205
Views
1
CrossRef citations to date
0
Altmetric
Review Article

New Insights into Vitamin K—From Its Natural Sources through Biological Properties and Chemical Methods of Quantitative Determination

ORCID Icon &

References

  • Dam, H.; Schønheyder, F. The Occurrence and Chemical Nature of Vitamin K. Biochem J. 1936, 30, 897–901. DOI: 10.1042/bj0300897.
  • Simes, D. C.; Viegas, C.; S. B.; Araújo, N.; Marreiros, C. Vitamin K as a Powerful Micronutrient in Aging and Age-Related Diseases: Pros and Cons from Clinical Studies. IJMS. 2019, 20, 4150. DOI: 10.3390/ijms20174150.
  • Beulens, J. W. J.; Booth, S. L.; Van Den Heuvel, E. G. H. M.; Stoecklin, E.; Baka, A.; Vermeer, C. The Role of Menaquinones (Vitamin K2) in Human Health. Br J Nutr. 2013, 110, 1357–1368. DOI: 10.1017/S0007114513001013.
  • Fusaro, M.; Gallieni, M.; Porta, C.; Nickolas, T. L.; Khairallah, P. Vitamin K Effects in Human Health: New Insights beyond Bone and Cardiovascular Health. J Nephrol. 2020, 33, 239–249. DOI: 10.1007/s40620-019-00685-0.
  • Dofferhoff, A. S. M.; Piscaer, I.; Schurgers, L. J.; Visser, M. P. J.; van den Ouweland, J. M. W.; de Jong, P. A.; Gosens, R.; Hackeng, T. M.; van Daal, H.; Lux, P.; et al. Reduced Vitamin K Status as a Potentially Modifiable Risk Factor of Severe Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 73, e4039–e4046. DOI: 10.1093/cid/ciaa1258.
  • Beulens, J. W. J.; Bots, M. L.; Atsma, F.; Bartelink, M. L. E. L.; Prokop, M.; Geleijnse, J. M.; Witteman, J. C. M.; Grobbee, D. E.; van der Schouw, Y. T. High Dietary Menaquinone Intake is Associated with Reduced Coronary Calcification. Atherosclerosis. 2009, 203, 489–493. DOI: 10.1016/j.atherosclerosis.2008.07.010.
  • Shea, M. K.; Booth, S. L.; Weiner, D. E.; Brinkley, T. E.; Kanaya, A. M.; Murphy, R. A.; Simonsick, E. M.; Wassel, C. L.; Vermeer, C.; Kritchevsky, S. B. Circulating Vitamin K is Inversely Associated with Incident Cardiovascular Disease Risk among Those Treated for Hypertension in the Health, Aging, and Body Composition Study (Health ABC). J. Nutr. 2017, 147, 888–895. DOI: 10.3945/jn.117.249375.
  • Sato, T.; Inaba, N.; Yamashita, T. MK-7 and Its Effects on Bone Quality and Strength. Nutrients. 2020, 12, 965. DOI: 10.3390/nu12040965.
  • Booth, S. L. Roles for Vitamin K beyond Coagulation. Annu. Rev. Nutr. 2009, 29, 89–110. DOI: 10.1146/annurev-nutr-080508-141217.
  • Turner, M. E.; Adams, M. A.; Holden, R. M. The Vitamin K Metabolome in Chronic Kidney Disease. Nutrients. 2018, 10, 1076. DOI: 10.3390/nu10081076.
  • Herrmann, W.; Obeid, R. Vitamins in the Prevention of Human Diseases; De Gruyter: Berlin, 2011, 515–552. DOI: 10.1515/9783110214499.
  • Presse, N.; Belleville, S.; Gaudreau, P.; Greenwood, C. E.; Kergoat, M. J.; Morais, J. A.; Payette, H.; Shatenstein, B.; Ferland, G. Vitamin K Status and Cognitive Function in Healthy Older Adults. Neurobiol Aging. 2013, 34, 2777–2783. DOI: 10.1016/j.neurobiolaging.2013.05.031.
  • World Health Organization. n.d. Cardiovascular Diseases, Health Topics. https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed Jan 20, 2002).
