718
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins

, , , , , , , , & show all

References

  • Xie, H.; Wang, X.; van der Hooft, J. J.; Medema, M. H.; Chen, Z.-Y.; Yue, X.; Zhang, Q.; Li, P. Fungi Population Metabolomics and Molecular Network Study Reveal Novel Biomarkers for Early Detection of Aflatoxigenic Aspergillus Species. J. Hazard. Mater. 2022, 424, 127173. DOI: 10.1016/j.jhazmat.2021.127173.
  • He, H.; Sun, D.-W.; Wu, Z.; Pu, H.; Wei, Q. On-off-On Fluorescent Nanosensing: Materials, Detection Strategies and Recent Food Applications. Trends Food Sci. Technol. 2022, 119, 243–256. DOI: 10.1016/j.tifs.2021.11.029.
  • Kebede, H.; Liu, X.; Jin, J.; Xing, F. Current Status of Major Mycotoxins Contamination in Food and Feed in Africa. Food Control 2020, 110, 106975. DOI: 10.1016/j.foodcont.2019.106975.
  • Marroquín-Cardona, A.; Johnson, N.; Phillips, T.; Hayes, A. Mycotoxins in a Changing Global Environment–A Review. Food Chem. Toxicol. 2014, 69, 220–230. DOI: 10.1016/j.fct.2014.04.025.
  • Wu, F.; Groopman, J. D.; Pestka, J. J. Public Health Impacts of Foodborne Mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372. DOI: 10.1146/annurev-food-030713-092431.
  • Palumbo, R.; Crisci, A.; Venâncio, A.; Cortiñas Abrahantes, J.; Dorne, J.-L.; Battilani, P.; Toscano, P. Occurrence and Co-Occurrence of Mycotoxins in Cereal-Based Feed and Food. Microorganisms 2020, 8, 74. DOI: 10.3390/microorganisms8010074.
  • Vidal, J. C.; Bonel, L.; Ezquerra, A.; Hernández, S.; Bertolín, J. R.; Cubel, C.; Castillo, J. R. Electrochemical Affinity Biosensors for Detection of Mycotoxins: A Review. Biosens. Bioelectron. 2013, 49, 146–158. DOI: 10.1016/j.bios.2013.05.008.
  • Hamed, A. M.; Abdel-Hamid, M.; Gámiz-Gracia, L.; García-Campaña, A. M.; Arroyo-Manzanares, N. Determination of Aflatoxins in Plant-Based Milk and Dairy Products by Dispersive Liquid–Liquid Microextraction and High-Performance Liquid Chromatography with Fluorescence Detection. Anal. Lett. 2019, 52, 363–372. DOI: 10.1080/00032719.2018.1467434.
  • Ouakhssase, A.; Ait Addi, E. Mycotoxins in Food: A Review on Liquid Chromatographic Methods Coupled to Mass Spectrometry and Their Experimental Designs. Crit. Rev. Food Sci. Nutr. 2022, 62, 2606–2626. DOI: 10.1080/10408398.2020.1856034.
  • McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. BioMOFs: Metal–Organic Frameworks for Biological and Medical Applications. Angew. Chem. Int. Ed. Engl. 2010, 49, 6260–6266. DOI: 10.1002/anie.201000048.
  • Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal–Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. DOI: 10.1021/cr200101d.
  • Shenashen, M. A.; Emran, M. Y.; Sabagh, A. E.; Selim, M. M.; Elmarakbi, A.; El-Safty, S. A. Progress in Sensory Devices of Pesticides, Pathogens, Coronavirus, and Chemical Additives and Hazards in Food Assessment: Food Safety Concerns. Prog. Mater. Sci. 2022, 124, 100866. DOI: 10.1016/j.pmatsci.2021.100866.
  • Shen, Y.; Wei, Y.; Zhu, C.; Cao, J.; Han, D.-M. Ratiometric Fluorescent Signals-Driven Smartphone-Based Portable Sensors for Onsite Visual Detection of Food Contaminants. Coord. Chem. Rev. 2022, 458, 214442. DOI: 10.1016/j.ccr.2022.214442.
  • Liu, S.; Xu, Y.; Jiang, X.; Tan, H.; Ying, B. Translation of Aptamers toward Clinical Diagnosis and Commercialization. Biosens. Bioelectron. 2022, 208, 114168. DOI: 10.1016/j.bios.2022.114168.
  • Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. DOI: 10.1126/science.2200121.
  • Ellington, A. D.; Szostak, J. W. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. DOI: 10.1038/346818a0.
  • Mahmoudpour, M.; Ding, S.; Lyu, Z.; Ebrahimi, G.; Du, D.; Ezzati Nazhad Dolatabadi, J.; Torbati, M.; Lin, Y. Aptamer Functionalized Nanomaterials for Biomedical Applications: Recent Advances and New Horizons. Nano Today 2021, 39, 101177. DOI: 10.1016/j.nantod.2021.101177.
  • Mahmoudpour, M.; Karimzadeh, Z.; Ebrahimi, G.; Hasanzadeh, M.; Ezzati Nazhad Dolatabadi, J. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Crit. Rev. Anal. Chem. 2021, 1–28. DOI: 10.1080/10408347.2021.1919987.
  • Alkhamis, O.; Canoura, J.; Yu, H.; Liu, Y.; Xiao, Y. Innovative Engineering and Sensing Strategies for Aptamer-Based Small-Molecule Detection. TrAC, Trends Anal. Chem. 2019, 121, 115699. DOI: 10.1016/j.trac.2019.115699.
  • Ruscito, A.; DeRosa, M. C. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications. Front. Chem. 2016, 4, 14. DOI: 10.3389/fchem.2016.00014.
  • Tang, L.; Wang, Y.; Li, J. The Graphene/Nucleic Acid Nanobiointerface. Chem. Soc. Rev. 2015, 44, 6954–6980. DOI: 10.1039/c4cs00519h.
  • Khoshbin, Z.; Davoodian, N.; Taghdisi, S. M.; Abnous, K. Metal Organic Frameworks as Advanced Functional Materials for Aptasensor Design. Spectrochim. Acta Part A 2022, 276, 121251. DOI: 10.1016/j.saa.2022.121251.
