339
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances in Metal Nanocomposite-Based Electrochemical (Bio)Sensors for Pharmaceutical Analysis

ORCID Icon, , , & ORCID Icon

References

  • Statista. Revenue of the worldwide pharmaceutical market from 2001 to 2020 (in billion U.S. dollars). 2021. https://www.statista.com/statistics/263102/pharmaceutical-market-worldwide-revenue-since-2001/ (accessed 28 June 2022).
  • Souza, H. O.; Costa, R. S.; Quadra, G. R.; Fernandez, M. A. S. Pharmaceutical Pollution and Sustainable Development Goals: Going the Right Way? Sustain. Chem. Pharm. 2021, 21, 100428. DOI: 10.1016/j.scp.2021.100428.
  • Peña, O. I. G.; Zavala, M. Á. L.; Ruelas, H. C. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public Health. 2021, 18, 2532. DOI: 10.3390/ijerph18052532.
  • Peng, Y.; Hall, S.; Gautam, L. Drugs of Abuse in Drinking Water – A Review of Current Detection Methods, Occurrence, Elimination and Health Risks. TrAC-Trends Anal. Chem. 2016, 85, 232–240. DOI: 10.1016/j.trac.2016.09.011.
  • Świacka, K.; Maculewicz, J.; Kowalska, D.; Caban, M.; Smolarz, K.; Świeżak, J. Presence of Pharmaceuticals and Their Metabolites in Wild-Living Aquatic Organisms-Current State of Knowledge. J Hazard Mater. 2022, 424, 127350. DOI: 10.1016/j.jhazmat.2021.127350.
  • Jurczak, E.; Mazurek, A. H.; Szeleszczuk, Ł.; Pisklak, D. M.; Zielińska-Pisklak, M. Pharmaceutical Hydrates Analysis-Overview of Methods and Recent Advances. Pharmaceutics. 2020, 12, 959. DOI: 10.3390/pharmaceutics12100959.
  • Bernardo-Bermejo, S.; Sánchez-López, E.; Castro-Puyana, M.; Marina, M. L. Chiral Capillary Electrophoresis. TrAC-Trends Anal. Chem. 2020, 124, 115807. DOI: 10.1016/j.trac.2020.115807.
  • Beccaria, M.; Cabooter, D. Current Developments in LC-MS for Pharmaceutical Analysis. Analyst. 2020, 145, 1129–1157. DOI: 10.1039/c9an02145k.
  • Nishi, H. Development of Fast and Selective Analytical Methods of Pharmaceuticals and Herbal Medicines by High-Performance Liquid Chromatography and Capillary Electrophoresis. Chromatography. 2021, 42, 1–16. DOI: 10.15583/jpchrom.2020.026.
  • Koklioti, M. A.; Tagmatarchis, N. Hybrids of Metal Nanoclusters and Graphene-Based Materials: Preparation, Properties and Applications. ChemNanoMat. 2016, 2, 1065–1072. DOI: 10.1002/cnma.201600287.
  • Shang, L.; Xu, J.; Nienhaus, G. U. Recent Advances in Synthesizing Metal Nanocluster-Based Nanocomposites for Application in Sensing, Imaging and Catalysis. Nano Today. 2019, 28, 100767. DOI: 10.1016/j.nantod.2019.100767.
  • Qian, L. T.; Durairaj, S.; Prins, S.; Chen, A. C. Nanomaterial-Based Electrochemical Sensors and Biosensors for the Detection of Pharmaceutical Compounds. Biosens Bioelectron. 2021, 175, 112836. DOI: 10.1016/j.bios.2020.112836.
  • Hassanpour, S.; Behnam, B.; Baradaran, B.; Hashemzaei, M.; Oroojalian, F.; Mokhtarzadeh, A.; Guardia, M. Carbon Based Nanomaterials for the Detection of Narrow Therapeutic Index Pharmaceuticals. Talanta. 2021, 221, 121610. DOI: 10.1016/j.talanta.2020.121610.
  • Mollarasouli, F.; Zor, E.; Ozcelikay, G.; Ozkan, S. A. Magnetic Nanoparticles in Developing Electrochemical Sensors for Pharmaceutical and Biomedical Applications. Talanta. 2021, 226, 122108. DOI: 10.1016/j.talanta.2021.122108.
  • Grieshaber, D.; Mackenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors – Sensor Principles and Architectures. Sensors (Basel). 2008, 8, 1400–1458. DOI: 10.3390/s80314000.
  • Elgrishi, N.; Rountree, K. J.; Mccarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. DOI: 10.1021/acs.jchemed.7b00361.
  • Da Róz, A. L.; Ferreira, M.; Leite, F. L.; Oliveira, O. N. Nanoscience and Its Applications. William Andrew: Kidlington, 2017.
  • Westbroek, P.; Priniotakis, G.; Kiekens, P. Analytical Electrochemistry in Textiles. Woodhead Publishing: Cambridge, 2005.
  • Scholz, F. Voltammetric Techniques of Analysis: The Essentials. Chemtexts. 2015, 1, 17. DOI: 10.1007/s40828-015-0016-y.
  • Mirceski, V.; Skrzypek, S.; Stojanov, L. Square-Wave Voltammetry. ChemTexts. 2018, 4, 17. DOI: 10.1007/s40828-018-0073-0.
  • Ensafi, A. A. Electrochemical Biosensors, Elsevier: San Diego, 2019. ISBN 9780128164914.
  • Stephanie, R.; Kim, M. W.; Kim, S. H.; Kim, J.; Park, C. Y.; Park, T. J. Recent Advances of Bimetallic Nanomaterials and Its Nanocomposites for Biosensing Applications. TrAC-Trends Anal. Chem. 2021, 135, 116159. DOI: 10.1016/j.trac.2020.116159.
  • Ahmed, H. B.; Emam, H. E. Overview for Multimetallic Nanostructures with Biomedical, Environmental and Industrial Applications. J. Mol. Liq. 2021, 321, 114669. DOI: 10.1016/j.molliq.2020.114669.
  • Rajeev, R.; Datta, R.; Varghese, A.; Sudhakar, Y. N.; George, L. Recent Advances in Bimetallic Based Nanostructures: Synthesis and Electrochemical Sensing Applications. Microchem. J. 2021, 163, 105910. DOI: 10.1016/j.microc.2020.105910.
  • Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R. P.; Alothman, Z. A.; Mola, G. T. Novel Development of Nanoparticles to Bimetallic Nanoparticles and Their Composites: A Review. J. King Saud Univ. Sci. 2019, 31, 257–269. DOI: 10.1016/j.jksus.2017.06.012.
  • Gowthaman, N. S. K.; Kesavan, S.; John, S. A. Monitoring Isoniazid Level in Human Fluids in the Presence of Theophylline Using Gold@Platinum Core@Shell Nanoparticles Modified Glassy Carbon Electrode. Sensor. Actuat. B-Chem. 2016, 230, 157–166. DOI: 10.1016/j.snb.2016.02.042.
  • Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent Advances in Functionalized Micro and Mesoporous Carbon Materials: Synthesis and Applications. Chem Soc Rev. 2018, 47, 2680–2721. DOI: 10.1039/c7cs00787f.
  • Maduraiveeran, G.; Jin, W. Carbon Nanomaterials: Synthesis, Properties and Applications in Electrochemical Sensors and Energy Conversion Systems. Mat. Sci. Eng. B. 2021, 272, 115341. DOI: 10.1016/j.mseb.2021.115341.
  • Cernat, A.; Tertiş, M.; Săndulescu, R.; Bedioui, F.; Cristea, A.; Cristea, C. Electrochemical Sensors Based on Carbon Nanomaterials for Acetaminophen Detection: A Review. Anal Chim Acta. 2015, 886, 16–28. DOI: 10.1016/j.aca.2015.05.044.
  • Simsek, M.; Wongkaew, N. Carbon Nanomaterial Hybrids via Laser Writing for High-Performance Non-Enzymatic Electrochemical Sensors: A Critical Review. Anal Bioanal Chem. 2021, 413, 6079–6099. DOI: 10.1007/s00216-021-03382-9.
  • Speranza, G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials-Basel. 2021, 11, 967. DOI: 10.3390/nano11040967.
  • Zhang, X.; Zhao, N.; He, C. The Superior Mechanical and Physical Properties of Nanocarbon Reinforced Bulk Composites Achieved by Architecture Design-A Review. Prog. Mater. Sci. 2020, 113, 100672. DOI: 10.1016/j.pmatsci.2020.100672.