  • Paprotny, Ł.; Wianowska, D.; Izdebska, M.; Celejewska, A.; Szewczak, D.; Solski, J. Analysis of Serum Homocysteine in the Laboratory Practice—Comparison of the Direct Chemiluminescence Immunoassay and High Performance Liquid Chromatography Coupled with Fluorescent Detection. Biochem Med (Zagreb). 2020, 30, 030703. DOI: 10.11613/BM.2020.030703.
  • Lees, J. S.; Chapman, F. A.; Witham, M. D.; Jardine, A. G.; Mark, P. B. Vitamin K Status, Supplementation and Vascular Disease: A Systematic Review and Meta-Analysis. Heart. 2018, 105, 938–945. DOI: 10.1136/heartjnl-2018-313955.
  • Simes, D. C.; Viegas, C. S. B.; Araújo, N.; Marreiros, C. Vitamin K as a Diet Supplement with Impact in Human Health: Current Evidence in Age-Related Diseases. Nutrients. 2020, 12, 138. DOI: 10.3390/nu12010138.
  • Zwakenberg, S. R.; De Jong, P. A.; Bartstra, J. W.; Van Asperen, R.; Westerink, J.; De Valk, H.; Slart, R. H. J. A.; Luurtsema, G.; Wolterink, J. M.; De Borst, G. J.; et al. The Effect of Menaquinone-7 Supplementation on Vascular Calcification in Patients with Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Clin. Nutr. 2019, 110, 883–890. DOI: 10.1093/ajcn/nqz147.
  • Tsugawa, N. Cardiovascular Diseases and Fat Soluble Vitamins: Vitamin D and Vitamin K. J Nutr Sci Vitaminol 2015, 61, S170–S172. DOI: 10.3177/jnsv.61.S170.
  • Vossen, L. M.; Schurgers, L. J.; van Varik, B. J.; Kietselaer, B. L. J. H.; Vermeer, C.; Meeder, J. G.; Rahel, B. M.; van Cauteren, Y. J. M.; Hoffland, G. A.; Rennenberg, R. J. M. W.; et al. Menaquinone-7 Supplementation to Reduce Vascular Calcification in Patients with Coronary Artery Disease: Rationale and Study Protocol (VitaK-CAC Trial). Nutrients. 2015, 7, 8905–8915. DOI: 10.3390/nu7115443.
  • Cockayne, S.; Adamson, J.; Lanham-New, S.; Shearer, M. J.; Gilbody, S.; Torgerson, D. J. Vitamin K and the Prevention of Fractures: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arch. Intern. Med. 2006, 166, 1256–1261. DOI: 10.1001/archinte.166.12.1256.
  • Karl, J. P.; Fu, X.; Dolnikowski, G. G.; Saltzman, E.; Booth, S. L. Quantification of Phylloquinone and Menaquinones in Feces, Serum, and Food by High-Performance Liquid Chromatography-Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 963, 128–133. DOI: 10.1016/j.jchromb.2014.05.056.
  • Rishipal, S.; Alka, P.; Mojeer, H.; Prasad, P. B. Development of a Rapid HPLC-UV Method for Analysis of Menaquinone-7 in Soy Nutraceutical. Pharm. Anal. Acta. 2016, 7, 1000526. DOI: 10.4172/2153-2435.1000526.
  • Huang, B.; Wang, Z.; Yao, J.; Ke, X.; Xu, J.; Pan, X.-D.; Xu, X.; Lu, M.; Ren, Y. Quantitative Analysis of Vitamin K1in Fruits and Vegetables by Isotope Dilution LC-MS/MS. Anal. Method. 2016, 8, 5707–5711. DOI: 10.1039/C6AY01324D.
  • Szterk, A.; Bus, K.; Zmysłowski, A.; Ofiara, K. Analysis of Menaquinone-7 Content and Impurities in Oil and Non-Oil Dietary Supplements. Molecules. 2018, 23, 1056. DOI: 10.3390/molecules23051056.
  • Szterk, A.; Zmysłowski, A.; Bus, K. Identification of Cis/Trans Isomers of Menaquinone-7 in Food as Exemplified by Dietary Supplements. Food Chem. 2018, 243, 403–409. DOI: 10.1016/j.foodchem.2017.10.001.
