408
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Organic Molecules Containing N, S and O Heteroatoms as Sensors for the Detection of Hg(II) Ion; Coordination and Efficiency toward Detection

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. A New Trend in Rhodamine-Based Chemosensors: Application of Spirolactam Ring-Opening to Sensing Ions. Chem. Soc. Rev. 2008, 37, 1465–1472. DOI: 10.1039/b802497a.
  • Quang, D. T.; Kim, J. S. Fluoro-and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chem. Rev. 2010, 110, 6280–6301. DOI: 10.1021/cr100154p.
  • Kim, J. S.; Lee, S. Y.; Yoon, J.; Vicens, J. Hyperbranched Calixarenes: Synthesis and Applications as Fluorescent Probes. Chem. Commun. 2009, 2009(30), 4791–4802. DOI: 10.1039/b900328b.
  • Patil, A.; Salunke-Gawali, S. Overview of the Chemosensor Ligands Used for Selective Detection of Anions and Metal Ions (Zn2+, Cu2+, Ni2+, Co2+, Fe2+, Hg2+). Inorg. Chim. Acta. 2018, 482, 99–112. DOI: 10.1016/j.ica.2018.05.026.
  • Kollur, S. P.; Shivamallu, C.; Prasad, S. K.; Veerapur, R.; Patil, S. S.; Cull, C. A.; Coetzee, J. F.; Amachawadi, R. G. Recent Advances on the Development of Chemosensors for the Detection of Mercury Toxicity: A Review. Separations. 2021, 8, 192. DOI: 10.3390/separations8100192.
  • Kim, S.; Noh, J. Y.; Kim, K. Y.; Kim, J. H.; Kang, H. K.; Nam, S.-W.; Kim, S. H.; Park, S.; Kim, C.; Kim, J.; et al. Salicylimine-Based Fluorescent Chemosensor for Aluminum Ions and Application to Bioimaging. Inorg. Chem. 2012, 51, 3597–3602. DOI: 10.1021/ic2024583.
  • Unal, F. A.; Ok, S.; Unal, M.; Topal, S.; Cellat, K.; Şen, F. Synthesis, Characterization, and Application of Transition Metals (Ni, Zr, and Fe) Doped TiO2 Photoelectrodes for Dye-Sensitized Solar Cells. J. Mol. Liq. 2020, 299, 112177. DOI: 10.1016/j.molliq.2019.112177.
  • Ali, H.; Khan, E. Bioaccumulation of Non-Essential Hazardous Heavy Metals and Metalloids in Freshwater Fish. Risk to Human Health. Environ. Chem. Lett. 2018, 16, 903–917. DOI: 10.1007/s10311-018-0734-7.
  • Ali, H.; Khan, E. Trophic Transfer, Bioaccumulation, and Biomagnification of Non-Essential Hazardous Heavy Metals and Metalloids in Food Chains/Webs—Concepts and Implications for Wildlife and Human Health. Hum. Ecol. Risk Assess. 2019, 25, 1353–1376. DOI: 10.1080/10807039.2018.1469398.
  • Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 1–14. DOI: 10.1155/2019/6730305.
  • Harris, H. H.; Pickering, I. J.; George, G. N. The Chemical Form of Mercury in Fish. Science. 2003, 301, 1203–1203. DOI: 10.1126/science.1085941.
  • Weiss, B. Why Methylmercury Remains a Conundrum 50 Years after Minamata. Toxicol. Sci. 2007, 97, 223–225. DOI: 10.1093/toxsci/kfm047.
  • Amin-Zaki, L.; et al. Intra-Uterine Methylmercury Poisoning in Iraq. In Problems of Birth Defects; Persaud, T.V.N. Eds.; Springer: Dordrecht, 1974; pp 233–241. DOI: 10.1007/978-94-011-6621-8_37
  • Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Environmental Exposure to Mercury and Its Toxicopathologic Implications for Public Health. Environ. Toxicol. 2003, 18, 149–175. DOI: 10.1002/tox.10116.
  • Rice, K. M.; Walker, E. M.; Wu, M.; Gillette, C.; Blough, E. R. Environmental Mercury and Its Toxic Effects. J. Prev. Med. Public Health. 2014, 47, 74–83. DOI: 10.3961/jpmph.2014.47.2.74.
  • Atchison, W. D.; Hare, M. F. Mechanisms of Methylmercury‐Induced Neurotoxicity. FASEB J. 1994, 8, 622–629. DOI: 10.1096/fasebj.8.9.7516300.
  • Farina, M.; Rocha, J. B.; Aschner, M. Mechanisms of Methylmercury-Induced Neurotoxicity: Evidence from Experimental Studies. Life Sci. 2011, 89, 555–563. DOI: 10.1016/j.lfs.2011.05.019.
  • Peng, H.; Cheng, Y.; Dai, C.; King, A. L.; Predmore, B. L.; Lefer, D. J.; Wang, B. A Fluorescent Probe for Fast and Quantitative Detection of Hydrogen Sulfide in Blood. Angew. Chem. 2011, 123, 9846–9849. DOI: 10.1002/ange.201104236.
