415
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Deep Eutectic Liquids as Tailorable Extraction Solvents: A Review of Opportunities and Challenges

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V. Preparation of Novel, Moisture-Stable, Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains Electronic Supplementary Information (ESI) Available: Plot of Conductivity vs. Temperature for the Ionic Liquid Formed from Zinc Chloride and Choline Chloride (2 : 1). See http://www.rsc.org/suppdata/cc/b1/b106357j. Chem. Commun. 2001, 19, 2010–2011. DOI: 10.1039/b106357j.
  • Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 1, 70–71. DOI: 10.1039/b210714g.
  • Gamsjäger, H.; Lorimer, J. W.; Scharlin, P.; Shaw, D. G. Glossary of Terms Related to Solubility (IUPAC Recommendations 2008). Pure Appl. Chem. 2008, 80, 233–276. DOI: 10.1351/pac200880020233.
  • Guthrie, F. LII. On Eutexia. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 1884, 17, 462–482. DOI: 10.1080/14786448408627543.
  • Martins, M. A.; Pinho, S. P.; Coutinho, J. A. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solution Chem. 2019, 48, 962–982. DOI: 10.1007/s10953-018-0793-1.
  • Şahin, S. Tailor-Designed Deep Eutectic Liquids as a Sustainable Extraction Media: An Alternative to Ionic Liquids. J. Pharm. Biomed. Anal. 2019, 174, 324–329. DOI: 10.1016/j.jpba.2019.05.059.
  • Florindo, C.; Oliveira, F. S.; Rebelo, L. P. N.; Fernandes, A. M.; Marrucho, I. M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425. DOI: 10.1021/sc500439w.
  • Santana, A. P. R.; Mora-Vargas, J. A.; Guimarães, T. G. S.; Amaral, C. D. B.; Oliveira, A.; Gonzalez, M. H. Sustainable Synthesis of Natural Deep Eutectic Solvents (NADES) by Different Methods. J. Mol. Liq. 2019, 293, 111452. DOI: 10.1016/j.molliq.2019.111452.
  • Liu, Y.-T.; Chen, Y.-A.; Xing, Y.-J. Synthesis and Characterization of Novel Ternary Deep Eutectic Solvents. Chin. Chem. Lett. 2014, 25, 104–106. DOI: 10.1016/j.cclet.2013.09.004.
  • Crawford, D. E.; Wright, L. A.; James, S. L.; Abbott, A. P. Efficient Continuous Synthesis of High Purity Deep Eutectic Solvents by Twin Screw Extrusion. Chem. Commun. (Camb.) 2016, 52, 4215–4218. DOI: 10.1039/c5cc09685e.
  • Anastas, P. T.; Warner, J. C. Principles of Green Chemistry. Green Chemistry: Theory and Practice. Oxford University Press: New York,1998, pp. 1–135
  • Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. DOI: 10.1021/cr300162p.
  • Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chem. Soc. Rev. 2012, 41, 7108–7146. DOI: 10.1039/c2cs35178a.
  • Cunha, S. C.; Fernandes, J. O. Extraction Techniques with Deep Eutectic Solvents. TrAC, Trends Anal. Chem. 2018, 105, 225–239. DOI: 10.1016/j.trac.2018.05.001.
  • Zhekenov, T.; Toksanbayev, N.; Kazakbayeva, Z.; Shah, D.; Mjalli, F. S. Formation of Type III Deep Eutectic Solvents and Effect of Water on Their Intermolecular Interactions. Fluid Phase Equilib. 2017, 441, 43–48. DOI: 10.1016/j.fluid.2017.01.022.
  • Cai, T.; Qiu, H. Application of Deep Eutectic Solvents in Chromatography: A Review. TrAC, Trends Anal. Chem. 2019, 120, 115623. DOI: 10.1016/j.trac.2019.115623.
  • Abranches, D. O.; Martins, M. A.; Silva, L. P.; Schaeffer, N.; Pinho, S. P.; Coutinho, J. A. Phenolic Hydrogen Bond Donors in the Formation of Non-Ionic Deep Eutectic Solvents: The Quest for Type V DES. Chem. Commun. (Camb.) 2019, 55, 10253–10256. DOI: 10.1039/c9cc04846d.
  • Choi, Y. H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I. W.; Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. DOI: 10.1104/pp.111.178426.
  • Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y. H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta. 2013, 766, 61–68. DOI: 10.1016/j.aca.2012.12.019.
  • Aguirre, M. Á.; Canals, A. Magnetic Deep Eutectic Solvents in Microextraction Techniques. TrAC, Trends Anal. Chem. 2022, 146, 116500. DOI: 10.1016/j.trac.2021.116500.
  • Espino, M.; de los Ángeles Fernández, M.; Gomez, F. J.; Silva, M. F. Natural Designer Solvents for Greening Analytical Chemistry. TrAC–Trends Anal. Chem. 2016, 76, 126–136. DOI: 10.1016/j.trac.2015.11.006.
  • Gutierrez, M. C.; Ferrer, M. L.; Mateo, C. R.; del Monte, F. Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. Langmuir 2009, 25, 5509–5515. DOI: 10.1021/la900552b.
  • Gomez, F. J.; Espino, M.; Fernández, M. A.; Silva, M. F. A Greener Approach to Prepare Natural Deep Eutectic Solvents. ChemistrySelect 2018, 3, 6122–6125. DOI: 10.1002/slct.201800713.
  • Santana, A. P.; Andrade, D. F.; Mora-Vargas, J. A.; Amaral, C. D.; Oliveira, A.; Gonzalez, M. H. Natural Deep Eutectic Solvents for Sample Preparation Prior to Elemental Analysis by Plasma-Based Techniques. Talanta 2019, 199, 361–369. DOI: 10.1016/j.talanta.2019.02.083.
  • Morrison, H. G.; Sun, C. C.; Neervannan, S. Characterization of Thermal Behavior of Deep Eutectic Solvents and Their Potential as Drug Solubilization Vehicles. Int. J. Pharm. 2009, 378, 136–139. DOI: 10.1016/j.ijpharm.2009.05.039.
  • Cui, Y.; Kuroda, D. G. Evidence of Molecular Heterogeneities in Amide-Based Deep Eutectic Solvents. J. Phys. Chem. A 2018, 122, 1185–1193. DOI: 10.1021/acs.jpca.7b10264.
  • Qu, Q.; Lv, Y.; Liu, L.; Row, K. H.; Zhu, T. Synthesis and Characterization of Deep Eutectic Solvents (Five Hydrophilic and Three Hydrophobic), and Hydrophobic Application for Microextraction of Environmental Water Samples. Anal. Bioanal. Chem. 2019, 411, 7489–7498. DOI: 10.1007/s00216-019-02143-z.
  • Afshar Mogaddam, M. R.; Farajzadeh, M. A.; Azadmard Damirchi, S.; Nemati, M. Dispersive Solid Phase Extraction Combined with Solidification of Floating Organic Drop–Liquid–Liquid Microextraction Using in Situ Formation of Deep Eutectic Solvent for Extraction of Phytosterols from Edible Oil Samples. J. Chromatogr. A 2020, 1630, 461523. DOI: 10.1016/j.chroma.2020.461523.
  • Hang, N. T.; Tu Uyen, T. T.; Van Phuong, N. Green Extraction of Apigenin and Luteolin from Celery Seed Using Deep Eutectic Solvent. J. Pharm. Biomed. Anal. 2022, 207, 114406. DOI: 10.1016/j.jpba.2021.114406.
  • Shahbaz, K.; Baroutian, S.; Mjalli, F. S.; Hashim, M. A.; AlNashef, I. M. Densities of Ammonium and Phosphonium Based Deep Eutectic Solvents: Prediction Using Artificial Intelligence and Group Contribution Techniques. Thermochim. Acta 2012, 527, 59–66. DOI: 10.1016/j.tca.2011.10.010.
  • Hayyan, A.; Mjalli, F. S.; AlNashef, I. M.; Wahaibi, YMAl.; Wahaibi, TAl.; Hashim, M. A. Glucose-Based Deep Eutectic Solvents: Physical Properties. J. Mol. Liq. 2013, 178, 137–141. DOI: 10.1016/j.molliq.2012.11.025.
  • Ibrahim, R. K.; Hayyan, M.; AlSaadi, M. A.; Ibrahim, S.; Hayyan, A.; Hashim, M. A. Physical Properties of Ethylene Glycol-Based Deep Eutectic Solvents. J. Mol. Liq. 2019, 276, 794–800. DOI: 10.1016/j.molliq.2018.12.032.
  • Longeras, O.; Gautier, A.; Ballerat-Busserolles, K.; Andanson, J.-M. Deep Eutectic Solvent with Thermo-Switchable Hydrophobicity. ACS Sustain. Chem. Eng. 2020, 8, 12516–12520. DOI: 10.1021/acssuschemeng.0c03478.
  • BRUNET, L.; CAILLARD, J.; ANDRÉ, P. Thermodynamic Calculation of n-Component Eutectic Mixtures. Int. J. Mod. Phys. C 2004, 15, 675–687. DOI: 10.1142/S0129183104006121.
  • Cruz, H.; Jordão, N.; Amorim, P.; Dionísio, M.; Branco, L. C. Deep Eutectic Solvents as Suitable Electrolytes for Electrochromic Devices. ACS Sustain. Chem. Eng. 2018, 6, 2240–2249. DOI: 10.1021/acssuschemeng.7b03684.
  • Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; et al. Definition of the Hydrogen Bond. Pure Appl. Chem. 2011, 83, 1637–1641. DOI: 10.1351/PAC-REC-10-01-02.
  • Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond. Annu. Rev. Phys. Chem. 1971‌, 22(1), 347–385.
  • Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of Polyphenolic Antioxidants from Orange Peel Waste Using Deep Eutectic Solvents. Sep. Purif. Technol. 2018, 206, 1–13. DOI: 10.1016/j.seppur.2018.05.052.
  • Stefanovic, R.; Ludwig, M.; Webber, G. B.; Atkin, R.; Page, A. J. Nanostructure, Hydrogen Bonding and Rheology in Choline Chloride Deep Eutectic Solvents as a Function of the Hydrogen Bond Donor. Phys. Chem. Chem. Phys. 2017, 19, 3297–3306. DOI: 10.1039/c6cp07932f.
  • Ashworth, C. R.; Matthews, R. P.; Welton, T.; Hunt, P. A. Doubly Ionic Hydrogen Bond Interactions within the Choline Chloride–Urea Deep Eutectic Solvent. Phys. Chem. Chem. Phys. 2016, 18, 18145–18160. DOI: 10.1039/c6cp02815b.
  • Pandey, A.; Rai, R.; Pal, M.; Pandey, S. How Polar Are Choline Chloride-Based Deep Eutectic Solvents? Phys. Chem. Chem. Phys. 2014, 16, 1559–1568. DOI: 10.1039/c3cp53456a.
  • Wojeicchowski, J. P.; Abranches, D. O.; Ferreira, A. M.; Mafra, M. R.; Coutinho, J. A. P. Using COSMO-RS to Predict Solvatochromic Parameters for Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2021, 9, 10240–10249. DOI: 10.1021/acssuschemeng.1c02621.
  • Florindo, C.; McIntosh, A. J. S.; Welton, T.; Branco, L. C.; Marrucho, I. M. A Closer Look into Deep Eutectic Solvents: Exploring Intermolecular Interactions Using Solvatochromic Probes. Phys. Chem. Chem. Phys. 2017, 20, 206–213. DOI: 10.1039/c7cp06471c.
  • Yadav, A.; Trivedi, S.; Rai, R.; Pandey, S. Densities and Dynamic Viscosities of (Choline Chloride + Glycerol) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range (283.15–363.15) K. Fluid Phase Equilib. 2014, 367, 135–142. DOI: 10.1016/j.fluid.2014.01.028.
  • Mjalli, F. S.; Mousa, H. Viscosity of Aqueous Ionic Liquids Analogues as a Function of Water Content and Temperature. Chin. J. Chem. Eng. 2017, 25, 1877–1883. DOI: 10.1016/j.cjche.2017.09.008.
  • Aroso, I. M.; Paiva, A.; Reis, R. L.; Duarte, A. R. C. Natural Deep Eutectic Solvents from Choline Chloride and Betaine–Physicochemical Properties. J. Mol. Liq. 2017, 241, 654–661. DOI: 10.1016/j.molliq.2017.06.051.
  • Basaiahgari, A.; Panda, S.; Gardas, R. L. Acoustic, Volumetric, Transport, Optical and Rheological Properties of Benzyltripropylammonium Based Deep Eutectic Solvents. Fluid Phase Equilib. 2017, 448, 41–49. DOI: 10.1016/j.fluid.2017.03.011.
  • Cui, Y.; Li, C.; Yin, J.; Li, S.; Jia, Y.; Bao, M. Design, Synthesis and Properties of Acidic Deep Eutectic Solvents Based on Choline Chloride. J. Mol. Liq. 2017, 236, 338–343. DOI: 10.1016/j.molliq.2017.04.052.
  • Mjalli, F. S.; Naser, J. Viscosity Model for Choline Chloride‐Based Deep Eutectic Solvents. Asia-Pac. J. Chem. Eng. 2015, 10, 273–281. DOI: 10.1002/apj.1873.
  • Sas, O. G.; Fidalgo, R. n.; Domínguez, I.; Macedo, E. A.; González, B. Physical Properties of the Pure Deep Eutectic Solvent,[ChCl]:[Lev](1:2) DES, and Its Binary Mixtures with Alcohols. J. Chem. Eng. Data 2016, 61, 4191–4202. DOI: 10.1021/acs.jced.6b00563.
  • Shah, D.; Mjalli, F. S. Effect of Water on the Thermo-Physical Properties of Reline: An Experimental and Molecular Simulation Based Approach. PCCP. 2014, 16, 23900–23907. DOI: 10.1039/C4CP02600D.
  • Kareem, M. A.; Mjalli, F. S.; Hashim, M. A.; AlNashef, I. M. Phosphonium-Based Ionic Liquids Analogues and Their Physical Properties. J. Chem. Eng. Data 2010, 55, 4632–4637. DOI: 10.1021/je100104v.
  • Abbott, A. P.; Harris, R. C.; Ryder, K. S.; D'Agostino, C.; Gladden, L. F.; Mantle, M. D. Glycerol Eutectics as Sustainable Solvent Systems. Green Chem. 2011, 13, 82–90. DOI: 10.1039/C0GC00395F.
  • Basaiahgari, A.; Panda, S.; Gardas, R. L. Effect of Ethylene, Diethylene, and Triethylene Glycols and Glycerol on the Physicochemical Properties and Phase Behavior of Benzyltrimethyl and Benzyltributylammonium Chloride Based Deep Eutectic Solvents at 283.15–343.15 K. J. Chem. Eng. Data 2018, 63, 2613–2627. DOI: 10.1021/acs.jced.8b00213.
  • Rackett, H. G. Equation of State for Saturated Liquids. J. Chem. Eng. Data 1970, 15, 514–517. DOI: 10.1021/je60047a012.
  • Spencer, C. F.; Danner, R. P. Improved Equation for Prediction of Saturated Liquid Density. J. Chem. Eng. Data 1972, 17, 236–241. DOI: 10.1021/je60053a012.
  • Mjalli, F. S.; Shahbaz, K.; AlNashef, I. M. Modified Rackett Equation for Modelling the Molar Volume of Deep Eutectic Solvents. Thermochim. Acta 2015, 614, 185–190. DOI: 10.1016/j.tca.2015.06.026.
  • Haghbakhsh, R.; Bardool, R.; Bakhtyari, A.; Duarte, A. R. C.; Raeissi, S. Simple and Global Correlation for the Densities of Deep Eutectic Solvents. J. Mol. Liq. 2019, 296, 111830. DOI: 10.1016/j.molliq.2019.111830.
  • Shafie, M. H.; Yusof, R.; Gan, C.-Y. Synthesis of Citric Acid Monohydrate-Choline Chloride Based Deep Eutectic Solvents (DES) and Characterization of Their Physicochemical Properties. J. Mol. Liq. 2019, 288, 111081. DOI: 10.1016/j.molliq.2019.111081.
  • Troter, D.; Todorovic, Z.; Djokic-Stojanovic, D.; Djordjevic, B.; Todorovic, V.; Konstantinovic, S.; Veljkovic, V. The Physicochemical and Thermodynamic Properties of the Choline Chloride-Based Deep Eutectic Solvents. J. Serb. Chem. Soc. 2017, 82, 1039–1052. DOI: 10.2298/JSC170225065T.
  • Shahbaz, K.; Mjalli, F.; Hashim, M.; AlNashef, I. Prediction of Deep Eutectic Solvents Densities at Different Temperatures. Thermochim. Acta 2011, 515, 67–72. DOI: 10.1016/j.tca.2010.12.022.
  • Shekaari, H.; Zafarani-Moattar, M. T.; Mokhtarpour, M.; Faraji, S. Volumetric and Compressibility Properties for Aqueous Solutions of Choline Chloride Based Deep Eutectic Solvents and Prigogine–Flory–Patterson Theory to Correlate of Excess Molar Volumes at T=(293.15 to 308.15) K. J. Mol. Liq. 2019, 289, 111077. DOI: 10.1016/j.molliq.2019.111077.
  • Gajardo-Parra, N. F.; Lubben, M. J.; Winnert, J. M.; Leiva, Á.; Brennecke, J. F.; Canales, R. I. Physicochemical Properties of Choline Chloride-Based Deep Eutectic Solvents and Excess Properties of Their Pseudo-Binary Mixtures with 1-Butanol. J. Chem. Thermodyn. 2019, 133, 272–284. DOI: 10.1016/j.jct.2019.02.010.
  • Kityk, A.; Shaiderov, D.; Vasil’eva, E.; Protsenko, V.; Danilov, F. Choline Chloride Based Ionic Liquids Containing Nickel Chloride: Physicochemical Properties and Kinetics of Ni (II) Electroreduction. Electrochim. Acta 2017, 245, 133–145. DOI: 10.1016/j.electacta.2017.05.144.
  • García, G.; Aparicio, S.; Ullah, R.; Atilhan, M. Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy Fuels 2015, 29, 2616–2644. DOI: 10.1021/ef5028873.
  • Macleod, D. B. On a Relation between Surface Tension and Density. Trans. Faraday Soc. 1923, 19, 38. DOI: 10.1039/tf9231900038.