  • Riphagen, I. J.; Van Der Molen, J. C.; Van Faassen, M.; Navis, G.; De Borst, M. H.; Muskiet, F. A. J.; De Jong, W. H. A.; Bakker, S. J.; L.; Kema, I. P. Measurement of Plasma Vitamin K1 (Phylloquinone) and K2 (Menaquinones-4 and -7) Using HPLC-Tandem Mass Spectrometry. Clin. Chem. Lab. Med. 2016, 54, 1201–1210. DOI: 10.1515/cclm-2015-0864.
  • Fusaro, M.; Gallieni, M.; Rizzo, M. A.; Stucchi, A.; Delanaye, P.; Cavalier, E.; Moysés, R. M. A.; Jorgetti, V.; Iervasi, G.; Giannini, S.; et al. Vitamin K Plasma Levels Determination in Human Health. Clin. Chem. Lab. Med. 2017, 55, 789–799. DOI: 10.1515/cclm-2016-0783.
  • Klapkova, E.; Cepova, J.; Dunovska, K.; Prusa, R. Determination of Vitamins K1, MK-4, and MK-7 in Human Serum of Postmenopausal Women by HPLC with Fluorescence Detection. J. Clin. Lab Anal. 2018, 32, e22381. DOI: 10.1002/jcla.22381.
  • Sato, T.; Schurgers, L. J.; Uenishi, K. Comparison of Menaquinone-4 and Menaquinone-7 Bioavailability in Healthy Women. Nutr. J. 2012, 11, 93–94. DOI: 10.1186/1475-2891-11-93..
  • Cirilli, I.; Orlando, P.; Silvestri, S.; Marcheggiani, F.; Tiano, L. Bioavailability of Menaquinone-7 in Milk Formulation. Comparison of Different Solubilization Techniques. Nutrafoods. 2019, 1, 34–39. DOI: 10.17470/NF-019-0005.
  • Booth, S. L. Vitamin K: Food Composition and Dietary Intakes. Food Nutr. Res. 2012, 56, 5505. DOI: 10.3402/fnr.v56i0.5505.
  • Elder, S. J.; Haytowitz, D. B.; Howe, J.; Peterson, J. W.; Booth, S. L. Vitamin K Contents of Meat, Dairy, and Fast Food in the U.S. Diet. J. Agric. Food Chem. 2006, 54, 463–467. DOI: 10.1021/jf052400h.
  • Walther, B.; Philip Karl, J.; Booth, S. L.; Boyaval, P. Menaquinones, Bacteria, and the Food Supply: The Relevance of Dairy and Fermented Food Products to Vitamin K Requirements. Adv. Nutr. 2013, 4, 463–473. DOI: 10.3945/an.113.003855.
  • Dismore, M. L.; Haytowitz, D. B.; Gebhardt, S. E.; Peterson, J. W.; Booth, S. L. Vitamin K Content of Nuts and Fruits in the US Diet. J. Am. Diet Assoc. 2003, 103, 1650–1652. DOI: 10.1016/j.jada.2003.09.028.
  • Vermeer, C.; Raes, J.; van’t Hoofd, C.; Knapen, M. H. J.; Xanthoulea, S. Menaquinone Content of Cheese. Nutrients. 2018, 10, 446. DOI: 10.3390/nu10040446.
  • Schurgers, L. J.; Vermeer, C. Determination of Phylloquinone and Menaquinones in Food: Effect of Food Matrix on Circulating Vitamin K Concentrations. Haemostasis. 2000, 30, 298–307. DOI: 10.1159/000054147.
  • Gijsbers, B. L. M. G.; Jie, K.-S. G.; Vermeer, C. Effect of Food Composition on Vitamin K Absorption in Human Volunteers. Br. J. Nutr. 1996, 76, 223–229. DOI: 10.1079/bjn19960027.
  • Zhang, Y.; Bala, V.; Mao, Z.; Chhonker, Y. S.; Murry, D. J. Aconcise Reviev of Quantification Methods for Determination of Vitamin K in Various Biological Matrices. J. Pharm. Biomed. Anal. 2019, 169, 133–141. DOI: 10.1016/j.jpba.2019.03.006.
  • Kimura, S.; Satoh, H.; Komai, M. The Roles of Intestinal Flora and Intestinal Function on Vitamin K Metabolism. J. Nutr. Sci. Vitaminol. 1992, 38, 425–428. DOI: 10.3177/jnsv.38.Special_425.
