airborne Dusts. Ann. Occup. Hyg. 1985, 29, 149–167. DOI: 10.1093/annhyg/29.2.149.
  • Wei, S.; Kulkarni, P.; Zheng, L.; Ashley, K. Aerosol Analysis Using Quantum Cascade Laser Infrared Spectroscopy: Application to Crystalline Silica Measurement. J. Aerosol Sci. 2020, 150, 105643. DOI: 10.1016/j.jaerosci.2020.105643.
  • Chubb, L. G.; Cauda, E. G. Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust. Aerosol. Air Qual. Res. 2017, 17, 24–33. DOI: 10.4209/aaqr.2016.05.0179.
  • Shinohara, Y. Direct Quantitative Analysis of Respirable Cristobalite on Filter by Infrared Spectrophotometry. Ind. Health. 1996, 34, 25–34. DOI: 10.2486/indhealth.34.25.
  • Verma, D. K.; Rajhans, G. S.; Malik, O. P.; des Tombe, K. Respirable Dust and Respirable Silica Exposure in Ontario Gold Mines. J. Occup. Environ. Hyg. 2014, 11, 111–116. DOI: 10.1080/15459624.2013.843784.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.