  • Qiu, W.; Gao, F.; Yano, N.; Kataoka, Y.; Handa, M.; Yang, W.; Tanaka, H.; Wang, Q. Specific Coordination between Zr-MOF and Phosphate-Terminated DNA Coupled with Strand Displacement for the Construction of Reusable and Ultrasensitive Aptasensor. Anal. Chem. 2020, 92, 11332–11340. DOI: 10.1021/acs.analchem.0c02018.
  • Wang, Y.; Wang, Y.; Wang, F.; Chi, H.; Zhao, G.; Zhang, Y.; Li, T.; Wei, Q. Electrochemical Aptasensor Based on Gold Modified Thiol Graphene as Sensing Platform and Gold-Palladium Modified Zirconium Metal-Organic Frameworks Nanozyme as Signal Enhancer for Ultrasensitive Detection of Mercury Ions. J. Colloid Interface Sci. 2022, 606, 510–517. DOI: 10.1016/j.jcis.2021.08.055.
  • Wang, J.; Wang, Q.; Zhong, Y.; Wu, D.; Gan, N. A Sandwich-Type Aptasensor for Point-of-Care Measurements of Low-Density Lipoprotein in Plasma Based on Aptamer-Modified MOF and Magnetic Silica Composite Probes. Microchem. J. 2020, 158, 105288. DOI: 10.1016/j.microc.2020.105288.
  • Zhang, S.; Rong, F.; Guo, C.; Duan, F.; He, L.; Wang, M.; Zhang, Z.; Kang, M.; Du, M. Metal–Organic Frameworks (MOFs) Based Electrochemical Biosensors for Early Cancer Diagnosis In Vitro. Coord. Chem. Rev. 2021, 439, 213948. DOI: 10.1016/j.ccr.2021.213948.
  • Bansal, K. K.; Gupta, J.; Rosling, A.; Rosenholm, J. M. Renewable Poly(δ-Decalactone) Based Block Copolymer Micelles as Drug Delivery Vehicle: In Vitro and In Vivo Evaluation. Saudi Pharm. J. 2018, 26, 358–368. DOI: 10.1016/j.jsps.2018.01.006.
  • Kathuria, A.; Harding, T.; Auras, R.; Kivy, M. B. Encapsulation of Hexanal in Bio-Based Cyclodextrin Metal Organic Framework for Extended Release. J. Incl. Phenom. Macrocycl. Chem. 2021, 101, 121–130. DOI: 10.1007/s10847-021-01095-1.
  • Ghazvini, M. F.; Vahedi, M.; Nobar, S. N.; Sabouri, F. Investigation of the MOF Adsorbents and the Gas Adsorptive Separation Mechanisms. J. Environ. Chem. Eng. 2021, 9, 104790. DOI: 10.1016/j.jece.2020.104790.
  • Perry Iv, J. J.; Perman, J. A.; Zaworotko, M. J. Design and Synthesis of Metal–Organic Frameworks Using Metal–Organic Polyhedra as Supermolecular Building Blocks. Chem. Soc. Rev. 2009, 38, 1400. DOI: 10.1039/b807086p.
  • Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Applications of Metal–Organic Frameworks in Heterogeneous Supramolecular Catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. DOI: 10.1039/c4cs00094c.
  • Bennett, T. D.; Cheetham, A. K. Amorphous Metal–Organic Frameworks. Acc. Chem. Res. 2014, 47, 1555–1562. DOI: 10.1021/ar5000314.
  • Xue, W.‐L.; Deng, W.‐H.; Chen, H.; Liu, R.‐H.; Taylor, J. M.; Li, Yu‐Kun; Wang, L.; Deng, Y.‐H.; Li, W.‐H.; Wen, Y.‐Y.; et al. MOF‐Directed Synthesis of Crystalline Ionic Liquids with Enhanced Proton Conduction. Angew. Chem. Int. Ed. 2021, 60, 1290–1297. DOI: 10.1002/anie.202010783.
  • Qiu, Q.; Chen, H.; Wang, Y.; Ying, Y. Recent Advances in the Rational Synthesis and Sensing Applications of Metal-Organic Framework Biocomposites. Coord. Chem. Rev. 2019, 387, 60–78. DOI: 10.1016/j.ccr.2019.02.009.
  • Yang, Z.; Zhang, W.; Yin, Y.; Fang, W.; Xue, H. Metal-Organic Framework-Based Sensors for the Detection of Toxins and Foodborne Pathogens. Food Control 2022, 133, 108684. DOI: 10.1016/j.foodcont.2021.108684.
  • Zhang, H.-W.; Li, H.-K.; Han, Z.-Y.; Yuan, R.; He, H. Incorporating Fullerenes in Nanoscale Metal–Organic Matrixes: An Ultrasensitive Platform for Impedimetric Aptasensing of Tobramycin. ACS Appl. Mater. Interfaces 2022, 14, 7350–7357. DOI: 10.1021/acsami.1c23320.
  • Zhang, Z.; Lou, Y.; Guo, C.; Jia, Q.; Song, Y.; Tian, J.-Y.; Zhang, S.; Wang, M.; He, L.; Du, M. Metal–Organic Frameworks (MOFs) Based Chemosensors/Biosensors for Analysis of Food Contaminants. Trends Food Sci. Technol. 2021, 118, 569–588. DOI: 10.1016/j.tifs.2021.10.024.
  • Marimuthu, M.; Arumugam, S. S.; Jiao, T.; Sabarinathan, D.; Li, H.; Chen, Q. Metal Organic Framework Based Sensors for the Detection of Food Contaminants. TrAC, Trends Anal. Chem. 2022, 154, 116642. DOI: 10.1016/j.trac.2022.116642.
  • Chang, J.; Wang, X.; Wang, J.; Li, H.; Li, F. Nucleic Acid-Functionalized Metal–Organic Framework-Based Homogeneous Electrochemical Biosensor for Simultaneous Detection of Multiple Tumor Biomarkers. Anal. Chem. 2019, 91, 3604–3610. DOI: 10.1021/acs.analchem.8b05599.
  • Wu, S.; Li, C.; Shi, H.; Huang, Y.; Li, G. Design of Metal–Organic Framework-Based Nanoprobes for Multicolor Detection of DNA Targets with Improved Sensitivity. Anal. Chem. 2018, 90, 9929–9935. DOI: 10.1021/acs.analchem.8b02127.
