269
Views
2
CrossRef citations to date
0
Altmetric
Review Article

A New Trend and Future Perspectives of the Miniaturization of Conventional Extraction Methods for Elemental Analysis in Different Real Samples: A Review

&

References

  • Song, X.; Huang, X. Recent Developments in Microextraction Techniques for Detection and Speciation of Heavy Metals. Adv. Sample Preparation 2022, 2, 100019.
  • Candir, S.; Narin, I.; Soylak, M. Ligandless Cloud Point Extraction of Cr (III), Pb (II), Cu (II), Ni (II), Bi (III), and Cd (II) Ions in Environmental Samples with Tween 80 and Flame Atomic Absorption Spectrometric Determination. Talanta 2008, 77, 289–293.
  • Sari, A.; Tuzen, M. (2008). Biosorption of Total Chromium from Aqueous Solution by Red Algae (Ceramium virgatum): Equilibrium, Kinetic and Thermodynamic Studies. J. Hazard. Mater. 2008, 160, 349–355. DOI: 10.1016/j.jhazmat.2008.03.005.
  • Arain, S. S.; Kazi, T. G.; Arain, J. B.; Afridi, H. I.; Brahman, K. D. Preconcentration of Toxic Elements in Artificial Saliva Extract of Different Smokeless Tobacco Products by Dual-Cloud Point Extraction. Microchem. J. 2014, 112, 42–49. DOI: 10.1016/j.microc.2013.09.005.
  • Barakat, M. A. New Trends in Removing Heavy Metals from Industrial Wastewater. Arab. J. Chem. 2011, 4, 361–377. DOI: 10.1016/j.arabjc.2010.07.019.
  • Werner, J.; Grześkowiak, T.; Zgoła-Grześkowiak, A.; Stanisz, E. Recent Trends in Microextraction Techniques Used in Determination of Arsenic Species. TrAC, Trends Anal. Chem. 2018, 105, 121–136. DOI: 10.1016/j.trac.2018.05.006.
  • Mittal, A.; Thakur, V.; Gajbe, V. Adsorptive Removal of Toxic Azo Dye Amido Black 10B by Hen Feather. Environ. Sci. Pollut. Res. Int. 2013, 20, 260–269.
  • Soylak, M.; Elçi, L.; Narin, İ.; Doğan, M. Application of Solid-Phase Extraction for the Preconcentration and Separation of Trace Amounts of Cobalt from Urine. Trace Elem. Electroly. 2001, 18, 26–29.
  • Tuzen, M.; Soylak, M. Chromium Speciation in Environmental Samples by Solid Phase Extraction on Chromosorb 108. J. Hazard. Mater. 2006, 129, 266–273.
  • Ngeontae, W.; Aeungmaitrepirom, W.; Tuntulani, T. Chemically Modified Silica Gel with Aminothioamidoanthraquinone for Solid Phase Extraction and Preconcentration of Pb (II), Cu (II), Ni (II), Co (II) and Cd (II). Talanta 2007, 71, 1075–1082. DOI: 10.1016/j.talanta.2006.05.094.
  • Zou, A. M.; Chen, M. L.; Shu, Y.; Yang, M.; Wang, J. H. Biological Cell-Sorption for Separation/Preconcentration of Ultra-Trace Cadmium in a Sequential Injection System with Detection by Electrothermal Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2007, 22, 392–398. DOI: 10.1039/b616532j.
  • Nakajima, A.; Yasuda, M.; Yokoyama, H.; Ohya-Nishiguchi, H.; Kamada, H. Copper Biosorption by Chemically Treated Micrococcus Luteus Cells. World J. Microbiol. Biotechnol. 2001, 17, 343–347. DOI: 10.1023/A:1016638230043.
  • Tsukada, M.; Arai, T.; Colonna, G. M.; Boschi, A.; Freddi, G. Preparation of Metal‐Containing Protein Fibers and Their Antimicrobial Properties. J. Appl. Polym. Sci. 2003, 89, 638–644. DOI: 10.1002/app.11911.