  • Yang, C.; Denno, M. E.; Pyakurel, P.; Venton, B. J. Recent Trends in Carbon Nanomaterial-Based Electrochemical Sensors for Biomolecules: A Review. Anal Chim Acta. 2015, 887, 17–37. DOI: 10.1016/j.aca.2015.05.049.
  • Tehrani, M. Advanced Electrical Conductors: An Overview and Prospects of Metal Nanocomposite and Nanocarbon Based Conductors. Phys. Status Solidi A. 2021, 218, 2000704. DOI: 10.1002/pssa.202000704.
  • Kong, F. Y.; Li, R. F.; Yao, L.; Wang, Z. X.; Lv, W. X.; Wang, W. An Electrochemical Daunorubicin Sensor Based on the Use of Platinum Nanoparticles Loaded onto a Nanocomposite Prepared from Nitrogen Decorated Reduced Graphene Oxide and Single-Walled Carbon Nanotubes. Mikrochim Acta. 2019, 186, 321. DOI: 10.1007/s00604-019-3456-z.
  • Macanás, J.; Parrondo, J.; Muñoz, M.; Alegret, S.; Mijangos, F.; Muraviev, D. N. Preparation and Characterisation of Meta-Polymer Nanocomposite Membranes for Electrochemical Applications. Phys. Stat. Sol. (a). 2007, 204, 1699–1705. DOI: 10.1002/pssa.200675324.
  • Muraviev, D. N.; Ruiz, P.; Muñoz, M.; Macanás, J. Novel Strategies for Preparation and Characterization of Functional Polymer-Metal Nanocomposites for Electrochemical Applications. Pure Appl. Chem. 2008, 80, 2425–2437. DOI: 10.1351/pac200880112425.
  • Zamani, F. G.; Moulahoum, H.; Ak, M.; Demirkol, D. O.; Timur, S. Current Trends in the Development of Conducting Polymers-Based Biosensors. TrAC-Trends Anal. Chem. 2019, 118, 264–276. DOI: 10.1016/j.trac.2019.05.031.
  • Zare, Y.; Shabani, I. Polymer/Metal Nanocomposites for Biomedical Applications. Mater Sci Eng C Mater Biol Appl. 2016, 60, 195–203. DOI: 10.1016/j.msec.2015.11.023.
  • Zahran, M.; Marei, A. H. Innovative Natural Polymer Metal Nanocomposites and Their Antimicrobial Activity. Int J Biol Macromol. 2019, 136, 586–596. DOI: 10.1016/j.ijbiomac.2019.06.114.
  • Sun, X.; Agate, S.; Salem, K. S.; Lucia, L.; Pal, L. Hydrogel-Based Sensor Networks: Compositions, Properties and Applications-A Review. ACS Appl Bio Mater. 2021, 4, 140–162. DOI: 10.1021/acsabm.0c01011.
  • Faupel, F.; Zaporojtchenko, V.; Strunskus, T.; Elbahri, M. Metal‐Polymer Nanocomposites for Functional Applications. Adv. Eng. Mater. 2010, 12, 1177–1190. DOI: 10.1002/adem.201000231.
  • Tajik, S.; Beitollahi, H.; Nejad, F. G.; Dourandish, Z.; Shokouhimehr, M. A.; Jang, H. W.; Venditti, R. A.; Varma, R. S.; Shokouhimehr, M. Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Ind Eng Chem Res. 2021, 60, 1112–1136. DOI: 10.1021/acs.iecr.0c04952.
  • Minakshi, P.; Mohan, H.; Brar, B.; Shafiq, M.; Pundir, C. S. Organic Polymer and Metal Nano-Particle Based Composites for Improvement of Analytic Performance of Electrochemical Biosensors. Curr Top Med Chem. 2020, 20, 1029–1041. DOI: 10.2174/1568026620666200309092957.
  • Ehsani, M.; Soleymani, J.; Mohammadalizadeh, P.; Hasanzadeh, M.; Jouyban, A.; Khoubnasabjafari, M.; Vaez-Gharamaleki, Y. Low Potential Detection of Doxorubicin Using a Sensitive Electrochemical Sensor Based on Glassy Carbon Electrode Modified with Silver Nanoparticles-Supported Poly(Chitosan): a New Platform in Pharmaceutical Analysis. Microchem. J. 2021, 165, 106101. DOI: 10.1016/j.microc.2021.106101.
  • Zhang, X.; Li, G.; Wu, D.; Li, X.; Hu, N.; Chen, J.; Chen, G.; Wu, Y. Recent Progress in the Design Fabrication of Metal-Organic Frameworks-Based Nanozymes and Their Applications to Sensing and Cancer Therapy. Biosens Bioelectron. 2019, 137, 178–198. DOI: 10.1016/j.bios.2019.04.061.
  • Yang, Q.; Xu, Q.; Jiang, H. Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis. Chem Soc Rev. 2017, 46, 4774–4808. DOI: 10.1039/c6cs00724d.
  • Chuang, C.; Kung, C. Metal-Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. Electroanal. 2020, 32, 1885–1895. DOI: 10.1002/elan.202060111.
  • Xue, Y.; Zheng, S.; Xue, H.; Pang, H. Metal–Organic Framework Composites and Their Electrochemical Applications. J. Mater. Chem. A. 2019, 7, 7301–7327. DOI: 10.1039/C8TA12178H.
  • Zhang, S.; Rong, F.; Guo, C.; Duan, F.; He, L.; Wang, M.; Zhang, Z.; Kang, M.; Du, M. Metal–Organic Frameworks (MOFs) Based Electrochemical Biosensors for Early Cancer Diagnosis in Vitro. Coordin. Chem. Rev. 2021, 439, 213948. DOI: 10.1016/j.ccr.2021.213948.
  • Li, B.; Ma, J.; Cheng, P. Integration of Metal Nanoparticles into Metal–Organic Frameworks for Composite Catalysts: Design and Synthetic Strategy. Small. 2019, 15, 1804849. DOI: 10.1002/smll.201804849.
  • Gao, L. L.; Gao, E. Q. Metal–Organic Frameworks for Electrochemical Sensors of Neurotransmitters. Coordin. Chem. Rev. 2021, 434, 213784. DOI: 10.1016/j.ccr.2021.213784.
  • Liu, S.; Lai, C.; Liu, X.; Li, B.; Zhang, C.; Qin, L.; Huang, D.; Yi, H.; Zhang, M.; Li, L.; et al. Metal-Organic Frameworks and Their Derivatives as Signal Amplification Elements for Electrochemical Sensing. Coordin. Chem. Rev. 2020, 424, 213520. DOI: 10.1016/j.ccr.2020.213520.
  • Kempahanumakkagari, S.; Vellingiri, K.; Deep, A.; Kwon, E. E.; Bolan, N.; Kim, K. H. Metal-Organic Framework Composites as Electrocatalysts for Electrochemical Sensing Applications. Coordin. Chem. Rev. 2018, 357, 105–129. DOI: 10.1016/j.ccr.2017.11.028.
  • Mahnashi, M. H.; Mahmoud, A. M.; Alhazzani, K.; Alanazi, A. Z.; Alaseem, A. M.; Algahtani, M. M.; El-Wekil, M. M. Ultrasensitive and Selective Molecularly Imprinted Electrochemical Oxaliplatin Sensor Based on a Novel Nitrogen-Doped Carbon Nanotubes/Ag@cu MOF as a Signal Enhancer and Reporter Nanohybrid. Mikrochim Acta. 2021, 188, 124. DOI: 10.1007/s00604-021-04781-6.
  • Zhou, C.; Zou, H.; Sun, C.; Li, Y. Recent Advances in Biosensors for Antibiotic Detection: Selectivity and Signal Amplification with Nanomaterials. Food Chem. 2021, 361, 130109. DOI: 10.1016/j.foodchem.2021.130109.
  • Khoshbin, Z.; Verdian, A.; Housaindokht, M. R.; Izadyar, M.; Rouhbakhsh, Z. Aptasensors as the Future of Antibiotics Test Kits-a Case Study of the Aptamer Application in the Chloramphenicol Detection. Biosens Bioelectron. 2018, 122, 263–283. DOI: 10.1016/j.bios.2018.09.060.
