277
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Review of Recent Modern Analytical Technology Combined with Chemometrics Approach Researches on Mushroom Discrimination and Evaluation

, , &

References

  • Kumar, K. Role of Edible Mushrooms as Functional Foods - A Review. South Asian J. Food Technol. Environ. 2016, 3, 211–218.
  • Meenu, M.; Xu, B. Application of Vibrational Spectroscopy for Classification, Authentication and Quality Analysis of Mushroom: A Concise Review. Food Chem. 2019, 289, 545–557. DOI: 10.1016/j.foodchem.2019.03.091.
  • Bansal, S.; Singh, A.; Mangal, M.; Mangal, A. K.; Kumar, S. Food Adulteration: Sources, Health Risks, and Detection Methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 1174–1189. DOI: 10.1080/10408398.2014.967834.
  • Murphy, E. J.; Masterson, C.; Rezoagli, E.; O'Toole, D.; Major, I.; Stack, G. D.; Lynch, M.; Laffey, J. G.; Rowan, N. J. β-Glucan Extracts from the Same Edible Shiitake Mushroom Lentinus Edodes Produce Differential In-Vitro Immunomodulatory and Pulmonary Cytoprotective Effects—Implications for Coronavirus Disease (COVID-19) Immunotherapies. Sci. Total Environ. 2020, 732, 139330. DOI: 10.1016/j.scitotenv.2020.139330.
  • Sharma, R. Ectomycorrhizal Mushrooms: Their Diversity, Ecology and Practical Applications; Springer International Publishing: Cham, 2017; pp 99–131. DOI: 10.1007/978-3-319-53064-2_7.
  • Zsigmond, G. The Meanings and Functions of Mushrooms as Food in Hungarian Folk Tradition. Acta Ethnogr. Hung. 2010, 55, 115–138. DOI: 10.1556/AEthn.55.2010.1.8.
  • El Sheikha, A. F.; Hu, D. How to Trace the Geographic Origin of Mushrooms? Trends Food Sci. Tech. 2018, 78, 292–303. DOI: 10.1016/j.tifs.2018.06.008.
  • Wu, S. R.; Luo, X. L.; Liu, B.; Gui, M. Y. Analyse and Advise to Research and Development of Wild Edible Fungi. Food Sci. Tech-Braz. 2010, 35, 100–103. DOI: 10.13684/j.cnki.spkj.2010.04.056.
  • Analysis of the Results of the National Edible Mushroom Statistical Survey in 2020. Edible Fungi China. 2022, 41, 85–91. DOI: 10.13629/j.cnki.53-1054.2022.01.017.
  • Wei, Y. M.; Li, L.; Liu, Y.; Xiang, S.; Zhang, H. Y.; Yi, L. Z.; Shang, Y.; Xu, W. T. Identification Techniques and Detection Methods of Edible Fungi Species. Food Chem. 2022, 374, 131803. DOI: 10.1016/j.foodchem.2021.131803.
  • Lee, S. R.; Seok, S.; Ryoo, R.; Choi, S. U.; Kim, K. H. Macrocyclic Trichothecene Mycotoxins from a Deadly Poisonous Mushroom, Podostroma Cornu-Damae. J. Nat. Prod. 2019, 82, 122–128. DOI: 10.1021/acs.jnatprod.8b00823.
  • Wang, X. M.; Zhang, J.; Wu, L. H.; Zhao, Y. L.; Li, T.; Li, J. Q.; Wang, Y. Z.; Liu, H. G. A Mini-Review of Chemical Composition and Nutritional Value of Edible Wild-Grown Mushroom from China. Food Chem. 2014, 151, 279–285. DOI: 10.1016/j.foodchem.2013.11.062.
  • Li, Y.; Shen, Y.; Yao, C. L.; Guo, D. A. Quality Assessment of Herbal Medicines Based on Chemical Fingerprints Combined with Chemometrics Approach: A Review. J. Pharm. Biomed. Anal. 2020, 185, 113215. DOI: 10.1016/j.jpba.2020.113215.
  • Fuchs, B.; Süss, R.; Teuber, K.; Eibisch, M.; Schiller, J. Lipid Analysis by Thin-Layer Chromatography—A Review of the Current State. J. Chromatogr. A. 2011, 1218, 2754–2774. DOI: 10.1016/j.chroma.2010.11.066.
  • Poole, C. F. Thin-Layer Chromatography: Challenges and Opportunities. J. Chromatogr. A. 2003, 1000, 963–984. DOI: 10.1016/S0021-9673(03)00435-7.
  • Swanson, S. P.; Corley, R. A.; White, D. G.; Buck, W. B. Rapid Thin Layer Chromatographic Method for Determination of Zearalenone and Zearalenol in Grains and Animal Feeds. J. Assoc. Off. Anal. Chem. 1984, 67, 580–582. DOI: 10.1093/jaoac/67.3.580.
  • Khan, I.; Pandotra, P.; Gupta, A. P.; Sharma, R.; Das, G. B.; Dhar, J. K.; Ram, G.; Bedi, Y. S.; Gupta, S. RP-Thin Layer Chromatographic Method for the Quantification of Three Gingerol Homologs of Ultrasonic-Assisted Fresh Rhizome Extracts of Zingiber Officinale Collected from North Western Himalayas. J. Sep. Sci. 2010, 33, 558–563. DOI: 10.1002/jssc.200900629.
  • Coker, R. D.; John, A. E.; Gibbs, J. A. Chapter 2 Techniques of Thin Layer Chromatography. In Journal of Chromatography Library; Betina, V., Ed.; Plenum Press: New York, 1993; pp 12–35. DOI: 10.1016/S0301-4770(08)60562-X.
  • Himmelsbach, M.; Waser, M.; Klampfl, C. W. Thin Layer Chromatography–Spray Mass Spectrometry: A Method for Easy Identification of Synthesis Products and UV Filters from TLC Aluminum Foils. Anal. Bioanal. Chem. 2014, 406, 3647–3656. DOI: 10.1007/s00216-014-7639-5.
  • Shaveta, S.; Isha, S.; Tripathi, A. Quantitative Estimation of Gallic Acid and Rutin of Non-Gilled Mushrooms Collected from North-Western Himalayas by HPTLC. Int. J. Recent Technol. Eng. 2020, 8, 372–379. DOI: 10.35940/ijrte.D9793.018520.
  • Koll, K.; Reich, E.; Blatter, A.; Veit, M. Validation of Standardized High-Performance Thin-Layer Chromatographic Methods for Quality Control and Stability Testing of Herbals. J. AOAC Int. 2003, 86, 909–915. DOI: 10.1093/jaoac/86.5.909.
  • He, X. Y.; Li, J. K.; Zhao, W.; Liu, R.; Zhang, L.; Kong, X. H. Chemical Fingerprint Analysis for Quality Control and Identification of Ziyang Green Tea by HPLC. Food Chem. 2015, 171, 405–411. DOI: 10.1016/j.foodchem.2014.09.026.
  • Lozano Sa Nchez, J. S.; Linares, I. B. S.; Sass-Kiss, A.; Carretero, A. A. S. Chromatographic Technique: High-Performance Liquid Chromatography (HPLC). In Modern Techniques for Food Authentication; Elsevier Inc: Netherlands, 2018; pp 459–526. DOI: 10.1016/B978-0-12-814264-6.00013-X.
