409
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances in Construction and Application of Metal-Nanozymes in Pharmaceutical Analysis

, , , , , , & show all

References

  • Attar, F.; Shahpar, M. G.; Rasti, B.; Sharifi, M.; Saboury, A. A.; Rezayat, S. M.; Falahati, M. Nanozymes with Intrinsic Peroxidase-Like Activities. J. Mol. Liq. 2019, 278, 130–144. DOI: 10.1016/j.molliq.2018.12.011.
  • Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano. 2021, 15, 2005–2037. 10.1021/acsnano.0c06962.
  • Ghorbani, M.; Derakhshankhah, H.; Jafari, S.; Salatin, S.; Dehghanian, M.; Falahati, M.; Ansari, A. Nanozyme Antioxidants as Emerging Alternatives for Natural Antioxidants: Achievements and Challenges in Perspective. Nano Today. 2019, 29, 100775. DOI: 10.1016/j.nantod.2019.100775.
  • Huang, Y. Y.; S Ren, J.; Qu, X. G. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. 10.1021/acs.chemrev.8b00672.
  • Li, P.; Wu, C.; Xu, Y.; Cheng, D.; Lu, Q.; Gao, J.; Yang, W.; Zhu, X.; Liu, M.; Li, H.; et al. Group IV Nanodots: Newly Emerging Properties and Application in Biomarkers Sensing. TrAC - Trends Anal. Chem. 2020, 131, 116007. DOI: 10.1016/j.trac.2020.116007.
  • Wang, W. Z.; Gunasekaran, S. Nanozymes-Based Biosensors for Food Quality and Safety. TrAC - Trends Anal. Chem. 2020, 126, 115841. DOI: 10.1016/j.trac.2020.115841.
  • Zhang, X. L.; Wu, D.; Zhou, X. X.; Yu, Y. X.; Liu, J. C.; Hu, N.; Wang, H. L.; Li, G. L.; Wu, Y. N. Recent Progress in the Construction of Nanozyme-Based Biosensors and Their Applications to Food Safety Assay. TrAC - Trends Anal. Chem. 2019, 121, 115668. DOI: 10.1016/j.trac.2019.115668.
  • Li, X.; Wang, L. J.; Du, D.; Ni, L.; Pan, J. M.; Niu, X. H. Emerging Applications of Nanozymes in Environmental Analysis: Opportunities and Trends. TrAC - Trends Anal. Chem. 2019, 120, 115653. DOI: 10.1016/j.trac.2019.115653.
  • Zhang, R. F.; Yan, X. Y.; Fan, K. L. Nanozymes Inspired by Natural Enzymes. Acc. Mater. Res. 2021, 2, 534–547. DOI: 10.1021/accountsmr.1c00074.
  • Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A Clear Definition with Fuzzy Edges. Nano Today. 2021, 40, 101269. DOI: 10.1016/j.nantod.2021.101269.
  • Sharifi, M.; Faryabi, K.; Talaei, A. J.; Shekha, M. S.; Ale-Ebrahim, M.; Salihi, A.; Nanakali, N. M. Q.; Aziz, F. M.; Rasti, B.; Hasan, A.; Falahati, M. Antioxidant Properties of Gold Nanozyme: A Review. J. Mol. Liq. 2020, 297, 112004. DOI: 10.1016/j.molliq.2019.112004.
  • Sharifi, M.; Hosseinali, S. H.; Yousefvand, P.; Salihi, A.; Shekha, M. S.; Aziz, F. M.; JouyaTalaei, A.; Hasan, A.; Falahati, M. Gold Nanozyme: Biosensing and Therapeutic Activities. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110422. 10.1016/j.msec.2019.110422.
  • Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W.; et al. A Single-Atom Nanozyme for Wound Disinfection Applications. Angew. Chem. Int. Ed. Engl. 2019, 58, 4911–4916. 10.1002/anie.201813994.
  • Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808. 10.1039/c6cs00724d.
  • Li, Y.; Zhu, W.; Li, J.; Chu, H. Research Progress in Nanozyme-Based Composite Materials for Fighting against Bacteria and Biofilms. Colloids Surf. B Biointerfaces. 2021, 198, 111465–111465. 10.1016/j.colsurfb.2020.111465.
  • Liang, M. M.; Yan, X. Y. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res. 2019, 52, 2190–2200. 10.1021/acs.accounts.9b00140.
  • Ma, L.; Jiang, F. B.; Fan, X.; Wang, L. Y.; He, C.; Zhou, M.; Li, S.; Luo, H. R.; Cheng, C.; Qiu, L. Metal-Organic-Framework-Engineered Enzyme-Mimetic Catalysts. Adv. Mater. 2020, 32, 2003065. DOI: 10.1002/adma.202003065.
  • Masud, M. K.; Kim, J.; Billah, M. M.; Wood, K.; Shiddiky, M. J. A.; Nguyen, N. T.; Parsapur, R. K.; Kaneti, Y. V.; Alshehri, A. A.; Alghamidi, Y. G.; et al. Nanoarchitectured Peroxidase-Mimetic Nanozymes: Mesoporous Nanocrystalline Alpha- or Gamma-Iron Oxide? J. Mater. Chem. B. 2019, 7, 5412–5422. 10.1039/c9tb00989b.
  • Navyatha, B.; Singh, S.; Nara, S. AuPeroxidase Nanozymes: Promises and Applications in Biosensing. Biosens. Bioelectron. 2021, 175, 112882. 10.1016/j.bios.2020.112882.
  • Niu, X. H.; Cheng, N.; Ruan, X. F.; Du, D.; Lin, Y. H. Review-Nanozyme-Based Immunosensors and Immunoassays: Recent Developments and Future Trends. J. Electrochem. Soc. 2020, 167, 037508. DOI: 10.1149/2.0082003JES.