  • Ma, M.-N.; Zhuo, Y.; Yuan, R.; Chai, Y.-Q. New Signal Amplification Strategy Using Semicarbazide as co-Reaction Accelerator for Highly Sensitive Electrochemiluminescent Aptasensor Construction. Anal. Chem. 2015, 87, 11389–11397. DOI: 10.1021/acs.analchem.5b02848.
  • Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic Acid–Metal Organic Framework (MOF) Nanoparticle Conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264. DOI: 10.1021/ja503215w.
  • Chen, M.; Gan, N.; Li, T.; Wang, Y.; Xu, Q.; Chen, Y. An Electrochemical Aptasensor for Multiplex Antibiotics Detection Using Y-Shaped DNA-Based Metal Ions Encoded Probes with NMOF Substrate and CSRP Target-Triggered Amplification Strategy. Anal. Chim. Acta 2017, 968, 30–39. DOI: 10.1016/j.aca.2017.03.024.
  • Wang, S.; Chen, Y.; Wang, S.; Li, P.; Mirkin, C. A.; Farha, O. K. DNA-Functionalized Metal–Organic Framework Nanoparticles for Intracellular Delivery of Proteins. J. Am. Chem. Soc. 2019, 141, 2215–2219. DOI: 10.1021/jacs.8b12705.
  • Zhang, H.-T.; Zhang, J.-W.; Huang, G.; Du, Z.-Y.; Jiang, H.-L. An Amine-Functionalized Metal–Organic Framework as a Sensing Platform for DNA Detection. Chem. Commun. (Camb.) 2014, 50, 12069–12072. DOI: 10.1039/c4cc05571c.
  • Zhang, Q.; Wang, C.-F.; Lv, Y.-K. Luminescent Switch Sensors for the Detection of Biomolecules Based on Metal–Organic Frameworks. Analyst 2018, 143, 4221–4229. DOI: 10.1039/c8an00816g.
  • Xie, B.-P.; Qiu, G.-H.; Sun, B.; Yang, Z.-F.; Zhang, W.-H.; Chen, J.-X.; Jiang, Z.-H. Synchronous Sensing of Three Conserved Sequences of Zika Virus Using a DNAs@ MOF Hybrid: Experimental and Molecular Simulation Studies. Inorg. Chem. Front. 2019, 6, 148–152. DOI: 10.1039/C8QI01031E.
  • Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H.-C. From Fundamentals to Applications: A Toolbox for Robust and Multifunctional MOF Materials. Chem. Soc. Rev. 2018, 47, 8611–8638. DOI: 10.1039/c8cs00688a.
  • Kempahanumakkagari, S.; Vellingiri, K.; Deep, A.; Kwon, E. E.; Bolan, N.; Kim, K.-H. Metal–Organic Framework Composites as Electrocatalysts for Electrochemical Sensing Applications. Coord. Chem. Rev. 2018, 357, 105–129. DOI: 10.1016/j.ccr.2017.11.028.
  • Xue, Y.; Zheng, S.; Xue, H.; Pang, H. Metal–Organic Framework Composites and Their Electrochemical Applications. J. Mater. Chem. A 2019, 7, 7301–7327. DOI: 10.1039/C8TA12178H.
  • Tong, P.; Liang, J.; Jiang, X.; Li, J. Research Progress on Metal-Organic Framework Composites in Chemical Sensors. Crit. Rev. Anal. Chem. 2020, 50, 376–392. DOI: 10.1080/10408347.2019.1642732.
  • Wang, Z.; Liu, T.; Yu, Y.; Asif, M.; Xu, N.; Xiao, F.; Liu, H. Coffee Ring–Inspired Approach toward Oriented Self‐Assembly of Biomimetic Murray MOFs as Sweat Biosensor. Small 2018, 14, 1802670. DOI: 10.1002/smll.201802670.
  • Bai, W.; Li, S.; Ma, J.; Cao, W.; Zheng, J. Ultrathin 2D Metal–Organic Framework (Nanosheets and Nanofilms)-Based x D–2D Hybrid Nanostructures as Biomimetic Enzymes and Supercapacitors. J. Mater. Chem. A 2019, 7, 9086–9098. DOI: 10.1039/C9TA00311H.
  • Kaur, G.; Sharma, S.; Singh, S.; Bhardwaj, N.; Deep, A. Selective and Sensitive Electrochemical Sensor for Aflatoxin M1 with a Molybdenum Disulfide Quantum Dot/Metal–Organic Framework Nanocomposite. ACS Omega 2022, 7, 17600–17608. DOI: 10.1021/acsomega.2c00126.
  • Gu, C.; Yang, L.; Wang, M.; Zhou, N.; He, L.; Zhang, Z.; Du, M. A Bimetallic (Cu-Co) Prussian Blue Analogue Loaded with Gold Nanoparticles for Impedimetric Aptasensing of Ochratoxin A. Microchim. Acta 2019, 186, 1. DOI: 10.1007/s00604-019-3479-5.
  • He, B.; Yan, X. Ultrasensitive Electrochemical Aptasensor Based on CoSe2/AuNRs and 3D Structured DNA-PtNi@ Co-MOF Networks for the Detection of Zearalenone. Sens. Actuators B 2020, 306, 127558. DOI: 10.1016/j.snb.2019.127558.
  • Selvam, S. P.; Kadam, A. N.; Maiyelvaganan, K. R.; Prakash, M.; Cho, S. Novel SeS2-Loaded Co MOF with Au@PANI Comprised Electroanalytical Molecularly Imprinted Polymer-Based Disposable Sensor for Patulin Mycotoxin. Biosens. Bioelectron. 2021, 187, 113302. DOI: 10.1016/j.bios.2021.113302.
  • Wen, X.; Huang, Q.; Nie, D.; Zhao, X.; Cao, H.; Wu, W.; Han, Z. A Multifunctional n-Doped cu–Mofs (N–cu–Mof) Nanomaterial-Driven Electrochemical Aptasensor for Sensitive Detection of Deoxynivalenol. Molecules 2021, 26, 2243. DOI: 10.3390/molecules26082243.
  • Li, Q.; Liang, B.; Li, W.; Li, W.; Sun, J.; Jiao, S.; Wang, S.; Jin, Y.; Zheng, T.; Li, J. A Capillary Device Made by Aptamer-Functionalized Silica Photonic Crystal Microspheres for the Point-of-Care Detection of Ochratoxin A. Sens. Actuators B 2021, 330, 129367. DOI: 10.1016/j.snb.2020.129367.