  • Dong, X.; Yan, X.; Li, M.; Liu, H.; Li, J.; Wang, L.; Wang, K.; Lu, X.; Wang, S.; He, B. Ultrasensitive Detection of Chloramphenicol Using Electrochemical Aptamer Sensor: A Mini Review. Electrochem. Commun. 2020, 120, 106835. DOI: 10.1016/j.elecom.2020.106835.
  • Roushani, M.; Rahmati, Z.; Farokhi, S.; Hoseini, S. J.; Fath, R. H. The Development of an Electrochemical Nanoaptasensor to Sensing Chloramphenicol Using a Nanocomposite Consisting of Graphene Oxide Functionalized with (3-Aminopropyl) Triethoxysilane and Silver Nanoparticles. Mater Sci Eng C Mater Biol Appl. 2020, 108, 110388. DOI: 10.1016/j.msec.2019.110388.
  • Lu, M.; Cao, C.; Wang, F.; Liu, G. A Polyethyleneimine Reduced Graphene Oxide/Gold Nanocubes Based Electrochemical Aptasensor for Chloramphenicol Detection Using Single-Stranded DNA-Binding Protein. Mater. Design. 2021, 199, 109409. DOI: 10.1016/j.matdes.2020.109409.
  • Zhu, Y.; Li, X.; Xu, Y.; Wu, L.; Yu, A.; Lai, G.; Wei, Q.; Chi, H.; Jiang, N.; Fu, L.; et al. Intertwined Carbon Nanotubes and Ag Nanowires Constructed by Simple Solution Blending as Sensitive and Stable Chloramphenicol Sensors. Sensors-Basel. 2021, 21, 1220. DOI: 10.3390/s21041220.
  • Ali, M. R.; Bacchu, M. S.; Al-Mamun, M. R.; Ahommed, M. S.; Aly, M. A. S.; Khan, M. Z. H. N-Hydroxysuccinimide Crosslinked Graphene Oxide–Gold Nanoflower Modified SPE Electrode for Sensitive Detection of Chloramphenicol Antibiotic. RSC Adv. 2021, 11, 15565–15572. DOI: 10.1039/d1ra02450g.
  • Guo, H.; Su, Y.; Shen, Y.; Long, Y.; Li, W. In Situ Decoration of Au Nanoparticles on Carbon Nitride Using a Single-Source Precursor and Its Application for the Detection of Tetracycline. J Colloid Interface Sci. 2019, 536, 646–654. DOI: 10.1016/j.jcis.2018.10.104.
  • Hu, X.; Xu, Y.; Cui, X.; Li, W.; Huang, X.; Li, Z.; Shi, J.; Zou, X. Fluorometric and Electrochemical Dual-Mode Nanoprobe for Tetracycline by Using a Nanocomposite Prepared from Carbon Nitride Quantum Dots and Silver Nanoparticles. Mikrochim Acta. 2020, 187, 83. DOI: 10.1007/s00604-019-3828-4.
  • Xu, H.; Zhang, D.; Weng, X.; Wang, D.; Cai, D. Electrochemically Reduced Graphene Oxide/Cu-MOF/Pt Nanoparticles Composites as a High-Performance Sensing Platform for Sensitive Detection of Tetracycline. Mikrochim Acta. 2022, 189, 201. DOI: 10.1007/s00604-022-05304-7.
  • Essousi, H.; Barhoumi, H.; Karastogianni, S.; Girousi, S. T. An Electrochemical Sensor Based on Reduced Graphene Oxide, Gold Nanoparticles and Molecular Imprinted over-Oxidized Polypyrrole for Amoxicillin Determination. Electroanal. 2020, 32, 1546–1558. DOI: 10.1002/elan.201900751.
  • Osikoya, A. O.; Opoku, F.; Govender, P. P. Electrochemical Detection of Amoxicillin on 2D Graphene-Gold Nanoparticle-Lacasse Bio-Interfaces: Combined Experimental and Theoretical Study. Chem. Phys. Lett. 2021, 764, 138278. DOI: 10.1016/j.cplett.2020.138278.
  • Song, J.; Huang, M.; Jiang, N.; Zheng, S.; Mu, T.; Meng, L.; Liu, Y.; Liu, J.; Chen, G. Ultrasensitive Detection of Amoxicillin by TiO2-g-C3N4@AuNPs Impedimetric Aptasensor: Fabrication, Optimization and Mechanism. J Hazard Mater. 2020, 391, 122024. DOI: 10.1016/j.jhazmat.2020.122024.
  • Bing, L.; Min, L.; Yaoshuai, Z.; Mingfei, P.; Ying, G.; Wei, S.; Guozhen, F.; Shuo, W. A Sensitive Electrochemical Immunosensor Based on PAMAM Dendrimer-Encapsulated Au for Detection of Norfloxacin in Animal-Derived Foods. Sensors-Basel. 2018, 18, 1946. DOI: 10.3390/s18061946.
  • Louw, C. J.; Hamnca, S.; Baker, P. G. L. Voltammetric and Impedimetric Detection of Norfloxacin at Co Nanoparticle Modified Polymer Composite Electrodes. Electroanal. 2020, 32, 3170–3179. DOI: 10.1002/elan.202060423.
  • Ye, C.; Chen, X.; Zhang, D.; Xu, J.; Xi, H.; Wu, T.; Deng, D.; Xiong, C.; Zhang, J.; Huang, G. Study on the Properties and Reaction Mechanism of Polypyrrole@Norfloxacin Molecularly Imprinted Electrochemical Sensor Based on Three-Dimensional CoFe-MOFs/AuNPs. Electrochim. Acta. 2021, 379, 138174. DOI: 10.1016/j.electacta.2021.138174.
  • Meenakshi, S.; Rama, R.; Pandian, K.; Gopinath, S. C. B. Modified Electrodes for Electrochemical Determination of Metronidazole in Drug Formulations and Biological Samples: An Overview. Microchem. J. 2021, 165, 106151. DOI: 10.1016/j.microc.2021.106151.
  • Veerakumar, P.; Sangili, A.; Chen, S. M.; Lin, K. C. Ultrafine Gold Nanoparticles Embedded Poly(Diallyldimethylammonium Chloride)-Graphene Oxide Hydrogels for Voltammetric Determination of Antimicrobial Drug (Metronidazole). J. Mater. Chem. C. 2020, 8, 7575–7590. DOI: 10.1039/C9TC06690J.
  • Chinnaraj, S.; Palani, V.; Yadav, S.; Arumugam, M.; Sivakumar, M.; Maluventhen, V.; Singh, M. Green Synthesis of Silver Nanoparticle Using Goniothalamus Wightii on Graphene Oxide Nanocomposite for Effective Voltammetric Determination of Metronidazole. Sens. Bio-Sens. Res. 2021, 32, 100425. DOI: 10.1016/j.sbsr.2021.100425.
  • Saedi, H.; Fat’Hi, M. R.; Zargar, B. Synthesis of AgNPs Functionalized CuMOF/PPy-rGO Nanocomposite and Its Use as an Electrochemical Sensor for Metronidazole Determination. J Chinese Chemical Soc. 2021, 68, 1954–1964. DOI: 10.1002/jccs.202100081.
  • Yi, W.; Li, Z.; Dong, C.; Li, H.; Li, J. Electrochemical Detection of Chloramphenicol Using Palladium Nanoparticles Decorated Reduced Graphene Oxide. Microchem. J. 2019, 148, 774–783. DOI: 10.1016/j.microc.2019.05.049.
  • Kokulnathan, T.; Sharma, T. S. K.; Chen, S.; Chen, T.; Dinesh, B. Ex-Situ Decoration of Graphene Oxide with Palladium Nanoparticles for the Highly Sensitive and Selective Electrochemical Determination of Chloramphenicol in Food and Biological Samples. J. Taiwan Inst. Chem. E. 2018, 89, 26–38. DOI: 10.1016/j.jtice.2018.04.030.
  • Yuan, Y.; Zhang, F.; Wang, H.; Gao, L.; Wang, Z. A Sensor Based on Au Nanoparticles/Carbon Nitride/Graphene Composites for the Detection of Chloramphenicol and Ciprofloxacin. ECS J. Solid State Sc. 2018, 7, 201–208. DOI: 10.1149/2.0111812jss.
  • Liu, S.; Lai, G.; Zhang, H.; Yu, A. Amperometric Aptasensing of Chloramphenicol at a Glassy Carbon Electrode Modified with a Nanocomposite Consisting of Graphene and Silver Nanoparticles. Microchim Acta. 2017, 184, 1445–1451. DOI: 10.1007/s00604-017-2138-y.