  • Alizadeh, N.; Salimi, A. Multienzymes Activity of Metals and Metal Oxide Nanomaterials: Applications from Biotechnology to Medicine and Environmental Engineering. J. Nanobiotechnol. 2021, 19. DOI: 10.1186/s12951-021-00771-1.
  • Zhang, R.; Xue, B.; Tao, Y.; Zhao, H.; Zhang, Z.; Wang, X.; Zhou, X.; Jiang, B.; Yang, Z.; Yan, X.; Fan, K. Edge-Site Engineering of Defective Fe-N4 Nanozymes with Boosted Catalase-Like Performance for Retinal Vasculopathies. Adv. Mater. 2022, e2205324. DOI: 10.1002/adma.202205324.
  • Yang, J.; Zhang, R.; Zhao, H.; Qi, H.; Li, J.; Li, J. F.; Zhou, X.; Wang, A.; Fan, K.; Yan, X.; Zhang, T. Bioinspired Copper Single‐Atom Nanozyme as a Superoxide Dismutase‐like Antioxidant for Sepsis Treatment. Exploration. 2022, 2, 20210267. DOI: 10.1002/EXP.20210267.
  • Tang, G.; He, J.; Liu, J.; Yan, X.; Fan, K. Nanozyme for Tumor Therapy: Surface Modification Matters. Exploration. 2021, 1, 75–89. DOI: 10.1002/EXP.20210005.
  • Adegoke, O.; Mckenzie, C.; Daeid, N. N. Multi-Shaped Cationic Gold Nanoparticle-L-Cysteine-ZnSeS Quantum Dots Hybrid Nanozyme as an Intrinsic Peroxidase Mimic for the Rapid Colorimetric Detection of Cocaine. Sens. Actuator B-Chem. 2019, 287, 416–427. DOI: 10.1016/j.snb.2019.02.074.
  • Chen, G.; Jin, M. J.; Yan, M. M.; Cui, X. Y.; Wang, Y. S.; Zheng, W. J.; X Qin, G.; Zhang, Y. D.; Li, M. J.; Liao, Y.; et al. Colorimetric Bio-Barcode Immunoassay for Parathion Based on Amplification by Using Platinum Nanoparticles Acting as a Nanozyme. Microchim. Acta. 2019, 186, 10. DOI: 10.1007/s00604-019-3433-6.
  • Fan, K. L.; Wang, H.; Xi, J. Q.; Liu, Q.; Meng, X. Q.; Duan, D. M.; Gao, L. Z.; Yan, X. Y. Optimization of Fe3O4 Nanozyme Activity via Single Amino Acid Modification Mimicking an Enzyme Active site. Chem. Commun. (Camb.). 2016, 53, 424–427. 10.1039/c6cc08542c.
  • Hu, L. Z.; Liao, H.; Feng, L. Y.; Wang, M.; Fu, W. S. Accelerating the Peroxidase-Like Activity of Gold Nanoclusters at Neutral pH for Colorimetric Detection of Heparin and Heparinase Activity. Anal. Chem. 2018, 90, 6247–6252. 10.1021/acs.analchem.8b00885.
  • Zhang, Z. P.; Tian, Y.; Huang, P. C.; Wu, F. Y. Using Target-Specific Aptamers to Enhance the Peroxidase-like Activity of Gold Nanoclusters for Colorimetric Detection of Tetracycline Antibiotics. Talanta. 2020, 208, 120342. 10.1016/j.talanta.2019.120342.
  • Wang, F. Q.; Chen, L.; Liu, D. H.; Ma, W. R.; Dramou, P.; He, H. Nanozymes Based on Metal-Organic Frameworks: Construction and Prospects. TrAC - Trends Anal. Chem. 2020, 133, 116080. DOI: 10.1016/j.trac.2020.116080.
  • Chen, L.; Liu, D. H.; Peng, J.; Du, Q. Z.; He, H. Ratiometric Fluorescence Sensing of Metal-Organic Frameworks: Tactics and Perspectives. Coord. Chem. Rev. 2020, 404, 213113. DOI: 10.1016/j.ccr.2019.213113.
  • Li, X.; Zhu, H. J.; Liu, P.; Wang, M. Z.; M Pan, J.; Qiu, F. X.; Ni, L.; Ni, X. H. Realizing Selective Detection with Nanozymes: Strategies and Trends. TrAC - Trends Anal. Chem. 2021, 143, 116379. DOI: 10.1016/j.trac.2021.116379.
  • Zhang, Z.; Zhang, X.; Liu, B.; Liu, J. Molecular Imprinting on Inorganic Nanozymes for Hundred-Fold Enzyme Specificity. J. Am. Chem. Soc. 2017, 139, 5412–5419. 10.1021/jacs.7b00601.
  • He, J. B.; Liu, G. Y.; Jiang, M. D.; Xu, L. H.; Kong, F. F.; Xu, Z. X. Development of Novel Biomimetic Enzyme-Linked Immunosorbent Assay Method Based on Au@SiO2 Nanozyme Labelling for the Detection of Sulfadiazine. Food Agric. Immunol. 2020, 31, 341–351. DOI: 10.1080/09540105.2020.1728234.
  • Zhang, Z. P.; Liu, Y.; Huang, P. C.; Wu, F. Y.; Ma, L. H. Polydopamine Molecularly Imprinted Polymer Coated on a Biomimetic Iron-Based Metal-Organic Framework for Highly Selective Fluorescence Detection of Metronidazole. Talanta. 2021, 232, 122411. 10.1016/j.talanta.2021.122411.