  • Li, X.; Falcone, N.; Hossain, M. N.; Kraatz, H.-B.; Chen, X.; Huang, H. Development of a Novel Label-Free Impedimetric Electrochemical Sensor Based on Hydrogel/Chitosan for the Detection of Ochratoxin A. Talanta 2021, 226, 122183. DOI: 10.1016/j.talanta.2021.122183.
  • Song, Y.; Xu, M.; Liu, X.; Li, Z.; Wang, C.; Jia, Q.; Zhang, Z.; Du, M. A Label-Free Enrofloxacin Electrochemical Aptasensor Constructed by a Semiconducting CoNi-Based Metal–Organic Framework (MOF). Electrochim. Acta 2021, 368, 137609. DOI: 10.1016/j.electacta.2020.137609.
  • He, L.; Duan, F.; Song, Y.; Guo, C.; Zhao, H.; Tian, J.-Y.; Zhang, Z.; Liu, C.-S.; Zhang, X.; Wang, P.; et al. 2D Zirconium-Based Metal-Organic Framework Nanosheets for Highly Sensitive Detection of Mucin 1: Consistency between Electrochemical and Surface Plasmon Resonance Methods. 2D Mater. 2017, 4, 025098. DOI: 10.1088/2053-1583/aa6fc6.
  • Wang, M.; Dong, R.; Feng, X. Correction: Two-Dimensional Conjugated Metal–Organic Frameworks (2D c-MOFs): Chemistry and Function for MOFtronics. Chem. Soc. Rev. 2022, 51, 793–794. DOI: 10.1039/D2CS90005J.
  • Song, Y.; Duan, F.; Zhang, S.; Tian, J.-Y.; Zhang, Z.; Wang, Z.-W.; Liu, C.-S.; Xu, W.-M.; Du, M. Iron Oxide@ Mesoporous Carbon Architectures Derived from an Fe (II)-Based Metal Organic Framework for Highly Sensitive Oxytetracycline Determination. J. Mater. Chem. A 2017, 5, 19378–19389. DOI: 10.1039/C7TA03959J.
  • Chen, J.; Yu, C.; Zhao, Y.; Niu, Y.; Zhang, L.; Yu, Y.; Wu, J.; He, J. A Novel Non-Invasive Detection Method for the FGFR3 Gene Mutation in Maternal Plasma for a Fetal Achondroplasia Diagnosis Based on Signal Amplification by Hemin-MOFs/PtNPs. Biosens. Bioelectron. 2017, 91, 892–899. DOI: 10.1016/j.bios.2016.10.067.
  • Zhang, X.; Cheng, J.; Xiang, Z.; Cai, L.; Lu, W. A Hierarchical Co@ Mesoporous C/Macroporous C Sheet Composite Derived from Bimetallic MOF and Oroxylum Indicum for Enhanced Microwave Absorption. Carbon 2022, 187, 477–487. DOI: 10.1016/j.carbon.2021.11.044.
  • Zhou, Y.; Abazari, R.; Chen, J.; Tahir, M.; Kumar, A.; Ikreedeegh, R. R.; Rani, E.; Singh, H.; Kirillov, A. M. Bimetallic Metal–Organic Frameworks and MOF-Derived Composites: Recent Progress on Electro-and Photoelectrocatalytic Applications. Coord. Chem. Rev. 2022, 451, 214264. DOI: 10.1016/j.ccr.2021.214264.
  • Zhang, Z.-H.; Duan, F.-H.; Tian, J.-Y.; He, J.-Y.; Yang, L.-Y.; Zhao, H.; Zhang, S.; Liu, C.-S.; He, L.-H.; Chen, M.; et al. Aptamer-Embedded Zirconium-Based Metal–Organic Framework Composites Prepared by de Novo Bio-Inspired Approach with Enhanced Biosensing for Detecting Trace Analytes. ACS Sens. 2017, 2, 982–989. DOI: 10.1021/acssensors.7b00236.
  • Zhang, J.; Xu, X.; Qiang, Y. Ultrasensitive Electrochemical Aptasensor for Ochratoxin A Detection Using AgPt Bimetallic Nanoparticles Decorated Iron-Porphyrinic Metal-Organic Framework for Signal Amplification. Sens. Actuators B 2020, 312, 127964. DOI: 10.1016/j.snb.2020.127964.
  • Zakaria, M. B.; Chikyow, T. Recent Advances in Prussian Blue and Prussian Blue Analogues: Synthesis and Thermal Treatments. Coord. Chem. Rev. 2017, 352, 328–345. DOI: 10.1016/j.ccr.2017.09.014.
  • Lee, B.; Park, J.-H.; Byun, J.-Y.; Kim, J. H.; Kim, M.-G. An Optical Fiber-Based LSPR Aptasensor for Simple and Rapid In-Situ Detection of Ochratoxin A. Biosens. Bioelectron. 2018, 102, 504–509. DOI: 10.1016/j.bios.2017.11.062.
  • Park, J.-H.; Byun, J.-Y.; Jang, H.; Hong, D.; Kim, M.-G. A Highly Sensitive and Widely Adaptable Plasmonic Aptasensor Using Berberine for Small-Molecule Detection. Biosens. Bioelectron. 2017, 97, 292–298. DOI: 10.1016/j.bios.2017.06.019.
  • Wang, J.; Liu, C.; Feng, J.; Cheng, D.; Zhang, C.; Yao, Y.; Gu, Z.; Hu, W.; Wan, J.; Yu, C. MOFs Derived Co/Cu Bimetallic Nanoparticles Embedded in Graphitized Carbon Nanocubes as Efficient Fenton Catalysts. J. Hazard. Mater. 2020, 394, 122567. DOI: 10.1016/j.jhazmat.2020.122567.
  • Huang, N.; Lee, K. H.; Yue, Y.; Xu, X.; Irle, S.; Jiang, Q.; Jiang, D. A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. Angew. Chem. 2020, 132, 16730. DOI: 10.1002/ange.202005274.
  • Zhang, Y.; Lovell, J. F. Recent Applications of Phthalocyanines and Naphthalocyanines for Imaging and Therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1420.