  • Dilfy, S. H.; Hanawi, M. J.; Al-bideri, A. W.; Jalil, A. T. Determination of Chemical Composition of Cultivated Mushrooms in Iraq with Spectrophotometrically and High Performance Liquid Chromatographic. J. Green Eng. 2020, 10, 6200–6216.
  • Çayan, F.; Deveci, E.; Tel-Çayan, G.; Duru, M. E. Identification and Quantification of Phenolic Acid Compounds of Twenty-Six Mushrooms by HPLC–DAD. Food Meas. 2020, 14, 1690–1698. DOI: 10.1007/s11694-020-00417-0.
  • Tswett, M. S.; Botanist, R. Gas Chromatography and Gas Chromatography–Mass Spectrometry. 2019.
  • Vishwakarma, S. K. Principle, Instrumentation, and Applications of Gas Chromatography-Mass Spectrometry (GC-MS). 2021, DOI: 10.13140/RG.2.2.17482.08646.
  • Karu, D. K. An Introduction to Gas Chromatography Mass Spectrometry. Anal. Chem. 2020, 32, 781–792.
  • Öztürk, M.; Tel, G.; Öztürk, F. A.; Duru, M. E. The Cooking Effect on Two Edible Mushrooms in Anatolia: Fatty Acid Composition, Total Bioactive Compounds, Antioxidant and Anticholinesterase Activities. Rec. Nat. Prod. 2014, 8, 189.
  • Guo, Q. Y.; Adelina, N. M.; Hu, J. T.; Zhang, L. G.; Zhao, Y. H. Comparative Analysis of Volatile Profiles in Four Pine-Mushrooms Using HS-SPME/GC-MS and E-Nose. Food Control. 2022, 134, 108711. DOI: 10.1016/j.foodcont.2021.108711.
  • Zhou, J. J.; Feng, T.; Ye, R. Differentiation of Eight Commercial Mushrooms by Electronic Nose and Gas Chromatography-Mass Spectrometry. J. Sens. 2015, 2015, 1–14. DOI: 10.1155/2015/374013.
  • Tagliaro, F.; Turrina, S.; Smith, F. P. Capillary Electrophoresis: Principles and Applications in Illicit Drug Analysis. Forensic Sci. Int. 1996, 77, 211–229. DOI: 10.1016/0379-0738(95)01863-8.
  • Zhou, W.; Zhang, B. F.; Liu, Y. K.; Wang, C. L.; Sun, W. Q.; Li, W.; Chen, Z. L. Advances in Capillary Electrophoresis-Mass Spectrometry for Cell Analysis. TrAC - Trend Anal. Chem. 2019, 117, 316–330. DOI: 10.1016/j.trac.2019.05.011.
  • Kaur, H.; Beckman, J.; Zhang, Y.; Li, Z. J.; Szigeti, M.; Guttman, A. Capillary Electrophoresis and the Biopharmaceutical Industry: Therapeutic Protein Analysis and Characterization. TrAC - Trend Anal. Chem. 2021, 144, 116407. DOI: 10.1016/j.trac.2021.116407.
  • Swedberg, S. Chapter 9 Capillary Electrophoresis: Principles and Applications. In Techniques and Instrumentation in Analytical Chemistry; Paré, J. R. J.; Bélanger, J. M. R., Eds.; Elsevier: Netherlands, 1997; pp 367–394. DOI: 10.1016/S0167-9244(97)80018-2.
  • Sastre Toraño, J.; Ramautar, R.; de Jong, G. Advances in Capillary Electrophoresis for the Life Sciences. J. Chromatogr. B. 2019, 1118–1119, 116–136. DOI: 10.1016/j.jchromb.2019.04.020.
  • Horká, M.; Kubesová, A.; Šalplachta, J.; Zapletalová, E.; Horký, J.; Šlais, K. Capillary and Gel Electromigration Techniques and MALDI-TOF MS – Suitable Tools for Identification of Filamentous Fungi. Anal. Chim. Acta. 2012, 716, 155–162. DOI: 10.1016/j.aca.2011.12.032.
  • Piarroux, R.; Gabriel, F.; Grenouillet, F.; Collombon, P.; Louasse, P.; Piarroux, M.; Normand, A. Using MALDI-ToF Mass Spectrometry to Identify Mushroom Species: Proof of Concept Analysis of Amanita Genus Specimens. Med. Mycol. 2021, 59, 890–900. DOI: 10.1093/mmy/myab018.
  • Nguyen, T. D.; Vu, M. T.; Nguyen, M. H.; Duong, H. A.; Mai, T. D.; Pham, H. V. A Rapid and Simple Dual-Channeled Capillary Electrophoresis with Contactless Conductivity Detection Method for the Determination of Adenosine, Cordycepin, and Inosine in Ophiocordyceps Sinensis-Based Products. Food Anal. Methods. 2021, 14, 1779–1787. DOI: 10.1007/s12161-021-02003-6.
  • Cozzolino, D. Recent Trends on the Use of Infrared Spectroscopy to T Race and Authenticate Natural and Agricultural Food Products. Appl. Spectrosc. Rev. 2012, 7, 518–530. DOI: 10.1080/05704928.2012.667858.
  • Gordon, R.; Chapman, J.; Power, A.; Chandra, S.; Roberts, J.; Cozzolino, D. Unfrazzled by Fizziness: Identification of Beers Using Attenuated Total Reflectance Mid-Infrared Spectroscopy and Multivariate Analysis. Food Anal. Methods. 2018, 11, 2360–2367. DOI: 10.1007/s12161-018-1225-y.
  • Shi, H. T.; Lei, Y. G.; Prates, L. L.; Yu, P. Q. Evaluation of Near-Infrared (NIR) and Fourier Transform Mid-Infrared (ATRFT/MIR) Spectroscopy Techniques Combined with Chemometrics for the Determination of Crude Protein and Intestinal Protein Digestibility of Wheat. Food Chem. 2018, 30, 507–513. DOI: 10.1016/j.foodchem.2018.08.075.
  • He, Y.; Bai, X. L.; Xiao, Q. L.; Liu, F.; Zhou, L.; Zhang, C. Detection of Adulteration in Food Based on Nondestructive Analysis Techniques: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2351–2371. DOI: 10.1080/10408398.2020.1777526.
  • Cortés, V.; Blasco, J.; Aleixos, N.; Cubero, S.; Talens, P. Monitoring Strategies for Quality Control of Agricultural Products Using Visible and Near-Infrared Spectroscopy: A Review. Trends Food Sci. Tech. 2019, 85, 138–148. DOI: 10.1016/j.tifs.2019.01.015.
  • Zhang, H. Y.; Huang, D.; Pu, D. D.; Zhang, Y. Y.; Chen, H. T.; Sun, B. G.; Ren, F. Z. Multivariate Relationships among Sensory Attributes and Volatile Components in Commercial Dry Porcini Mushrooms (Boletus Edulis). Food Res. Int. 2020, 133, 109112. DOI: 10.1016/j.foodres.2020.109112.
  • Yao, S.; Li, J. Q.; Li, T.; Duan, Z. L.; Wang, Y. Z. Geographical Traceability of Boletaceae Mushrooms Using Data Fusion of FT-IR, UV, and ICP-AES Combined with SVM. Int. J. Food Prop. 2019, 22, 414–426. DOI: 10.1080/10942912.2019.1588299.