  • Wu, L.; Zhou, M.; Wang, Y.; Liu, J. Nanozyme and Aptamer-Based Immunosorbent Assay for Aflatoxin B1. J. Hazard Mater. 2020, 399, 123154. 10.1016/j.jhazmat.2020.123154.
  • Tian, F. Y.; Zho, J.; Jiao, B. N.; He, Y. A Nanozyme-Based Cascade Colorimetric Aptasensor for Amplified Detection of Ochratoxin A. Nanoscale. 2019, 11, 9547–9555. 10.1039/c9nr02872b.
  • Weerathunge, P.; Behera, B. K.; Zihara, S.; Singh, M.; Prasad, S. N.; Hashmi, S.; Mariathomas, P. R. D.; Bansal, V.; Ramanathan, R. Dynamic Interactions between Peroxidase-Mimic Silver NanoZymes and Chlorpyrifos-Specific Aptamers Enable Highly-Specific Pesticide Sensing in River Water. Anal. Chim. Acta. 2019, 1083, 157–165. 10.1016/j.aca.2019.07.066.
  • Xu, Z.; Long, L.-l.; Chen, Y.-q.; Chen, M.-L.; Cheng, Y.-H. A Nanozyme-Linked Immunosorbent Assay Based on Metal-Organic Frameworks (MOFs) for Sensitive Detection of Aflatoxin B-1. Food Chem. 2021, 338, 128039. 10.1016/j.foodchem.2020.128039.
  • Cai, X. L.; Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Nanozyme-Involved Biomimetic Cascade Catalysis for Biomedical Applications. Mater. Today. 2021, 44, 211–228. DOI: 10.1016/j.mattod.2020.12.005.
  • Cheng, X. Q.; Zheng, Z. P.; Zhou, X. R.; Kuang, Q. Metal-Organic Framework as a Compartmentalized Integrated Nanozyme Reactor to Enable High-Performance Cascade Reactions for Glucose Detection. ACS Sustain. Chem. Eng. 2020, 8, 17783–17790. DOI: 10.1021/acssuschemeng.0c06325.
  • Wang, X. Q.; Ouyang, F.; Cui, L. Q.; Xiong, T. D.; L Guan, X.; Guo, Y. Q.; Duan, S. F. Surface Coating-Modulated Peroxidase-like Activity of Maghemite Nanoparticles for a Chromogenic Analysis of Cholesterol. J. Nanopart. Res. 2019, 21, 13. DOI: 10.1007/s11051-019-4662-7.
  • Liu, Y.; Qin, Y. L.; Zhang, Q. Y.; Zou, W. T.; Jin, L. C.; Guo, R. Arginine-Rich Peptide/Platinum Hybrid Colloid Nanoparticle Cluster: A Single Nanozyme Mimicking Multi-Enzymatic Cascade Systems in Peroxisome. J. Colloid Interface Sci. 2021, 600, 37–48. 10.1016/j.jcis.2021.05.025.
  • Zhang, T. T.; Xing, Y.; Song, Y.; Gu, Y.; Yan, X. Y.; Lu, N. N.; Liu, H.; Xu, Z. Q.; Xu, H. X.; Zhang, Z. Q.; Yang, M. AuPt/MOF-Graphene: A Synergistic Catalyst with Surprisingly High Peroxidase-Like Activity and Its Application for H2O2 Detection. Anal. Chem. 2019, 91, 10589–10595. 10.1021/acs.analchem.9b01715.
  • Li, X.; Li, X.; Li, D.; Zhao, M.; Wu, H.; Shen, B.; Liu, P.; Ding, S. Electrochemical Biosensor for Ultrasensitive Exosomal miRNA Analysis by Cascade Primer Exchange Reaction and MOF@Pt@MOF Nanozyme. Biosens. Bioelectron. 2020, 168, 112554. 10.1016/j.bios.2020.112554.
  • Cai, Y.; Zhu, H. S.; Zhou, W. C.; Qiu, Z. Y.; Chen, C. C.; R Qileng, A.; Li, K. S.; Liu, Y. J. Capsulation of AuNCs with AIE Effect into Metal-Organic Framework for the Marriage of a Fluorescence and Colorimetric Biosensor to Detect Organophosphorus Pesticides. Anal. Chem. 2021, 93, 7275–7282. 10.1021/acs.analchem.1c00616.
  • Li, A. Y.; Long, L.; Liu, F. S.; Liu, J. B.; Wu, X. C.; Ji, Y. L. Antigen-Labeled Mesoporous Silica-Coated Au-Core Pt-Shell Nanostructure: A Novel Nanoprobe for Highly Efficient Virus Diagnosis. J. Biol. Eng. 2019, 13, DOI: 10.1186/s13036-019-0220-1.
  • Huang, X.; Xia, F.; Nan, Z. D. Fabrication of FeS2/SiO2 Double Mesoporous Hollow Spheres as an Artificial Peroxidase and Rapid Determination of H2O2 and Glutathione. ACS Appl. Mater. Interfaces. 2020, 12, 46539–46548. 10.1021/acsami.0c12593.
  • Liu, X. L.; Wang, X. H.; Han, Q. S.; Qi, C.; Wang, C.; Yang, R. Facile Synthesis of IrO2/rGO Nanocomposites with High Peroxidase-like Activity for Sensitive Colorimetric Detection of Low Weight Biothiols. Talanta. 2019, 203, 227–234. 10.1016/j.talanta.2019.05.070.
  • Adegoke, O.; Zolotovskaya, S.; Abdolvand, A.; Daeid, N. N. Rapid and Highly Selective Colorimetric Detection of Nitrite Based on the Catalytic-Enhanced Reaction of Mimetic Au Nanoparticle-CeO2 Nanoparticle-Graphene Oxide Hybrid Nanozyme. Talanta. 2021, 224, 121875. 10.1016/j.talanta.2020.121875.