  • Song, Y.; He, L.; Zhang, S.; Liu, X.; Chen, K.; Jia, Q.; Zhang, Z.; Du, M. Novel Impedimetric Sensing Strategy for Detecting Ochratoxin A Based on NH2-MIL-101 (Fe) Metal-Organic Framework Doped with Cobalt Phthalocyanine Nanoparticles. Food Chem. 2021, 351, 129248. DOI: 10.1016/j.foodchem.2021.129248.
  • Karimzadeh, Z.; Mahmoudpour, M.; de la Guardia, M.; Dolatabadi, J. E. N.; Jouyban, A. Aptamer-Functionalized Metal Organic Frameworks as an Emerging Nanoprobe in the Food Safety Field: Promising Development Opportunities and Translational Challenges. TrAC, Trends Anal. Chem. 2022, 152, 116622. DOI: 10.1016/j.trac.2022.116622.
  • Zheng, R.; He, B.; Xie, L.; Li, L.; Yang, J.; Liu, R.; Ren, W.; Suo, Z.; Xu, Y.; Qu, Z. Electrochemical Aptasensor Based on PEI‐rGO/AuNWs and Zr‐MOF for Determination of Adenosine Triphosphate via Exonuclease I‐Assisted Target Recycling Strategy. Electroanalysis 2022, 34, 74–82. DOI: 10.1002/elan.202100460.
  • Pérez-Fernández, B.; de la Escosura-Muñiz, A. Electrochemical Biosensors Based on Nanomaterials for Aflatoxins Detection: A Review (2015–2021). Anal. Chim. Acta 2022, 1212, 339658. DOI: 10.1016/j.aca.2022.339658.
  • Hui, Y.; Peng, H.; Zhang, F.; Zhang, L.; Yufang, L.; Zhao, A.; Jia, R.; Wang, B.; Song, Y. A Novel Electrochemical Aptasensor Based on Layer-by-Layer Assembly of DNA-Au@ Ag Conjugates for Rapid Detection of Aflatoxin M1 in Milk Samples. J. Dairy Sci. 2022, 105, 1966–1977. DOI: 10.3168/jds.2021-20931.
  • Liu, D.; Li, W.; Zhu, C.; Li, Y.; Shen, X.; Li, L.; Yan, X.; You, T. Recent Progress on Electrochemical Biosensing of Aflatoxins: A Review. TrAC, Trends Anal. Chem. 2020, 133, 115966. DOI: 10.1016/j.trac.2020.115966.
  • Jahangiri–Dehaghani, F.; Zare, H. R.; Shekari, Z. Measurement of Aflatoxin M1 in Powder and Pasteurized Milk Samples by Using a Label–Free Electrochemical Aptasensor Based on Platinum Nanoparticles Loaded on Fe–Based Metal–Organic Frameworks. Food Chem. 2020, 310, 125820. DOI: 10.1016/j.foodchem.2019.125820.
  • Xue, Y.; Wang, Y.; Feng, S.; Yan, M.; Huang, J.; Yang, X. A Dual-Amplification Mode and Cu-Based Metal-Organic Frameworks Mediated Electrochemical Biosensor for Sensitive Detection of microRNA. Biosens. Bioelectron. 2022, 202, 113992. DOI: 10.1016/j.bios.2022.113992.
  • Kajal, N.; Singh, V.; Gupta, R.; Gautam, S. Metal Organic Frameworks for Electrochemical Sensor Applications: A Review. Environ. Res. 2022, 204, 112320. DOI: 10.1016/j.envres.2021.112320.
  • Zhou, Y.; Li, C.; Li, X.; Zhu, X.; Ye, B.; Xu, M. A Sensitive Aptasensor for the Detection of β-Amyloid Oligomers Based on Metal–Organic Frameworks as Electrochemical Signal Probes. Anal. Methods 2018, 10, 4430–4437. DOI: 10.1039/C8AY00736E.
  • Jahangiri–Dehaghani, F.; Zare, H. R.; Shekari, Z. A Non-Label Electrochemical Aptasensor Based on Cu Metal–Organic Framework to Measure Aflatoxin B1 in Wheat Flour. Food Anal. Methods 2022, 15, 192–202. DOI: 10.1007/s12161-021-02109-x.
  • Chen, Y.; Meng, X.-Z.; Gu, H.-W.; Yi, H.-C.; Sun, W.-Y. A Dual-Response Biosensor for Electrochemical and Glucometer Detection of DNA Methyltransferase Activity Based on Functionalized Metal-Organic Framework Amplification. Biosens. Bioelectron. 2019, 134, 117–122. DOI: 10.1016/j.bios.2019.03.051.
  • He, Q.; Liang, J.; Zhao, Y.; Yuan, Y.; Wang, Z.; Gao, Z.; Wei, J.; Yue, T. Enzymatic Degradation of Mycotoxin patulin by an Extracellular Lipase from Ralstonia and Its Application in Apple Juice. Food Control 2022, 136, 108870. DOI: 10.1016/j.foodcont.2022.108870.
  • da Silva Lima, G.; Dos Santos, G. F.; Ramalho, R. R. F.; de Aguiar, D. V. A.; Roque, J. V.; Maciel, L. I. L.; Simas, R. C.; Pereira, I.; Vaz, B. G. Laser Ablation Electrospray Ionization Mass Spectrometry Imaging as a New Tool for Accessing Patulin Diffusion in Mold-Infected Fruits. Food Chem. 2022, 373, 131490. DOI: 10.1016/j.foodchem.2021.131490.
  • Li, X.; Li, H.; Li, X.; Zhang, Q. Determination of Trace Patulin in Apple-Based Food Matrices. Food Chem. 2017, 233, 290–301. DOI: 10.1016/j.foodchem.2017.04.117.
  • Funari, R.; Ventura, B. D.; Carrieri, R.; Morra, L.; Lahoz, E.; Gesuele, F.; Altucci, C.; Velotta, R. Detection of Parathion and Patulin by Quartz-Crystal Microbalance Functionalized by the Photonics Immobilization Technique. Biosens. Bioelectron. 2015, 67, 224–229. DOI: 10.1016/j.bios.2014.08.020.
  • Guo, W.; Pi, F.; Zhang, H.; Sun, J.; Zhang, Y.; Sun, X. A Novel Molecularly Imprinted Electrochemical Sensor Modified with Carbon Dots, Chitosan, Gold Nanoparticles for the Determination of Patulin. Biosens. Bioelectron. 2017, 98, 299–304. DOI: 10.1016/j.bios.2017.06.036.