  • Ma, L.; Gao, R.; Han, H. J.; Chen, C.; Yan, Z. W.; Zhao, J. Y.; Lv, X. Y.; Chen, C.; Xie, L. R. Efficient Identification of Bachu Mushroom by Flourier Transform Infrared (FT-IR) Spectroscopy Coupled with PLS-GS-SVM. Optik. 2020, 224, 165712. DOI: 10.1016/j.ijleo.2020.165712.
  • Ríos Reina, R.; Camiña, J. M.; Callejón, R. M.; Azcarate, S. M. Spectralprint Techniques for Wine and Vinegar Characterization, Authentication and Quality Control: Advances and Projections. TrAC - Trend Anal. Chem. 2021, 134, 116121. DOI: 10.1016/j.trac.2020.116121.
  • Su, W. H.; Sun, D. W. Fourier Transform Infrared and Raman and Hyperspectral Imaging Techniques for Quality Determinations of Powdery Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 104–122. DOI: 10.1111/1541-4337.12314.
  • Ozaki, Y. Infrared Spectroscopy—Mid-Infrared, Near-Infrared, and Far-Infrared/Terahertz Spectroscopy. Anal. Sci. 2021, 37, 1193–1212. DOI: 10.2116/analsci.20R008.
  • Haas, J.; Mizaikoff, B. Advances in Mid-Infrared Spectroscopy for Chemical Analysis. Annu. Rev. Anal. Chem. (Palo Alto, CA). 2016, 9, 45–68. DOI: 10.1146/annurev-anchem-071015-041507.
  • Azcarate, S. M.; Cantarelli, M. Á.; Pellerano, R. G.; Marchevsky, E. J.; Camiña, J. M. Classification of Argentinean Sauvignon Blanc Wines by UV Spectroscopy and Chemometric Methods. J. Food Sci. 2013, 78, C432–C436. DOI: 10.1111/1750-3841.12060.
  • Mach, H.; Middaugh, C. R. Ultraviolet Spectroscopy as a Tool in Therapeutic Protein Development. J. Pharm. Sci. 2011, 100, 1214–1227. DOI: 10.1002/jps.22385.
  • Stauffer, E.; Dolan, J. A.; Newman, R. Other Techniques of Analysis and the Future of Fire Debris Analysis. In Fire Debris Analysis; Stauffer, E.; Dolan, J. A.; Newman, R., Eds.; Academic Press: Burlington, 2008; pp 495–527. DOI: 10.1016/B978-0-12-663971-1.X5001-5.
  • Vidal, M. J. M.; Azquez, M. V. Advances in Ultraviolet and Visible Light Spectroscopy for Food Authenticity Testing. In Advances in Food Authenticity Testing; Elsevier: Netherlands, 2016; pp 35–70. DOI: 10.1016/B978-0-08-100220-9.00003-5.
  • De Gussem, K.; Vandenabeele, P.; Verbeken, A.; Moens, L. Raman Spectroscopic Study of Lactarius Spores (Russulales, Fungi). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 2896–2908. DOI: 10.1016/j.saa.2004.10.038.
  • Tu, Q.; Chang, C. Diagnostic Applications of Raman Spectroscopy. Nanomedicine. 2012, 8, 545–558. DOI: 10.1016/j.nano.2011.09.013.
  • Wellner, N.; Morris, V. J.; Groves, K. 6 - Fourier Transform Infrared (FTIR) and Raman Microscopy: Principles and Applications to Food Microstructures. In Food Microstructures; Woodhead Publishing: Britain, 2013; pp 163–191. DOI: 10.1533/9780857098894.1.163.
  • Bumbrah, G. S.; Sharma, R. M. Raman Spectroscopy – Basic Principle, Instrumentation and Selected Applications for the Characterization of Drugs of Abuse. Egypt. J. Forensic Sci. 2016, 6, 209–215. DOI: 10.1016/j.ejfs.2015.06.001.
  • Petry, R.; Schmitt, M.; J, A.; Popp, R. Raman Spectroscopy – A Prospective Tool in the Life Sciences. ChemPhysChem. 2003, 4, 14–30. DOI: 10.1002/cphc.200390004.
  • Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier: Amsterdam; Boston, 2011. [Database][Mismatch
  • Vo Dinh, T.; Yan, F.; Wabuyele, M. B. Surface-Enhanced Raman Scattering for Biomedical Diagnostics and Molecular Imaging. Top. Appl. Phys. 2006, 103, 409–426. DOI: 10.1007/3-540-33567-6_22.
  • Newman, A. W.; Byrn, S. R. Solid-State Analysis of the Active Pharmaceutical Ingredient in Drug Products. Drug Discov. Today. 2003, 8, 898–905. DOI: 10.1016/s1359-6446(03)02832-0.
  • Chen, C.; Heng, G. B. Application of NMR to the Research of Dairy Products. China Dairy Ind. 2007, 35, 32–36.
  • Ma, D.; Gulani, V.; Seiberlich, N.; Liu, K.; Sunshine, J. L.; Duerk, J. L.; Griswold, M. A. Magnetic Resonance Fingerprinting. Nature. 2013, 495, 187–192. DOI: 10.1038/nature11971.
  • Gad, H. A.; Bouzabata, A. Application of Chemometrics in Quality Control of Turmeric (Curcuma Longa) Based on Ultra-Violet, Fourier Transform-Infrared and 1H NMR Spectroscopy. Food Chem. 2017, 237, 857–864. DOI: 10.1016/j.foodchem.2017.06.022.
  • Donker, H. C. W.; Van As, H.; Snijder, H. T.; Edzes, H. T. Quantitative 1H-NMR Imaging of Water in White Button Mushrooms (Agaricus Bisporus). Magn. Reson. Imag. 1997, 15, 113–121. DOI: 10.1016/S0730-725X(96)00328-1.
  • Glish, G. L.; Vachet, R. W. The Basics of Mass Spectrometry in the Twenty-First Century. Nat. Rev. Drug Discov. 2003, 2, 140–150. DOI: 10.1038/nrd1011.
  • Ng, L. K. Analysis by Gas Chromatography/Mass Spectrometry of Fatty Acids and Esters in Alcoholic Beverages and Tobaccos. Anal. Chim. Acta. 2002, 465, 309–318. DOI: 10.1016/S0003-2670(01)01497-0.
  • Gika, H. G.; Wilson, I. D.; Theodoridis, G. A. LC–MS-Based Holistic Metabolic Profiling. Problems, Limitations, Advantages, and Future Perspectives. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 966, 1–6. DOI: 10.1016/j.jchromb.2014.01.054.
  • Parnmen, S.; Nooron, N.; Leudang, S.; Sikaphan, S.; Polputpisatkul, D.; Pringsulaka, O.; Binchai, S.; Rangsiruji, A. Foodborne Illness Caused by Muscarine-Containing Mushrooms and Identification of Mushroom Remnants Using Phylogenetics and LC-MS/MS. Food Control. 2021, 128, 108182. DOI: 10.1016/j.foodcont.2021.108182.
  • Ismail, S.; Zainal, A. R.; Mustapha, A. Behavioural Features for Mushroom Classification; IEEE: Penang, Malaysia, 2018; pp 412–415.