  • Qian, Y.; Zhang, L.; Ding, S.; Deng, X.; He, C.; Zheng, X. E.; Zhu, H.-L.; Zhao, J. A Fluorescent Probe for Rapid Detection of Hydrogen Sulfide in Blood Plasma and Brain Tissues in Mice. Chem. Sci. 2012, 3, 2920–2923. DOI: 10.1039/c2sc20537h.
  • Gul, Z.; Ullah, S.; Khan, S.; Ullah, H.; Khan, M. U.; Ullah, M.; Ali, S.; Altaf, A. A. Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Crit. Rev. Anal. Chem. 2022. DOI: 10.1080/10408347.2022.2049676.
  • Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal Importance, Coordination Chemistry with Selected Metals (Cu, Ag, Au) and Chemosensing of Thiourea Derivatives. A Review. Crit. Rev. Anal. Chem. 2021, 51, 812–834. DOI: 10.1080/10408347.2020.1777523.
  • Khan, E.; Ahmad, T.; Gul, Z.; Ullah, F.; Tahir, M. N.; Noor, A. Methyl-Substituted 2-Aminothiazole–Based Cobalt (II) and Silver (I) Complexes: Synthesis, X-Ray Structures, and Biological Activities. Turk. J. Chem. 2019, 43, 857–868. DOI: 10.3906/kim-1812-4.
  • Gul, Z.; Din, N. U.; Khan, E.; Ullah, F.; Nawaz Tahir, M. Synthesis, Molecular Structure, Anti-Microbial, Anti-Oxidant and Enzyme Inhibition Activities of 2-Amino-6-Methylbenzothiazole and Its Cu(II) and Ag(I) Complexes. J. Mol. Struct. 2020, 1199, 126956. DOI: 10.1016/j.molstruc.2019.126956.
  • Shahzad, A.; Gul, Z.; Khan, E.; Umar, M. N.; Rashid, H. U.; Shah, M. R.; Noor, A.; Khan, S. W. Facile Synthesis, Characterization and DFT Calculations of 2-Acetyl Pyridine Derivatives. Quim. Nova. 2017, 40, 902–907. DOI: 10.21577/0100-4042.20170087.
  • Xiong, R.-G.; Xue, X.; Zhao, H.; You, X.-Z.; Abrahams, B. F.; Xue, Z. Novel, Acentric Metal–Organic Coordination Polymers from Hydrothermal Reactions Involving In Situ Ligand Synthesis. Angew. Chem. 2002, 114, 3954–3957. DOI: 10.1002/1521-3757(20021018)114:20<3954::AID-ANGE3954>3.0.CO;2-C.
  • Cullen, D.; Brown, R.; Lowe, C. Detection of Immuno-Complex Formation via Surface Plasmon Resonance on Gold-Coated Diffraction Gratings. Biosensors. 1987, 3, 211–225. DOI: 10.1016/0265-928X(87)85002-2.
  • Armstrong, D. W.; Nome, F.; Spino, L. A.; Golden, T. D. Efficient Detection and Evaluation of Cyclodextrin Multiple Complex Formation. J. Am. Chem. Soc. 1986, 108, 1418–1421. DOI: 10.1021/ja00267a010.
  • Ding, A.; Yang, L.; Zhang, Y.; Zhang, G.; Kong, L.; Zhang, X.; Tian, Y.; Tao, X.; Yang, J. Complex‐Formation‐Enhanced Fluorescence Quenching Effect for Efficient Detection of Picric Acid. Chemistry. 2014, 20, 12215–12222. DOI: 10.1002/chem.201402790.
  • Gul, Z.; Khan, S.; Ullah, S.; Ullah, H.; Khan, M. U.; Ullah, M.; Altaf, A. A. Recent Development in Coordination Compounds as a Sensor for Cyanide Ions in Biological and Environmental Segments. Crit. Rev. Anal. Chem. 2022. DOI: 10.1080/10408347.2022.2085027.
  • Muhammad, M.; Khan, S.; Shehzadi, S. A.; Gul, Z.; Al-Saidi, H. M.; Waheed Kamran, A.; Alhumaydhi, F. A. Recent Advances in Colorimetric and Fluorescent Chemosensors Based on Thiourea Derivatives for Metallic Cations: A Review. Dyes Pigm. 2022, 205, 110477. DOI: 10.1016/j.dyepig.2022.110477.
  • Najare, M. S.; Patil, M. K.; Garbhagudi, M.; Yaseen, M.; Inamdar, S. R.; Khazi, I. A. M. Design, Synthesis and Characterization of π-Conjugated 2,5-Diphenylsubstituted-1,3,4-Oxadiazole-Based D-π-A-π’-D′ Form of Efficient Deep Blue Functional Materials: Photophysical Properties and Fluorescence “Turn-off” Chemsensors Approach. J. Mol. Liq. 2021, 328, 115443. DOI: 10.1016/j.molliq.2021.115443.
  • Lee, S. J.; Moskovits, M. Visualizing Chromatographic Separation of Metal Ions on a Surface-Enhanced Raman Active Medium. Nano Lett. 2011, 11, 145–150. DOI: 10.1021/nl1031309.
  • Du, Y.; Liu, R.; Liu, B.; Wang, S.; Han, M.-Y.; Zhang, Z. Surface-Enhanced Raman Scattering Chip for Femtomolar Detection of Mercuric Ion (II) by Ligand Exchange. Anal. Chem. 2013, 85, 3160–3165. DOI: 10.1021/ac303358w.