  • He, B.; Dong, X. Hierarchically Porous Zr-MOFs Labelled Methylene Blue as Signal Tags for Electrochemical Patulin Aptasensor Based on ZnO Nano Flower. Sens. Actuators B 2019, 294, 192–198. DOI: 10.1016/j.snb.2019.05.045.
  • He, B.; Dong, X. Nb. BbvCI Powered DNA Walking Machine-Based Zr-MOFs-Labeled Electrochemical Aptasensor Using Pt@ AuNRs/Fe-MOFs/PEI-rGO as Electrode Modification Material for Patulin Detection. Chem. Eng. J. 2021, 405, 126642. DOI: 10.1016/j.cej.2020.126642.
  • Caglayan, M. O.; Şahin, S.; Üstündağ, Z. Detection Strategies of Zearalenone for Food Safety: A Review. Crit. Rev. Anal. Chem. 2022, 52, 294–313. DOI: 10.1080/10408347.2020.1797468.
  • Rai, A.; Das, M.; Tripathi, A. Occurrence and Toxicity of a Fusarium Mycotoxin, Zearalenone. Crit. Rev. Food Sci. Nutr. 2020, 60, 2710–2729. DOI: 10.1080/10408398.2019.1655388.
  • Mujwar, S.; Shah, K.; Gupta, J. K.; Gour, A. Docking Based Screening of Curcumin Derivatives: A Novel Approach in the Inhibition of Tubercular DHFR. IJCBDD. 2021, 14, 297. DOI: 10.1504/IJCBDD.2021.118830.
  • Xu, S.; Zhang, G.; Fang, B.; Xiong, Q.; Duan, H.; Lai, W. Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize. ACS Appl. Mater. Interfaces 2019, 11, 31283–31290. DOI: 10.1021/acsami.9b08789.
  • Zhang, Z.; Nguyen, H. T. H.; Miller, S. A.; Cohen, S. M. PolyMOFs: A Class of Interconvertible Polymer‐Metal‐Organic‐Framework Hybrid Materials. Angew. Chem. Int. Ed. Engl. 2015, 54, 6152–6157. DOI: 10.1002/anie.201502733.
  • Duan, F.; Rong, F.; Guo, C.; Chen, K.; Wang, M.; Zhang, Z.; Pettinari, R.; Zhou, L.; Du, M. Electrochemical Aptasensing Strategy Based on a Multivariate Polymertitanium-Metal-Organic Framework for Zearalenone Analysis. Food Chem. 2022, 385, 132654. DOI: 10.1016/j.foodchem.2022.132654.
  • Zhu, J.; Li, P.-Z.; Guo, W.; Zhao, Y.; Zou, R. Titanium-Based Metal–Organic Frameworks for Photocatalytic Applications. Coord. Chem. Rev. 2018, 359, 80–101. DOI: 10.1016/j.ccr.2017.12.013.
  • Feng, L.; Yuan, S.; Li, J.-L.; Wang, K.-Y.; Day, G. S.; Zhang, P.; Wang, Y.; Zhou, H.-C. Uncovering Two Principles of Multivariate Hierarchical Metal–Organic Framework Synthesis via Retrosynthetic Design. ACS Cent. Sci. 2018, 4, 1719–1726. DOI: 10.1021/acscentsci.8b00722.
  • Chen, L.; Liu, D.; Peng, J.; Du, Q.; He, H. Ratiometric Fluorescence Sensing of Metal-Organic Frameworks: Tactics and Perspectives. Coord. Chem. Rev. 2020, 404, 213113. DOI: 10.1016/j.ccr.2019.213113.
  • Marimuthu, M.; Arumugam, S. S.; Sabarinathan, D.; Li, H.; Chen, Q. Metal Organic Framework Based Fluorescence Sensor for Detection of Antibiotics. Trends Food Sci. Technol. 2021, 116, 1002–1028. DOI: 10.1016/j.tifs.2021.08.022.
  • Wang, H.-S.; Liu, H.-L.; Wang, K.; Ding, Y.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y. Insight into the Unique Fluorescence Quenching Property of Metal-Organic Frameworks upon DNA Binding. Anal. Chem. 2017, 89, 11366–11371. DOI: 10.1021/acs.analchem.7b02256.
  • Jia, Y.; Zhou, G.; Wang, X.; Zhang, Y.; Li, Z.; Liu, P.; Yu, B.; Zhang, J. A Metal-Organic Framework/Aptamer System as a Fluorescent Biosensor for Determination of Aflatoxin B1 in Food Samples. Talanta 2020, 219, 121342. DOI: 10.1016/j.talanta.2020.121342.
  • Wang, F.; Li, Z.; Jia, H.; Lu, R.; Zhang, S.; Pan, C.; Zhang, Z. An Ultralow Concentration of Al-MOFs for Turn-on Fluorescence Detection of Aflatoxin B1 in Tea Samples. Food Chem. 2022, 383, 132389. DOI: 10.1016/j.foodchem.2022.132389.
  • Pal, A.; Arshad, F.; Sk, M. P. Emergence of Sulfur Quantum Dots: Unfolding Their Synthesis, Properties, and Applications. Adv. Colloid Interface Sci. 2020, 285, 102274. DOI: 10.1016/j.cis.2020.102274.
  • Liu, L.; Zhang, Y.; Yuan, R.; Wang, H. Ultrasensitive Electrochemiluminescence Biosensor Using Sulfur Quantum Dots as an Emitter and an Efficient DNA Walking Machine with Triple-Stranded DNA as a Signal Amplifier. Anal. Chem. 2020, 92, 15112–15119. DOI: 10.1021/acs.analchem.0c03311.
  • Arshad, F.; Sk, M. P. Luminescent Sulfur Quantum Dots for Colorimetric Discrimination of Multiple Metal Ions. ACS Appl. Nano Mater. 2020, 3, 3044–3049. DOI: 10.1021/acsanm.0c00394.
  • Fu, L.; Wang, A.; Xie, K.; Zhu, J.; Chen, F.; Wang, H.; Zhang, H.; Su, W.; Wang, Z.; Zhou, C.; Ruan, S. Electrochemical Detection of Silver Ions by Using Sulfur Quantum Dots Modified Gold Electrode. Sens. Actuators B 2020, 304, 127390. DOI: 10.1016/j.snb.2019.127390.