  • Koller, T. M.; Rausch, M. H.; Pohako-Esko, K.; Wasserscheid, P.; Fröba, A. P. Surface Tension of Tricyanomethanide-and Tetracyanoborate-Based Imidazolium Ionic Liquids by Using the Pendant Drop Method. J. Chem. Eng. Data 2015, 60, 2665–2673. DOI: 10.1021/acs.jced.5b00303.
  • Delcheva, I.; Beattie, D.; Ralston, J.; Krasowska, M. Dynamic Wetting of Imidazolium-Based Ionic Liquids on Gold and Glass. Phys. Chem. Chem. Phys. 2018, 20, 2084–2093. DOI: 10.1039/c7cp06404g.
  • Klomfar, J.; Součková, M.; Pátek, J. Surface Tension and Density for Members of Four Ionic Liquid Homologous Series Containing a Pyridinium Based-Cation and the Bis (Trifluoromethylsulfonyl) Imide Anion. Fluid Phase Equilib. 2017, 431, 24–33. DOI: 10.1016/j.fluid.2016.10.004.
  • Hayyan, A.; Mjalli, F. S.; AlNashef, I. M.; Wahaibi, TAl.; Wahaibi, YMAl.; Hashim, M. A. Fruit Sugar-Based Deep Eutectic Solvents and Their Physical Properties. Thermochim. Acta 2012, 541, 70–75. DOI: 10.1016/j.tca.2012.04.030.
  • Nunes, R. J.; Saramago, B.; Marrucho, I. M. Surface Tension of dl-Menthol: Octanoic Acid Eutectic Mixtures. J. Chem. Eng. Data 2019, 64, 4915–4923. DOI: 10.1021/acs.jced.9b00424.
  • Lapeña, D.; Lomba, L.; Artal, M.; Lafuente, C.; Giner, B. The NADES Glyceline as a Potential Green Solvent: A Comprehensive Study of Its Thermophysical Properties and Effect of Water Inclusion. J. Chem. Thermodyn. 2019, 128, 164–172. DOI: 10.1016/j.jct.2018.07.031.
  • Price, D. M.; Hawkins, M. Calorimetry of Two Disperse Dyes Using Thermogravimetry. Thermochim. Acta 1998, 315, 19–24. DOI: 10.1016/S0040-6031(98)00272-X.
  • Boisset, A.; Jacquemin, J.; Anouti, M. Physical Properties of a New Deep Eutectic Solvent Based on Lithium Bis [(Trifluoromethyl) Sulfonyl] Imide and N-Methylacetamide as Superionic Suitable Electrolyte for Lithium Ion Batteries and Electric Double Layer Capacitors. Electrochim. Acta 2013, 102, 120–126. DOI: 10.1016/j.electacta.2013.03.150.
  • Shahbaz, K.; Mjalli, F. S.; Vakili-Nezhaad, G.; AlNashef, I. M.; Asadov, A.; Farid, M. M. Thermogravimetric Measurement of Deep Eutectic Solvents Vapor Pressure. J. Mol. Liq. 2016, 222, 61–66. DOI: 10.1016/j.molliq.2016.06.106.
  • Ravula, S.; Larm, N. E.; Mottaleb, M. A.; Heitz, M. P.; Baker, G. A. Vapor Pressure Mapping of Ionic Liquids and Low-Volatility Fluids Using Graded Isothermal Thermogravimetric Analysis. ChemEngineering 2019, 3, 42. DOI: 10.3390/chemengineering3020042.
  • Dietz, C. H.; Erve, A.; Kroon, M. C.; van Sint Annaland, M.; Gallucci, F.; Held, C. Thermodynamic Properties of Hydrophobic Deep Eutectic Solvents and Solubility of Water and HMF in Them: Measurements and PC-SAFT Modeling. Fluid Phase Equilib. 2019, 489, 75–82. DOI: 10.1016/j.fluid.2019.02.010.
  • Dietz, C. H. J. T.; Creemers, J. T.; Meuleman, M. A.; Held, C.; Sadowski, G.; van Sint Annaland, M.; Gallucci, F.; Kroon, M. C. Determination of the Total Vapor Pressure of Hydrophobic Deep Eutectic Solvents: Experiments and Perturbed-Chain Statistical Associating Fluid Theory Modeling. ACS Sustain. Chem. Eng. 2019, 7, 4047–4057. DOI: 10.1021/acssuschemeng.8b05449.
  • Halliday, D.; Resnick, R.; Walker, J. Fundamentals of Physics. John Wiley & Sons: New Jersey, 2013.
  • Seki, S.; Tsuzuki, S.; Hayamizu, K.; Umebayashi, Y.; Serizawa, N.; Takei, K.; Miyashiro, H. Comprehensive Refractive Index Property for Room-Temperature Ionic Liquids. J. Chem. Eng. Data 2012, 57, 2211–2216. DOI: 10.1021/je201289w.
  • Su, H.-Z.; Yin, J.-M.; Liu, Q.-S.; Li, C.-P. Properties of Four Deep Eutectic Solvents: Density, Electrical Conductivity, Dynamic Viscosity and Refractive Index. Acta Phys. Chim. Sin. 2015, 31, 1468–1473. DOI: 10.3866/PKU.WHXB201506111.
  • Sánchez, P. B.; González, B.; Salgado, J.; Parajó, J. J.; Domínguez, Á. Physical Properties of Seven Deep Eutectic Solvents Based on l-Proline or Betaine. J. Chem. Thermodyn. 2019, 131, 517–523. DOI: 10.1016/j.jct.2018.12.017.
  • Skulcova, A.; Russ, A.; Jablonsky, M.; Sima, J. The pH Behavior of Seventeen Deep Eutectic Solvents. BioResources 2018, 13, 5042.
  • Zhang, H.; Wang, Y.; Xu, K.; Li, N.; Wen, Q.; Yang, Q.; Zhou, Y. Ternary and Binary Deep Eutectic Solvents as a Novel Extraction Medium for Protein Partitioning. Anal. Methods 2016, 8, 8196–8207. DOI: 10.1039/C6AY01860B.
  • Kawase, K.; Abe, J.; Tenjimbayashi, M.; Kobayashi, Y.; Takahashi, K.; Shiratori, S. Novel Deep-Eutectic-Solvent-Infused Carbon Nanofiber Networks as High Power Density Green Battery Cathodes. ACS Appl. Mater. Interfaces 2018, 10, 15742–15750. DOI: 10.1021/acsami.8b03099.
  • Xu, Q.; Qin, L.; Ji, Y.; Leung, P.; Su, H.; Qiao, F.; Yang, W.; Shah, A.; Li, H. A Deep Eutectic Solvent (DES) Electrolyte-Based Vanadium-Iron Redox Flow Battery Enabling Higher Specific Capacity and Improved Thermal Stability. Electrochim. Acta 2019, 293, 426–431. DOI: 10.1016/j.electacta.2018.10.063.
  • Wang, Y.; Niu, Z.; Zheng, Q.; Zhang, C.; Ye, J.; Dai, G.; Zhao, Y.; Zhang, X. Zn-Based Eutectic Mixture as Anolyte for Hybrid Redox Flow Batteries. Sci. Rep. 2018, 8, 5740. DOI: 10.1038/s41598-018-24059-x.
  • Abbott, A. P. Model for the Conductivity of Ionic Liquids Based on an Infinite Dilution of Holes. ChemPhysChem 2005, 6, 2502–2505. DOI: 10.1002/cphc.200500283.
  • Abbott, A. P.; Capper, G.; Gray, S. Design of Improved Deep Eutectic Solvents Using Hole Theory. ChemPhysChem 2006, 7, 803–806. DOI: 10.1002/cphc.200500489.
  • Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. DOI: 10.1021/ja048266j.
  • Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y. H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–19. DOI: 10.1016/j.foodchem.2015.03.123.
  • Meng, X.; Ballerat-Busserolles, K.; Husson, P.; Andanson, J.-M. Impact of Water on the Melting Temperature of Urea + Choline Chloride Deep Eutectic Solvent. New J. Chem. 2016, 40, 4492–4499. DOI: 10.1039/C5NJ02677F.
  • Agieienko, V.; Buchner, R. Densities, Viscosities, and Electrical Conductivities of Pure Anhydrous Reline and Its Mixtures with Water in the Temperature Range (293.15 to 338.15) K. J. Chem. Eng. Data 2019, 64, 4763–4774. DOI: 10.1021/acs.jced.9b00145.
  • Du, C.; Zhao, B.; Chen, X.-B.; Birbilis, N.; Yang, H. Effect of Water Presence on Choline Chloride-2urea Ionic Liquid and Coating Platings from the Hydrated Ionic Liquid. Sci. Rep. 2016, 6, 29225, DOI: 10.1038/srep29225.
  • Paradiso, V. M.; Clemente, A.; Summo, C.; Pasqualone, A.; Caponio, F. Towards Green Analysis of Virgin Olive Oil Phenolic Compounds: Extraction by a Natural Deep Eutectic Solvent and Direct Spectrophotometric Detection. Food Chem. 2016, 212, 43–47. DOI: 10.1016/j.foodchem.2016.05.082.
  • Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of Water Addition on Choline Chloride/Glycol Deep Eutectic Solvents: Characterization of Their Structural and Physicochemical Properties. J. Mol. Liq. 2019, 291, 111301. DOI: 10.1016/j.molliq.2019.111301.