  • Ruan, X. F.; Liu, D.; Niu, X. H.; Wang, Y. J.; Simpson, C. D.; Cheng, N.; Du, D.; Lin, Y. H. 2D Graphene Oxide/Fe-MOF Nanozyme Nest with Superior Peroxidase-Like Activity and Its Application for Detection of Woodsmoke Exposure Biomarker. Anal. Chem. 2019, 91, 13847–13854. 10.1021/acs.analchem.9b03321.
  • Li, S.; Ma, X.; Pang, C.; Wang, M.; Yin, G.; Xu, Z.; Li, J.; Luo, J. Novel Chloramphenicol Sensor Based on Aggregation-Induced Electrochemiluminescence and Nanozyme Amplification. Biosens. Bioelectron. 2021, 176, 112944–112944. 10.1016/j.bios.2020.112944.
  • Wang, C. S.; Liu, C.; Luo, J. B.; P Tian, Y.; Zhou, N. D. Direct Electrochemical Detection of Kanamycin Based on Peroxidase-like Activity of Gold Nanoparticles. Anal. Chim. Acta. 2016, 936, 75–82. 10.1016/j.aca.2016.07.013.
  • Wei, D.; Zhang, X.; Chen, B.; Zeng, K. Using Bimetallic Au@Pt Nanozymes as a Visual Tag and as an Enzyme Mimic in Enhanced Sensitive Lateral-Flow Immunoassays: Application for the Detection of Streptomycin. Anal. Chim. Acta. 2020, 1126, 106–113. 10.1016/j.aca.2020.06.009.
  • Xiao, J. X.; Hu, X. L.; Wang, K.; Zou, Y. M.; Gyimah, E.; Yakubu, S.; Zhang, Z. A Novel Signal Amplification Strategy Based on the Competitive Reaction between 2D Cu-TCPP(Fe) and Polyethyleneimine (PEI) in the Application of an Enzyme-Free and Ultrasensitive Electrochemical Immunosensor for Sulfonamide Detection. Biosens. Bioelectron. 2020, 150, 111883. 10.1016/j.bios.2019.111883.
  • Alle, M.; Park, S. C.; Bandi, R.; Lee, S. H.; Kim, J. C. Rapid in-Situ Growth of Gold Nanoparticles on Cationic Cellulose Nanofibrils: Recyclable Nanozyme for the Colorimetric Glucose Detection. Carbohydr. Polym. 2021, 253, 117239. 10.1016/j.carbpol.2020.117239.
  • Gokcal, B.; Kip, C.; Tuncel, A. One-Pot, Direct Glucose Detection in Human Whole Blood without Using a Dilution Factor by a Magnetic Nanozyme with Dual Enzymatic Activity. J. Alloy. Compd. 2020, 843, 156012. DOI: 10.1016/j.jallcom.2020.156012.
  • Smutok, O.; Kavetskyy, T.; Prokopiv, T.; Serkiz, R.; Wojnarowska-Nowak, R.; Sausa, O.; Novak, I.; Berek, D.; Melman, A.; Gonchar, M. New Micro/Nanocomposite with Peroxidase-like Activity in Construction of Oxidases-Based Amperometric Biosensors for Ethanol and Glucose Analysis. Anal. Chim. Acta. 2021, 1143, 201–209. 10.1016/j.aca.2020.11.052.
  • Hu, S.; Jiang, Y. N.; Wu, Y. P.; Guo, X. Y.; Ying, Y.; Wen, Y.; Yang, H. F. Enzyme-Free Tandem Reaction Strategy for Surface-Enhanced Raman Scattering Detection of Glucose by Using the Composite of Au Nanoparticles and Porphyrin-Based Metal-Organic Framework. ACS Appl. Mater. Interfaces. 2020, 12, 55324–55330. 10.1021/acsami.0c12988.
  • Kim, M. Y.; Kim, J. Chitosan Microgels Embedded with Catalase Nanozyme-Loaded Mesocellular Silica Foam for Glucose-Responsive Drug Delivery. ACS Biomater. Sci. Eng. 2017, 3, 572–578. 10.1021/acsbiomaterials.6b00716.
  • Li, F.; Hu, Y. T.; Zhao, A. Q.; Xi, Y. C.; Li, Z. M.; He, J. B. Beta-Cyclodextrin Coated Porous Pd@Au Nanostructures with Enhanced Peroxidase-like Activity for Colorimetric and Paper-Based Determination of Glucose. Microchim. Acta. 2020, 187, 11. DOI: 10.1007/s00604-020-04410-8.
  • Yin, X. L.; Liu, P.; Xu, X. C.; Pan, J. M.; Li, X.; Niu, X. H. Breaking the pH Limitation of Peroxidase-like CoFe2O4 Nanozyme via Vitriolization for One-Step Glucose Detection at Physiological pH. Sens. Actuator B-Chem. 2021, 328, 129033. DOI: 10.1016/j.snb.2020.129033.
  • Liu, B. W.; Sun, Z. Y.; Huang, P. J. J.; Liu, J. W. Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum. J. Am. Chem. Soc. 2015, 137, 1290–1295. 10.1021/ja511444e.
  • Liu, W. D.; Guo, J. N.; Chen, C. X.; Ni, P. J.; Jiang, Y. Y.; Zhang, C. H.; Wang, B.; Lu, Y. Z. Ultrathin PdCu Alloy Nanosheet-Assembled 3D Nanoflowers with High Peroxidase-like Activity toward Colorimetric Glucose Detection. Microchim. Acta. 2021, 188, 10. DOI: 10.1007/s00604-021-04776-3.