  • Xiao, L.; Du, Q.; Huang, Y.; Wang, L.; Cheng, S.; Wang, Z.; Wong, T. N.; Yeow, E. K. L.; Sun, H. Rapid Synthesis of Sulfur Nanodots by One-Step Hydrothermal Reaction for Luminescence-Based Applications. ACS Appl. Nano Mater. 2019, 2, 6622–6628. DOI: 10.1021/acsanm.9b01507.
  • Kumagai, K.; Uematsu, T.; Torimoto, T.; Kuwabata, S. Photoluminescence Enhancement by Light Harvesting of Metal–Organic Frameworks Surrounding Semiconductor Quantum Dots. Chem. Mater. 2021, 33, 1607–1617. DOI: 10.1021/acs.chemmater.0c03367.
  • Yan, X.; Zhao, Y.; Du, G.; Guo, Q.; Chen, H.; He, Q.; Zhao, Q.; Ye, H.; Wang, J.; Yuan, Y.; Yue, T. Magnetic Capture of Sulfur Quantum Dots Encapsulated in MOF-5-NH2 via a Target-Driven Self-Cycling Catalyzed Hairpin Assembly for the Sensitive Detection of Patulin. Chem. Eng. J. 2022, 433, 133624. DOI: 10.1016/j.cej.2021.133624.
  • Yuan, N.; Gong, X.; Sun, W.; Yu, C. Advanced Applications of Zr-Based MOFs in the Removal of Water Pollutants. Chemosphere 2021, 267, 128863. DOI: 10.1016/j.chemosphere.2020.128863.
  • Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-Based Metal–Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev. 2016, 45, 2327–2367. DOI: 10.1039/c5cs00837a.
  • Li, W.; Zhang, X.; Hu, X.; Shi, Y.; Liang, N.; Huang, X.; Wang, X.; Shen, T.; Zou, X.; Shi, J. Simple Design Concept for Dual-Channel Detection of Ochratoxin A Based on Bifunctional Metal–Organic Framework. ACS Appl. Mater. Interfaces 2022, 14, 5615–5623. DOI: 10.1021/acsami.1c22809.
  • Khatua, S.; Goswami, S.; Biswas, S.; Tomar, K.; Jena, H. S.; Konar, S. Stable Multiresponsive Luminescent MOF for Colorimetric Detection of Small Molecules in Selective and Reversible Manner. Chem. Mater. 2015, 27, 5349–5360. DOI: 10.1021/acs.chemmater.5b01773.
  • Liu, D.-M.; Xu, B.; Dong, C. Recent Advances in Colorimetric Strategies for Acetylcholinesterase Assay and Their Applications. TrAC, Trends Anal. Chem. 2021, 142, 116320. DOI: 10.1016/j.trac.2021.116320.
  • Liu, J.-M.; Hu, Y.; Yang, Y.-K.; Liu, H.; Fang, G.-Z.; Lu, X.; Wang, S. Emerging Functional Nanomaterials for the Detection of Food Contaminants. Trends Food Sci. Technol. 2018, 71, 94–106. DOI: 10.1016/j.tifs.2017.11.005.
  • Razavi, S. A. A.; Masoomi, M. Y.; Morsali, A. Stimuli‐Responsive Metal–Organic Framework (MOF) with Chemo‐Switchable Properties for Colorimetric Detection of CHCl3. Chemistry 2017, 23, 12559–12564. DOI: 10.1002/chem.201702127.
  • Zhu, D.; Liu, B.; Wei, G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. Biosensors 2021, 11, 259. DOI: 10.3390/bios11080259.
  • Wang, L.; Hu, Z.; Wu, S.; Pan, J.; Xu, X.; Niu, X. A Peroxidase-Mimicking Zr-Based MOF Colorimetric Sensing Array to Quantify and Discriminate Phosphorylated Proteins. Anal. Chim. Acta 2020, 1121, 26–34. DOI: 10.1016/j.aca.2020.04.073.
  • Huang, W.; Zhang, H.; Lai, G.; Liu, S.; Li, B.; Yu, A. Sensitive and Rapid Aptasensing of Chloramphenicol by Colorimetric Signal Transduction with a DNAzyme-Functionalized Gold Nanoprobe. Food Chem. 2019, 270, 287–292. DOI: 10.1016/j.foodchem.2018.07.127.
  • Gan, C.; Wang, B.; Huang, J.; Qileng, A.; He, Z.; Lei, H.; Liu, W.; Liu, Y. Multiple Amplified Enzyme-Free Electrochemical Immunosensor Based on G-Quadruplex/Hemin Functionalized Mesoporous Silica with Redox-Active Intercalators for microcystin-LR Detection. Biosens. Bioelectron. 2017, 98, 126–133. DOI: 10.1016/j.bios.2017.06.038.
  • Wang, L.; Zhu, F.; Chen, M.; Zhu, Y.; Xiao, J.; Yang, H.; Chen, X. Rapid and Visual Detection of Aflatoxin B1 in Foodstuffs Using Aptamer/G-Quadruplex DNAzyme Probe with Low Background Noise. Food Chem. 2019, 271, 581–587. DOI: 10.1016/j.foodchem.2018.08.007.
  • Qileng, A.; Wei, J.; Lu, N.; Liu, W.; Cai, Y.; Chen, M.; Lei, H.; Liu, Y. Broad-Specificity Photoelectrochemical Immunoassay for the Simultaneous Detection of Ochratoxin A, Ochratoxin B and Ochratoxin C. Biosens. Bioelectron. 2018, 106, 219–226. DOI: 10.1016/j.bios.2018.02.004.
  • Sun, Y.; Lv, Y.; Qi, S.; Zhang, Y.; Wang, Z. Sensitive Colorimetric Aptasensor Based on Stimuli-Responsive Metal-Organic Framework Nano-Container and Trivalent DNAzyme for Zearalenone Determination in Food Samples. Food Chem. 2022, 371, 131145. DOI: 10.1016/j.foodchem.2021.131145.
  • Karimzadeh, Z.; Mahmoudpour, M.; Rahimpour, E.; Jouyban, A. Nanomaterial Based PVA Nanocomposite Hydrogels for Biomedical Sensing: Advances toward Designing the Ideal Flexible/Wearable Nanoprobes. Adv. Colloid Interface Sci. 2022, 305, 102705. DOI: 10.1016/j.cis.2022.102705.