  • Peng, Y.; Li, M.; Jia, X.; Su, J.; Zhao, X.; Zhang, S.; Zhang, H.; Zhou, X.; Chen, J.; Huang, Y.; et al. Cu Nanoparticle-Decorated Boron-Carbon-Nitrogen Nanosheets for Electrochemical Determination of Chloramphenicol. ACS Appl Mater Interfaces. 2022, 14, 28956–28964. DOI: 10.1021/acsami.2c06729.
  • Zhang, L.; Yin, M.; Wei, X.; Sun, Y.; Chen, Y.; Qi, S.; Tian, X.; Qiu, J.; Xu, D. Synthesis of rGO@PDA@AuNPs for an Effective Electrochemical Chloramphenicol Sensor. Diam. Relat. Mater. 2022, 128, 109311. DOI: 10.1016/j.diamond.2022.109311.
  • Negrea, S.; Diaconu, L. A.; Nicorescu, V.; Motoc, S.; Orha, C.; Manea, F. Graphene Oxide Electroreduced onto Boron-Doped Diamond and Electrodecorated with Silver (Ag/GO/BDD) Electrode for Tetracycline Detection in Aqueous Solution. Nanomaterials-Basel. 2021, 11, 1566. DOI: 10.3390/nano11061566.
  • Mohammad-Razdari, A.; Ghasemi-Varnamkhasti, M.; Rostami, S.; Izadi, Z.; Ensafi, A. A. Magnetic and Gold Nanocomposite as a Novel Aptasensor for Early Detection of Tetracycline Residues. Food Measure. 2021, 15, 3387–3396. DOI: 10.1007/s11694-021-00917-7.
  • Weng, X.; Huang, J.; Ye, H.; Xu, H.; Cai, D.; Wang, D. A High-Performance Electrochemical Sensor for Sensitive Detection of Tetracycline Based on a ZrUiO-66/MWCNTs/AuNPs Composite Electrode. Anal Methods. 2022, 14, 3000–3010. DOI: 10.1039/d2ay00702a.
  • Devkota, L.; Nguyen, L. T.; Vu, T. T.; Piro, B. Electrochemical Determination of Tetracycline Using AuNP-Coated Molecularly Imprinted Overoxidized Polypyrrole Sensing Interface. Electrochim. Acta. 2018, 270, 535–542. DOI: 10.1016/j.electacta.2018.03.104.
  • Pollap, A.; Knihnicki, P.; Kuśtrowski, P.; Kozak, J.; Gołda-Cępa, M.; Kotarba, A.; Kochana, J. Sensitive Voltammetric Amoxicillin Sensor Based on TiO2 Sol Modified by CMK-3-Type Mesoporous Carbon and Gold Nanoparticles. Electroanal. 2018, 30, 2386–2396. DOI: 10.1002/elan.201800203.
  • Liu, Z.; Jin, M.; Cao, J.; Wang, J.; Wang, X.; Zhou, G.; van den Berg, A.; Shui, L. High-Sensitive Electrochemical Sensor for Determination of Norfloxacin and Its Metabolism Using MWCNT-CPE/pRGO-ANSA/Au. Sensor. Actuat. B-Chem. 2018, 257, 1065–1075. DOI: 10.1016/j.snb.2017.11.052.
  • Li, G.; Qi, X.; Wu, J.; Xu, L.; Wan, X.; Li, Y.; Chen, Y.; Li, Q. Ultrasensitive, Label-Free Voltammetric Determination of Norfloxacin Based on Molecularly Imprinted Polymers and Au Nanoparticle-Functionalized Black Phosphorus Nanosheet Nanocomposite. J Hazard Mater. 2022, 436, 129107. DOI: 10.1016/j.jhazmat.2022.129107.
  • Mao, A.; Li, H.; Yu, L.; Hu, X. Electrochemical Sensor Based on Multi-Walled Carbon Nanotubes and Chitosan-Nickel Complex for Sensitive Determination of Metronidazole. J. Electroanal. Chem. 2017, 799, 257–262. DOI: 10.1016/j.jelechem.2017.05.049.
  • Huang, J.; Shen, X.; Wang, R.; Zeng, Q.; Wang, L. A Highly Sensitive Metronidazole Sensor Based on a Pt Nanospheres/Polyfurfural Film Modified Electrode. RSC Adv. 2017, 7, 535–542. DOI: 10.1039/C6RA25106D.
  • Veerakumar, P.; Sangili, A.; Chen, S. M.; Pandikumar, A.; Lin, K. C. Fabrication of Platinum-Rhenium Nanoparticles-Decorated Porous Carbons: Voltammetric Sensing of Furazolidone. ACS Sustainable Chem. Eng. 2020, 8, 3591–3605. DOI: 10.1021/acssuschemeng.9b06058.
  • He, B.; Du, G. A Simple and Sensitive Electrochemical Detection of Furazolidone Based on an Au Nanoparticle Functionalized Graphene Modified Electrode. Anal. Methods. 2017, 9, 4341–4348. DOI: 10.1039/C7AY01494E.
  • Farokhi-Fard, A.; Golichenari, B.; Ghanbarlou, M. M.; Zanganeh, S.; Vaziri, F. Electroanalysis of Isoniazid and Rifampicin: Role of Nanomaterial Electrode Modifiers. Biosens Bioelectron. 2019, 146, 111731. DOI: 10.1016/j.bios.2019.111731.
  • Nellaiappan, S.; Kumar, A. S. Electrocatalytic Oxidation and Flow Injection Analysis of Isoniazid Drug Using a Gold Nanoparticles Decorated Carbon Nanofibers-Chitosan Modified Carbon Screen Printed Electrode in Neutral pH. J. Electroanal. Chem. 2017, 801, 171–178. DOI: 10.1016/j.jelechem.2017.07.049.
  • Balamurugan, T. S. T.; Manibalan, K.; Chen, S. M.; Balasubramnian, P.; Huang, S. T. High Sensitive Electrochemical Quantification of Isoniazid in Biofluids Using Copper Particles Decorated Graphene Oxide Nano Composite. Int. J. Electrochem. Sci. 2017, 12, 9150–9160. DOI: 10.20964/2017.10.44.
  • Zareie, Z.; Nasirizadeh, N.; Mirjalili, M.; Rohani-moghadam, M.; Shirgholami, M. Highly Sensitive and Selective Voltammetric Detection of Isoniazid Drug Based on Graphene Oxide-Gold Nanourchin-Poly(Aniline) Nanocomposite. Measurement. 2022, 189, 110431. DOI: 10.1016/j.measurement.2021.110431.
  • Amidi, S.; Ardakani, Y. H.; Amiri-Aref, M.; Ranjbari, E.; Sepehri, Z.; Bagheri, H. Sensitive Electrochemical Determination of Rifampicin Using Gold Nanoparticles/Poly-Melamine Nanocomposite. RSC Adv. 2017, 7, 40111–40118. DOI: 10.1039/C7RA04865C.
  • Zhang, Q.; Ma, S.; Zhuo, X.; Wang, C.; Wang, H.; Xing, Y.; Xue, Q.; Zhang, K. An Ultrasensitive Electrochemical Sensing Platform Based on Silver Nanoparticle-Anchored 3D Reduced Graphene Oxide for Rifampicin Detection. Analyst. 2022, 147, 2156–2163. DOI: 10.1039/d2an00452f.
  • Amini, R.; Asadpour-Zeynali, K. Layered Double Hydroxide Decorated with Ag Nanodendrites as an Enhanced Sensing Platform for Voltammetric Determination of Pyrazinamide. New J. Chem. 2018, 42, 2140–2148. DOI: 10.1039/C7NJ04544A.
  • AjayI, R. F.; Tshoko, S.; Mgwili, Y.; Nqunqa, S.; Mulaudzi, T.; Mayedwa, N.; Iwuoha, E. Green Method Synthesised Graphene-Silver Electrochemical Nanobiosensors for Ethambutol and Pyrazinamide. Processes. 2020, 8, 879. DOI: 10.3390/pr8070879.
  • Chokkareddy, R.; Thondavada, N.; Kabane, B.; Gan, G. R. A Novel Ionic Liquid Based Electrochemical Sensor for Detection of Pyrazinamide. J Iran Chem SOC. 2021, 18, 621–629. DOI: 10.1007/s13738-020-02047-1.