  • Prasad, S. N.; Weerathunge, P.; Karim, M. N.; Anderson, S.; Hashmi, S.; Mariathomas, P. D.; Bansal, V.; Ramanathan, R. Non-Invasive Detection of Glucose in Human Urine Using a Color-Generating Copper NanoZyme. Anal. Bioanal. Chem. 2021, 413, 1279–1291. 10.1007/s00216-020-03090-w.
  • Yuan, A. I.; Lu, Y. W.; Zhang, X. D.; Chen, Q. M.; Huang, Y. M. Two-Dimensional Iron MOF Nanosheet as a Highly Efficient Nanozyme for Glucose Biosensing. J. Mater. Chem. B. 2020, 8, 9295–9303. 10.1039/d0tb01598a.
  • Zhang, P.; Sun, D.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified Carbon Nitride Nanozyme as Bifunctional Glucose Oxidase-Peroxidase for Metal-Free Bioinspired Cascade Photocatalysis. Nat. Commun. 2019, 10, 14. DOI: 10.1038/s41467-019-08731-y.
  • Liu, X. L.; Wang, X. H.; Qi, C.; Han, Q. S.; Xiao, W.; Cai, S. F.; Wang, C.; Yang, R. Sensitive Colorimetric Detection of Ascorbic Acid Using Pt/CeO2 Nanocomposites as Peroxidase Mimics. Appl. Surf. Sci. 2019, 479, 532–539. DOI: 10.1016/j.apsusc.2019.02.135.
  • Cui, W. W.; Wang, Y. Y.; Yang, D. D.; Du, J. X. Fluorometric Determination of Ascorbic Acid by Exploiting Its Deactivating Effect on the Oxidase-Mimetic Properties of Cobalt Oxyhydroxide Nanosheets. Microchim. Acta. 2017, 184, 4749–4755. DOI: 10.1007/s00604-017-2525-4.
  • Gao, C. J.; Zhu, H. M.; Chen, J.; Qiu, H. D. Facile Synthesis of Enzyme Functional Metal-Organic Framework for Colorimetric Detecting H2O2 and Ascorbic Acid. Chin. Chem. Lett. 2017, 28, 1006–1012. DOI: 10.1016/j.cclet.2017.02.011.
  • Wang, Y. F.; Liu, X.; Wang, M. K.; Wang, X. X.; Ma, W. Y.; Li, J. Y. Facile Synthesis of CDs@ZIF-8 Nanocomposites as Excellent Peroxidase Mimics for Colorimetric Detection of H2O2 and Glutathione. Sens. Actuator B-Chem. 2021, 329, 129115. DOI: 10.1016/j.snb.2020.129115.
  • Tan, H. N.; Zhao, Y. X.; Xu, X. T.; Sun, Y.; Li, Y. H.; Du, J. X. A Covalent Triazine Framework as an Oxidase Mimetic in the Luminol Chemiluminescence System: Application to the Determination of the Antioxidant Rutin. Microchim. Acta. 2020, 187, 8. DOI: 10.1007/s00604-019-4058-5.
  • Wang, T.; Bai, Q.; Zhu, Z. L.; Xiao, H. L.; Jiang, F. Y.; Du, F. L.; Yu, W. W.; Liu, M. H.; Sui, N. Graphdiyne-Supported Palladium-Iron Nanosheets: A Dual-Functional Peroxidase Mimetic Nanozyme for Glutathione Detection and Antibacterial Application. Chem. Eng. J. 2021, 413, 127537. DOI: 10.1016/j.cej.2020.127537.
  • Li, Y. F.; Zhang, Z. Y.; Tao, Z. H.; Gao, X.; Wang, S.; Liu, Y. Q. A Asp/Ce Nanotube-Based Colorimetric Nanosensor for H2O2-Free and Enzyme-Free Detection of Cysteine. Talanta. 2019, 196, 556–562. 10.1016/j.talanta.2019.01.011.
  • Borthakur, P.; Boruah, P. K.; Das, M. R. Facile Synthesis of CuS Nanoparticles on Two-Dimensional Nanosheets as Efficient Artificial Nanozyme for Detection of Ibuprofen in Water. J. Environ. Chem. Eng. 2021, 9, 104635. DOI: 10.1016/j.jece.2020.104635.
  • Tran, T. D.; Nguyen, P. T.; Le, T. N.; Kim, M. I. DNA-Copper Hybrid Nanoflowers as Efficient Laccase Mimics for Colorimetric Detection of Phenolic Compounds in Paper Microfluidic Devices. Biosens. Bioelectron. 2021, 182, 113187. 10.1016/j.bios.2021.113187.
  • Bagheri, N.; Habibi, B.; Khataee, A.; Hassanzadeh, J. Application of Surface Molecular Imprinted Magnetic Graphene Oxide and High Performance Mimetic Behavior of bi-Metal ZnCo MOF for Determination of Atropine in Human Serum. Talanta. 2019, 201, 286–294. 10.1016/j.talanta.2019.04.023.
  • Guan, M.; Wang, M. F.; Qi, W.; Su, R. X.; He, Z. M. Biomineralization-Inspired Copper-Cystine Nanoleaves Capable of Laccase-like Catalysis for the Colorimetric Detection of Epinephrine. Front. Chem. Sci. Eng. 2021, 15, 310–318. DOI: 10.1007/s11705-020-1940-y.