  • Selid, P. D.; Xu, H.; Collins, E. M.; Face-Collins, M. S.; Zhao, J. X. Sensing Mercury for Biomedical and Environmental Monitoring. Sensors (Basel). 2009, 9, 5446–5459. DOI: 10.3390/s90705446.
  • Zhang, L.; Li, T.; Li, B.; Li, J.; Wang, E. Carbon Nanotube–DNA Hybrid Fluorescent Sensor for Sensitive and Selective Detection of Mercury (II) Ion. Chem. Commun. (Camb.). 2010, 46, 1476–1478. DOI: 10.1039/b921191h.
  • Qu, Y.; Yang, J.; Hua, J.; Zou, L. Thiocarbonyl Quinacridone-Based “Turn on” Fluorescent Chemodosimeters for Highly Sensitive and Selective Detection of Hg (II). Sens. Actuators, B. 2012, 161, 661–668. DOI: 10.1016/j.snb.2011.10.087.
  • Rahman, F. U.; Bibi, M.; Khan, E.; Shah, A. B.; Muhammad, M.; Tahir, M. N.; Shahzad, A.; Ullah, F.; Zahoor, M.; Alamery, S.; et al. Thiourea Derivatives, Simple in Structure but Efficient Enzyme Inhibitors and Mercury Sensors. Molecules. 2021, 26, 4506. DOI: 10.3390/molecules26154506.
  • Srivastava, P.; Ali, R.; Razi, S. S.; Shahid, M.; Misra, A. Thiourea Based Molecular Dyad (ANTU): Fluorogenic Hg2+ Selective Chemodosimeter Exhibiting Blue–Green Fluorescence in Aqueous-Ethanol Environment. Sens. Actuators, B. 2013, 181, 584–595. DOI: 10.1016/j.snb.2013.01.080.
  • Zhang, Z.; Lu, S.; Sha, C.; Xu, D. A Single Thiourea-Appended 1, 8-Naphthalimide Chemosensor for Three Heavy Metal Ions: Fe3+, Pb2+, and Hg2+. Sens. Actuators, B. 2015, 208, 258–266. DOI: 10.1016/j.snb.2014.10.136.
  • Lin, W.-C.; Wu, C.-Y.; Liu, Z.-H.; Lin, C.-Y.; Yen, Y.-P. A New Selective Colorimetric and Fluorescent Sensor for Hg2+ and Cu2+ Based on a Thiourea Featuring a Pyrene Unit. Talanta. 2010, 81, 1209–1215. DOI: 10.1016/j.talanta.2010.02.012.
  • Qu, Y.; Jin, Y.; Cheng, Y.; Wang, L.; Cao, J.; Yang, J. A Solothiocarbonyl Quinacridone with Long Chains Used as a Fluorescent Tool for Rapid Detection of Hg 2+ in Hydrophobic Naphtha Samples. J. Mater. Chem. A. 2017, 5, 14537–14541. DOI: 10.1039/C7TA03799F.
  • Aksuner, N.; Basaran, B.; Henden, E.; Yilmaz, I.; Cukurovali, A. A Sensitive and Selective Fluorescent Sensor for the Determination of Mercury (II) Based on a Novel Triazine-Thione Derivative. Dyes Pigm. 2011, 88, 143–148. DOI: 10.1016/j.dyepig.2010.05.014.
  • Khan, T. K.; Ravikanth, M. 3-(Pyridine-4-Thione) BODIPY as a Chemodosimeter for Detection of Hg (II) Ions. Dyes Pigm. 2012, 95, 89–95. DOI: 10.1016/j.dyepig.2012.03.015.
  • Han, Z.-X.; Luo, H.-Y.; Zhang, X.-B.; Kong, R.-M.; Shen, G.-L.; Yu, R.-Q. A Ratiometric Chemosensor for Fluorescent Determination of Hg2+ Based on a New Porphyrin-Quinoline Dyad. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2009, 72, 1084–1088. DOI: 10.1016/j.saa.2009.01.003.
  • Khan, E. Detecting Inorganic Arsenic below WHO Threshold Limit; a Comparative Study of Various Sensors. Int. J. Environ. Anal. Chem. 2021. DOI: 10.1080/03067319.2021.1998476.
  • Khan, E.; Ali Khan, S.; Zahoor, M.; Nawaz Tahir, M.; Noor, A.; Altaf, A. A. Cu(II) Coordination Polymers Stabilized by Pyridine-2,6-Dicarboxylate Anion and Pyrazole Derivatives through Ligand Hydrolysis. J. Coord. Chem. 2018, 71, 2658–2673. DOI: 10.1080/00958972.2018.1501562.
  • Khan, E.; Shahzad, A.; Tahir, M. N.; Noor, A. Antioxidant Potential and Secondary Reactivity of Bis $\{$Diphenyl (2-Pyridyl) Phosphino $\} $Copper (II) Complex. Turk. J. Chem. 2018, 42, 1299–1309. DOI: 10.3906/kim-1803-82.