  • Sanchez-Fernandez, A.; Hammond, O. S.; Jackson, A. J.; Arnold, T.; Doutch, J.; Edler, K. J. Surfactant–Solvent Interaction Effects on the Micellization of Cationic Surfactants in a Carboxylic Acid-Based Deep Eutectic Solvent. Langmuir 2017, 33, 14304–14314. DOI: 10.1021/acs.langmuir.7b03254.
  • López-Salas, N.; Vicent-Luna, J. M.; Imberti, S.; Posada, E.; Roldán, M. J.; Anta, J. A.; Balestra, S. R. G.; Madero Castro, R. M.; Calero, S.; Jiménez-Riobóo, R. J.; et al. Looking at the “Water-in-Deep-Eutectic-Solvent” System: A Dilution Range for High Performance Eutectics. ACS Sustain. Chem. Eng. 2019, 7, 17565–17573. DOI: 10.1021/acssuschemeng.9b05096.
  • Hammond, O. S.; Bowron, D. T.; Edler, K. J. The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angew. Chem. Int. Ed. Engl. 2017, 56, 9782–9785. DOI: 10.1002/anie.201702486.
  • Achkar, T. E.; Fourmentin, S.; Greige-Gerges, H. Deep Eutectic Solvents: An Overview on Their Interactions with Water and Biochemical Compounds. J. Mol. Liq. 2019, 288, 111028. DOI: 10.1016/j.molliq.2019.111028.
  • Mbous, Y. P.; Hayyan, M.; Hayyan, A.; Wong, W. F.; Hashim, M. A.; Looi, C. Y. Applications of Deep Eutectic Solvents in Biotechnology and Bioengineering—Promises and Challenges. Biotechnol. Adv. 2017, 35, 105–134. DOI: 10.1016/j.biotechadv.2016.11.006.
  • Vilková, M.; Płotka-Wasylka, J.; Andruch, V. The Role of Water in Deep Eutectic Solvent-Base Extraction. J. Mol. Liq. 2020, 304, 112747. DOI: 10.1016/j.molliq.2020.112747.
  • Kivelä, H.; Salomäki, M.; Vainikka, P.; Mäkilä, E.; Poletti, F.; Ruggeri, S.; Terzi, F.; Lukkari, J. Effect of Water on a Hydrophobic Deep Eutectic Solvent. J. Phys. Chem. B 2022, 126, 513–527. DOI: 10.1021/acs.jpcb.1c08170.
  • Rodriguez, N. R.; van den Bruinhorst, A.; Kollau, L. J. B. M.; Kroon, M. C.; Binnemans, K. Degradation of Deep-Eutectic Solvents Based on Choline Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2019, 7, 11521–11528. DOI: 10.1021/acssuschemeng.9b01378.
  • Tang, B.; Row, K. H. Recent Developments in Deep Eutectic Solvents in Chemical Sciences. Monatsh. Chem. 2013, 144, 1427–1454. DOI: 10.1007/s00706-013-1050-3.
  • Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. DOI: 10.1021/acs.chemrev.0c00385.
  • Kumar, A. K.; Parikh, B. S.; Pravakar, M. Natural Deep Eutectic Solvent Mediated Pretreatment of Rice Straw: Bioanalytical Characterization of Lignin Extract and Enzymatic Hydrolysis of Pretreated Biomass Residue. Environ. Sci. Pollut. Res. Int. 2016, 23, 9265–9275. DOI: 10.1007/s11356-015-4780-4.
  • Guo, N.; Jiang, Y.-W.; Wang, L.-T.; Niu, L.-J.; Liu, Z.-M.; Fu, Y.-J. Natural Deep Eutectic Solvents Couple with Integrative Extraction Technique as an Effective Approach for Mulberry Anthocyanin Extraction. Food Chem. 2019, 296, 78–85. DOI: 10.1016/j.foodchem.2019.05.196.
  • Abdul Hadi, N. m.; Ng, M. H.; Choo, Y. M.; Hashim, M. A.; Jayakumar, N. S. Performance of Choline‐Based Deep Eutectic Solvents in the Extraction of Tocols from Crude Palm Oil. J. Am. Oil Chem. Soc. 2015, 92, 1709–1716. DOI: 10.1007/s11746-015-2720-6.
  • Guo, W.; Hou, Y.; Ren, S.; Tian, S.; Wu, W. Formation of Deep Eutectic Solvents by Phenols and Choline Chloride and Their Physical Properties. J. Chem. Eng. Data 2013, 58, 866–872. DOI: 10.1021/je300997v.
  • Wang, T.; Jiao, J.; Gai, Q.-Y.; Wang, P.; Guo, N.; Niu, L.-L.; Fu, Y.-J. Enhanced and Green Extraction Polyphenols and Furanocoumarins from Fig (Ficus carica L.) Leaves Using Deep Eutectic Solvents. J. Pharm. Biomed. Anal. 2017, 145, 339–345. DOI: 10.1016/j.jpba.2017.07.002.
  • Bahadori, L.; Manan, N. S. A.; Chakrabarti, M. H.; Hashim, M. A.; Mjalli, F. S.; AlNashef, I. M.; Hussain, M. A.; Low, C. T. J. The Electrochemical Behaviour of Ferrocene in Deep Eutectic Solvents Based on Quaternary Ammonium and Phosphonium Salts. Phys. Chem. Chem. Phys. 2013, 15, 1707–1714. DOI: 10.1039/c2cp43077k.
  • Liu, W.; Zhang, K.; Qin, Y.; Yu, J. A Simple and Green Ultrasonic-Assisted Liquid–Liquid Microextraction Technique Based on Deep Eutectic Solvents for the HPLC Analysis of Sesamol in Sesame Oils. Anal. Methods 2017, 9, 4184–4189. DOI: 10.1039/C7AY01033H.
  • Aydin, F.; Yilmaz, E.; Soylak, M. Vortex Assisted Deep Eutectic Solvent (DES)-Emulsification Liquid-Liquid Microextraction of Trace Curcumin in Food and Herbal Tea Samples. Food Chem. 2018, 243, 442–447. DOI: 10.1016/j.foodchem.2017.09.154.
  • Połomski, D.; Garbacz, P.; Czerwinski, K.; Chotkowski, M. Synthesis and Physicochemical Properties of the Mixtures Based on Choline Acetate or Choline Chloride. J. Mol. Liq. 2021, 327, 114820. DOI: 10.1016/j.molliq.2020.114820.
  • Ghaedi, H.; Ayoub, M.; Sufian, S.; Hailegiorgis, S. M.; Murshid, G.; Khan, S. N. Thermal Stability Analysis, Experimental Conductivity and pH of Phosphonium-Based Deep Eutectic Solvents and Their Prediction by a New Empirical Equation. J. Chem. Thermodyn. 2018, 116, 50–60. DOI: 10.1016/j.jct.2017.08.029.
  • Li, G.; Jiang, Y.; Liu, X.; Deng, D. New Levulinic Acid-Based Deep Eutectic Solvents: Synthesis and Physicochemical Property Determination. J. Mol. Liq. 2016, 222, 201–207. DOI: 10.1016/j.molliq.2016.07.039.
  • Hou, Y.; Gu, Y.; Zhang, S.; Yang, F.; Ding, H.; Shan, Y. Novel Binary Eutectic Mixtures Based on Imidazole. J. Mol. Liq. 2008, 143, 154–159. DOI: 10.1016/j.molliq.2008.07.009.
  • Pera-Titus, M. Porous Inorganic Membranes for CO2 Capture: Present and Prospects. Chem. Rev. 2014, 114, 1413–1492. DOI: 10.1021/cr400237k.
  • Shahbaz, K.; Bagh, F. G.; Mjalli, F.; AlNashef, I.; Hashim, M. Prediction of Refractive Index and Density of Deep Eutectic Solvents Using Atomic Contributions. Fluid Phase Equilib. 2013, 354, 304–311. DOI: 10.1016/j.fluid.2013.06.050.
  • Liu, W.; Zhang, K.; Yang, G.; Yu, J. A Highly Efficient Microextraction Technique Based on Deep Eutectic Solvent Formed by Choline Chloride and p-Cresol for Simultaneous Determination of Lignans in Sesame Oils. Food Chem. 2019, 281, 140–146. DOI: 10.1016/j.foodchem.2018.12.088.
  • Panić, M.; Gunjević, V.; Cravotto, G.; Redovniković, I. R. Enabling Technologies for the Extraction of Grape-Pomace Anthocyanins Using Natural Deep Eutectic Solvents in up-to-Half-Litre Batches Extraction of Grape-Pomace Anthocyanins Using NADES. Food Chem. 2019, 300, 125185. DOI: 10.1016/j.foodchem.2019.125185.
  • Huang, H.; Zhu, Y.; Fu, X.; Zou, Y.; Li, Q.; Luo, Z. Integrated Natural Deep Eutectic Solvent and Pulse-Ultrasonication for Efficient Extraction of Crocins from Gardenia Fruits (Gardenia jasminoides Ellis) and Its Bioactivities. Food Chem. 2022, 380, 132216. DOI: 10.1016/j.foodchem.2022.132216.
  • Dwamena, A. K. Investigating Anions and Hydrophobicity of Deep Eutectic Solvents by Experiment and Computational Simulation. Electronic Theses and Dissertations, South Dakota State University, 2019. https://openprairie.sdstate.edu/etd/3160.
  • Taysun, M. B.; Sert, E.; Atalay, F. S. Physical Properties of Benzyl Tri-Methyl Ammonium Chloride Based Deep Eutectic Solvents and Employment as Catalyst. J. Mol. Liq. 2016, 223, 845–852. DOI: 10.1016/j.molliq.2016.07.148.