  • Peng, C.; Hua, M. Y.; Li, N. S.; Hsu, Y. P.; Chen, Y. T.; Chuang, C. K.; Pang, S. T.; Yang, H. W. A Colorimetric Immunosensor Based on Self-Linkable Dual-Nanozyme for Ultrasensitive Bladder Cancer Diagnosis and Prognosis Monitoring. Biosens. Bioelectron. 2019, 126, 581–589. 10.1016/j.bios.2018.11.022.
  • Ou, D.; Sun, D. P.; Lin, X. G.; Liang, Z. X.; Zhong, Y. S.; Chen, Z. G. A Dual-Aptamer-Based Biosensor for Specific Detection of Breast Cancer Biomarker HER2 via Flower-like Nanozymes and DNA Nanostructures. J. Mater. Chem. B. 2019, 7, 3661–3669. DOI: 10.1039/C9TB00472F.
  • Wang, X.; Zhang, B.; Li, J.; Chang, H.; Wei, W. A Simple and Fast Chromogenic Reaction Based on Ag3PO4/Ag Nanocomposite for Tumor Marker Detection. Talanta. 2017, 175, 229–234. 10.1016/j.talanta.2017.07.039.
  • Jin, R.; Xing, Z. H.; Kong, D. S.; Yan, X.; Liu, F. M.; Gao, Y.; Sun, P.; Liang, X. S.; Lu, G. Y. Sensitive Colorimetric Sensor for Point-of-Care Detection of Acetylcholinesterase Using Cobalt Oxyhydroxide Nanoflakes. J. Mater. Chem. B. 2019, 7, 1230–1237. 10.1039/c8tb02987c.
  • Wang, J. W.; Ni, P. J.; Chen, C. X.; Jiang, Y. Y.; Zhang, C. H.; Wang, B.; Cao, B. Q.; Lu, Y. Z. Colorimetric Determination of the Activity of Alkaline Phosphatase by Exploiting the Oxidase-like Activity of Palladium Cube@CeO2 Core-Shell Nanoparticles. Microchim. Acta. 2020, 187, 7. DOI: 10.1007/s00604-019-4070-9.
  • Song, H. W.; Li, Z. B.; Peng, Y. X.; Li, X.; Xu, X. C.; M Pan, J.; Niu, X. H. Enzyme-Triggered In Situ Formation of Ag Nanoparticles with Oxidase-Mimicking Activity for Amplified Detection of Alkaline Phosphatase Activity. Analyst. 2019, 144, 2416–2422. 10.1039/c9an00105k.
  • Wang, C. H.; Gao, J.; Cao, Y. L.; Tan, H. L. Colorimetric Logic Gate for Alkaline Phosphatase Based on Copper (II)-Based Metal-Organic Frameworks with Peroxidase-Like Activity. Anal. Chim. Acta. 2018, 1004, 74–81. 10.1016/j.aca.2017.11.078.
  • Ye, K.; Wang, L. J.; Song, H. W.; Li, X.; Niu, X. H. Bifunctional MIL-53(Fe) with Pyrophosphate-Mediated Peroxidase-like Activity and Oxidation-Stimulated Fluorescence Switching for Alkaline Phosphatase Detection. J. Mater. Chem. B. 2019, 7, 4794–4800. 10.1039/c9tb00951e.
  • Hong, C. Y.; Zhang, X. X.; Wu, C. Y.; Chen, Q.; Yang, H. F.; Yang, D.; Huang, Z. Y.; Cai, R.; Tan, W. H. On-Site Colorimetric Detection of Cholesterol Based on Polypyrrole Nanoparticles. ACS Appl. Mater. Interfaces. 2020, 12, 54426–54432. 10.1021/acsami.0c15900.
  • Guo, Y. Q.; Zhou, Y. F.; Xiong, S. C.; Zeng, L. F.; Huang, X. L.; Leng, Y. K.; Xiong, Y. H. Natural Enzyme-Free Colorimetric Immunoassay for Human Chorionic Gonadotropin Detection Based on the Ag+-Triggered Catalytic Activity of Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles. Sens. Actuator B-Chem. 2020, 305, 127439. DOI: 10.1016/j.snb.2019.127439.
  • Liu, D.; Ju, C.; Han, C.; Shi, R.; Chen, X.; Duan, D.; Yan, J.; Yan, X. Nanozyme Chemiluminescence Paper Test for Rapid and Sensitive Detection of SARS-CoV-2 Antigen. Biosens. Bioelectron. 2021, 173, 112817. 10.1016/j.bios.2020.112817.
  • Mcvey, C.; Logan, N.; Thanh, N. T. K.; Elliott, C.; Cao, C. Unusual Switchable Peroxidase-Mimicking Nanozyme for the Determination of Proteolytic Biomarker. Nano Res. 2019, 12, 509–516. DOI: 10.1007/s12274-018-2241-3.
  • An, P. L.; Xue, X.; Rao, H. H.; Wang, J. J.; Gao, M.; Wang, H. Q.; Luo, M. Y.; Liu, X. H.; Xue, Z. H.; Lu, X. Q. Gold Nanozyme as an Excellent Co-Catalyst for Enhancing the Performance of a Colorimetric and Photothermal Bioassay. Anal. Chim. Acta. 2020, 1125, 114–127. 10.1016/j.aca.2020.05.047.
  • Han, K. N.; Choi, J. S.; Kwon, J. Gold Nanozyme-Based Paper Chip for Colorimetric Detection of Mercury Ions. Sci. Rep. 2017, 7, 7. DOI: 10.1038/s41598-017-02948-x.
  • Hasan, A.; Nanakali, N. M. Q.; Salihi, A.; Rasti, B.; Sharifi, M.; Attar, F.; Derakhshankhah, H.; Mustafa, I. A.; Abdulqadir, S. Z.; Falahati, M. Nanozyme-Based Sensing Platforms for Detection of Toxic Mercury Ions: An Alternative Approach to Conventional Methods. Talanta. 2020, 215, 120939. 10.1016/j.talanta.2020.120939.