  • Wang, J.; Niu, Q.; Hu, T.; Li, T.; Wei, T. A New Phenothiazine-Based Sensor for Highly Selective, Ultrafast, Ratiometric Fluorescence and Colorimetric Sensing of Hg2+: Applications to Bioimaging in Living Cells and Test Strips. J. Photochem. Photobiol, A. 2019, 384, 112036. DOI: 10.1016/j.jphotochem.2019.112036.
  • Cheng, X.; Li, Q.; Li, C.; Qin, J.; Li, Z. Azobenzene‐Based Colorimetric Chemosensors for Rapid Naked‐Eye Detection of Mercury (II). Chemistry 2011, 17, 7276–7281. DOI: 10.1002/chem.201003275.
  • Chinna Ayya Swamy, P.; Shanmugapriya, J.; Singaravadivel, S.; Sivaraman, G.; Chellappa, D. Anthracene-Based Highly Selective and Sensitive Fluorescent “Turn-on” Chemodosimeter for Hg2+. ACS Omega. 2018, 3, 12341–12348. DOI: 10.1021/acsomega.8b01142.
  • Liu, S.; Shi, Z.; Xu, W.; Yang, H.; Xi, N.; Liu, X.; Zhao, Q.; Huang, W. A Class of Wavelength-Tunable Near-Infrared Aza-BODIPY Dyes and Their Application for Sensing Mercury Ion. Dyes Pigm. 2014, 103, 145–153. DOI: 10.1016/j.dyepig.2013.12.004.
  • Sharma, D.; Om, H.; Sharma, A. K. Potential Synthetic Routes and Metal-Ion Sensing Applications of 1,3,4-Oxadiazoles: An Integrative Review. Crit. Rev. Anal. Chem. 2022. DOI: 10.1080/10408347.2022.2080494.
  • Rout, K.; Manna, A. K.; Sahu, M.; Patra, G. K. A Guanidine Based Bis Schiff Base Chemosensor for Colorimetric Detection of Hg (II) and Fluorescent Detection of Zn (II) Ions. Inorg. Chim. Acta. 2019, 486, 733–741. DOI: 10.1016/j.ica.2018.11.021.
  • Vengaian, K. M.; Britto, C. D.; Sekar, K.; Sivaraman, G.; Singaravadivel, S. Phenothiazine-Diaminomalenonitrile Based Colorimetric and Fluorescence “Turn-off-on” Sensing of Hg2+ and S2−. Sens. Actuators, B. 2016, 235, 232–240. DOI: 10.1016/j.snb.2016.04.180.
  • Sulak, M.; Kursunlu, A. N.; Girgin, B.; Karakuş, Ö. Ö.; Güler, E. A Highly Selective Fluorescent Sensor for Mercury (II) Ion Based on Bodipy and Calix [4] Arene Bearing Triazolenaphthylene Groups; Synthesis and Photophysical Investigations. J. Photochem. Photobiol., A. 2017, 349, 129–137. DOI: 10.1016/j.jphotochem.2017.09.022.
  • Ma, L.-J.; Liu, J.; Deng, L.; Zhao, M.; Deng, Z.; Li, X.; Tang, J.; Yang, L. Selective and Sensitive Fluorescence-Shift Probes Based on Two Dansyl Groups for Mercury (II) Ion Detection. Photochem. Photobiol. Sci. 2014, 13, 1521–1528. DOI: 10.1039/c4pp00094c.
  • Hu, Z.-Q.; Lin, C.-s.; Wang, X.-M.; Ding, L.; Cui, C.-L.; Liu, S.-F.; Lu, H. Y. Highly Sensitive and Selective Turn-on Fluorescent Chemosensor for Pb2+ and Hg2+ Based on a Rhodamine–Phenylurea Conjugate. Chem. Commun. (Camb.). 2010, 46, 3765–3767. DOI: 10.1039/c001587c.
  • Bozkurt, E.; Gul, H. I. Selective Fluorometric “Turn-off” Sensing for Hg2+ with Pyrazoline Compound and Its Application in Real Water Sample Analysis. Inorg. Chim. Acta. 2020, 502, 119288. DOI: 10.1016/j.ica.2019.119288.
  • Liu, Y.; Zhang, J.; Feng, T.; Li, Y. Synthesis, Structure–Fluorescence Relationships and Density Functional Theory Studies of Novel Naphthalimide–Piperazine–Pyridine-Based Polystyrene Sensors for Hg(ii) Detection. RSC Adv. 2020, 10, 25281–25289. DOI: 10.1039/d0ra04557h.
  • Arabahmadi, R.; Orojloo, M.; Amani, S. Azo Schiff Bases as Colorimetric and Fluorescent Sensors for Recognition of F−, Cd2+ and Hg2+ Ions. Anal. Methods. 2014, 6, 7384–7393. DOI: 10.1039/C4AY01564A.
  • Manna, A. K.; Mondal, J.; Chandra, R.; Rout, K.; Patra, G. K. A Thio-Urea Based Chromogenic and Fluorogenic Chemosensor for Expeditious Detection of Cu2+, Hg2+ and Ag + Ions in Aqueous Medium. J. Photochem. Photobiol, A. 2018, 356, 477–488. DOI: 10.1016/j.jphotochem.2018.01.017.