  • Jibril, B.; Mjalli, F.; Naser, J.; Gano, Z. New Tetrapropylammonium Bromide-Based Deep Eutectic Solvents: Synthesis and Characterizations. J. Mol. Liq. 2014, 199, 462–469. DOI: 10.1016/j.molliq.2014.08.004.
  • Mjalli, F. S.; Naser, J.; Jibril, B.; Alizadeh, V.; Gano, Z. Tetrabutylammonium Chloride Based Ionic Liquid Analogues and Their Physical Properties. J. Chem. Eng. Data 2014, 59, 2242–2251. DOI: 10.1021/je5002126.
  • Yusof, R.; Abdulmalek, E.; Sirat, K.; Rahman, M. B. A. Tetrabutylammonium Bromide (TBABr)-Based Deep Eutectic Solvents (DESs) and Their Physical Properties. Molecules 2014, 19, 8011–8026. DOI: 10.3390/molecules19068011.
  • Siongco, K. R.; Leron, R. B.; Li, M.-H. Densities, Refractive Indices, and Viscosities of N, N-Diethylethanol Ammonium Chloride–Glycerol or–Ethylene Glycol Deep Eutectic Solvents and Their Aqueous Solutions. J. Chem. Thermodyn. 2013, 65, 65–72. DOI: 10.1016/j.jct.2013.05.041.
  • Sedghamiz, M.; Raeissi, S. Physical Properties of Deep Eutectic Solvents Formed by the Sodium Halide Salts and Ethylene Glycol, and Their Mixtures with Water. J. Mol. Liq. 2018, 269, 694–702. DOI: 10.1016/j.molliq.2018.08.045.
  • Abbott, A. P.; Barron, J. C.; Ryder, K. S.; Wilson, D. Eutectic‐Based Ionic Liquids with Metal‐Containing Anions and Cations. Chemistry 2007, 13, 6495–6501. DOI: 10.1002/chem.200601738.
  • Sarjuna, K.; Ilangeswaran, D. Preparation of Some Zinc Chloride Based Deep Eutectic Solvents and Their Characterization. Mater. Today: Proc. 2020, 33, 2767–2770. DOI: 10.1016/j.matpr.2020.02.080.
  • Covington, A. Physical Chemistry of Organic Solvent Systems. Springer Science & Business Media: New York, 2012.
  • Lide, D. R. Properties of Organic Solvents. CRC Press: Florida, 1996.
  • Liu, Y.; Friesen, J. B.; McAlpine, J. B.; Lankin, D. C.; Chen, S.-N.; Pauli, G. F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. DOI: 10.1021/acs.jnatprod.7b00945.
  • Haerens, K.; Matthijs, E.; Chmielarz, A.; Van der Bruggen, B. The Use of Ionic Liquids Based on Choline Chloride for Metal Deposition: A Green Alternative? J. Environ. Manage. 2009, 90, 3245–3252. DOI: 10.1016/j.jenvman.2009.04.013.
  • Hayyan, M.; Hashim, M. A.; Hayyan, A.; Al-Saadi, M. A.; AlNashef, I. M.; Mirghani, M. E.; Saheed, O. K. Are Deep Eutectic Solvents Benign or Toxic? Chemosphere 2013, 90, 2193–2195. DOI: 10.1016/j.chemosphere.2012.11.004.
  • Hayyan, M.; Hashim, M. A.; Al-Saadi, M. A.; Hayyan, A.; AlNashef, I. M.; Mirghani, M. E. Assessment of Cytotoxicity and Toxicity for Phosphonium-Based Deep Eutectic Solvents. Chemosphere 2013, 93, 455–459. DOI: 10.1016/j.chemosphere.2013.05.013.
  • Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.-G. Green and Efficient Extraction of Rutin from Tartary Buckwheat Hull by Using Natural Deep Eutectic Solvents. Food Chem. 2017, 221, 1400–1405. DOI: 10.1016/j.foodchem.2016.11.013.
  • Bajkacz, S.; Adamek, J. Evaluation of New Natural Deep Eutectic Solvents for the Extraction of Isoflavones from Soy Products. Talanta 2017, 168, 329–335. DOI: 10.1016/j.talanta.2017.02.065.
  • Satlewal, A.; Agrawal, R.; Bhagia, S.; Sangoro, J.; Ragauskas, A. J. Natural Deep Eutectic Solvents for Lignocellulosic Biomass Pretreatment: Recent Developments, Challenges and Novel Opportunities. Biotechnol. Adv. 2018, 36, 2032–2050. DOI: 10.1016/j.biotechadv.2018.08.009.
  • Tang, X.; Zuo, M.; Li, Z.; Liu, H.; Xiong, C.; Zeng, X.; Sun, Y.; Hu, L.; Liu, S.; Lei, T.; Lin, L. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem 2017, 10, 2696–2706. DOI: 10.1002/cssc.201700457.
  • Vigier, K. D. O.; Chatel, G.; Jérôme, F. Contribution of Deep Eutectic Solvents for Biomass Processing: Opportunities, Challenges, and Limitations. ChemCatChem 2015, 7, 1250–1260. DOI: 10.1002/cctc.201500134.
  • Di Gioia, M. L.; Nardi, M.; Costanzo, P.; De Nino, A.; Maiuolo, L.; Oliverio, M.; Procopio, A. Biorenewable Deep Eutectic Solvent for Selective and Scalable Conversion of Furfural into Cyclopentenone Derivatives. Molecules 2018, 23, 1891. DOI: 10.3390/molecules23081891.
  • Morais, E. S.; Mendonça, P. V.; Coelho, J. F.; Freire, M. G.; Freire, C. S.; Coutinho, J. A.; Silvestre, A. J. Deep Eutectic Solvent Aqueous Solutions as Efficient Media for the Solubilization of Hardwood Xylans. ChemSusChem 2018, 11, 753–762. DOI: 10.1002/cssc.201702007.
  • Kim, K. H.; Dutta, T.; Sun, J.; Simmons, B.; Singh, S. Biomass Pretreatment Using Deep Eutectic Solvents from Lignin Derived Phenols. Green Chem. 2018, 20, 809–815. DOI: 10.1039/C7GC03029K.
  • Phadtare, S. B.; Shankarling, G. S. Halogenation Reactions in Biodegradable Solvent: Efficient Bromination of Substituted 1-Aminoanthra-9, 10-Quinone in Deep Eutectic Solvent (Choline Chloride: Urea). Green Chem. 2010, 12, 458. DOI: 10.1039/b923589b.
  • Singh, B. S.; Lobo, H. R.; Pinjari, D. V.; Jarag, K. J.; Pandit, A. B.; Shankarling, G. S. Ultrasound and Deep Eutectic Solvent (DES): A Novel Blend of Techniques for Rapid and Energy Efficient Synthesis of Oxazoles. Ultrason. Sonochem. 2013, 20, 287–293. DOI: 10.1016/j.ultsonch.2012.06.003.
  • Liang, X.; Fu, Y.; Chang, J. Effective Separation, Recovery and Recycling of Deep Eutectic Solvent after Biomass Fractionation with Membrane-Based Methodology. Sep. Purif. Technol. 2019, 210, 409–416. DOI: 10.1016/j.seppur.2018.08.021.
  • Babaee, S.; Daneshfar, A. Magnetic Deep Eutectic Solvent-Based Ultrasound-Assisted Liquid–Liquid Microextraction for Determination of Hexanal and Heptanal in Edible Oils Followed by Gas Chromatography–Flame Ionization Detection. Anal. Methods 2018, 10, 4162–4169. DOI: 10.1039/C8AY01058G.
  • Tang, B.; Zhang, H.; Row, K. H. Application of Deep Eutectic Solvents in the Extraction and Separation of Target Compounds from Various Samples. J. Sep. Sci. 2015, 38, 1053–1064. DOI: 10.1002/jssc.201401347.
  • Santana-Mayor, Á.; Rodríguez-Ramos, R.; Herrera-Herrera, A. V.; Socas-Rodríguez, B.; Rodríguez-Delgado, M. Á. Deep Eutectic Solvents. The New Generation of Green Solvents in Analytical Chemistry. TrAC, Trends Anal. Chem. 2021, 134, 116108. DOI: 10.1016/j.trac.2020.116108.
  • Khezeli, T.; Daneshfar, A.; Sahraei, R. Emulsification Liquid–Liquid Microextraction Based on Deep Eutectic Solvent: An Extraction Method for the Determination of Benzene, Toluene, Ethylbenzene and Seven Polycyclic Aromatic Hydrocarbons from Water Samples. J. Chromatogr. A 2015, 1425, 25–33. DOI: 10.1016/j.chroma.2015.11.007.
  • Li, G.; Row, K. H. Utilization of Deep Eutectic Solvents in Dispersive Liquid-Liquid Micro-Extraction. TrAC, Trends Anal. Chem. 2019, 120, 115651. DOI: 10.1016/j.trac.2019.115651.
  • Makoś, P.; Słupek, E.; Gębicki, J. Hydrophobic Deep Eutectic Solvents in Microextraction Techniques—A Review. Microchem. J. 2020, 152, 104384. DOI: 10.1016/j.microc.2019.104384.