  • Oeltzschner, G.; Zöllner, H. J.; Hui, S. C. N.; Mikkelsen, M.; Saleh, M. G.; Tapper, S.; Edden, R. A. E. Osprey: Open-Source Processing, Reconstruction & Estimation of Magnetic Resonance Spectroscopy Data. J. Neurosci. Methods. 2020, 343, 108827. DOI: 10.1016/j.jneumeth.2020.108827.
  • Yi, L. Z.; Dong, N. P.; Yun, Y. H.; Deng, B. C.; Ren, D. B.; Liu, S.; Liang, Y. Z. Chemometric Methods in Data Processing of Mass Spectrometry-Based Metabolomics: A Review. Anal. Chim. Acta. 2016, 914, 17–34. DOI: 10.1016/j.aca.2016.02.001.
  • Nazir, H. M.; Hussain, I.; Faisal, M.; Elashkar, E. E.; Shoukry, A. M. Improving the Prediction Accuracy of River Inflow Using Two Data Pre-Processing Techniques Coupled with Data-Driven Model. PeerJ. 2019, 7, e8043. DOI: 10.7717/peerj.8043.
  • Zhang, Z. P.; Ding, J. L.; Zhu, C. M.; Wang, J. Z. Combination of Efficient Signal Pre-Processing and Optimal Band Combination Algorithm to Predict Soil Organic Matter through Visible and Near-Infrared Spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 240, 118553. DOI: 10.1016/j.saa.2020.118553.
  • Yao, S.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Discrimination of Boletaceae Mushrooms Based on Data Fusion of FT-IR and ICP-AES Combined with SVM. Int. J. Food Prop. 2018, 21, 255–266. DOI: 10.1080/10942912.2018.1453838.
  • Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J. J.; Downey, G.; Blanchet, L.; Buydens, L. M. C. Breaking with Trends in Pre-Processing? TRAC - Trend. Anal. Chem. 2013, 50, 96–106. DOI: 10.1016/j.trac.2013.04.015.
  • Segelke, T.; von Wuthenau, K.; Neitzke, G.; Müller, M.; Fischer, M. Food Authentication: Species and Origin Determination of Truffles (Tuber Spp.) by Inductively Coupled Plasma Mass Spectrometry and Chemometrics. J. Agric. Food Chem. 2020, 68, 14374–14385. DOI: 10.1021/acs.jafc.0c02334.
  • Chen, J.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Application of UV-Vis and Infrared Spectroscopy on Wild Edible Bolete Mushrooms Discrimination and Evaluation: A Review. Crit. Rev. Anal. Chem. 2021, 1–17. DOI: 10.1080/10408347.2021.1984870.
  • Segelke, T.; Schelm, S.; Ahlers, C.; Fischer, M. Food Authentication: Truffle (Tuber Spp.) Species Differentiation by FT-NIR and Chemometrics. Foods. 2020, 9, 922. DOI: 10.3390/foods9070922.
  • Mikola, E.; Geösel, A.; Stefanovits Bányai, É.; Fodor, M. Quantitative Determination of Macro Components and Classification of Some Cultivated Mushrooms Using Near‐Infrared Spectroscopy. J. Food Process. Pres. 2020, 44. DOI: 10.1111/jfpp.14540.
  • Gerretzen, J.; Szymańska, E.; Jansen, J. J.; Bart, J.; van Manen, H.; van den Heuvel, E. R.; Buydens, L. M. C. Simple and Effective Way for Data Preprocessing Selection Based on Design of Experiments. Anal. Chem. 2015, 87, 12096–12103. DOI: 10.1021/acs.analchem.5b02832.
  • Meng, T.; Jing, X. Y.; Yan, Z.; Pedrycz, W. A Survey on Machine Learning for Data Fusion. Inf. Fusion. 2020, 57, 115–129. DOI: 10.1016/j.inffus.2019.12.001.
  • Li, Y.; Zhang, J.; Li, T.; Yang, T. W.; Wang, Y. Z.; Liu, H. G. Ultraviolet Spectroscopy Used to Fingerprint Five Wild-Grown Edible Mushrooms (Boletaceae) Collected from Yunnan. China. J. Spectrosc. 2016, 2016, 1–8. DOI: 10.1155/2016/7813405.
  • Sanmee, R.; Dell, B.; Lumyong, P.; Izumori, K.; Lumyong, S. Nutritive Value of Popular Wild Edible Mushrooms from Northern Thailand. Food Chem. 2003, 82, 527–532. DOI: 10.1016/S0308-8146(02)00595-2.
  • Esteban, J.; Starr, A.; Willetts, R.; Hannah, P.; Bryanston-Cross, P. A Review of Data Fusion Models and Architectures: Towards Engineering Guidelines. Neural Comput. Appl. 2005, 14, 273–281. [Database] DOI: 10.1007/s00521-004-0463-7..
  • Rammelkamp, K.; Schröder, S.; Kubitza, S.; Vogt, D. S.; Frohmann, S.; Hansen, P. B.; Böttger, U.; Hanke, F.; Hübers, H. W. Low‐Level LIBS and Raman Data Fusion in the Context of In Situ Mars Exploration. J. Raman Spectrosc. 2020, 51, 1682–1701. DOI: 10.1002/jrs.5615.
  • Medagliani, P.; Martalò, M.; Ferrari, G. Clustered Zigbee Networks with Data Fusion: Characterization and Performance Analysis. Ad Hoc Netw. 2011, 9, 1083–1103. DOI: 10.1016/j.adhoc.2010.10.009.
  • Zheng, Y. Methodologies for Cross-Domain Data Fusion: An Overview. IEEE Trans. Big Data. 2015, 1, 16–34. DOI: 10.1109/TBDATA.2015.2465959.
  • Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data Fusion Methodologies for Food and Beverage Authentication and Quality Assessment – A Review. Anal. Chim. Acta. 2015, 891, 1–14. DOI: 10.1016/j.aca.2015.04.042.
  • Qi, L. M.; Liu, H. G.; Li, J. Q.; Li, T.; Wang, Y. Z. Feature Fusion of ICP-AES, UV-Vis and FT-MIR for Origin Traceability of Boletus Edulis Mushrooms in Combination with Chemometrics. Sensors-Basel. 2018, 18, 241. DOI: 10.3390/s18010241.
  • Li, Y.; Zhang, J.; Li, T.; Liu, H. G.; Li, J. Q.; Wang, Y. Z. Geographical Traceability of Wild Boletus Edulis Based on Data Fusion of FT-MIR and ICP-AES Coupled with Data Mining Methods (SVM). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 177, 20–27. DOI: 10.1016/j.saa.2017.01.029.
  • Li, Y.; Wang, Y. Z. Synergistic Strategy for the Geographical Traceability of Wild Boletus Tomentipes by Means of Data Fusion Analysis. Microchem. J. 2018, 140, 38–46. DOI: 10.1016/j.microc.2018.04.001.
  • Qi, L. M.; Li, J. Q.; Liu, H. G.; Li, T.; Wang, Y. Z. An Additional Data Fusion Strategy for the Discrimination of Porcini Mushrooms from Different Species and Origins in Combination with Four Mathematical Algorithms. Food Funct. 2018, 9, 5903–5911. DOI: 10.1039/C8FO01376D.
  • Yao, S.; Li, T.; Li, J. Q.; Liu, H. G.; Wang, Y. Z. Geographic Identification of Boletus Mushrooms by Data Fusion of FT-IR and UV Spectroscopies Combined with Multivariate Statistical Analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 198, 257–263. DOI: 10.1016/j.saa.2018.03.018.