  • Azimi, A.; Akhond, M.; Ashrafi, H.; Absalan, G. Silver Nanoparticles Loaded on a Hybrid of Graphitic Carbon Nitride and Reduced Graphene Oxide as a Modifier for Carbon Paste Electrode in Determination of Isoniazid. Monatsh Chem. 2020, 151, 1027–1037. DOI: 10.1007/s00706-020-02647-w.
  • AjayI, R. F.; Nxusani, E.; Douman, S. F.; Jonnas, A.; Ntshongontshi, N.; Feleni, U.; Pokpas, K.; Wilson, L.; Iwuoha, E. I. Silver Nanoparticle-Doped Poly(8-Anilino-1-Naphthalene Sulphonic Acid)/CYP2E1 Nanobiosensor for Isoniazid-a First Line anti-Tuberculosis Drug. JNanoR. 2016, 44, 229–251. DOI: 10.4028/www.scientific.net/JNanoR.44.229.
  • Rastogi, P. K.; Ganesan, V.; Azad, U. P. Electrochemical Determination of Nanomolar Levels of Isoniazid in Pharmaceutical Formulation Using Silver Nanoparticles Decorated Copolymer. Electrochim. Acta. 2016, 188, 818–824. DOI: 10.1016/j.electacta.2015.12.058.
  • Xing, R.; Zhao, X.; Xu, Y.; Yang, H.; Chang, Z.; Qu, J.; Liu, X.; Yang, J.; Liu, S. Sensitive Detection of Rifampicin Based on Au-Carbon Nanocomposite. J Nanosci Nanotechnol. 2018, 18, 62–67. DOI: 10.1166/jnn.2018.14560.
  • Sepehri, Z.; Bagheri, H.; Ranjbari, E.; Amiri-Aref, M.; Amidi, S.; Rouini, M. R.; Ardakani, Y. H. Simultaneous Electrochemical Determination of Isoniazid and Ethambutol Using Poly-Melamine/Electrodeposited Gold Nanoparticles Modified Pre-Anodized Glassy Carbon Electrode. Ionics. 2018, 24, 1253–1263. DOI: 10.1007/s11581-017-2263-y.
  • Kim, S. J.; Seo, J. T. Selection of Analgesics for the Management of Acute and Postoperative Dental Pain: A Mini-Review. J Periodontal Implant Sci. 2020, 50, 68–73. DOI: 10.5051/jpis.2020.50.2.68.
  • Wu, Y.; Wu, Y.; Lv, X.; Lei, W.; Ding, Y.; Chen, C.; Lv, J.; Feng, S.; Chen, S. M.; Hao, Q. A Sensitive Sensing Platform for Acetaminophen Based on Palladium and Multi-Walled Carbon Nanotube Composites and Electrochemical Detection Mechanism. Mater. Chem. Phys. 2020, 239, 121977. DOI: 10.1016/j.matchemphys.2019.121977.
  • Tang, J.; Liu, Y.; Hu, J.; Zheng, S.; Wang, X.; Zhou, H.; Jin, B. Co-Based Metal-Organic Framework Nanopinnas Composite Doped with Ag Nanoparticles: A Sensitive Electrochemical Sensing Platform for Simultaneous Determination of Dopamine and Acetaminophen. Microchem. J. 2020, 155, 104759. DOI: 10.1016/j.microc.2020.104759.
  • Abdelwahab, A. A.; Elseman, A. M.; Alotaibi, N. F.; Nassar, A. M. Simultaneous Voltammetric Determination of Ascorbic Acid, Dopamine, Acetaminophen and Tryptophan Based on Hybrid Trimetallic Nanoparticles-Capped Electropretreated Graphene. Microchem. J. 2020, 156, 104927. DOI: 10.1016/j.microc.2020.104927.
  • Yanalak, G.; Doganay, F.; Eroglu, Z.; Kucukkececi, H.; Aslan, E.; Ozmen, M.; Bas, S. Z.; Metin, O.; Hatay Patir, I. Hatay Patir, I. Ternary Nanocomposites of Mesoporous Graphitic Carbon Nitride/Black Phosphorus/Gold Nanoparticles (Mpg-CN/BP-Au) for Photocatalytic Hydrogen Evolution and Electrochemical Sensing of Paracetamol. Appl. Surf. Sci. 2021, 557, 149755. DOI: 10.1016/j.apsusc.2021.149755.
  • Nasiri, F.; Rounaghi, G. H.; Ashraf, N.; Deiminiat, B. A New Electrochemical Sensing Platform for Quantitative Determination of Diclofenac Based on Gold Nanoparticles Decorated Multiwalled Carbon Nanotubes/Graphene Oxide Nanocomposite Film. Int. J. Environ. An. Ch. 2021, 101, 153–166. DOI: 10.1080/03067319.2019.1661396.
  • Eteya, M. M.; Rounaghi, G. H.; Deiminiat, B. Fabrication of a New Electrochemical Sensor Based on Au Pt Bimetallic Nanoparticles Decorated Multi-Walled Carbon Nanotubes for Determination of Diclofenac. Microchem. J. 2019, 144, 254–260. DOI: 10.1016/j.microc.2018.09.009.
  • Kimuam, K.; Rodthongkum, N.; Ngamrojanavanich, N.; Chailapakul, O.; Ruecha, N. Single Step Preparation of Platinum Nanoflowers/Reduced Graphene Oxide Electrode as a Novel Platform for Diclofenac Sensor. Microchem. J. 2020, 155, 104744. DOI: 10.1016/j.microc.2020.104744.
  • Deiminiat, B.; Razavipanah, I.; Rounaghi, G. H.; Arbab-Zavar, M. H. A Novel Electrochemical Imprinted Sensor for Acetylsalicylic Acid Based on Polypyrrole, Sol-Gel and SiO2@Au Core-Shell Nanoparticles. Sensor. Actuat. B-Chem. 2017, 244, 785–795. DOI: 10.1016/j.snb.2017.01.059.
  • Diouf, A.; Moufid, M.; Bouyahya, D.; österlund, L.; El Bari, N.; Bouchikhi, B. An Electrochemical Sensor Based on Chitosan Capped with Gold Nanoparticles Combined with a Voltammetric Electronic Tongue for Quantitative Aspirin Detection in Human Physiological Fluids and Tablets. Mater Sci Eng C Mater Biol Appl. 2020, 110, 110665. DOI: 10.1016/j.msec.2020.110665.
  • Li, S.; Zhou, J.; Noroozifar, M.; Kerman, K. Gold-Platinum Core-Shell Nanoparticles with Thiolated Polyaniline and Multi-Walled Carbon Nanotubes for the Simultaneous Voltammetric Determination of Six Drug Molecules. Chemosensors. 2021, 9, 24. DOI: 10.3390/chemosensors9020024.
  • Kolahi-Ahari, S.; Deiminiat, B.; Rounaghi, G. H. Modification of a Pencil Graphite Electrode with Multiwalled Carbon Nanotubes Capped Gold Nanoparticles for Electrochemical Determination of Tramadol. J. Electroanal. Chem. 2020, 862, 113996. DOI: 10.1016/j.jelechem.2020.113996.
  • Dehdashti, A.; Babaei, A. Designing and Characterization of a Novel Sensing Platform Based on Pt Doped NiO/MWCNTs Nanocomposite for Enhanced Electrochemical Determination of Epinephrine and Tramadol Simultaneously. J. Electroanal. Chem. 2020, 862, 113949. DOI: 10.1016/j.jelechem.2020.113949.
  • Diouf, A.; Aghoutane, Y.; Burhan, H.; Sen, F.; Bouchikhi, B.; El Bari, N. Tramadol Sensing in Non-Invasive Biological Fluids Using a Voltammetric Electronic Tongue and an Electrochemical Sensor Based on Biomimetic Recognition. Int J Pharm. 2021, 593, 120114. DOI: 10.1016/j.ijpharm.2020.120114.
  • Karimi-Maleh, H.; Sheikhshoaie, I.; Samadzadeh, A. Simultaneous Electrochemical Determination of Levodopa and Piroxicam Using a Glassy Carbon Electrode Modified with a ZnO-Pd/CNT Nanocomposite. RSC Adv. 2018, 8, 26707–26712. DOI: 10.1039/c8ra03460e.