  • Van Osch, D. J.; Dietz, C. H.; Warrag, S. E.; Kroon, M. C. The Curious Case of Hydrophobic Deep Eutectic Solvents: A Story on the Discovery, Design, and Applications. ACS Sustain. Chem. Eng. 2020, 8, 10591. DOI: 10.1021/acssuschemeng.0c00559.
  • Dwamena, A. K. Recent Advances in Hydrophobic Deep Eutectic Solvents for Extraction. Separations 2019, 6, 9. DOI: 10.3390/separations6010009.
  • Lee, J.; Jung, D.; Park, K. Hydrophobic Deep Eutectic Solvents for the Extraction of Organic and Inorganic Analytes from Aqueous Environments. TrAC, Trends Anal. Chem. 2019, 118, 853–868. DOI: 10.1016/j.trac.2019.07.008.
  • Mogaddam, M. R. A.; Farajzadeh, M. A.; Mohebbi, A.; Nemati, M. Hollow Fiber–Liquid Phase Microextraction Method Based on a New Deep Eutectic Solvent for Extraction and Derivatization of Some Phenolic Compounds in Beverage Samples Packed in Plastics. Talanta 2020, 216, 120986. DOI: 10.1016/j.talanta.2020.120986.
  • Đorđević, B. S.; Todorović, Z. B.; Troter, D. Z.; Stanojević, L. P.; Stojanović, G. S.; Đalović, I. G.; Mitrović, P. M.; Veljković, V. B. Extraction of Phenolic Compounds from Black Mustard (Brassica nigra L.) Seed by Deep Eutectic Solvents. Food Meas. 2021, 15, 1931–1938. DOI: 10.1007/s11694-020-00772-y.
  • Wojeicchowski, J. P.; Marques, C.; Igarashi-Mafra, L.; Coutinho, J. A. P.; Mafra, M. R. Extraction of Phenolic Compounds from Rosemary Using Choline Chloride—Based Deep Eutectic Solvents. Sep. Purif. Technol. 2021, 258, 117975. DOI: 10.1016/j.seppur.2020.117975.
  • de Almeida Pontes, P. V.; Ayumi Shiwaku, I.; Maximo, G. J.; Caldas Batista, E. A. Choline Chloride-Based Deep Eutectic Solvents as Potential Solvent for Extraction of Phenolic Compounds from Olive Leaves: Extraction Optimization and Solvent Characterization. Food Chem. 2021, 352, 129346. DOI: 10.1016/j.foodchem.2021.129346.
  • Liu, W.; Fu, X.; Li, Z. Extraction of Tocopherol from Soybean Oil Deodorizer Distillate by Deep Eutectic Solvents. J. Oleo Sci. 2019, 68, 951–958. DOI: 10.5650/jos.ess19146.
  • Tan, T.; Li, Z.; Mao, X.; Wan, Y.; Qiu, H. Deep Eutectic Solvent-Based Liquid-Phase Microextraction for Detection of Plant Growth Regulators in Edible Vegetable Oils. Anal. Methods 2016, 8, 3511–3516. DOI: 10.1039/C6AY00053C.
  • Qi, X.-L.; Peng, X.; Huang, Y.-Y.; Li, L.; Wei, Z.-F.; Zu, Y.-G.; Fu, Y.-J. Green and Efficient Extraction of Bioactive Flavonoids from Equisetum palustre L. by Deep Eutectic Solvents-Based Negative Pressure Cavitation Method Combined with Macroporous Resin Enrichment. Ind. Crops Prod. 2015, 70, 142–148. DOI: 10.1016/j.indcrop.2015.03.026.
  • Nam, M. W.; Zhao, J.; Lee, M. S.; Jeong, J. H.; Lee, J. Enhanced Extraction of Bioactive Natural Products Using Tailor-Made Deep Eutectic Solvents: Application to Flavonoid Extraction from Flos Sophorae. Green Chem. 2015, 17, 1718–1727. DOI: 10.1039/C4GC01556H.
  • Tang, B.; Park, H. E.; Row, K. H. Simultaneous Extraction of Flavonoids from Chamaecyparis obtusa Using Deep Eutectic Solvents as Additives of Conventional Extractions Solvents. J. Chromatogr. Sci. 2015, 53, 836–840. DOI: 10.1093/chromsci/bmu108.
  • A.; Paiva, R.; Craveiro, I.; Aroso, M.; Martins, R. L.; Reis, A. R.; C.; Duarte. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. DOI: 10.1021/sc500096j.
  • Liu, W.; Zong, B.; Wang, X.; Cai, J.; Yu, J. A Highly Efficient Vortex-Assisted Liquid–Liquid Microextraction Based on Natural Deep Eutectic Solvent for the Determination of Sudan I in Food Samples. RSC Adv. 2019, 9, 17432–17439. DOI: 10.1039/c9ra01405e.
  • Funari, C. S.; Sutton, A. T.; Carneiro, R. L.; Fraige, K.; Cavalheiro, A. J.; da Silva Bolzani, V.; Hilder, E. F.; Arrua, R. D. Natural Deep Eutectic Solvents and Aqueous Solutions as an Alternative Extraction Media for Propolis. Food Res. Int. 2019, 125, 108559. DOI: 10.1016/j.foodres.2019.108559.
  • Liu, R.-L.; Yu, P.; Ge, X.-L.; Bai, X.-F.; Li, X.-Q.; Fu, Q. Establishment of an Aqueous PEG 200-Based Deep Eutectic Solvent Extraction and Enrichment Method for Pumpkin (Cucurbita moschata) Seed Protein. Food Anal. Methods 2017, 10, 1669–1680. DOI: 10.1007/s12161-016-0732-y.
  • Svigelj, R.; Bortolomeazzi, R.; Dossi, N.; Giacomino, A.; Bontempelli, G.; Toniolo, R. An Effective Gluten Extraction Method Exploiting Pure Choline Chloride-Based Deep Eutectic Solvents (ChCl-DESs). Food Anal. Methods 2017, 10, 4079–4085. DOI: 10.1007/s12161-017-0979-y.
  • Grudniewska, A.; de Melo, E. M.; Chan, A.; Gniłka, R.; Boratyński, F.; Matharu, A. S. Enhanced Protein Extraction from Oilseed Cakes Using Glycerol–Choline Chloride Deep Eutectic Solvents: A Biorefinery Approach. ACS Sustain. Chem. Eng. 2018, 6, 15791–15800. DOI: 10.1021/acssuschemeng.8b04359.
  • Mogaddam, M. R. A.; Nemati, M.; Farajzadeh, M. A.; Lotfipour, F.; Nabil, A. A. A.; Mohebbi, A.; Ghorbanpour, H. Application of Natural Deep Eutectic Solvents-Based in-Syringe Dispersive Liquid-Liquid Microextraction for the Extraction of Five Acaricides in Egg Samples. Int. J. Environ. Anal. Chem. 2020. DOI: 10.1080/03067319.2020.1774568.
  • Mardani, A.; Afshar Mogaddam, M. R.; Farajzadeh, M. A.; Mohebbi, A.; Nemati, M.; Torbati, M. A Three-Phase Solvent Extraction System Combined with Deep Eutectic Solvent-Based Dispersive Liquid–Liquid Microextraction for Extraction of Some Organochlorine Pesticides in Cocoa Samples Prior to Gas Chromatography with Electron Capture Detection. J. Sep. Sci. 2020, 43, 3674–3682. DOI: 10.1002/jssc.202000507.
  • Nemati, M.; Farajzadeh, M. A.; Mogaddam, M. R. A.; Mohebbi, A.; Azimi, A. R.; Fattahi, N.; Tuzen, M. Development of a Gas–Controlled Deep Eutectic Solvent–Based Evaporation–Assisted Dispersive Liquid–Liquid Microextraction Approach for the Extraction of Pyrethroid Pesticides from Fruit Juices. Microchem. J. 2022, 175, 107196. DOI: 10.1016/j.microc.2022.107196.
  • Aydin, F.; Yilmaz, E.; Soylak, M. A Simple and Novel Deep Eutectic Solvent Based Ultrasound-Assisted Emulsification Liquid Phase Microextraction Method for Malachite Green in Farmed and Ornamental Aquarium Fish Water Samples. Microchem. J. 2017, 132, 280–285. DOI: 10.1016/j.microc.2017.02.014.
  • Arain, M. B.; Yilmaz, E.; Soylak, M. Deep Eutectic Solvent Based Ultrasonic Assisted Liquid Phase Microextraction for the FAAS Determination of Cobalt. J. Mol. Liq. 2016, 224, 538–543. DOI: 10.1016/j.molliq.2016.10.005.
  • Soylak, M.; Uzcan, F. A Novel Ultrasonication-Assisted Deep Eutectic Solvent Microextraction Procedure for Tartrazine at Trace Levels from Environmental Samples. J. Iran. Chem. Soc. 2020, 17, 461–467. DOI: 10.1007/s13738-019-01781-5.
  • Habila, M. A.; Alabdullkarem, E. A.; Alothman, Z. A.; Yilmaz, E.; Soylak, M. Thiomalic Acid/Ferric Chloride-Based Deep Eutectic Solvent for Microextraction of Chromium in Natural Water Samples Prior to FAAS Analysis. Int. J. Environ. Anal. Chem. 2022, 102, 1825–1833. DOI: 10.1080/03067319.2020.1743831.