  • Shellaiah, M.; Rajan, Y. C.; Balu, P.; Murugan, A. A Pyrene Based Schiff Base Probe for Selective Fluorescence Turn-on Detection of Hg 2+ Ions with Live Cell Application. New J. Chem. 2015, 39, 2523–2531. DOI: 10.1039/C4NJ02367F.
  • Tharmaraj, V.; Pitchumani, K. An Acyclic, Dansyl Based Colorimetric and Fluorescent Chemosensor for Hg (II) via Twisted Intramolecular Charge Transfer (TICT). Anal. Chim. Acta. 2012, 751, 171–175. DOI: 10.1016/j.aca.2012.09.016.
  • Satapathy, R.; Wu, Y.-H.; Lin, H.-C. Novel Thieno-Imidazole Based Probe for Colorimetric Detection of Hg2+ and Fluorescence Turn-on Response of Zn2+. Org. Lett. 2012, 14, 2564–2567. DOI: 10.1021/ol300867e.
  • Bhaskar, R.; Sarveswari, S. Thiocarbohydrazide Based Schiff Base as a Selective Colorimetric and Fluorescent Chemosensor for Hg2+ with “Turn-Off” Fluorescence Responses. ChemistrySelect. 2020, 5, 4050–4057. DOI: 10.1002/slct.202000652.
  • Mei, Q.; Tian, R.; Shi, Y.; Hua, Q.; Chen, C.; Tong, B. A Series of Selective and Sensitive Fluorescent Sensors Based on a Thiophen-2-yl-Benzothiazole Unit for Hg2+. New J. Chem. 2016, 40, 2333–2342. DOI: 10.1039/C5NJ02259B.
  • Krishnan, U.; Kulathu Iyer, S. Iminothiophenol Schiff Base-Based Fluorescent Probe for Dual Detection of Hg2+ and Cr3+ Ions and Its Application in Real Sample Analysis. J. Photochem. Photobiol, A. 2022, 425, 113663. DOI: 10.1016/j.jphotochem.2021.113663.
  • Mermer, Z.; Yavuz, O.; Atasen, S. K.; Alcay, Y.; Yilmaz, I. Architecture of Multi-Channel and Easy-to-Make Sensors for Selective and Sensitive Hg2+ Ion Recognition through Hg–C and Hg–N Bonds of Naphthoquinone-Aniline/Pyrene Union. J. Hazard. Mater. 2021, 410, 124597.
  • Fang, G.; Xu, M.; Zeng, F.; Wu, S. β-Cyclodextrin as the Vehicle for Forming Ratiometric Mercury Ion Sensor Usable in Aqueous Media, Biological Fluids, and Live Cells. Langmuir. 2010, 26, 17764–17771. DOI: 10.1021/la103368z.
  • Šandor, M.; Geistmann, F.; Schuster, M. An Anthracene-Substituted Benzoylthiourea for the Selective Determination of Hg (II) in Micellar Media. Anal. Chim. Acta. 1999, 388, 19–26. DOI: 10.1016/S0003-2670(99)00096-3.
  • Pan, Z.; Xu, Z.; Chen, J.; Hu, L.; Li, H.; Zhang, X.; Gao, X.; Wang, M.; Zhang, J. Coumarin Thiourea-Based Fluorescent Turn-on Hg2+ Probe That Can Be Utilized in a Broad pH Range 1–11. J. Fluoresc. 2020, 30, 505–514. DOI: 10.1007/s10895-020-02517-y.
  • Wei, T.-b.; Gao, G.-y.; Qu, W.-j.; Shi, B.-b.; Lin, Q.; Yao, H.; Zhang, Y.-m. Selective Fluorescent Sensor for Mercury (II) Ion Based on an Easy to Prepare Double Naphthalene Schiff Base. Sens. Actuators, B. 2014, 199, 142–147. DOI: 10.1016/j.snb.2014.03.084.
  • Guha, S.; Lohar, S.; Hauli, I.; Mukhopadhyay, S. K.; Das, D. Vanillin-Coumarin Hybrid Molecule as an Efficient Fluorescent Probe for Trace Level Determination of Hg (II) and Its Application in Cell Imaging. Talanta. 2011, 85, 1658–1664. DOI: 10.1016/j.talanta.2011.06.073.
  • Guo, M.; Xue, W.; Guan, M.; Sun, J.; Yin, G. New Azobenzene Dye Colorimetric and Ratiometric Chemosensors for Mercury (II) Ion. Chin. J. Chem. 2009, 27, 1773–1776. DOI: 10.1002/cjoc.200990298.
  • Kanagaraj, K. Selective “Turn-off”. Fluorescent Sensing of Mercury Ions Using Aminocyclodextrin: 3-hydroxy-N-Phenyl-2-Naphthamide Complex in Aqueous Solution. RSC Adv. 2014, 4, 11714–11722.
  • El-Boraey, H. A.; El-Gammal, O. A. New 15-Membered Tetraaza (N4) Macrocyclic Ligand and Its Transition Metal Complexes: Spectral, Magnetic, Thermal and Anticancer Activity. Spectrochim. Acta, A. 2015, 138, 553–562. DOI: 10.1016/j.saa.2014.11.015.