  • He, S. B.; Chen, F. Q.; Xiu, L. F.; Peng, H. P.; Deng, H. H.; Liu, A. L.; Chen, W.; Hong, G. L. Highly Sensitive Colorimetric Sensor for Detection of Iodine Ions Using Carboxylated Chitosan-Coated Palladium Nanozyme. Anal. Bioanal. Chem. 2020, 412, 499–506. 10.1007/s00216-019-02270-7.
  • Huang, L. J.; Zhu, Q. R.; Zhu, J.; Luo, L. P.; Pu, S. H.; Zhang, W. T.; Zhu, W. X.; Sun, J.; Wang, J. L. Portable Colorimetric Detection of Mercury(II) Based on a Non-Noble Metal Nanozyme with Tunable Activity. Inorg. Chem. 2019, 58, 1638–1646. 10.1021/acs.inorgchem.8b03193.
  • Huang, Z. C.; Liu, B. W.; Liu, J. W. Enhancing the Peroxidase-like Activity and Stability of Gold Nanoparticles by Coating a Partial Iron Phosphate Shell. Nanoscale. 2020, 12, 22467–22472. 10.1039/d0nr07055f.
  • Li, Q.; Yang, D.; Yang, Y. Spectrofluorimetric Determination of Cr(VI) and Cr(III) by Quenching Effect of Cr(III) Based on the Cu-CDs with Peroxidase-Mimicking Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 244, 118882. 10.1016/j.saa.2020.118882.
  • Li, W.; Bin, C.; Zhang, H. X.; Sun, Y. H.; Wang, J.; Zhang, J. L.; Fu, Y. BSA-Stabilized Pt Nanozyme for Peroxidase Mimetics and Its Application on Colorimetric Detection of Mercury(II) Ions. Biosens. Bioelectron. 2015, 66, 251–258. 10.1016/j.bios.2014.11.032.
  • Li, X.; Niu, X. H.; Liu, P.; Xu, X. C.; Du, D.; Lin, Y. H. High-Performance Dual-Channel Ratiometric Colorimetric Sensing of Phosphate Ion Based on Target-Induced Differential Oxidase-like Activity Changes of Ce-Zr Bimetal-Organic Frameworks. Sens. Actuator B-Chem. 2020, 321, 128546. DOI: 10.1016/j.snb.2020.128546.
  • Lien, C. W.; Unnikrishnan, B.; Harroun, S. G.; Wang, C. M.; Chang, J. Y.; Chang, H. T.; Huang, C. C. Visual Detection of Cyanide Ions by Membrane-Based Nanozyme Assay. Biosens. Bioelectron. 2018, 102, 510–517. 10.1016/j.bios.2017.11.063.
  • Luo, L. P.; Su, Z. H.; Zhuo, J. C.; Huang, L. J.; Nian, Y.; Su, L. H.; Zhang, W. T.; Wang, J. L. Copper-Sensitized "Turn on" Peroxidase-Like Activity of MMoO4 (M = Co, Ni) Flowers for Selective Detection of Aquatic Copper Ions. ACS Sustain. Chem. Eng. 2020, 8, 12568–12576. DOI: 10.1021/acssuschemeng.0c03822..
  • Mao, M. X.; Zheng, R.; Peng, C. F.; Wei, X. L. DNA-Gold Nanozyme-Modified Paper Device for Enhanced Colorimetric Detection of Mercury Ions. Biosensors-Basel. 2020, 10, 211. DOI: 10.3390/bios10120211.
  • Shi, W.; He, M. Q.; Li, W. T.; Wei, X.; Bui, B.; Chen, M. L.; Chen, W. Cu-Based Metal-Organic Framework Nanoparticles for Sensing Cr(VI) Ions. ACS Appl. Nano Mater. 2021, 4, 802–810. DOI: 10.1021/acsanm.0c03118.
  • Unnikrishnan, B.; Lien, C. W.; Chu, H. W.; Huang, C. C. A Review on Metal Nanozyme-Based Sensing of Heavy Metal Ions: Challenges and Future Perspectives. J. Hazard Mater. 2021, 401, 123397. DOI: 10.1016/j.jhazmat.2020.123397.
  • Wang, L.; Xu, X.; Liu, P.; Wang, M.; Niu, X.; Pan, J. A Single-Nanozyme Colorimetric Array Based on Target-Induced Differential Surface Passivation for Quantification and Discrimination of Cl-, Br- and I-Ions. Anal. Chim. Acta. 2021, 1160, 338451. 10.1016/j.aca.2021.338451.
  • Wang, L. T.; Li, S. Q.; Zhang, X. D.; Huang, Y. M. CoSe2 Hollow Microspheres with Superior Oxidase-like Activity for Ultrasensitive Colorimetric Biosensing. Talanta. 2020, 216, 121009. 10.1016/j.talanta.2020.121009.
  • Wang, Y.; Hu, J.; Zhuang, Q. F.; Ni, Y. N. Enhancing Sensitivity and Selectivity in a Label-Free Colorimetric Sensor for Detection of Iron(II) Ions with Luminescent Molybdenum Disulfide Nanosheet-Based Peroxidase Mimetics. Biosens. Bioelectron. 2016, 80, 111–117. 10.1016/j.bios.2016.01.037.
  • Xu, X.; Luo, Z.; Ye, K.; Zou, X.; Niu, X.; Pan, J. One-Pot Construction of Acid Phosphatase and Hemin Loaded Multifunctional Metal-Organic Framework Nanosheets for Ratiometric Fluorescent Arsenate Sensing. J. Hazard Mater. 2021, 412, 124407. 10.1016/j.jhazmat.2020.124407.