  • Yao, S.; Li, T.; Liu, H. G.; Li, J. Q.; Wang, Y. Z. Traceability of Boletaceae Mushrooms Using Data Fusion of UV-Visible and FTIR Combined with Chemometrics Methods. J. Sci. Food Agric. 2018, 98, 2215–2222. DOI: 10.1002/jsfa.8707.
  • Hang, X. S.; Dai, H. H. Applying Both Positive and Negative Selection to Supervised Learning for Anomaly Detection. 2005, 345–352. DOI: 10.1145/1068009.1068064.
  • Daszykowski, M.; Kaczmarek, K.; Vander Heyden, Y.; Walczak, B. Robust Statistics in Data Analysis—A Review. Chemometr. Intell. Lab. 2007, 85, 203–219. DOI: 10.1016/j.chemolab.2006.06.016.
  • Wang, Y.; Li, J.; Liu, H. G.; Fan, M. P.; Wang, Y. Z. Species and Geographical Origins Discrimination of Porcini Mushrooms Based on FT‐IR Spectroscopy and Mineral Elements Combined with Sparse Partial Least Square‐Discriminant Analysis. J. Food Sci. 2019, 84, 2112–2120. DOI: 10.1111/1750-3841.14715.
  • Mishra, P.; Passos, D. A Synergistic Use of Chemometrics and Deep Learning Improved the Predictive Performance of Near-Infrared Spectroscopy Models for Dry Matter Prediction in Mango Fruit. Chemometr. Intell. Lab. 2021, 212, 104287. DOI: 10.1016/j.chemolab.2021.104287.
  • Shah, N.; Li, J.; Mackey, T. K. An Unsupervised Machine Learning Approach for the Detection and Characterization of Illicit Drug-Dealing Comments and Interactions on Instagram. Subst. Abus. 2021, 1, 273–277. DOI: 10.1080/08897077.2021.1941508.
  • Schaller, E.; Bosset, J. O.; Escher, F. Electronic Noses’ and Their Application to Food. LWT - Food Sci. Technol. 1998, 31, 305–316. DOI: 10.1006/fstl.1998.0376.
  • Cui, L.; Dong, M. S.; Chen, X. H.; Jiang, M.; Lv, X.; Yan, G. J. A Novel Fibrinolytic Enzyme from Cordyceps militaris, a Chinese Traditional Medicinal Mushroom. World J. Microbiol. Biotechnol. 2008, 24, 483–489. [Database] DOI: 10.1007/s11274-007-9497-1..
  • Dimitrijević, M.; Stankov Jovanović, V.; Cvetković, J.; Mitić, M.; Petrović, G.; Đorđević, A.; Mitić, V. P. Antioxidant Potentials, and Antimicrobial Activities of Six Wild Boletaceae Mushrooms. Anal. Lett. 2017, 50, 1691–1709. DOI: 10.1080/00032719.2016.1242133.
  • Jia, H.; Cheung, Y. M.; Liu, J. M. A New Distance Metric for Unsupervised Learning of Categorical Data. IEEE Trans. Neural Netw. Learn Syst. 2016, 27, 1065–1079. DOI: 10.1109/TNNLS.2015.2436432.
  • Cruz, L. P. S.; Santos, D. F.; Dos Santos, I. F.; Gomes, Í. V. S.; Santos, A. V. S.; Souza, K. S. P. P. Exploratory Analysis of the Atmospheric Levels of BTEX, Criteria Air Pollutants and Meteorological Parameters in a Tropical Urban Area in Northeastern Brazil. Microchem. J. 2020, 152, 104265. DOI: 10.1016/j.microc.2019.104265.
  • Baumgartner, R.; Ryner, L.; Richter, W.; Summers, R.; Jarmasz, M.; Somorjai, R. Comparison of Two Exploratory Data Analysis Methods for fMRI: Fuzzy Clustering vs. Principal Component Analysis. Magn. Reson. Imag. 2000, 18, 89–94. DOI: 10.1016/S0730-725X(99)00102-2.
  • Draper, B. A.; Baek, K.; Bartlett, M. S.; Beveridge, J. R. Recognizing Faces with PCA and ICA. Comput. Vis. Image Und. 2003, 91, 115–137. [Database] DOI: 10.1016/S1077-3142(03)00077-8..
  • Martinez, A. M.; Kak, A. C. PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 228–233. DOI: 10.1109/34.908974.
  • Granato, D.; Santos, J. S.; Escher, G. B.; Ferreira, B. L.; Maggio, R. M. Use of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) for Multivariate Association between Bioactive Compounds and Functional Properties in Foods: A Critical Perspective. Trends Food Sci. Tech. 2018, 72, 83–90. DOI: 10.1016/j.tifs.2017.12.006.
  • Liu, Z.; Yang, M. Q.; Zuo, Y.; Wang, Y.; Zhang, J. Fraud Detection of Herbal Medicines Based on Modern Analytical Technologies Combine with Chemometrics Approach: A Review. Crit. Rev. Anal. Chem. 2021, 1–18. DOI: 10.1080/10408347.2021.1905503.
  • Berrueta, L. A.; Alonso Salces, R. M.; Héberger, K. Supervised Pattern Recognition in Food Analysis. J. Chromatogr. A. 2007, 1158, 196–214. DOI: 10.1016/j.chroma.2007.05.024.
  • Cunningham, P.; Cord, M.; Delany, S. J. Supervised Learning; Springer-Verlag: Berlin, Heidelberg, 2008.
  • van Engelen, J. E.; Hoos, H. H. A Survey on Semi-Supervised Learning. Mach. Learn. 2019, 109, 373–440. DOI: 10.1007/s10994-019-05855-6.
  • Brachman, R. J.; Dietterich, T. Introduction to Semi-Supervised Learning; Morgan & Claypool Publishers Series: San Mateo, CA, 2009; Vol. 145. DOI: 10.2200/S00196ED1V01Y200906AIM006.
  • Yue, J. Q.; Zuo, Z. T.; Huang, H. Y.; Wang, Y. Z. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review. Crit. Rev. Anal. Chem. 2021, 51, 373–398. DOI: 10.1080/10408347.2020.1736506.
  • Yu, S. J.; Li, X. D.; Wang, W.; Chai, X. Y.; Yuan, J. W.; Weikun, W. Chemometrics Analysis of Amino Acids of Different Edible and Medicinal Mushrooms. HJFNS. 2020, 09, 145–153. DOI: 10.12677/HJFNS.2020.92019.
  • Didziapetris, R.; Japertas, P.; Avdeef, A.; Petrauskas, A. Classification Analysis of P-Glycoprotein Substrate Specificity. J. Drug Target. 2003, 11, 391–406. DOI: 10.1080/10611860310001648248.
  • Sweilam, N. H.; Tharwat, A. A.; Abdel Moniem, N. K. Support Vector Machine for Diagnosis Cancer Disease: A Comparative Study. Egypt. Inform. J. 2010, 11, 81–92. DOI: 10.1016/j.eij.2010.10.005.
  • Barreira, J. C.; Ferreira, I. C.; Oliveira, M. B. Triacylglycerol Profile as a Chemical Fingerprint of Mushroom Species: Evaluation by Principal Component and Linear Discriminant Analyses. J. Agric. Food Chem. 2012, 60, 10592–10599. DOI: 10.1021/jf302442s.