  • Binkley, N.; Harke, J.; Krueger, D.; Engelke, J.; Vallarta-Ast, N.; Gemar, D.; Checovich, M.; Chappell, R.; Suttie, J. Vitamin K Treatment Reduces Undercarboxylated Osteocalcin but Does Not Alter Bone Turnover, Density, or Geometry in Healthy Postmenopausal North American Women. J. Bone Miner. Res. 2009, 24, 983–991. DOI: 10.1359/jbmr.081254.
  • Tsugawa, N.; Shiraki, M. Vitamin K Nutrition and Bone Health. Nutrients. 2020, 12, 1909. DOI: 10.3390/nu12071909.
  • Halder, M.; Petsophonsakul, P.; Akbulut, A. C.; Pavlic, A.; Bohan, F.; Anderson, E.; Maresz, K.; Kramann, R.; Schurgers, L. Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. IJMS. 2019, 20, 896. DOI: 10.3390/ijms20040896.
  • Fiori, J.; Turroni, S.; Candela, M.; Gotti, R. Assessment of Gut Microbiota Fecal Metabolites by Chromatographic Targeted Approaches. J. Pharm. Biomed. Anal. 2020, 177, 112867. DOI: 10.1016/j.jpba.2019.112867.
  • Myneni, V. D.; Mezey, E. Regulation of Bone Remodeling by Vitamin K2. Oral Dis. 2017, 23, 1021–1028. DOI: 10.1111/odi.12624.
  • Cranenburg, E. C. M.; Schurgers, L. J.; Uiterwijk, H. H.; Beulens, J. W. J.; Dalmeijer, G. W.; Westerhuis, R.; Magdeleyns, E. J.; Herfs, M.; Vermeer, C.; Laverman, G. D. Vitamin K Intake and Status Are Low in Hemodialysis Patients. Kidney Int. 2012, 82, 605–610. DOI: 10.1038/ki.2012.191.
  • Mizikar, A. Encyclopedia of Dietary Supplements (2nd edition). Ref. Rev. 2011, 25.
  • Schurgers, L. J.; Akbulut, A. C.; Kaczor, D. M.; Halder, M.; Koenen, R. R.; Kramann, R. Initiation and Propagation of Vascular Calcification is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles. Front Cardiovasc. Med. 2018, 5, 36. DOI: 10.3389/fcvm.2018.00036.
  • Sprague, S. M.; Llach, F.; Amdahl, M.; Taccetta, C.; Batlle, D. Paricalcitol versus Calcitriol in the Treatment of Secondary Hyperparathyroidism. Kidney Int. 2003, 63, 1483–1490. DOI: 10.1046/j.1523-1755.2003.00878.x.
  • Feskanich, D.; Weber, P.; Willett, W. C.; Rockett, H.; Booth, S. L.; Colditz, G. A. Vitamin K Intake and Hip Fractures in Women: A Prospective Study. Am. J. Clin. Nutr. 1999, 69, 74–79. DOI: 10.1093/ajcn/69.1.74.
  • Parhami, F.; Demer, L. L. Arterial Calcification in Face of Osteoporosis in Ageing: Can We Blame Oxidized Lipids? Curr. Opin. Lipidol. 1997, 8, 312–314. DOI: 10.1097/00041433-199710000-00010.
  • Gundberg, C. M.; Lian, J. B.; Booth, S. L. Vitamin K-Dependent Carboxylation of Osteocalcin: Friend or Foe? Adv Nutr. 2012, 3, 149–157. DOI: 10.3945/an.112.001834.
  • Yaegashi, Y.; Onoda, T.; Tanno, K.; Kuribayashi, T.; Sakata, K.; Orimo, H. Association of Hip Fracture Incidence and Intake of Calcium, Magnesium, Vitamin D, and Vitamin K. Eur. J. Epidemiol. 2008, 23, 219–225. DOI: 10.1007/s10654-008-9225-7.
  • Rejnmark, L.; Vestergaard, P.; Charles, P.; Hermann, A. P.; Brot, C.; Eiken, P.; Mosekilde, L. No Effect of Vitamin K1 Intake on Bone Mineral Density and Fracture Risk in Perimenopausal Women. Osteoporos Int. 2006, 17, 1122–1132. DOI: 10.1007/s00198-005-0044-3.