  • Wang, H.; Huang, X.; Qian, H.; Lu, R.; Zhang, S.; Zhou, W.; Gao, H.; Xu, D. Vortex-Assisted Deep Eutectic Solvent Reversed-Phase Liquid–Liquid Microextraction of Triazine Herbicides in Edible Vegetable Oils. J. Chromatogr. A 2019, 1589, 10–17. DOI: 10.1016/j.chroma.2018.12.049.
  • Torbati, M.; Mohebbi, A.; Farajzadeh, M. A.; Mogaddam, M. R. A. Simultaneous Derivatization and Air–Assisted Liquid–Liquid Microextraction Based on Solidification of Lighter than Water Deep Eutectic Solvent Followed by Gas Chromatography–Mass Spectrometry: An Efficient and Rapid Method for Trace Analysis of Aromatic Amines in Aqueous Samples. Anal. Chim. Acta. 2018, 1032, 48–55. DOI: 10.1016/j.aca.2018.06.025.
  • Khezeli, T.; Daneshfar, A.; Sahraei, R. A Green Ultrasonic-Assisted Liquid–Liquid Microextraction Based on Deep Eutectic Solvent for the HPLC-UV Determination of Ferulic, Caffeic and Cinnamic Acid from Olive, Almond, Sesame and Cinnamon Oil. Talanta 2016, 150, 577–585. DOI: 10.1016/j.talanta.2015.12.077.
  • Garcia, A.; Rodriguez-Juan, E.; Rodriguez-Gutierrez, G.; Rios, J. J.; Fernandez-Bolanos, J. Extraction of Phenolic Compounds from Virgin Olive Oil by Deep Eutectic Solvents (DESs). Food Chem. 2016, 197, 554–561. DOI: 10.1016/j.foodchem.2015.10.131.
  • Mansur, A. R.; Song, N.-E.; Jang, H. W.; Lim, T.-G.; Yoo, M.; Nam, T. G. Optimizing the Ultrasound-Assisted Deep Eutectic Solvent Extraction of Flavonoids in Common Buckwheat Sprouts. Food Chem. 2019, 293, 438–445. DOI: 10.1016/j.foodchem.2019.05.003.
  • Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-Dependent Extraction of Flavonoids from Citrus Peel Waste Using a Tailor-Made Deep Eutectic Solvent. Food Chem. 2019, 297, 124970. DOI: 10.1016/j.foodchem.2019.124970.
  • Paradiso, V. M.; Squeo, G.; Pasqualone, A.; Caponio, F.; Summo, C. An Easy and Green Tool for Olive Oils Labelling according to the Contents of Hydroxytyrosol and Tyrosol Derivatives: Extraction with a Natural Deep Eutectic Solvent and Direct Spectrophotometric Analysis. Food Chem. 2019, 291, 1–6. DOI: 10.1016/j.foodchem.2019.03.139.
  • Liu, W.; Zhang, K.; Yu, J.; Bi, Y. A Green Ultrasonic-Assisted Liquid-Liquid Microextraction Based on Deep Eutectic Solvent for the HPLC-UV Determination of TBHQ in Edible Oils. Food Anal. Methods 2017, 10, 3209–3215. DOI: 10.1007/s12161-017-0891-5.
  • Liu, W.; Zhang, K.; Chen, J.; Yu, J. Ascorbic Acid and Choline Chloride: A New Natural Deep Eutectic Solvent for Extracting Tert-Butylhydroquinone Antioxidant. J. Mol. Liq. 2018, 260, 173–179. DOI: 10.1016/j.molliq.2018.03.092.
  • Yilmaz, F. M.; Karaaslan, M.; Vardin, H. Optimization of Extraction Parameters on the Isolation of Phenolic Compounds from Sour Cherry (Prunus cerasus L.) Pomace. J. Food Sci. Technol. 2015, 52, 2851–2859. DOI: 10.1007/s13197-014-1345-3.
  • Bubalo, M. C.; Ćurko, N.; Tomašević, M.; Ganić, K. K.; Redovniković, I. R. Green Extraction of Grape Skin Phenolics by Using Deep Eutectic Solvents. Food Chem. 2016, 200, 159–166. DOI: 10.1016/j.foodchem.2016.01.040.
  • Panić, M.; Stojković, M. R.; Kraljić, K.; Škevin, D.; Redovniković, I. R.; Srček, V. G.; Radošević, K. Ready-to-Use Green Polyphenolic Extracts from Food by-Products. Food Chem. 2019, 283, 628–636. DOI: 10.1016/j.foodchem.2019.01.061.
  • Ferrone, V.; Genovese, S.; Carlucci, M.; Tiecco, M.; Germani, R.; Preziuso, F.; Epifano, F.; Carlucci, G.; Taddeo, V. A. A Green Deep Eutectic Solvent Dispersive Liquid-Liquid Micro-Extraction (DES-DLLME) for the UHPLC-PDA Determination of Oxyprenylated Phenylpropanoids in Olive, Soy, Peanuts, Corn, and Sunflower Oil. Food Chem. 2018, 245, 578–585. DOI: 10.1016/j.foodchem.2017.10.135.
  • Jeong, K. M.; Jin, Y.; Yoo, D. E.; Han, S. Y.; Kim, E. M.; Lee, J. One-Step Sample Preparation for Convenient Examination of Volatile Monoterpenes and Phenolic Compounds in Peppermint Leaves Using Deep Eutectic Solvents. Food Chem. 2018, 251, 69–76. DOI: 10.1016/j.foodchem.2018.01.079.
  • Park, H. E.; Tang, B.; Row, K. H. Application of Deep Eutectic Solvents as Additives in Ultrasonic Extraction of Two Phenolic Acids from Herba Artemisiae Scopariae. Anal. Lett. 2014, 47, 1476–1484. DOI: 10.1080/00032719.2013.874016.
  • Duan, L.; Dou, L.-L.; Guo, L.; Li, P.; Liu, E. H. Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products. ACS Sustain. Chem. Eng. 2016, 4, 2405–2411. DOI: 10.1021/acssuschemeng.6b00091.
  • Nemati, M.; Farajzadeh, M. A.; Mohebbi, A.; Sehatkhah, M. R.; Afshar Mogaddam, M. R. Simultaneous Application of Deep Eutectic Solvent as Extraction Solvent and Ion-Pair Agent in Liquid Phase Microextraction for the Extraction of Biogenic Amines from Tuna Fish Samples. Microchem. J. 2020, 159, 105496. DOI: 10.1016/j.microc.2020.105496.
  • Zhang, X.; Wang, Y.; Wei, Z. H.; An, D. Y.; Pu, W. R.; Liu, Z. S.; Huang, Y. P. Improving the Identification of Lysine-Acetylated Peptides Using a Molecularly Imprinted Monolith Prepared by a Deep Eutectic Solvent Monomer. J. Proteome Res. 2022, 21, 325–338. DOI: 10.1021/acs.jproteome.1c00553.
  • Li, P.; Huang, D.; Tang, J.; Zhang, P.; Meng, F. Silica Gel Impregnated with Deep Eutectic Solvent-Based Matrix Solid-Phase Dispersion Followed by High-Performance Liquid Chromatography for Extraction and Detection of Triazine Herbicides in Brown Sugar. Anal. Bioanal. Chem. 2022, 414, 3497–3505. DOI: 10.1007/s00216-022-03970-3.
  • Guo, Y.; Wang, H.; Chen, Z.; Jing, X.; Wang, X. Determination of Methomyl in Grain Using Deep Eutectic Solvent-Based Extraction Combined with Fluorescence-Based Enzyme Inhibition Assays. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 266, 120412. DOI: 10.1016/j.saa.2021.120412.
  • Kantar, S. E.; Rajha, H. N.; Boussetta, N.; Vorobiev, E.; Maroun, R. G.; Louka, N. Green Extraction of Polyphenols from Grapefruit Peels Using High Voltage Electrical Discharges, Deep Eutectic Solvents and Aqueous Glycerol. Food Chem. 2019, 295, 165–171. DOI: 10.1016/j.foodchem.2019.05.111.
  • Wang, W.; Du, Y.; Xiao, Z.; Li, Y.; Li, B.; Yang, G. Determination of Trace Rhodamine B in Chili Oil by Deep Eutectic Solvent Extraction and an Ultra High-Performance Liquid Chromatograph Equipped with a Fluorescence Detector. Anal. Sci. 2017, 33, 715–717. DOI: 10.2116/analsci.33.715.
  • Liu, C.; Liu, D.; Liu, X.; Jing, X.; Zong, F.; Wang, P.; Zhou, Z. Deep Eutectic Solvent-Based Liquid Phase Microextraction for the Determination of Pharmaceuticals and Personal Care Products in Fish Oil. New J. Chem. 2017, 41, 15105–15109. DOI: 10.1039/C7NJ03350H.
  • Wu, X.; Zhang, X.; Yang, Y.; Liu, Y.; Chen, X. Development of a Deep Eutectic Solvent-Based Matrix Solid Phase Dispersion Methodology for the Determination of Aflatoxins in Crops. Food Chem. 2019, 291, 239–244. DOI: 10.1016/j.foodchem.2019.04.030.
  • Karimi, M.; Shabani, A. M. H.; Dadfarnia, S. Deep Eutectic Solvent-Mediated Extraction for Ligand-Less Preconcentration of Lead and Cadmium from Environmental Samples Using Magnetic Nanoparticles. Microchim. Acta 2016, 183, 563–571. DOI: 10.1007/s00604-015-1671-9.