  • Kong, F.; Li, R.; Yao, L.; Wang, Z.; Lv, W.; Wang, W. Pt Nanoparticles Supported on Nitrogen Doped Reduced Graphene Oxide-Single Wall Carbon Nanotubes as a Novel Platform for Highly Sensitive Electrochemical Sensing of Piroxicam. J. Electroanal. Chem. 2019, 832, 385–391. DOI: 10.1016/j.jelechem.2018.11.017.
  • Dehdashti, A.; Babaei, A. Highly Sensitive Electrochemical Sensor Based on Pt Doped NiO Nanoparticles/MWCNTs Nanocomposite Modified Electrode for Simultaneous Sensing of Piroxicam and Amlodipine. Electroanal. 2020, 32, 1017–1024. DOI: 10.1002/elan.201900580.
  • Bahadori, H.; Majidi, M. R.; Alipour, E. An Electrochemical Sensor for Simultaneous Determination of Some Pharmaceutical Compounds Using Ionic Liquid and Pd Nanoparticles Supported on Porous Silicon Doped Carbon-Ceramic Electrode as a Renewable Surface Composite Electrode. Microchem. J. 2021, 161, 105724. DOI: 10.1016/j.microc.2020.105724.
  • Ipekci, H. H.; Ozcan, M.; Turkyilmaz, B. G.; Uzunoglu, A. Ni/NiO/Ni-B/Graphene Heterostructure-Modified Electrodes and Their Electrochemical Activities towards Acetaminophen. Anal Methods. 2021, 13, 3187–3195. DOI: 10.1039/D1AY00446H.
  • Sohouli, E.; Shahdost-Fard, F.; Rahimi-Nasrabadi, M.; Plonska-Brzezinska, M. E.; Ahmadi, F. Introducing a Novel Nanocomposite Consisting of Nitrogen-Doped Carbon Nano-Onions and Gold Nanoparticles for the Electrochemical Sensor to Measure Acetaminophen. J. Electroanal. Chem. 2020, 871, 114309. DOI: 10.1016/j.jelechem.2020.114309.
  • Abdelwahab, A. A.; Naggar, A. H.; Abdelmotaleb, M.; Emran, M. Y. Ruthenium Nanoparticles Uniformly-Designed Chemically Treated Graphene Oxide Nanosheets for Simultaneous Voltammetric Determination of Dopamine and Acetaminophen. Electroanal. 2020, 32, 2156–2165. DOI: 10.1002/elan.202060126.
  • Lotfi, S.; Veisi, H. Pd Nanoparticles Decorated Poly-Methyldopa@GO/Fe3O4 Nanocomposite Modified Glassy Carbon Electrode as a New Electrochemical Sensor for Simultaneous Determination of Acetaminophen and Phenylephrine. Mater Sci Eng C Mater Biol Appl. 2019, 105, 110112. DOI: 10.1016/j.msec.2019.110112.
  • Kenarkob, M.; Pourghobadi, Z. Electrochemical Sensor for Acetaminophen Based on a Glassy Carbon Electrode Modified with ZnO/Au Nanoparticles on Functionalized Multi-Walled Carbon Nano-Tubes. Microchem. J. 2019, 146, 1019–1025. DOI: 10.1016/j.microc.2019.02.038.
  • Liu, W.; Shi, Q.; Zheng, G.; Zhou, J.; Chen, M. Electrocatalytic Oxidation toward Dopamine and Acetaminophen Based on AuNPs@TCnA/GN Modified Glassy Carbon Electrode. Anal Chim Acta. 2019, 1075, 81–90. DOI: 10.1016/j.aca.2019.05.031.
  • Li, F.; Li, R.; Feng, Y.; Gong, T.; Zhang, M.; Wang, L.; Meng, T.; Jia, H.; Wang, H.; Zhang, Y. Facile Synthesis of Au-Embedded Porous Carbon from Metal-Organic Frameworks and for Sensitive Detection of Acetaminophen in Pharmaceutical Products. Mater Sci Eng C Mater Biol Appl. 2019, 95, 78–85. DOI: 10.1016/j.msec.2018.10.074.
  • Chen, Y.; Zheng, G.; Shi, Q.; Zhao, R.; Chen, M. Preparation of Thiolated Calix Arene/AuNPs/MWCNTs Modified Glassy Carbon Electrode and Its Electrocatalytic Oxidation toward Paracetamol. Sensor. Actuat. B-Chem. 2018, 277, 289–296. DOI: 10.1016/j.snb.2018.09.012.
  • Wong, A.; Santos, A. M.; Fatibello-Filho, O. Simultaneous Determination of Paracetamol and Levofloxacin Using a Glassy Carbon Electrode Modified with Carbon Black, Silver Nanoparticles and PEDOT:PSS Film. Sensor. Actuat. B-Chem. 2018, 255, 2264–2273. DOI: 10.1016/j.snb.2017.09.020.
  • Wang, H.; Zhang, S.; Li, S.; Qu, J. Electrochemical Sensor Based on Palladium-Reduced Graphene Oxide Modified with Gold Nanoparticles for Simultaneous Determination of Acetaminophen and 4-Aminophenol. Talanta. 2018, 178, 188–194. DOI: 10.1016/j.talanta.2017.09.021.
  • Li, M.; Wang, W.; Chen, Z.; Song, Z.; Luo, X. Electrochemical Determination of Paracetamol Based on Au@Graphene Core-Shell Nanoparticles Doped Conducting Polymer PEDOT Nanocomposite. Sensor. Actuat. B-Chem. 2018, 260, 778–785. DOI: 10.1016/j.snb.2018.01.093.
  • Wang, L.; Meng, T.; Fan, Y.; Chen, C.; Guo, Z.; Wang, H.; Zhang, Y. Electrochemical Study of Acetaminophen Oxidation by Gold Nanoparticles Supported on a Leaf-Like Zeolitic Imidazolate Framework. J Colloid Interface Sci. 2018, 524, 1–7. DOI: 10.1016/j.jcis.2018.04.009.
  • Chen, J.; Shang, N.; Lan, X.; Nsabimana, A.; Che, Z.; Zhang, Y. Facile Preparation of Ternary Heterostructured Au/Polyoxometalate/Nitrogen-Doped Hollow Carbon Sphere Nanohybrids for the Acetaminophen Detection. Colloid. Surface. A. 2022, 647, 129029. DOI: 10.1016/j.colsurfa.2022.129029.
  • Kavya, K. V.; Muthu, D.; Varghese, S.; Pattappan, D.; Kumar, R. T. R.; Haldorai, Y. Glassy Carbon Electrode Modified by Gold Nanofibers Decorated Iron Metal-Organic Framework Nanocomposite for Voltammetric Determination of Acetaminophen. Carbon Lett. 2022. DOI: 10.1007/s42823-022-00373-3.
  • Kang, Y.; Shang, N.; Lan, X.; Wu, S.; Zhao, J.; Li, M.; Zhang, Y. Preparation of Pt Nanoparticles Embedded on Ordered Mesoporous Carbon Hybrids for Sensitive Detection of Acetaminophen. Colloid. Surface. A. 2022, 641, 128620. DOI: 10.1016/j.colsurfa.2022.128620.
  • Mekassa, B.; Baker, P. G. L.; Chandravanshi, B. S.; Tessema, M. Synthesis, Characterization, and Preparation of Nickel Nanoparticles Decorated Electrochemically Reduced Graphene Oxide Modified Electrode for Electrochemical Sensing of Diclofenac. J Solid State Electrochem. 2018, 22, 3607–3619. DOI: 10.1007/s10008-018-4071-3.
  • Rokhsefid, N.; Shishehbore, M. R. Synthesis and Characterization of an Au Nanoparticles/Graphene Nanosheet Nanocomposite and Its Application for the Simultaneous Determination of Tramadol and Acetaminophen. Anal. Methods. 2019, 11, 5150–5159. DOI: 10.1039/C9AY01497G.
  • Zhang, J.; Li, R.; Yao, L.; Wang, Z.; Lv, W.; Kong, F.; Wang, W. Highly Sensitive Determination of Piroxicam Using a Glassy Carbon Electrode Modified with Silver Nanoparticles Dotted Single Walled Carbon Nanotubes-Reduced Graphene Oxide Nanocomposite. J. Electroanal. Chem. 2018, 823, 1–8. DOI: 10.1016/j.jelechem.2018.04.061.
  • Afzali, M.; Jahromi, Z.; Nekooie, R. Sensitive Voltammetric Method for the Determination of Naproxen at the Surface of Carbon Nanofiber/Gold/Polyaniline Nanocomposite Modified Carbon Ionic Liquid Electrode. Microchem. J. 2019, 145, 373–379. DOI: 10.1016/j.microc.2018.10.046.