  • Booth, S. L.; Broe, K. E.; Gagnon, D. R.; Tucker, K. L.; Hannan, M. T.; McLean, R. R.; Dawson-Hughes, B.; Wilson, P. W. F.; Cupples, L. A.; Kiel, D. P. Vitamin K Intake and Bone Mineral Density in Women and Men. Am. J. Clin. Nutr. 2003, 77, 512–516. DOI: 10.1093/ajcn/77.2.512.
  • Booth, S. L.; Tucker, K. L.; Chen, H.; Hannan, M. T.; Gagnon, D. R.; Cupples, L. A.; Wilson, P. W. F.; Ordovas, J.; Schaefer, E. J.; Dawson-Hughes, B.; et al. Dietary Vitamin K Intakes Are Associated with Hip Fracture but Not with Bone Mineral Density in Elderly Men and Women. Am. J. Clin. Nutr. 2000, 71, 1201–1208. DOI: 10.1093/ajcn/71.5.1201.
  • Chan, R.; Leung, J.; Woo, J. No Association between Dietary Vitamin K Intake and Fracture Risk in Chinese Community-Dwelling Older Men and Women: A Prospective Study. Calcif. Tissue Int. 2012, 90, 396–403. DOI: 10.1007/s00223-012-9586-5.
  • Noori, A.; Lashkari, M.; Oveisi, S.; Khair Khah, M. R.; Zargar, A. Assessment of Vitamin K2 Levels in Osteoporotic Patients: A Case Control Study. Glob. J. Health Sci. 2014, 6, 82–87. DOI: 10.5539/gjhs.v6n6p82.
  • Knapen, M. H. J.; Drummen, N. E.; Smit, E.; Vermeer, C.; Theuwissen, E. Three-Year Low-Dose Menaquinone-7 Supplementation Helps Decrease Done Loss in Healthy Postmenopausal Women. Osteoporos. Int. 2013, 24, 2499–2507. DOI: 10.1007/s00198-013-2325-6.
  • Scientific Opinion on the Substantiation of Health. Claims Related to Vitamin K and Maintenance of Bone (ID 123, 127, 128, and 2879), Blood Coagulation (ID 124 and 126), and Function of the Heart and Blood Vessels (ID 124, 125 and 2880) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2009, 7, 1228. DOI: 10.2903/j.efsa.2009.1228.
  • Pan, M.-H.; Maresz, K.; Lee, P.-S.; Wu, J.-C.; Ho, C.-T.; Popko, J.; Mehta, D. S.; Stohs, S. J.; Badmaev, V. Inhibition of TNF-α, IL-1α, and IL-1β by Pretreatment of Human Monocyte-Derived Macrophages with Menaquinone-7 and Cell Activation with TLR Agonists in Vitro. J. Med. Food. 2016, 19, 663–669. DOI: 10.1089/jmf.2016.0030.
  • Posse de Chaves, E.; Sipione, S. Sphingolipids and Gangliosides of the Nervous System in Membrane Function and Dysfunction. FEBS Lett. 2010, 584, 1748–1759. DOI: 10.1016/j.febslet.2009.12.010.
  • Sundaram, K. S.; Lev, M. Regulation of Sulfotransferase Activity by Vitamin K in Mouse Brain. Arch. Biochem. Biophys. 1990, 277, 109–113. DOI: 10.1016/0003-9861(90)90557-F..
  • Cutler, R. G.; Kelly, J.; Storie, K.; Pedersen, W. A.; Tammara, A.; Hatanpaa, K.; Troncoso, J. C.; Mattson, M. P. Involvement of Oxidative Stress-Induced Abnormalities in Ceramide and Cholesterol Metabolism in Brain Aging and Alzheimer’s Disease. Proc Natl Acad Sci U S A. 2004, 101, 2070–2075. DOI: 10.1073/pnas.0305799101.
  • Jana, A.; Hogan, E. L.; Pahan, K. Ceramide and Neurodegeneration: Susceptibility of Neurons and Oligodendrocytes to Cell Damage and Death. J. Neurol. Sci. 2009, 278, 5–15. DOI: 10.1016/j.jns.2008.12.010.