  • Karimi, H.; Ghaedi, M.; Shokrollahi, A.; Rajabi, H. R.; Soylak, M.; Karami, B. Development of a Selective and Sensitive Flotation Method for Determination of Trace Amounts of Cobalt, Nickel, Copper and Iron in Environmental Samples. J. Hazard. Mater. 2008, 151, 26–32.
  • Jagirani, M. S.; Soylak, M. Microextraction Technique Based New Trends in Food Analysis. Crit. Rev. Anal. Chem. 2022, 52, 968–999.
  • Vuckovic, D.; Zhang, X.; Cudjoe, E.; Pawliszyn, J. Solid-Phase Microextraction in Bioanalysis: New Devices and Directions. J. Chromatogr. A 2010, 1217, 4041–4060. DOI: 10.1016/j.chroma.2009.11.061.
  • Song, C. E.; Roh, E. J. Practical Method to Recycle a Chiral (Salen) Mn Epoxidation Catalyst by Using an Ionic Liquid. Chem. Commun. 2000, 10, 837–838.
  • Yamini, Y.; Rezazadeh, M.; Seidi, S. Liquid-Phase Microextraction–the Different Principles and Configurations. TrAC - Trends Anal. Chem. 2019, 112, 264–272. DOI: 10.1016/j.trac.2018.06.010.
  • Suarez, P. A.; Dullius, J. E.; Einloft, S.; De Souza, R. F.; Dupont, J. The Use of New Ionic Liquids in Two-Phase Catalytic Hydrogenation Reaction by Rhodium Complexes. Polyhedron 1996, 15, 1217–1219. DOI: 10.1016/0277-5387(95)00365-7.
  • Boyacı, E.; Rodríguez-Lafuente, Á.; Gorynski, K.; Mirnaghi, F.; Souza-Silva, É. A.; Hein, D.; Pawliszyn, J. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases.Anal. Chim. Acta. 2015, 873, 14–30.
  • Diez, C.; Traag, W. A.; Zommer, P.; Marinero, P.; Atienza, J. Comparison of an acetonitrile extraction/partitioning and “dispersive solid-phase extraction” method with classical multi-residue methods for the extraction of herbicide residues in barley samples. J. Chromatogr. A 2006, 1131, 11–23.
  • Rosa, J. N.; Afonso, C. A.; Santos, A. G. Ionic Liquids as a Recyclable Reaction Medium for the Baylis–Hillman Reaction. Tetrahedron 2001, 57, 4189–4193. DOI: 10.1016/S0040-4020(01)00316-7.
  • Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; Davis, J. H. Novel Brønsted Acidic Ionic Liquids and Their Use as Dual Solvent − Catalysts. J. Am. Chem. Soc. 2002, 124, 5962–5963.
  • Tankiewicz, M.; Fenik, J.; Biziuk, M. Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review. Talanta 2011, 86, 8–22.
  • Hammad, S. F.; Abdallah, I. A.; Bedair, A.; Mansour, F. R. Homogeneous liquid–liquid extraction as an alternative sample preparation technique for biomedical analysis.J. Sep. Sci. 2022, 45, 185–209.
  • Shah, F.; Soylak, M.; Kazi, T. G.; Afridi, H. I. Single Step in-Syringe System for Ionic Liquid Based Liquid Microextraction Combined with Flame Atomic Absorption Spectrometry for Lead Determination. J. Anal. At. Spectrom. 2012, 27, 1960–1965. DOI: 10.1039/c2ja30243h.
  • Xu, L.; Basheer, C.; Lee, H. K. Developments in single-drop microextraction.J. Chromatogr. A. 2007, 1152, 184–192.
  • Sarafraz-Yazdi, A.; Amiri, A. Liquid-Phase Microextraction. TrAC - Trends Anal. Chem. 2010, 29, 1–14. DOI: 10.1016/j.trac.2009.10.003.