  • LI, Q.; Zhu, K. X.; Zhou, H. M. Electric Nose Analysis of the Effect of Cooking Time on the Flavor of Three Species of Edible Mushroom Soups. Food Chem. 2010, 31, 151–155.
  • Oliveri, P.; Di Egidio, V.; Woodcock, T.; Downey, G. Application of Class-Modelling Techniques to Near Infrared Data for Food Authentication Purposes. Food Chem. 2011, 125, 1450–1456. DOI: 10.1016/j.foodchem.2010.10.047.
  • Tsugawa, H.; Tsujimoto, Y.; Arita, M.; Bamba, T.; Fukusaki, E. GC/MS Based Metabolomics: Development of a Data Mining System for Metabolite Identification by Using Soft Independent Modeling of Class Analogy (SIMCA). BMC Bioinf. 2011, 12, 131. DOI: 10.1186/1471-2105-12-131.
  • Robinson, D. Chemometrics: Data Analysis for the Laboratory and Chemical Plant. Org. Process Res. Dev. 2003, 7, 611–611. DOI: 10.1021/op030005r.
  • Casale, M.; Bagnasco, L.; Zotti, M.; Di Piazza, S.; Sitta, N.; Oliveri, P. A NIR Spectroscopy-Based Efficient Approach to Detect Fraudulent Additions within Mixtures of Dried Porcini Mushrooms. Talanta. 2016, 160, 729–734. DOI: 10.1016/j.talanta.2016.08.004.
  • Rawlings, J. O.; Pantula, S. G.; Dickey, D. A. Applied Regression Analysis: A Research Tool, 2nd ed.; New York: Springer Texts in Statistics, 1998.
  • Taghizadeh, M.; Gowen, A.; O Donnell, C. P. Prediction of White Button Mushroom (Agaricus Bisporus) Moisture Content Using Hyperspectral Imaging. Sens. Instrum. Food Qual. 2009, 3, 219–226. DOI: 10.1007/s11694-009-9088-y.
  • Taghizadeh, M.; Gowen, A. A.; O Donnell, C. P. Comparison of Hyperspectral Imaging with Conventional RGB Imaging for Quality Evaluation of Agaricus Bisporus Mushrooms. Biosyst. Eng. 2011, 108, 191–194. DOI: 10.1016/j.biosystemseng.2010.10.005.
  • Gaston, E.; Frías, J. M.; Cullen, P. J.; O'Donnell, C. P.; Gowen, A. A. Prediction of Polyphenol Oxidase Activity Using Visible Near-Infrared Hyperspectral Imaging on Mushroom (Agaricus Bisporus) Caps. J. Agric. Food Chem. 2010, 58, 6226–6233. DOI: 10.1021/jf100501q.
  • Liu, Z. Y.; Huang, J. F.; Shi, J. J.; Tao, R. X.; Zhou, W.; Zhang, L. L. Characterizing and Estimating Rice Brown Spot Disease Severity Using Stepwise Regression, Principal Component Regression and Partial Least-Square Regression. J. Zhejiang Univ. Sci. B. 2007, 8, 738–744. DOI: 10.1631/jzus.2007.B0738.
  • Zhu, L. Q.; Zhou, X. Q.; Liu, W. N.; Kong, Z. Total Organic Carbon Content Logging Prediction Based on Machine Learning: A Brief Review. Energy Geosci. 2022. DOI: 10.1016/j.engeos.2022.03.001.
  • Vapnik, V.; Golowich, S. E.; Smola, A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. 1997.
  • Tarafdar, A.; Shahi, N. C.; Singh, A. Freeze-Drying Behaviour Prediction of Button Mushrooms Using Artificial Neural Network and Comparison with Semi-Empirical Models. Neural Comput. Appl. 2019, 31, 7257–7268. DOI: 10.1007/s00521-018-3567-1.
  • Sameh Alkronz, E.; Moghayer, K. A.; Meimeh, M.; Gazzaz, M. Classification of Mushroom Using Artificial Neural Network. Int. J. Acad. Appl. Res. 2019, 3, 1–5. DOI: 10.1109/MIPRO.2016.7522173.
  • Alkronz, E. S.; Moghayer, K. A.; Meime, M.; Gazzaz, M.; Abu-Nasser, B. S.; Abu-Naser, S. S. Prediction of Whether Mushroom is Edible or Poisonous Using Back-Propagation Neural Network. Int. J. Acad. Appl. Res. 2019, 3, 1–8.
  • Cheng, S. S.; Ranran, L.; Yang, H. M.; Wang, S. Q.; Lin, R.; Tan, M. Q. Characterisation of Moisture Migration of Shiitake Mushroom (Lentinula edodes) during Storage and Its Relationship to Quality Deterioration. Int. J. Food Sci. Technol. 2020, 55, 2132–2140. DOI: 10.1111/ijfs.14456.
  • Jing, N. H.; Shi, J. Y.; Li, G. L.; Sun, Z. W.; You, J. M. Determination of Fatty Acids from Mushrooms Using High Performance Liquid Chromatography with Fluorescence Detection and Online Mass Spectrometry. Food Res. Int. 2012, 48, 155–163. DOI: 10.1016/j.foodres.2012.02.014.
  • Shi, X. M.; Zhang, J. S.; Tang, Q. J.; Yang, Y.; Hao, R. X.; Pan, Y. J. Fingerprint Analysis of Lingzhi (Ganoderma) Strains by High-Performance Liquid Chromatography Coupled with Chemometric Methods. World J. Microbiol. Biotechnol. 2008, 24, 2443–2450. DOI: 10.1007/s11274-008-9766-7.
  • Malheiro, R.; Guedes De Pinho, P.; Soares, S.; César Da Silva Ferreira, A.; Baptista, P. Volatile Biomarkers for Wild Mushrooms Species Discrimination. Food Res. Int. 2013, 54, 186–194. DOI: 10.1016/j.foodres.2013.06.010.
  • Wang, L.; Liu, H. G.; Li, T.; Li, J. Q.; Wang, Y. Z. Verified the Rapid Evaluation of the Edible Safety of Wild Porcini Mushrooms, Using Deep Learning and PLS‐DA. J. Sci. Food Agric. 2022, 102, 1531–1539. DOI: 10.1002/jsfa.11488.
  • Esteves, C. S. M.; de Redrojo, E. M. M.; Luis García Manjón, J.; Moreno, G.; Antunes, F. E.; Montalvo, G.; Ortega-Ojeda, F. E. Combining FTIR-ATR and OPLS-DA Methods for Magic Mushrooms Discrimination. Forensic Chem. 2022, 29, 100421. DOI: 10.1016/j.forc.2022.100421.
  • Choong, Y. K.; Lan, J.; Lee, H. L.; Chen, X. D.; Wang, X. G.; Yang, Y. P. Differential Identification of Mushrooms Sclerotia by IR Macro-Fingerprint Method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 152, 34–42. DOI: 10.1016/j.saa.2015.07.054.
  • Xiong, Y.; Zhang, D. Q.; Hao, Y. P.; Liu, Y.; Si, M. Z. Label‐Free Detection of Wild Mushrooms DNA Based on Surface‐Enhanced Raman Spectroscopy. J. Raman Spectrosc. 2020, 51, 46–54. DOI: 10.1002/jrs.5759.