  • Wei, J. C.; Xue, Y.; Dong, J. Y.; Wang, S. P.; Hu, H.; Gao, H.; Li, P.; Wang, Y. T. A New Fluorescent Technique for Pesticide Detection by Using Metal Coordination Polymer and Nanozyme. Chin. Med. 2020, 15–17. DOI: 10.1186/s13020-020-00304-2.
  • Jin, R.; Wang, F.; Li, Q.; Yan, X.; Liu, M.; Chen, Y.; Zhou, W.; Gao, H.; Sun, P.; Lu, G. Construction of Multienzyme-Hydrogel Sensor with Smartphone Detector for On-Site Monitoring of Organophosphorus Pesticide. Sens. Actuator B-Chem. 2021, 327, 128922. DOI: 10.1016/j.snb.2020.128922.
  • Weerathunge, P.; Ramanathan, R.; Shukla, R.; Sharma, T. K.; Bansal, V. Aptamer-Controlled Reversible Inhibition of Gold Nanozyme Activity for Pesticide Sensing. Anal. Chem. 2014, 86, 11937–11941. 10.1021/ac5028726.
  • Biswas, S.; Tripathi, P.; Kumar, N.; Nara, S. Gold Nanorods as Peroxidase Mimetics and Its Application for Colorimetric Biosensing of Malathion. Sens. Actuator B-Chem. 2016, 231, 584–592. DOI: 10.1016/j.snb.2016.03.066.
  • Singh, S.; Tripathi, P.; Kumar, N.; Nara, S. Colorimetric Sensing of Malathion Using Palladium-Gold Bimetallic Nanozyme. Biosens. Bioelectron. 2017, 92, 280–286. 10.1016/j.bios.2016.11.011.
  • Liang, X.; Han, L. White Peroxidase-Mimicking Nanozymes: Colorimetric Pesticide Assay without Interferences of O-2 and Color. Adv. Funct. Mater. 2020, 30, 2001933. DOI: 10.1002/adfm.202001933.
  • Huang, L. J.; Sun, D. W.; Pu, H. B.; Wei, Q. Y.; Luo, L. P.; Wang, J. L. A Colorimetric Paper Sensor Based on the Domino Reaction of Acetylcholinesterase and Degradable Gamma-MnOOH Nanozyme for Sensitive Detection of Organophosphorus Pesticides. Sens. Actuator B-Chem. 2019, 290, 573–580. DOI: 10.1016/j.snb.2019.04.020.
  • Boruah, P. K.; Darabdhara, G.; Das, M. R. Polydopamine Functionalized Graphene Sheets Decorated with Magnetic Metal Oxide Nanoparticles as Efficient Nanozyme for the Detection and Degradation of Harmful Triazine Pesticides. Chemosphere. 2021, 268, 129328. 10.1016/j.chemosphere.2020.129328.
  • Boruah, P. K.; Das, M. R. Dual Responsive Magnetic Fe3O4-TiO2/Graphene Nanocomposite as an Artificial Nanozyme for the Colorimetric Detection and Photodegradation of Pesticide in an Aqueous Medium. J. Hazard Mater. 2020, 385, 121516. 10.1016/j.jhazmat.2019.121516.
  • Wei, J. C.; Yang, L. L.; Luo, M.; Wang, Y. T.; Li, P. Nanozyme-Assisted Technique for Dual Mode Detection of Organophosphorus Pesticide. Ecotoxicol. Environ. Saf. 2019, 179, 17–23. 10.1016/j.ecoenv.2019.04.041.
  • Wei, J. C.; Yang, Y.; Dong, J. Y.; Wang, S. P.; Li, P. Fluorometric Determination of Pesticides and Organophosphates Using Nanoceria as a Phosphatase Mimic and an Inner Filter Effect on Carbon Nanodots. Microchim. Acta. 2019, 186, 9. DOI: 10.1007/s00604-018-3175-x.
  • Liu, P.; Li, X.; Xu, X.; Ye, K.; Wang, L.; Zhu, H.; Wang, M.; Niu, X. Integrating Peroxidase-Mimicking Activity with Photoluminescence into One Framework Structure for High-Performance Ratiometric Fluorescent Pesticide Sensing. Sens. Actuator B-Chem. 2021, 328, 129024. DOI: 10.1016/j.snb.2020.129024.
  • Yan, M. M.; Chen, G.; She, Y. X.; Ma, J.; Hong, S. H.; Shao, Y.; Abd El-Aty, A. M.; Wang, M.; Wang, S. S.; Wang, J. Sensitive and Simple Competitive Biomimetic Nanozyme-Linked Immunosorbent Assay for Colorimetric and Surface-Enhanced Raman Scattering Sensing of Triazophos. J. Agric. Food Chem. 2019, 67, 9658–9666. 10.1021/acs.jafc.9b03401.
  • Chen, G.; Jin, M. J.; Ma, J.; Yan, M. M.; Cui, X. Y.; Wang, Y. S.; Zhang, X. Y.; Li, H.; Zheng, W. J.; Zhang, Y. D.; et al. Competitive Bio-Barcode Immunoassay for Highly Sensitive Detection of Parathion Based on Bimetallic Nanozyme Catalysis. J. Agric. Food Chem. 2020, 68, 660–668. 10.1021/acs.jafc.9b06125.
  • Bazin, I.; Tria, S. A.; Hayat, A.; Marty, J. L. New Biorecognition Molecules in Biosensors for the Detection of Toxins. Biosens. Bioelectron. 2017, 87, 285–298. 10.1016/j.bios.2016.06.083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.