  • İnal, E. K. A Fluorescent Chemosensor Based on Schiff Base for the Determination of Zn2+, Cd2 + and Hg2+. J. Fluoresc. 2020, 30, 891–900. DOI: 10.1007/s10895-020-02563-6.
  • Anand, T.; Sankar, M. A Dual Colorimetric Chemosensor for Hg(ii) and Cyanide Ions in Aqueous Media Based on a Nitrobenzoxadiazole (NBD)–Antipyrine Conjugate with INHIBIT Logic Gate Behaviour. Anal. Methods. 2020, 12, 4526–4533. DOI: 10.1039/d0ay00913j.
  • Hazra, A.; Ghosh, P.; Roy, P. A Rhodamine Based Dual Chemosensor for Al3+ and Hg2+: Application in the Construction of Advanced Logic Gates. Spectrochim. Acta, A. 2022, 271, 120905. DOI: 10.1016/j.saa.2022.120905.
  • Hong, M.; Lu, S.; Lv, F.; Xu, D. A Novel Facilely Prepared Rhodamine-Based Hg2+ Fluorescent Probe with Three Thiourea Receptors. Dyes Pigm. 2016, 127, 94–99. DOI: 10.1016/j.dyepig.2015.12.023.
  • Vedamalai, M.; Kedaria, D.; Vasita, R.; Mori, S.; Gupta, I. Design and Synthesis of BODIPY-Clickate Based Hg 2+ Sensors: The Effect of Triazole Binding Mode with Hg 2+ on Signal Transduction. Dalton Trans. 2016, 45, 2700–2708. DOI: 10.1039/c5dt04042f.
  • Thirupathi, P.; Lee, K.-H. A New Peptidyl Fluorescent Chemosensors for the Selective Detection of Mercury Ions Based on Tetrapeptide. Bioorg. Med. Chem. 2013, 21, 7964–7970. DOI: 10.1016/j.bmc.2013.09.058.
  • Lohani, C. R.; Kim, J. M.; Lee, K.-H. Two Dansyl Fluorophores Bearing Amino Acid for Monitoring Hg2+ in Aqueous Solution and Live Cells. Tetrahedron. 2011, 67, 4130–4136. DOI: 10.1016/j.tet.2011.03.106.
  • Hu, L.; Xie, K.; Gao, A.; Hu, Y.; Hou, A. Synthesis of Novel Triazine-Quinoline-Appended Naphthalimide Sensors for Hg(II) Recognition and Their Structure-Activity Relationship. Dyes Pigm. 2022, 199, 110048. DOI: 10.1016/j.dyepig.2021.110048.
  • Xie, P.; Guo, F.; Wang, L.; Yang, S.; Yao, D.; Yang, G. A Dansyl-Rhodamine Ratiometric Fluorescent Probe for Hg2+ Based on FRET Mechanism. J. Fluoresc. 2015, 25, 319–325. DOI: 10.1007/s10895-015-1511-7.
  • Wanichacheva, N.; Kumsorn, P.; Sangsuwan, R.; Kamkaew, A.; Lee, V. S.; Grudpan, K. A New Fluorescent Sensor Bearing Three Dansyl Fluorophores for Highly Sensitive and Selective Detection of Mercury (II) Ions. Tetrahedron Lett. 2011, 52, 6133–6136. DOI: 10.1016/j.tetlet.2011.09.033.
  • Jiao, Y.; Zhou, L.; He, H.; Yin, J.; Duan, C. A New Fluorescent Chemosensor for Recognition of Hg2+ Ions Based on a Coumarin Derivative. Talanta. 2017, 162, 403–407. DOI: 10.1016/j.talanta.2016.10.004.
  • Neupane, L. N.; Kim, J. M.; Lohani, C. R.; Lee, K.-H. Selective and Sensitive Ratiometric Detection of Hg 2+ in 100% Aqueous Solution with Triazole-Based Dansyl Probe. J. Mater. Chem. 2012, 22, 4003–4008. DOI: 10.1039/c2jm15664d.
  • Erdemir, S.; Kocyigit, O.; Malkondu, S. Detection of Hg2+ Ion in Aqueous Media by New Fluorometric and Colorimetric Sensor Based on Triazole–Rhodamine. J. Photochem. Photobiol, A. 2015, 309, 15–21. DOI: 10.1016/j.jphotochem.2015.04.017.
  • Zhou, S.; Zhou, Z.-Q.; Zhao, X.-X.; Xiao, Y.-H.; Xi, G.; Liu, J.-T.; Zhao, B.-X. A Dansyl Based Fluorescence Chemosensor for Hg2+ and Its Application in the Complicated Environment Samples. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 148, 348–354. DOI: 10.1016/j.saa.2015.03.126.
  • Chen, L.; Yang, L.; Li, H.; Gao, Y.; Deng, D.; Wu, Y.; Ma, L.-j. Tridentate Lysine-Based Fluorescent Sensor for Hg (II) in Aqueous Solution. Inorg. Chem. 2011, 50, 10028–10032. DOI: 10.1021/ic200790g.
  • Huang, L.; Sun, Y.; Zhao, G.; Wang, L.; Meng, X.; Zhou, J.; Duan, H. A Novel Fluorescein-Based Fluorescent Probe for Detection Hg2+ and Bioimaging Applications. J. Mol. Struct. 2022, 1255, 132427. DOI: 10.1016/j.molstruc.2022.132427.