  • Presse, N.; Shatenstein, B.; Kergoat, M. J.; Ferland, G. Low Vitamin K Intakes in Community-Dwelling Elders at an Early Stage of Alzheimer’s Disease. J. Am. Diet. Assoc. 2008, 108, 2095–2099. DOI: 10.1016/j.jada.2008.09.013.
  • Ivanova, D.; Zhelev, Z.; Getsov, P.; Nikolova, B.; Aoki, I.; Higashi, T.; Bakalova, R. Vitamin K: Redox-Modulation, Prevention of Mitochondrial Dysfunction and Anticancer Effect. Redox. Biol. 2018, 16, 352–358. DOI: 10.1016/j.redox.2018.03.013.
  • Adnan, H.; Antenos, M.; Kirby, G. M. The Effect of Menadione on Glutathione S-Transferase A1 (GSTA1): c-Jun N-Terminal Kinase (JNK) Complex Dissociation in Human Colonic Adenocarcinoma Caco-2 Cells. Toxicol. Lett. 2012, 412, 53–62. DOI: 10.1016/j.toxlet.2012.08.007.
  • Viñas, P.; Campillo, N.; López-García, I.; Hernández-Córdoba, M. Dispersive Liquid-Liquid Microextraction in Food Analysis. A Critical Review Microextraction Techniques. Anal. Bioanal. Chem. 2014, 406, 2067–2099. DOI: 10.1007/s00216-013-7344-9.
  • Jakob, E.; Elmadfa, I. Application of a Simplified HPLC Assay for the Determination of Phylloquinone (Vitamin K1) in Animal and Plant Food Items. Food Chem. 1996, 56, 87–91. DOI: 10.1016/0308-8146(95)00150-6.
  • Viñas, P.; Bravo-Bravo, M.; López-García, I.; Hernández-Córdoba, M. Dispersive Liquid-Liquid Microextraction for the Determination of Vitamins D and K in Foods by Liquid Chromatography with Diode-Array and Atmospheric Pressure Chemical Ionization-Mass Spectrometry Detection. Talanta. 2013, 115, 806–813. DOI: 10.1016/j.talanta.2013.06.050.
  • Bergeland, T.; Nordstrand, S.; Aukrust, I. R. Commentary on Method for Detection of Menaquinone-7 in Dietary Supplements. Food Chem. 2019, 292, 346–347. DOI: 10.1016/j.foodchem.2018.12.001.
  • Gershkovich, P.; Ibrahim, F.; Sivak, O.; Darlington, J. W.; Wasan, K. M. A Simple and Sensitive Method for Determination of Vitamins D3 and K1 in Rat Plasma: Application for an in Vivo Pharmacokinetic Study. Drug Dev. Ind. Pharm. 2014, 40, 338–344. DOI: 10.3109/03639045.2012.762016.
  • Dolnikowski, G. G.; Sun, Z.; Grusak, M. A.; Peterson, J. W.; Booth, S. L. HPLC and GC/MS Determination of Deuterated Vitamin K (Phylloquinone) in Human Serum after Ingestion of Deuterium-Labeled Broccoli. J. Nutr. Biochem. 2002, 13, 168–174. DOI: 10.1016/S0955-2863(01)00210-8..
  • Wianowska, D.; Gil, M. Critical Approach to PLE Technique Application in the Analysis of Secondary Metabolites in Plants. TrAC Trends Anal. Chem. 2019, 114, 314–325. DOI: 10.1016/j.trac.2019.03.018.
  • Wianowska, D.; Gil, M. New Insights into the Application of MSPD in Various Fields of Analytical Chemistry. TrAC Trends Anal. Chem. 2019, 112, 29–51. DOI: 10.1016/j.trac.2018.12.028.
  • Wianowska, D.; Dawidowicz, A. L. Can Matrix-Solid Phase Dispersion (MSPD) Be More Simplified? Application of Solventless MSPD Sample Preparation Method for GC-MS and GC-FID Analysis of Plant Essential Oil Components. Talanta. 2016, 151, 179–182. DOI: 10.1016/j.talanta.2016.01.019.