  • Alanne, A.; Issakainen, J.; Pihlaja, K.; Jokioja, J.; Sinkkonen, J. Metabolomic Discrimination of the Edible Mushrooms Kuehneromyces Mutabilis and Hypholoma Capnoides (Strophariaceae, Agaricales) by NMR Spectroscopy. Z. Naturforsch. C J. Biosci. 2019, 74, 201–210. DOI: 10.1515/znc-2018-0214.
  • Sugawara, R.; Yamada, S.; Tu, Z.; Sugawara, A.; Suzuki, K.; Hoshiba, T.; Eisaka, S.; Yamaguchi, A. Rapid and Reliable Species Identification of Wild Mushrooms by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). Anal. Chim. Acta. 2016, 934, 163–169. DOI: 10.1016/j.aca.2016.05.056.
  • Yang, F.; Zhao, M. J.; Zhou, L.; Zhang, M. H.; Liu, J.; Marchioni, E. Identification and Differentiation of Wide Edible Mushrooms Based on Lipidomics Profiling Combined with Principal Component Analysis. J. Agric. Food Chem. 2021, 69, 9991–10001. DOI: 10.1021/acs.jafc.1c02269.
  • Zervakis, G. I.; Bekiaris, G.; Tarantilis, P.; Pappas, C. S. Rapid Strain Classification and Taxa Delimitation within the Edible Mushroom Genus Pleurotus through the Use of Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy. Fungal Biol. 2012, 116, 715–728. DOI: 10.1016/j.funbio.2012.04.006.
  • Šiškovič, N.; Strojnik, L.; Grebenc, T.; Vidrih, R.; Ogrinc, N. Differentiation between Species and Regional Origin of Fresh and Freeze-Dried Truffles according to Their Volatile Profiles. Food Control. 2021, 123, 107698. DOI: 10.1016/j.foodcont.2020.107698.
  • Wang, Q. Q.; Huang, H. Y.; Wang, Y. Z. Geographical Authentication of Macrohyporia Cocos by a Data Fusion Method Combining Ultra-Fast Liquid Chromatography and Fourier Transform Infrared Spectroscopy. Molecules. 2019, 24, 1320. DOI: 10.3390/molecules24071320.
  • Jansson, D.; Wolterink, A.; Bergwerff, L.; Hough, P.; Geukens, K.; Åstot, C. Source Attribution Profiling of Five Species of Amanita Mushrooms from Four European Countries by High Resolution Liquid Chromatography-Mass Spectrometry Combined with Multivariate Statistical Analysis and DNA-Barcoding. Talanta. 2018, 186, 636–644. DOI: 10.1016/j.talanta.2018.03.069.
  • Li, Y.; Zhang, J.; Jin, H.; Liu, H. G.; Wang, Y. Z. Ultraviolet Spectroscopy Combined with Ultra-Fast Liquid Chromatography and Multivariate Statistical Analysis for Quality Assessment of Wild Wolfiporia Extensa from Different Geographical Origins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 165, 61–68. DOI: 10.1016/j.saa.2016.04.012.
  • Yang, T. W.; Liu, H. G.; Zhang, J.; Li, T.; Wnag, Y. Z. Ultraviolet Spectrum Identification of Boletus Edulis Caps and Stipes from Different Regions. Hubei Agric. Sci. 2016, 55, 2362–2365. DOI: 10.14088/j.cnki.issn0439-8114.2016.09.054.
  • Li, Y.; Zhang, J.; Zhao, Y. L.; Liu, H. G.; Wang, Y. Z.; Jin, H. Exploring Geographical Differentiation of the Hoelen Medicinal Mushroom, Wolfiporia Extensa (Agaricomycetes), Using Fourier-Transform Infrared Spectroscopy Combined with Multivariate Analysis. Int. J. Med. Mushrooms. 2016, 18, 721–731.
  • Dong, J.; Zuo, Z.; Zhang, J.; Wang, Y. Geographical Discrimination of Boletus Edulis Using Two Dimensional Correlation Spectral or Integrative Two Dimensional Correlation Spectral Image with ResNet. Food Control. 2021, 129, 108132. DOI: 10.1016/j.foodcont.2021.108132.
  • Chen, Y.; Zhu, S. B.; Xie, M. Y.; Nie, S. P.; Liu, W.; Li, C.; Gong, X. F.; Wang, Y. X. Quality Control and Original Discrimination of Ganoderma lucidum Based on High-Performance Liquid Chromatographic Fingerprints and Combined Chemometrics Methods. Anal. Chim. Acta. 2008, 623, 146–156. DOI: 10.1016/j.aca.2008.06.018.
  • Chung, I.; Kim, J.; Moon, H.; Kim, Y.; Kim, S. Geographical Origin Discrimination of Agaricus Bisporus Produced by the Complete Medium: A Pilot Study in South Korea. Food Chem. 2022, 386, 132820. DOI: 10.1016/j.foodchem.2022.132820.
  • Chung, I.-M.; Kim, J.-K.; Han, J.-G.; Kong, W.-S.; Kim, S.-Y.; Yang, Y.-J.; An, Y.-J.; Kwon, C.; Chi, H.-Y.; Yhung Jung, M.; Kim, S.-H. Potential Geo-Discriminative Tools to Trace the Origins of the Dried Slices of Shiitake (Lentinula edodes) Using Stable Isotope Ratios and OPLS-DA. Food Chem. 2019, 295, 505–513. DOI: 10.1016/j.foodchem.2019.05.143.
  • Li, X. P.; Li, J. Q.; Liu, H. G.; Wang, Y. Z. A New Analytical Method for Discrimination of Species in Ganodermataceae Mushrooms. Int. J. Food Prop. 2020, 23, 227–240. DOI: 10.1080/10942912.2020.1722159.
  • Costa, R.; De Grazia, S.; Grasso, E.; Trozzi, A. Headspace-Solid-Phase Microextraction-Gas Chromatography as Analytical Methodology for the Determination of Volatiles in Wild Mushrooms and Evaluation of Modifications Occurring during Storage. J. Anal. Methods Chem. 2015, 2015, 951748. DOI: 10.1155/2015/951748.
  • Wang, L.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Two-Dimensional Correlation Spectroscopy Combined with Deep Learning Method and HPLC Method to Identify the Storage Duration of Porcini. Microchem. J. 2021, 170, 106670. DOI: 10.1016/j.microc.2021.106670.
  • Chen, J.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Rapid Identification of the Storage Duration and Species of Sliced Boletes Using Near‐Infrared Spectroscopy. J. Food Sci. 2022. DOI: 10.1111/1750-3841.16220.
  • Wang, L.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Method Superior to Traditional Spectral Identification: FT-NIR Two-Dimensional Correlation Spectroscopy Combined with Deep Learning to Identify the Shelf Life of Fresh Phlebopus Portentosus. ACS Omega. 2021, 6, 19665–19674. DOI: 10.1021/acsomega.1c02317.
  • Song, Y.; Hu, Q. H.; Wu, Y. Y.; Pei, F.; Muinde, K. B.; Su, A. X.; Ma, N.; Fang, Y.; Jian, Y. W. Storage Time Assessment and Shelf-Life Prediction Models for Postharvest Agaricus Bisporus. LWT - Food Sci. Technol. 2019, 101, 360–365. DOI: 10.1016/j.lwt.2018.11.020.