  • Naskar, B.; Dhara, A.; Modak, R.; Maiti, D. K.; Prodhan, C.; Chaudhuri, K.; Requena, A.; Cerón‐Carrasco, J. P.; Goswami, S. A Pyrene‐Pyrazole‐Based Rotamer Senses Hg2+ on the Nanomolar Scale. ChemistrySelect. 2017, 2, 2512–2519. DOI: 10.1002/slct.201601780.
  • Tian, D.; Yan, H.; Li, H. A Selective Fluorescent Probe of Hg2+ Based on Triazole-Linked 8-Oxyquinoline Calix [4] Arene by Click Chemistry. Supramol. Chem. 2010, 22, 249–255. DOI: 10.1080/10610270903410504.
  • Zhang, X.-B.; Guo, C.-C.; Li, Z.-Z.; Shen, G.-L.; Yu, R.-Q. An Optical Fiber Chemical Sensor for Mercury Ions Based on a Porphyrin Dimer. Anal. Chem. 2002, 74, 821–825. DOI: 10.1021/ac0109218.
  • Rodríguez-Lavado, J.; Lorente, A.; Flores, E.; Ochoa, A.; Godoy, F.; Jaque, P.; Saitz, C. Elucidating Sensing Mechanisms of a Pyrene Excimer-Based Calix[4]Arene for Ratiometric Detection of Hg(ii) and Ag(i) and Chemosensor Behaviour as INHIBITION or IMPLICATION Logic Gates. RSC Adv. 2020, 10, 21963–21973. DOI: 10.1039/d0ra04092d.
  • Ma, T.-H.; Zhang, A.-J.; Dong, M.; Dong, Y.-M.; Peng, Y.; Wang, Y.-W. A Simply and Highly Selective “Turn-on” Type Fluorescent Chemosensor for Hg2+ Based on Chiral BINOL-Schiff’s Base Ligand. J. Lumin. 2010, 130, 888–892. DOI: 10.1016/j.jlumin.2009.12.030.
  • Feng, L.; Shi, W.; Ma, J.; Chen, Y.; Kui, F.; Hui, Y.; Xie, Z. A Novel Thiosemicarbazone Schiff Base Derivative with Aggregation-Induced Emission Enhancement Characteristics and Its Application in Hg2+ Detection. Sens. Actuators, B. 2016, 237, 563–569. DOI: 10.1016/j.snb.2016.06.129.
  • Sheng, R.; Wang, P.; Liu, W.; Wu, X.; Wu, S. A New Colorimetric Chemosensor for Hg2+ Based on Coumarin Azine Derivative. Sens. Actuators, B. 2008, 128, 507–511. DOI: 10.1016/j.snb.2007.07.069.
  • Arivazhagan, C.; Borthakur, R.; Ghosh, S. Ferrocene and Triazole-Appended Rhodamine Based Multisignaling Sensors for Hg2+ and Their Application in Live Cell Imaging. Organometallics. 2015, 34, 1147–1155. DOI: 10.1021/om500948c.
  • Cao, Q.-Y.; Han, Y.-M.; Wang, H.-M.; Xie, Y. A New Pyrenyl-Appended Triazole for Fluorescent Recognition of Hg2+ Ion in Aqueous Solution. Dyes Pigm. 2013, 99, 798–802. DOI: 10.1016/j.dyepig.2013.07.005.
  • Hu, J.; Zhang, M.; Yu, L. B.; Ju, Y. Synthesis and Binding Ability of 1, 2, 3-Triazole-Based Triterpenoid Receptors for Recognition of Hg2+ Ion. Bioorg. Med. Chem. Lett. 2010, 20, 4342–4345. DOI: 10.1016/j.bmcl.2010.06.079.
  • Meng, X.; Li, Z.; Ma, W. A Highly Sensitivity Fluorescent Probe Based on Rhodamine for Naked-Eye Detection of Hg2+ in Aqueous Solution. Int. J. Environ. Anal. Chem. 2021. DOI: 10.1080/03067319.2021.1940163.
  • Chaudhary, G.; Singh, A. P. BODIPY Immobilized MCM-41 Based Material: A Reusable Solid Optical Sensor for Selective Detection and Removal of Hg(II) in Water. Inorg. Chem. Commun. 2021, 133, 108861. DOI: 10.1016/j.inoche.2021.108861.
  • Wang, J. H.; Liu, Y. M.; Dong, Z. M.; Chao, J. B.; Wang, H.; Wang, Y.; Shuang, S. New Colorimetric and Fluorometric Chemosensor for Selective Hg2+ Sensing in a Near-Perfect Aqueous Solution and Bio-Imaging. J. Hazard. Mater. 2020, 382, 121056.
  • Vedamalai, M.; Wu, S.-P. A BODIPY-Based Colorimetric and Fluorometric Chemosensor for Hg (II) Ions and Its Application to Living Cell Imaging. Org. Biomol. Chem. 2012, 10, 5410–5416. DOI: 10.1039/c2ob25589h.