  • Won, H. J.; Ryplida, B.; Kim, S. G.; Lee, G.; Ryu, J. H.; Park, S. Y. Diselenide-Bridged Carbon-Dot-Mediated Self-Healing, Conductive, and Adhesive Wireless Hydrogel Sensors for Label-Free Breast Cancer Detection. ACS Nano. 2020, 14, 8409–8420. DOI: 10.1021/acsnano.0c02517.
  • Yang, X.; Zhang, C.; Deng, D.; Gu, Y.; Wang, H.; Zhong, Q. Multiple Stimuli‐Responsive MXene‐Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small 2022, 18, 2104368. DOI: 10.1002/smll.202104368.
  • Chaurasiya, C.; Gupta, J.; Kumar, S. Herbal Nanoemulsion in Topical Drug Delivery and Skin Disorders: Green Approach. J. Rep. Pharma. Sci. 2021, 10, 171. DOI: 10.4103/jrptps.JRPTPS_64_20.
  • Yang, B.; Zhao, Z.; Pan, Y.; Xie, J.; Zhou, B.; Li, Y.; Dong, Y.; Liu, D. Shear-Thinning and Designable Responsive Supramolecular DNA Hydrogels Based on Chemically Branched DNA. ACS Appl. Mater. Interfaces. 2021, 13, 48414–48422. DOI: 10.1021/acsami.1c15494.
  • Vázquez‐González, M.; Willner, I. Stimuli‐Responsive Biomolecule‐Based Hydrogels and Their Applications. Angew. Chem. Int. Ed. Engl. 2020, 59, 15342–15377. DOI: 10.1002/anie.201907670.
  • English, M. A.; Soenksen, L. R.; Gayet, R. V.; de Puig, H.; Angenent-Mari, N. M.; Mao, A. S.; Nguyen, P. Q.; Collins, J. J. Programmable CRISPR-Responsive Smart Materials. Science 2019, 365, 780–785. DOI: 10.1126/science.aaw5122.
  • Sun, Y.; Qi, S.; Dong, X.; Qin, M.; Zhang, Y.; Wang, Z. Colorimetric Aptasensor Targeting Zearalenone Developed Based on the Hyaluronic Acid-DNA Hydrogel and Bimetallic MOFzyme. Biosens. Bioelectron. 2022, 212, 114366. DOI: 10.1016/j.bios.2022.114366.
  • Gupta, J. Recent Advances in Nanomaterials for Therapy and Diagnosis of Cardiovascular Disease. J. Pharm. Res. Int. 2021. DOI:10.9734/jpri/2021/v33i59A34268.
  • Zhou, N.; Su, F.; Guo, C.; He, L.; Jia, Z.; Wang, M.; Jia, Q.; Zhang, Z.; Lu, S. Two-Dimensional Oriented Growth of Zn-MOF-on-Zr-MOF Architecture: A Highly Sensitive and Selective Platform for Detecting Cancer Markers. Biosens. Bioelectron. 2019, 123, 51–58. DOI: 10.1016/j.bios.2018.09.079.
  • Luan, Q.; Gan, N.; Cao, Y.; Li, T. Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic loop-DNA Probes and CHA-Assisted Target Recycling Amplification. J. Agric. Food Chem. 2017, 65, 5731–5740. DOI: 10.1021/acs.jafc.7b02139.
  • Han, R.; Sun, Y.; Lin, Y.; Liu, H.; Dai, Y.; Zhu, X.; Gao, D.; Wang, X.; Luo, C. A Simple Chemiluminescent Aptasensor for the Detection of α-Fetoprotein Based on Iron-Based Metal Organic Frameworks. New J. Chem. 2020, 44, 4099–4107. DOI: 10.1039/C9NJ05870B.
  • Tian, K.; Ma, Y.; Liu, Y.; Wang, M.; Guo, C.; He, L.; Song, Y.; Zhang, Z.; Du, M. Hierarchically Structured Hollow Bimetallic ZnNi MOF Microspheres as a Sensing Platform for Adenosine Detection. Sens. Actuators B 2020, 303, 127199. DOI: 10.1016/j.snb.2019.127199.
  • Wang, S.; Li, Z.; Duan, F.; Hu, B.; He, L.; Wang, M.; Zhou, N.; Jia, Q.; Zhang, Z. Bimetallic Cerium/Copper Organic Framework-Derived Cerium and Copper Oxides Embedded by Mesoporous Carbon: Label-Free Aptasensor for Ultrasensitive Tobramycin Detection. Anal. Chim. Acta 2019, 1047, 150–162. DOI: 10.1016/j.aca.2018.09.064.
  • Tan, B.; Wang, D.; Cai, Z.; Quan, X.; Zhao, H. Extending Suitability of Physisorption Strategy in Fluorescent Platforms Design: Surface Passivation and Covalent Linkage on MOF Nanosheets with Enhanced OTC Detection Sensitivity. Sens. Actuators B 2020, 303, 127230. DOI: 10.1016/j.snb.2019.127230.
  • Wu, J.; Yu, C.; Yu, Y.; Chen, J.; Zhang, C.; Gao, R.; Mu, X.; Geng, Y.; He, J. Ultra-Sensitive Detection of microcystin-LR with a New Dual-Mode Aptasensor Based on MoS2-PtPd and ZIF-8-Thi-Au. Sens. Actuators B 2020, 305, 127280. DOI: 10.1016/j.snb.2019.127280.
  • Zhou, N.; Ma, Y.; Hu, B.; He, L.; Wang, S.; Zhang, Z.; Lu, S. Construction of Ce-MOF@ COF Hybrid Nanostructure: Label-Free Aptasensor for the Ultrasensitive Detection of Oxytetracycline Residues in Aqueous Solution Environments. Biosens. Bioelectron. 2019, 127, 92–100. DOI: 10.1016/j.bios.2018.12.024.
  • Shao, K.; Wang, B.; Nie, A.; Ye, S.; Ma, J.; Li, Z.; Lv, Z.; Han, H. Target-Triggered Signal-on Ratiometric Electrochemiluminescence Sensing of PSA Based on MOF/Au/G-Quadruplex. Biosens. Bioelectron. 2018, 118, 160–166. DOI: 10.1016/j.bios.2018.07.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.