  • Dawidowicz, A. L.; Wianowska, D. PLE in the Analysis of Plant Compounds—Part II: One-Cycle PLE in Determining Total Amount of Analyte in Plant Material. J. Pharm. Biomed. Anal. 2005, 37, 1161–1165. DOI: 10.1016/j.pba.2004.10.025..
  • Wianowska, D.; Gil, M.; Olszowy, M. Miniaturized Methods of Sample Preparation. In Handbook on Miniaturization in Analytical Chemistry: Application of Nanotechnology; Hussain, Ch.M., Ed.; Elsevier. 2020, 99–125. DOI: 10.1016/B978-0-12-819763-9.00005-2.
  • Marinova, M.; Lütjohann, D.; Westhofen, P.; Watzka, M.; Breuer, O.; Oldenburg, J. A Validated HPLC Method for the Determination of Vitamin K in Human Serum—First Application in a Pharmacological Study. TOCCHEMJ. 2011, 4, 17–27. DOI: 10.2174/1874241601104010017.
  • Khan, M. I.; Khan, A.; Iqbal, Z.; Ahmad, L.; Shah, Y. Optimization and Validation of RP-LC/UV-VIS Detection Method for Simultaneous Determination of Fat-Soluble anti-Oxidant Vitamins, All-Trans-Retinol and α-Tocopherol in Human Serum: Effect of Experimental Parameters. Chroma. 2010, 71, 577–586. DOI: 10.1365/s10337-010-1486-0.
  • Stevens, J.; Dowell, D. Determination of Vitamins D2 and D3 in Infant Formula and Adult Nutritionals by Ultra-Pressure Liquid Chromatography with Tandem Mass Spectrometry Detection (UPLC-MS/MS): First Action 2011.12. J. AOAC Int. 2012, 95, 577–582. DOI: 10.5740/jaoacint.CS2011_12.
  • Ducros, V.; Pollicand, M.; Laporte, F.; Favier, A. Quantitative Determination of Plasma Vitamin K1 by High-Performance Liquid Chromatography Coupled to Isotope Dilution Tandem Mass Spectrometry. Anal. Biochem. 2010, 401, 7–14. DOI: 10.1016/j.ab.2010.02.018.
  • Gentili, A.; Caretti, F. Evaluation of a Method Based on Liquid Chromatography-Diode Array Detector-Tandem Mass Spectrometry for a Rapid and Comprehensive Characterization of the Fat-Soluble Vitamin and Carotenoid Profile of Selected Plant Foods. J. Chromatogr. A. 2011, 1218, 684–697. DOI: 10.1016/j.chroma.2010.12.001.
  • Schurgers, L. J.; Teunissen, K. J. F.; Hamulyák, K.; Knapen, M. H. J.; Vik, H.; Vermeer, C. Vitamin K-Containing Dietary Supplements: Comparison of Synthetic Vitamin K1 and Natto-Derived Menaquinone-7. Blood. 2007, 109, 3279–3283. DOI: 10.1182/blood-2006-08-040709.
  • Liu, Q.; Jia, L.; Hu, C. On-Line Concentration Methods for Analysis of Fat-Soluble Vitamins by MEKC. Chroma. 2010, 72, 95–100. DOI: 10.1365/s10337-010-1608-8.
  • Jäpelt, R. B.; Jakobsen, J. Analysis of Vitamin K1 in Fruits and Vegetables Using Accelerated Solvent Extraction and Liquid Chromatography Tandem Mass Spectrometry with Atmospheric Pressure Chemical Ionization. Food Chem. 2016, 192, 402–408. DOI: 10.1016/j.foodchem.2015.06.111.
  • Gentili, A.; Cafolla, A.; Gasperi, T.; Bellante, S.; Caretti, F.; Curini, R.; Fernández, V. P. K. (1), Menaquinone-4 and Vitamin K(1) 2,3-Epoxide in Human Serum and Plasma Using Liquid Chromatography-Hybrid Quadrupole Linear Ion Trap Mass Spectrometry. J. Chromatogr. A. 2014, 1338, 102–110. DOI: 10.1016/j.chroma.2014.02.065.
  • Brugè, F.; Bacchetti, T.; Principi, F.; Littarru, G. P.; Tiano, L. Olive Oil Supplemented with Menaquinone-7 Significantly Affects Osteocalcin Carboxylation. Br. J. Nutr. 2011, 106, 1058–1062. DOI: 10.1017/S0007114511001425.