  • Vedamalai, M.; Wu, S. P. A BODIPY‐Based Highly Selective Fluorescent Chemosensor for Hg2+ Ions and Its Application in Living Cell Imaging. Eur. J. Org. Chem. 2012, 2012, 1158–1163. DOI: 10.1002/ejoc.201101623.
  • Cheng, H.-r.; Qian, Y. Intramolecular Fluorescence Resonance Energy Transfer in a Novel PDI–BODIPY Dendritic Structure: Synthesis, Hg2+ Sensor and Living Cell Imaging. Sens. Actuators, B. 2015, 219, 57–64. DOI: 10.1016/j.snb.2015.04.086.
  • Gwon, S.-Y.; Rao, B. A.; Kim, H.-S.; Son, Y.-A.; Kim, S.-H. Novel Styrylbenzothiazolium Dye-Based Sensor for Mercury, Cyanide and Hydroxide Ions. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 144, 226–234. DOI: 10.1016/j.saa.2015.02.094.
  • Li, Y.; Wei, F.; Lu, Y.; He, S.; Zhao, L.; Zeng, X. Novel Mercury Sensor Based on Water Soluble Styrylindolium Dye. Dyes Pigm. 2013, 96, 424–429. DOI: 10.1016/j.dyepig.2012.09.010.
  • Dong, Z.; Tian, X.; Chen, Y.; Hou, J.; Guo, Y.; Sun, J.; Ma, J. A Highly Selective Fluorescent Chemosensor for Hg2+ Based on Rhodamine B and Its Application as a Molecular Logic Gate. Dyes Pigm. 2013, 97, 324–329. DOI: 10.1016/j.dyepig.2013.01.002.
  • Saleem, M.; Khang, C. H.; Kim, M.-H.; Lee, K. H. Chromo/Fluorogenic Detection of Co2+, Hg2+ and Cu2+ by the Simple Schiff Base Sensor. J. Fluoresc. 2016, 26, 11–22. DOI: 10.1007/s10895-015-1723-x.
  • Wanichacheva, N.; Watpathomsub, S.; Lee, V. S.; Grudpan, K. Synthesis of a Novel Fluorescent Sensor Bearing Dansyl Fluorophores for the Highly Selective Detection of Mercury (II) Ions. Molecules. 2010, 15, 1798–1810. DOI: 10.3390/molecules15031798.
  • Lv, H.; Yuan, G.; Zhang, G.; Ren, Z.; He, H.; Sun, Q.; Zhang, X.; Wang, S. A Novel Benzopyran-Based Colorimetric and near-Infrared Fluorescent Sensor for Hg2+ and Its Imaging in Living Cell and Zebrafish. Dyes Pigm. 2020, 172, 107658. DOI: 10.1016/j.dyepig.2019.107658.
  • Zhang, H.; Ren, Q.; Mohd, S.; Yang, C.; Li, J.; Pei, Y.; Luo, X. Early-Warning and Semi-Quantitative Colorimetric Detection of Hg(II) with Lysine-bis-Schiff Base Cellulose Membranes Designed by Simple Interfacial Covalent Bonding. Sens. Actuators, B. 2021, 346, 130435. DOI: 10.1016/j.snb.2021.130435.
  • Singh, G.; Gupta, S.; Angeles Esteban, M.; Espinosa-Ruíz, C.; González-Silvera, D. Designing of Thiosemicarbazone-Triazole Linked Organotriethoxysilane as UV-Visible and Fluorescence Sensor for the Selective Detection of Hg2+ Ions and Their Cytotoxic Evaluation. J. Mol. Struct. 2022, 1255, 132446. DOI: 10.1016/j.molstruc.2022.132446.
  • Kaur, M.; Cho, M. J.; Choi, D. H. A Phenothiazine-Based “Naked-Eye” Fluorescent Probe for the Dual Detection of Hg2+ and Cu2+: Application as a Solid State Sensor. Dyes Pigm. 2016, 125, 1–7. DOI: 10.1016/j.dyepig.2015.09.030.
  • Wu, C.; Wang, J.; Shen, J.; Bi, C.; Zhou, H. Coumarin-Based Hg2+ Fluorescent Probe: Synthesis and Turn-on Fluorescence Detection in Neat Aqueous Solution. Sens. Actuators, B. 2017, 243, 678–683. DOI: 10.1016/j.snb.2016.12.046.
  • Zou, Q.; Tian, H. Chemodosimeters for Mercury (II) and Methylmercury (I) based on 2, 1, 3-Benzothiadiazole. Sens. Actuators, B. 2010, 149, 20–27. DOI: 10.1016/j.snb.2010.06.040.
  • Chen, X.; Baek, K.-H.; Kim, Y.; Kim, S.-J.; Shin, I.; Yoon, J. A Selenolactone-Based Fluorescent Chemodosimeter to Monitor Mecury/Methylmercury Species In Vitro and In Vivo. Tetrahedron. 2010, 66, 4016–4021. DOI: 10.1016/j.tet.2010.04.042.
  • Zhou, Y.; Lei, J.; Zhang, Y.; Zhu, J.; Lu, Y.; Wu, X.; Fang, H. Determining Discharge Characteristics and Limits of Heavy Metals and Metalloids for Wastewater Treatment Plants (WWTPs) in China Based on Statistical Methods. Water. 2018, 10, 1248. DOI: 10.3390/w10091248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.