  • Tarahomi, S.; Rounaghi, G. H.; Daneshvar, L. A Novel Disposable Sensor Based on Gold Digital Versatile Disc Chip Modified with Graphene Oxide Decorated with Ag Nanoparticles/β-Cyclodextrin for Voltammetric Measurement of Naproxen. Sensor. Actuat. B-Chem. 2019, 286, 445–450. DOI: 10.1016/j.snb.2019.01.131.
  • Lima, H. R. S.; Da Silva, J. S.; de Oliveira Farias, E. A.; Teixeira, P. R. S.; Eiras, C.; Nunes, L. C. C. Electrochemical Sensors and Biosensors for the Analysis of Antineoplastic Drugs. Biosens Bioelectron. 2018, 108, 27–37. DOI: 10.1016/j.bios.2018.02.034.
  • Mutharani, B.; Ranganathan, P.; Chen, S. Chitosan-Gold Collapse Gel/Poly (Bromophenol Blue) Redox-Active Film. A Perspective for Selective Electrochemical Sensing of Flutamide. Int J Biol Macromol. 2019, 124, 759–770. DOI: 10.1016/j.ijbiomac.2018.11.150.
  • Sangili, A.; Vinothkumar, V.; Chen, S.; Veerakumar, P.; Lin, K. Gold Nanoparticle Embedded on a Reduced Graphene Oxide/Polypyrrole Nanocomposite: Voltammetric Sensing of Furazolidone and Flutamide. Langmuir. 2020, 36, 13949–13962. DOI: 10.1021/acs.langmuir.0c02448.
  • Hwa, K.; Santhan, A.; Tata, S. K. S. Fabrication of Sn-Doped ZnO Hexagonal Micro Discs Anchored on rGO for Electrochemical Detection of anti-Androgen Drug Flutamide in Water and Biological Samples. Microchem. J. 2021, 160, 105689. DOI: 10.1016/j.microc.2020.105689.
  • Zahed, F. M.; Hatamluyi, B.; Lorestani, F.; Es Haghi, Z. Silver Nanoparticles Decorated Polyaniline Nanocomposite Based Electrochemical Sensor for the Determination of Anticancer Drug 5-Fluorouracil. J Pharm Biomed Anal. 2018, 161, 12–19. DOI: 10.1016/j.jpba.2018.08.004.
  • Vishnu, S. K. D.; Ranganathan, P.; Rwei, S. P.; Pattamaprom, C.; Kavitha, T.; Sarojini, P. New Reductant-Free Synthesis of Gold Nanoparticles-Doped Chitosan-Based Semi-IPN Nanogel: A Robust Nanoreactor for Exclusively Sensitive 5-Fluorouracil Sensor. Int J Biol Macromol. 2020, 148, 79–88. DOI: 10.1016/j.ijbiomac.2020.01.108.
  • Hatamluyi, B.; Sadeghian, R.; Sany, S. B. T.; Alipourfard, I.; Rezayi, M. Dual-Signaling Electrochemical Ratiometric Strategy for Simultaneous Quantification of Anticancer Drugs. Talanta. 2021, 234, 122662. DOI: 10.1016/j.talanta.2021.122662.
  • Sharifi, J.; Fayazfar, H. Highly Sensitive Determination of Doxorubicin Hydrochloride Antitumor Agent via a Carbon Nanotube/Gold Nanoparticle Based Nanocomposite Biosensor. Bioelectrochemistry. 2021, 139, 107741. DOI: 10.1016/j.bioelechem.2021.107741.
  • Behravan, M.; Aghaie, H.; Giahi, M.; Maleknia, L. Determination of Doxorubicin by Reduced Graphene Oxide/Gold/Polypyrrole Modified Glassy Carbon Electrode: A New Preparation Strategy. Diam. Relat. Mater. 2021, 117, 108478. DOI: 10.1016/j.diamond.2021.108478.
  • Er, E.; Erk, N. Construction of a Sensitive Electrochemical Sensor Based on 1T-MoS2 Nanosheets Decorated with Shape-Controlled Gold Nanostructures for the Voltammetric Determination of Doxorubicin. Mikrochim Acta. 2020, 187, 223. DOI: 10.1007/s00604-020-4206-y.
  • Kalambate, P. K.; Li, Y.; Shen, Y.; Huang, Y. Mesoporous Pd@Pt Core–Shell Nanoparticles Supported on Multi-Walled Carbon Nanotubes as a Sensing Platform: Application in Simultaneous Electrochemical Detection of Anticancer Drugs Doxorubicin and Dasatinib. Anal. Methods. 2019, 11, 443–453. DOI: 10.1039/C8AY02381F.
  • Ghanbari, M. H.; Shahdost-Fard, F.; Salehzadeh, H.; Ganjali, M. R.; Iman, M.; Rahimi-Nasrabadi, M.; Ahmadi, F. A Nanocomposite Prepared from Reduced Graphene Oxide, Gold Nanoparticles and Poly(2-Amino-5-Mercapto-1,3,4-Thiadiazole) for Use in an Electrochemical Sensor for Doxorubicin. Mikrochim Acta. 2019, 186, 641. DOI: 10.1007/s00604-019-3761-6.
  • Materon, E. M.; Wong, A.; Fatibello-Filho, O.; Faria, R. C. Development of a Simple Electrochemical Sensor for the Simultaneous Detection of Anticancer Drugs. J. Electroanal. Chem. 2018, 827, 64–72. DOI: 10.1016/j.jelechem.2018.09.010.
  • Guo, H.; Jin, H.; Gui, R.; Wang, Z.; Xia, J.; Zhang, F. Electrodeposition One-Step Preparation of Silver Nanoparticles/Carbon Dots/Reduced Graphene Oxide Ternary Dendritic Nanocomposites for Sensitive Detection of Doxorubicin. Sensor. Actuat. B-Chem. 2017, 253, 50–57. DOI: 10.1016/j.snb.2017.06.095.
  • Akhter, S.; Basirun, W. J.; Shalauddin, M.; Johan, M. R.; Bagheri, S.; Akbarzadeh, O.; Anuar, N. S. Hybrid Nanocomposite of Functionalized Multiwall Carbon Nanotube, Nitrogen Doped Graphene and Chitosan with Electrodeposited Copper for the Detection of Anticancer Drug Nilutamide in Tablet and Biological Samples. Mater. Chem. Phys. 2020, 253, 123393. DOI: 10.1016/j.matchemphys.2020.123393.
  • Karthik, R.; Karikalan, N.; Chen, S.; Gnanaprakasam, P.; Karuppiah, C. Voltammetric Determination of the anti-Cancer Drug Nilutamide Using a Screen-Printed Carbon Electrode Modified with a Composite Prepared from β-Cyclodextrin, Gold Nanoparticles and Graphene Oxide. Microchim Acta. 2017, 184, 507–514. DOI: 10.1007/s00604-016-2037-7.
  • Er, E.; Erk, N. A Novel Electrochemical Sensing Platform Based on Mono-Dispersed Gold Nanorods Modified Graphene for the Sensitive Determination of Topotecan. Sensor. Actuat. B-Chem. 2020, 320, 128320. DOI: 10.1016/j.snb.2020.128320.
  • Ibrahim, M.; Ibrahim, H.; Almandil, N. B.; Kawde, A. A Novel Nanocomposite Based on Gold Nanoparticles Loaded on Acetylene Black for Electrochemical Sensing of the Anticancer Drug Topotecan in the Presence of High Concentration of Uric Acid. J. Electroanal. Chem. 2018, 824, 22–31. DOI: 10.1016/j.jelechem.2018.07.031.
  • Shams, A.; Yari, A. A New Sensor Consisting of Ag-MWCNT Nanocomposite as the Sensing Element for Electrochemical Determination of Epirubicin. Sensor. Actuat. B-Chem. 2019, 286, 131–138. DOI: 10.1016/j.snb.2019.01.128.
  • Afzali, M.; Mostafavi, A.; Nekooie, X.; Jahromi, Z. A Novel Voltammetric Sensor Based on Palladium Nanoparticles/Carbon Nanofibers/Ionic Liquid Modified Carbon Paste Electrode for Sensitive Determination of anti-Cancer Drug Pemetrexed. J. Mol. Liq. 2019, 282, 456–465. DOI: 10.1016/j.molliq.2019.03.041.