  • Wang, L. Y.; Bates, C. J.; Yan, L.; Harrington, D. J.; Shearer, M. J.; Prentice, A. Determination of Phylloquinone (Vitamin K1) in Plasma and Serum by HPLC with Fluorescence Detection. Clin. Chim. Acta. 2004, 347, 199–207. DOI: 10.1016/j.cccn.2004.04.030.
  • Thakare, R.; Chhonker, Y. S.; Gautam, N.; Alamoudi, J. A.; Alnouti, Y. Quantitative Analysis of Endogenous Compounds. J. Pharm. Biomed. Anal. 2016, 128, 426–437. DOI: 10.1016/j.jpba.2016.06.017.
  • Fu, X.; Peterson, J. W.; Hdeib, M.; Booth, S. L.; Grusak, M. A.; Lichtenstein, A. H.; Dolnikowski, G. G. Measurement of Deuterium-Labelled Phylloqionone in Plasma by High-Performane Liquid Chromatography/Mass Spectrometry. Anal. Chem. 2009, 81, 5421–5425. DOI: 10.1021/ac900732w.
  • Peterson, J. W.; Muzzey, K. L.; Haytowitz, D.; Exler, J.; Lemar, L.; Booth, S. L. Phylloquinone (Vitamin K1) and Dihydrophylloquinone Content of Fats and Oils. JAOCS. J. Amer. Oil Chem. Soc. 2002, 79, 641–646. DOI: 10.1007/s11746-002-0537-z.
  • Wianowska, D.; Typek, R.; Dawidowicz, A. L. How to Eliminate the Formation of Chlorogenic Acids Artefacts during Plants Analysis? Sea Sand Disruption Method (SSDM) in the HPLC Analysis of Chlorogenic Acids and Their Native Derivatives in Plants. Phytochemistry. 2015, 117, 489–499. DOI: 10.1016/j.phytochem.2015.07.006.
  • Wianowska, D.; Dawidowicz, A. L.; Bernacik, K.; Typek, R. Determining the True Content of Quercetin and Its Derivatives in Plants Employing SSDM and LC–MS Analysis. Eur. Food Res. Technol. 2017, 243, 27–40. DOI: 10.1007/s00217-016-2719-8.
  • Typek, R.; Dawidowicz, A. L.; Wianowska, D.; Bernacik, K.; Stankevič, M.; Gil, M. Formation of Aqueous and Alcoholic Adducts of Curcumin during Its Extraction. Food Chem. 2019, 276, 101–109. DOI: 10.1016/j.foodchem.2018.10.006.
  • Dawidowicz, A. L.; Wianowska, D. Application of the MSPD Technique for the HPLC Analysis of Rutin in Sambucus nigra L.: The Linear Correlation of the Matrix Solid-Phase Dispersion Process. J. Chromatogr. Sci. 2009, 47, 914–918. DOI: 10.1093/chromsci/47.10.914.
  • Wianowska, D. Application of Sea Sand Disruption Method for HPLC Determination of Quercetin in Plants. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1037–1043. DOI: 10.1080/10826076.2015.1012520.
  • Harrington, D. J.; Soper, R.; Edwards, C.; Savidge, G. F.; Hodges, S. J.; Shearer, M. J. Determination of the Urinary Aglycone Metabolites of Vitamin K by HPLC with Redox-Mode Electrochemical Detection. J. Lipid Res. 2005, 46, 1053–1060. DOI DOI: 10.1194/jlr.D400033-JLR200.
  • Paprotny, Ł.; Celejewska, A.; Frajberg, M.; Wianowska, D. Development and Validation of GC-MS/MS Method Useful in Diagnosing Intestinal Dysbiosis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1130–1131, 121822. DOI: 10.1016/j.jchromb.2019.121822.
  • https://www.mybiosource.com/vk-human-elisa-kits/vitamin-k/746981. (accessed August 23, 2022).
  • Jesadabundit, W.; Chaiyo, S.; Siangproh, W.; Chailapakul, O. Simple and Cost-Effective Electrochemical Approach for Monitoring of VitaminK in Green Vegetables. ChemElectroChem. 2020, 7, 155–162. DOI: 10.1002/celc.201901432.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.