  • Gowen, A. A.; Taghizadeh, M.; O Donnell, C. P. Identification of Mushrooms Subjected to Freeze Damage Using Hyperspectral Imaging. J. Food Eng. 2009, 93, 7–12. DOI: 10.1016/j.jfoodeng.2008.12.021.
  • Nazir, A.; AlDhaheri, M.; Mudgil, P.; Marpu, P.; Kamal-Eldin, A. Hyperspectral Imaging Based Kinetic Approach to Assess Quality Deterioration in Fresh Mushrooms (Agaricus Bisporus) during Postharvest Storage. Food Control. 2022, 131, 108298. DOI: 10.1016/j.foodcont.2021.108298.
  • Chen, Y.; Xie, M. Y.; Zhang, H.; Wang, Y. X.; Nie, S. P.; Li, C. Quantification of Total Polysaccharides and Triterpenoids in Ganoderma lucidum and Ganoderma Atrum by near Infrared Spectroscopy and Chemometrics. Food Chem. 2012, 135, 268–275. DOI: 10.1016/j.foodchem.2012.04.089.
  • Hou, H.; Liu, C.; Lu, X. S.; Fang, D. L.; Hu, Q. H.; Zhang, Y. Y.; Zhao, L. Y. Characterization of Flavor Frame in Shiitake Mushrooms (Lentinula edodes) Detected by HS-GC-IMS Coupled with Electronic Tongue and Sensory Analysis: Influence of Drying Techniques. LWT. 2021, 146, 111402. DOI: 10.1016/j.lwt.2021.111402.
  • Sissons, J.; Davila, M.; Du, X. Sautéing and Roasting Effect on Free Amino Acid Profiles in Portobello and Shiitake Mushrooms, and the Effect of Mushroom- and Cooking-Related Volatile Aroma Compounds on Meaty Flavor Enhancement. Int. J. Gastron. Food S. 2022, 28, 100550. DOI: 10.1016/j.ijgfs.2022.100550.
  • de Souza Campos Junior, F. A.; Petrarca, M. H.; Meinhart, A. D.; de Jesus Filho, M.; Godoy, H. T. Multivariate Optimization of Extraction and Validation of Phenolic Acids in Edible Mushrooms by Capillary Electrophoresis. Food Res. Int. 2019, 126, 108685. DOI: 10.1016/j.foodres.2019.108685.
  • Froufe, H. J. C.; Abreu, R. M. V.; Ferreira, I. C. F. R. A QCAR Model for Predicting Antioxidant Activity of Wild Mushrooms. SAR QSAR Environ. Res. 2009, 20, 579–590. DOI: 10.1080/10629360903408423.
  • Li, C. Q.; Cui, Y. P.; Lu, J.; Meng, L. J.; Ma, C. Y.; Liu, Z. H.; Zhang, Y.; Kang, W. Y. Spectrum-Effect Relationship of Immunologic Activity of Ganoderma lucidum by UPLC-MS/MS and Component Knock-out Method. Food Sci. Hum. Well. 2021, 10, 278–288. DOI: 10.1016/j.fshw.2021.02.019.
  • Gao, J.; Fang, D.; Muinde Kimatu, B.; Chen, X.; Wu, X.; Du, J.; Yang, Q.; Chen, H.; Zheng, H.; An, X.; et al. Analysis of Umami Taste Substances of Morel Mushroom (Morchella Sextelata) Hydrolysates Derived from Different Enzymatic Systems. Food Chem. 2021, 362, 130192. DOI: 10.1016/j.foodchem.2021.130192.
  • Baeva, E.; Bleha, R.; Sedliaková, M.; Sushytskyi, L.; Švec, I.; Čopíková, J.; Jablonsky, I.; Klouček, P.; Synytsya, A. Evaluation of the Cultivated Mushroom Pleurotus ostreatus Basidiocarps Using Vibration Spectroscopy and Chemometrics. Appl. Sci. 2020, 10, 8156. DOI: 10.3390/app10228156.
  • Dong, Y.; Pei, F.; Su, A.; Sanidad, K. Z.; Ma, G.; Zhao, L.; Hu, Q. Multiple Fingerprint and Fingerprint-Activity Relationship for Quality Assessment of Polysaccharides from Flammulina Velutipes. Food Chem. Toxicol. 2020, 135, 110944. DOI: 10.1016/j.fct.2019.110944.
  • Lu, J.; Li, C. Q.; Liu, L. J.; Chai, W. J.; Hou, Y. B.; Ma, C. Y. Rapid Determination of Pachymic Acid Content by Near-Infrared Spectroscopy. J. Food Qual. 2022, 2022, 1–7. DOI: 10.1155/2022/9746414.
  • O'Gorman, A.; Downey, G.; Gowen, A. A.; Barry-Ryan, C.; Frias, J. M. Use of Fourier Transform Infrared Spectroscopy and Chemometric Data Analysis to Evaluate Damage and Age in Mushrooms (Agaricus Bisporus) Grown in Ireland. J. Agric. Food Chem. 2010, 58, 7770–7776. DOI: 10.1021/jf101123a.
  • Gowen, A. A.; O Donnell, C. P.; Taghizadeh, M.; Gaston, E.; O Gorman, A.; Cullen, P. J.; Frias, J. M.; Esquerre, C.; Downey, G. Hyperspectral Imaging for the Investigation of Quality Deterioration in Sliced Mushrooms (Agaricus Bisporus) during Storage. Sens. Instrum. Food Qual. 2008, 2, 133–143. DOI: 10.1007/s11694-008-9042-4.
  • Li, X. P.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Species Discrimination and Total Polyphenol Prediction of Porcini Mushrooms by Fourier Transform Mid‐Infrared (FT‐MIR) Spectrometry Combined with Multivariate Statistical Analysis. Food Sci. Nutr. 2020, 8, 754–766. DOI: 10.1002/fsn3.1313.
  • Liu, Q. M.; Xiao, J. J.; Liu, B. T.; Zhuang, Y. L.; Sun, L. P. Study on the Preparation and Chemical Structure Characterization of Melanin from Boletus Griseus. IJMS. 2018, 19, 3736. DOI: 10.3390/ijms19123736.
  • Cheng, C. R.; Ding, J.; Yang, Y.; Liang, X. Y.; Guo, D. A.; Yang, M.; Guan, S. H. Pharmacokinetic Studies of Ganoderic Acids from the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), by LC-MS/MS. Int. J. Med. Mushrooms. 2016, 18, 405–412. DOI: 10.1615/IntJMedMushrooms.v18.i5.40.
  • Xu, X. M.; Cai, Z. X.; Zhang, J. S.; Chen, Q.; Huang, B. F.; Ren, Y. P. Screening of Polypeptide Toxins as Adulteration Markers in the Food Containing Wild Edible Mushroom by Liquid Chromatography-Triple Quadrupole Mass Spectrometry. Food Control. 2017, 71, 393–402. DOI: 10.1016/j.foodcont.2016.07.024.
  • Komorowicz, I.; Hanć, A.; Lorenc, W.; Barałkiewicz, D.; Falandysz, J.; Wang, Y. Arsenic Speciation in Mushrooms Using Dimensional Chromatography Coupled to ICP-MS Detector. Chemosphere. 2019, 233, 223–233. DOI: 10.1016/j.chemosphere.2019.05.130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.