  • Mobed, A.; Ahmadalipour, A.; Fakhari, A.; Kazem, S. S.; Saadi, G. K. Bioassay: A Novel Approach in Antipsychotic Pharmacology. Clin Chim Acta. 2020, 509, 30–35. DOI: 10.1016/j.cca.2020.05.025.
  • Tammari, E.; Nezhadali, A.; Lotfi, S.; Veisi, H. Fabrication of an Electrochemical Sensor Based on Magnetic Nanocomposite Fe3O4/β-Alanine/Pd Modified Glassy Carbon Electrode for Determination of Nanomolar Level of Clozapine in Biological Model and Pharmaceutical Samples. Sensor. Actuat. B-Chem. 2017, 241, 879–886. DOI: 10.1016/j.snb.2016.11.014.
  • Shetti, N. P.; Nayak, D. S.; Malode, S. J.; Kulkarni, R. M. Fabrication of MWCNTs and Ru Doped TiO2 Nanoparticles Composite Carbon Sensor for Biomedical Application. ECS J. Solid State Sc. 2018, 7, 3070–3078. DOI: 10.1149/2.0101807jss.
  • Veerakumar, P.; Manavalan, S.; Chen, S.; Pandikumar, A.; Lin, K. Ultrafine Bi-Sn Nanoparticles Decorated on Carbon Aerogels for Electrochemical Simultaneous Determination of Dopamine (Neurotransmitter) and Clozapine (Antipsychotic Drug). Nanoscale. 2020, 12, 22217–22233. DOI: 10.1039/D0NR06028C.
  • Lotfi, S.; Veisi, H. Electrochemical Determination of Clonazepam Drug Based on Glassy Carbon Electrode Modified with Fe3O4/R-SH/Pd Nanocomposite. Mater Sci Eng C Mater Biol Appl. 2019, 103, 109754. DOI: 10.1016/j.msec.2019.109754.
  • Ashrafi, H.; Hassanpour, S.; Saadati, A.; Hasanzadeh, M.; Ansarin, K.; Ozkan, S. A.; Shadjou, N.; Jouyban, A. Sensitive Detection and Determination of Benzodiazepines Using Silver Nanoparticles-N-GQDs Ink Modified Electrode: A New Platform for Modern Pharmaceutical Analysis. Microchem. J. 2019, 145, 1050–1057. DOI: 10.1016/j.microc.2018.12.017.
  • Khoshroo, A.; Hosseinzadeh, L.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F. Silver Nanofibers/Ionic Liquid Nanocomposite Based Electrochemical Sensor for Detection of Clonazepam via Electrochemically Amplified Detection. Microchem. J. 2019, 145, 1185–1190. DOI: 10.1016/j.microc.2018.12.049.
  • Senel, M.; Durmus, Z.; Alachkar, A. Measurement of the Antipsychotic Clozapine Using Reduced Graphene Oxide Nanocomposites-Au/Pd/Pt Electrodes. Electroanal. 2021, 33, 1585–1595. DOI: 10.1002/elan.202060538.
  • Shetti, N. P.; Nayak, D. S.; Malode, S. J.; Kulkarni, R. M. An Electrochemical Sensor for Clozapine at Ruthenium Doped TiO2 Nanoparticles Modified Electrode. Sensor. Actuat. B-Chem. 2017, 247, 858–867. DOI: 10.1016/j.snb.2017.03.102.
  • Lu, Z.; Li, Y.; Liu, T.; Wang, G.; Sun, M.; Jiang, Y.; He, H.; Wang, Y.; Zou, P.; Wang, X.; et al. A Dual-Template Imprinted Polymer Electrochemical Sensor Based on AuNPs and Nitrogen-Doped Graphene Oxide Quantum Dots Coated on NiS2/Biomass Carbon for Simultaneous Determination of Dopamine and Chlorpromazine. Chem. Eng. J. 2020, 389, 124417. DOI: 10.1016/j.cej.2020.124417.
  • Yang, R.; Zhang, Y.; Liao, X.; Yao, Y.; Huang, C.; Liu, L. The Relationship between anti-Hypertensive Drugs and Cancer: Anxiety to Be Resolved in Urgent. Front Pharmacol. 2020, 11, 610157. DOI: 10.3389/fphar.2020.610157.
  • Arvand, M.; Kaykhaii, M.; Ashrafi, P.; Hemmati, S. An Electrochemical Interface for Direct Analysis of Amlodipine in Tablets and Human Blood Samples. Mater. Sci. Eng. B-Adv. 2021, 263, 114868. DOI: 10.1016/j.mseb.2020.114868.
  • Sudha, K.; Elangovan, A.; Jeevika, A.; Sharmila, C.; Arivazhagan, G.; Kalimuthu, P. Electroanalytical Detection of Amlodipine in Urine and Pharmaceutical Samples Using Ag-Ce2(WO4)3@CNF Nanocomposite-Modified Glassy Carbon Electrode. Microchem. J. 2021, 165, 106138. DOI: 10.1016/j.microc.2021.106138.
  • Atta, N. F.; Galal, A.; El-Gohary, A. R. M. Electrochemical Sensing of Dobutamine, Paracetamol, Amlodipine, and Daclatasvir in Serum Based on Thiourea SAMs over Nano-Gold Particles–CNTs Composite. New J. Chem. 2022, 46, 12265–12277. DOI: 10.1039/d2nj01822e.
  • Wong, A.; Santos, A. M.; Silva, T. A.; Fatibello-Filho, O. Simultaneous Determination of Isoproterenol, Acetaminophen, Folic Acid, Propranolol and Caffeine Using a Sensor Platform Based on Carbon Black, Graphene Oxide, Copper Nanoparticles and PEDOT: PSS. Talanta. 2018, 183, 329–338. DOI: 10.1016/j.talanta.2018.02.066.
  • Santos, A. M.; Wong, A.; Fatibello-Filho, O. Simultaneous Determination of Salbutamol and Propranolol in Biological Fluid Samples Using an Electrochemical Sensor Based on Functionalized-Graphene, Ionic Liquid and Silver Nanoparticles. J. Electroanal. Chem. 2018, 824, 1–8. DOI: 10.1016/j.jelechem.2018.07.018.
  • Kokab, T.; Shah, A.; Khan, M. A.; Nisar, J.; Ashiq, M. N. Electrochemical Sensing Platform for the Simultaneous Femtomolar Detection of Amlodipine and Atorvastatin Drugs. RSC Adv. 2021, 11, 27135–27151. DOI: 10.1039/d1ra04464h.
  • Naikoo, G. A.; Pandit, U. J.; Sheikh, M. U. D.; Hassan, I. U.; Khan, G. A.; Bhat, A. R.; Das, R.; Horchani, R. Synergistic Effect of Carbon Nanotubes, Copper and Silver Nanoparticles as an Efficient Electrochemical Sensor for the Trace Recognition of Amlodipine Besylate Drug. SN Appl. Sci. 2020, 2, 983. DOI: 10.1007/s42452-020-2807-z.
  • Madhuri, C.; Manohara Reddy, Y. V.; Prabhakar Vattikuti, S. V.; švorc, Ľ.; Shim, J.; Madhavi, G. Trace-Level Determination of Amlodipine Besylate by Immobilization of Palladium-Silver Bi-Metallic Nanoparticles on Reduced Graphene Oxide as an Electrochemical Sensor. J. Electroanal. Chem. 2019, 847, 113259. DOI: 10.1016/j.jelechem.2019.113259.
  • Arvand, M.; Samie, H. A. Electrospun CeO2-Au Nanofibers/Graphene Oxide 3D Nanonetwork Structure for the Electrocatalytic Detection of Amlodipine. Ionics. 2018, 24, 1813–1826. DOI: 10.1007/s11581-017-2321-5.
  • Er, E.; Celikkan, H.; Erk, N. A Novel Electrochemical Nano-Platform Based on Graphene/Platinum Nanoparticles/Nafion Composites for the Electrochemical Sensing of Metoprolol. Sensor. Actuat. B-Chem. 2017, 238, 779–787. DOI: 10.1016/j.snb.2016.07.108.
  • Silva, D. M.; Carneiro Da Cunha Areias, M. Voltammetric Detection of Captopril in a Commercial Drug Using a Gold-Copper Metal-Organic Framework Nanocomposite Modified Electrode. Electroanal. 2021, 33, 1255–1263. DOI: 10.1002/elan.202060271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.