  • Vieira, V.; Prieto, M. A.; Barros, L.; Coutinho, J. A. P.; Ferreira, I. C. F. R.; Ferreira, O. Enhanced Extraction of Phenolic Compounds Using Choline Chloride Based Deep Eutectic Solvents from Juglans regia L. Ind. Crops Prod. 2018, 115, 261–271. DOI: 10.1016/j.indcrop.2018.02.029.
  • Zhao, B.-Y.; Xu, P.; Yang, F.-X.; Wu, H.; Zong, M.-H.; Lou, W.-Y. Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. DOI: 10.1021/acssuschemeng.5b00619.
  • Bajkacz, S.; Adamek, J. Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Anal. Methods 2018, 11, 1330–1344. DOI: 10.1007/s12161-017-1118-5.
  • Bentley, J.; Olsen, E. K.; Moore, J. P.; Farrant, J. M. The Phenolic Profile Extracted from the Desiccation-Tolerant Medicinal Shrub Myrothamnus flabellifolia Using Natural Deep Eutectic Solvents Varies According to the Solvation Conditions. Phytochemistry 2020, 173, 112323. DOI: 10.1016/j.phytochem.2020.112323.
  • Panhwar, A. H.; Tuzen, M.; Kazi, T. G. Choline Chloride–Oxalic Acid as a Deep Eutectic Solvent–Based Innovative Digestion Method for the Determination of Selenium and Arsenic in Fish Samples. J. AOAC Int. 2018, 101, 1183–1189. DOI: 10.5740/jaoacint.17-0286.
  • López‐Linares, J. C.; Campillo, V.; Coca, M.; Lucas, S.; García‐Cubero, M. T. Microwave‐Assisted Deep Eutectic Solvent Extraction of Phenolic Compounds from Brewer’s Spent Grain. J. Chem. Technol. Biotechnol. 2021, 96, 481–490. DOI: 10.1002/jctb.6565.
  • Alañón, M. E.; Ivanović, M.; Gómez-Caravaca, A. M.; Arráez-Román, D.; Segura-Carretero, A. Choline Chloride Derivative-Based Deep Eutectic Liquids as Novel Green Alternative Solvents for Extraction of Phenolic Compounds from Olive Leaf. Arabian J. Chem. 2020, 13, 1685–1701. DOI: 10.1016/j.arabjc.2018.01.003.
  • Bonacci, S.; Di Gioia, M. L.; Costanzo, P.; Maiuolo, L.; Tallarico, S.; Nardi, M. Natural Deep Eutectic Solvent as Extraction Media for the Main Phenolic Compounds from Olive Oil Processing Wastes. Antioxidants (Basel) 2020, 9, 513. DOI: 10.3390/antiox9060513.
  • Gao, M.-Z.; Cui, Q.; Wang, L.-T.; Meng, Y.; Yu, L.; Li, Y.-Y.; Fu, Y.-J. A Green and Integrated Strategy for Enhanced Phenolic Compounds Extraction from Mulberry (Morus alba L.) Leaves by Deep Eutectic Solvent. Microchem. J. 2020, 154, 104598. DOI: 10.1016/j.microc.2020.104598.
  • Ivanovic, M.; Alanon, M. E.; Arraez-Roman, D.; Segura-Carretero, A. Enhanced and Green Extraction of Bioactive Compounds from Lippia Citriodora by Tailor-Made Natural Deep Eutectic Solvents. Food Res. Int. 2018, 111, 67–76. DOI: 10.1016/j.foodres.2018.05.014.
  • Peng, X.; Duan, M.-H.; Yao, X.-H.; Zhang, Y.-H.; Zhao, C.-J.; Zu, Y.-G.; Fu, Y.-J. Green Extraction of Five Target Phenolic Acids from Lonicerae Japonicae Flos with Deep Eutectic Solvent. Sep. Purif. Technol. 2016, 157, 249–257. DOI: 10.1016/j.seppur.2015.10.065.
  • Wei, Z.; Qi, X.; Li, T.; Luo, M.; Wang, W.; Zu, Y.; Fu, Y. Application of Natural Deep Eutectic Solvents for Extraction and Determination of Phenolics in Cajanus cajan Leaves by Ultra Performance Liquid Chromatography. Sep. Purif. Technol. 2015, 149, 237–244. DOI: 10.1016/j.seppur.2015.05.015.
  • Cui, Q.; Peng, X.; Yao, X.-H.; Wei, Z.-F.; Luo, M.; Wang, W.; Zhao, C.-J.; Fu, Y.-J.; Zu, Y.-G. Deep Eutectic Solvent-Based Microwave-Assisted Extraction of Genistin, Genistein and Apigenin from Pigeon Pea Roots. Sep. Purif. Technol. 2015, 150, 63–72. DOI: 10.1016/j.seppur.2015.06.026.
  • Fu, X.; Wang, D.; Belwal, T.; Xu, Y.; Li, L.; Luo, Z. Sonication-Synergistic Natural Deep Eutectic Solvent as a Green and Efficient Approach for Extraction of Phenolic Compounds from Peels of Carya cathayensis Sarg. Food Chem. 2021, 355, 129577. DOI: 10.1016/j.foodchem.2021.129577.
  • Ruesgas-Ramon, M.; Suarez-Quiroz, M. L.; Gonzalez-Rios, O.; Barea, B.; Cazals, G.; Figueroa-Espinoza, M. C.; Durand, E. Biomolecules Extraction from Coffee and Cocoa by- and co-Products Using Deep Eutectic Solvents. J. Sci. Food Agric. 2020, 100, 81–91. DOI: 10.1002/jsfa.9996.
  • Barbieri, J. B.; Goltz, C.; Batistão Cavalheiro, F.; Theodoro Toci, A.; Igarashi-Mafra, L.; Mafra, M. R. Deep Eutectic Solvents Applied in the Extraction and Stabilization of Rosemary (Rosmarinus officinalis L.) Phenolic Compounds. Ind. Crops Prod. 2020, 144, 112049. DOI: 10.1016/j.indcrop.2019.112049.
  • Fanali, C.; Posta, S. D.; Dugo, L.; Russo, M.; Gentili, A.; Mondello, L.; Gara, L. D. Application of Deep Eutectic Solvents for the Extraction of Phenolic Compounds from Extra-Virgin Olive Oil. Electrophoresis 2020, 41, 1752–1759. DOI: 10.1002/elps.201900423.
  • Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep Eutectic Solvent-Based Ultrasonic-Assisted Extraction of Phenolic Compounds from Moringa oleifera L. Leaves: Optimization, Comparison and Antioxidant Activity. Sep. Purif. Technol. 2020, 247, 117014. DOI: 10.1016/j.seppur.2020.117014.
  • Cai, C.; Li, F.; Liu, L.; Tan, Z. Deep Eutectic Solvents Used as the Green Media for the Efficient Extraction of Caffeine from Chinese Dark Tea. Sep. Purif. Technol. 2019, 227, 115723. DOI: 10.1016/j.seppur.2019.115723.
  • Zhou, P.; Wang, X.; Liu, P.; Huang, J.; Wang, C.; Pan, M.; Kuang, Z. Enhanced Phenolic Compounds Extraction from Morus alba L. Leaves by Deep Eutectic Solvents Combined with Ultrasonic-Assisted Extraction. Ind. Crops Prod. 2018, 120, 147–154. DOI: 10.1016/j.indcrop.2018.04.071.
  • Radošević, K.; Ćurko, N.; Gaurina Srček, V.; Cvjetko Bubalo, M.; Tomašević, M.; Ganić, K. K.; Radojčić Redovniković, I. Natural Deep Eutectic Solvents as Beneficial Extractants for Enhancement of Plant Extracts Bioactivity. Lwt 2016, 73, 45–51. DOI: 10.1016/j.lwt.2016.05.037.
  • Bakirtzi, C.; Triantafyllidou, K.; Makris, D. P. Novel Lactic Acid-Based Natural Deep Eutectic Solvents: Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Common Native Greek Medicinal Plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. DOI: 10.1016/j.jarmap.2016.03.003.
  • Xia, B.; Yan, D.; Bai, Y.; Xie, J.; Cao, Y.; Liao, D.; Lin, L. Determination of Phenolic Acids in Prunella vulgaris L.: A Safe and Green Extraction Method Using Alcohol-Based Deep Eutectic Solvents. Anal. Methods 2015, 7, 9354–9364. DOI: 10.1039/C5AY02035B.
  • Shang, X.; Dou, Y.; Zhang, Y.; Tan, J.-N.; Liu, X.; Zhang, Z. Tailor-Made Natural Deep Eutectic Solvents for Green Extraction of Isoflavones from Chickpea (Cicer arietinum L.) Sprouts. Ind. Crops Prod. 2019, 140, 111724. DOI: 10.1016/j.indcrop.2019.111724.
  • Ali, M. C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective Extraction of Flavonoids from Lycium barbarum L. Fruits by Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction. Talanta 2019, 203, 16–22. DOI: 10.1016/j.talanta.2019.05.012.
  • Altunay, N.; Tuzen, M. A Simple and Green Ultrasound Liquid–Liquid Microextraction Method Based on Low Viscous Hydrophobic Deep Eutectic Solvent for the Preconcentration and Separation of Selenium in Water and Food Samples Prior to HG-AAS Detection. Food Chem. 2021, 364, 130371. DOI: 10.1016/j.foodchem.2021.130371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.