  • Soares da Silva Burato, J.; Vargas Medina, D. A.; de Toffoli, A. L.; Vasconcelos Soares Maciel, E.; Mauro Lanças, F. Recent Advances and Trends in Miniaturized Sample Preparation Techniques. J. Sep. Sci. 2020, 43, 202–225. DOI: 10.1002/jssc.201900776.
  • Jeannot, M. A.; Cantwell, F. F. Mass Transfer Characteristics of Solvent Extraction into a Single Drop at the Tip of a Syringe Needle. Anal. Chem. 1997, 69, 235–239. DOI: 10.1021/ac960814r.
  • Guo, L.; Lee, H. K. Low-density solvent-based solvent demulsification dispersive liquid–liquid microextraction for the fast determination of trace levels of sixteen priority polycyclic aromatic hydrocarbons in environmental water samples.J. Chromatogr. A. 2011, 1218, 5040–5046.
  • Abdolmohammad-Zadeh, H.; Sadeghi, G. H. A Novel Microextraction Technique Based on 1-Hexylpyridinium Hexafluorophosphate Ionic Liquid for the Preconcentration of Zinc in Water and Milk Samples. Anal. Chim. Acta 2009, 649, 211–217. DOI: 10.1016/j.aca.2009.07.040.
  • Zhao, Y. Y.; Wu, S. P.; Liu, S.; Zhang, Y.; Lin, R. C. Ultra-Performance Liquid Chromatography–Mass Spectrometry as a Sensitive and Powerful Technology in Lipidomic Applications. Chem. Biol. Interact. 2014, 220, 181–192.
  • Ban, T.; Kawaizumi, F.; Nii, S.; Takahashi, K. Study of Drop Coalescence Behavior for Liquid–Liquid Extraction Operation. Chem. Eng. Sci. 2000, 55, 5385–5391. DOI: 10.1016/S0009-2509(00)00156-1.
  • Bai, H.; Zhou, Q.; Xie, G.; Xiao, J. Temperature-Controlled Ionic Liquid–Liquid-Phase Microextraction for the Pre-Concentration of Lead from Environmental Samples Prior to Flame Atomic Absorption Spectrometry. Talanta 2010, 80, 1638–1642. DOI: 10.1016/j.talanta.2009.09.059.
  • Chamsaz, M.; Atarodi, A.; Eftekhari, M.; Asadpour, S.; Adibi, M. Vortex-Assisted Ionic Liquid Microextraction Coupled to Flame Atomic Absorption Spectrometry for Determination of Trace Levels of Cadmium in Real Samples. J. Adv. Res. 2013, 4, 35–41.
  • Yu, T.; Yamada, T.; Gaviola, G.; C.; Weiss, R. G. Carbon Dioxide and Molecular Nitrogen as Switches between Ionic and Uncharged Room-Temperature Liquids Comprised of Amidines and Chiral Amino Alcohols. Chem. Mater. 2008, 20, 5337–5344. DOI: 10.1021/cm801169c.
  • Singh, P.; Niederer, J. P.; Versteeg, G. F. Structure and Activity Relationships for Amine Based CO2 Absorbents—I. Int. J. Greenh. Gas Control 2007, 1, 5–10. DOI: 10.1016/S1750-5836(07)00015-1.
  • Privalova, E.; Nurmi, M.; Marañón, M. S.; Murzina, E. V.; Mäki-Arvela, P.; Eränen, K.; Murzin, D.; Mikkola, J.-P. CO2 Removal with ‘Switchable’versus ‘Classical’ionic Liquids. Sep. Purif. Technol. 2012, 97, 42–50. DOI: 10.1016/j.seppur.2012.01.047.
  • Wang, X.; Hao, J. Recent Advances in Ionic Liquid-Based Electrochemical Biosensors. Sci. Bull. 2016, 61, 1281–1295. DOI: 10.1007/s11434-016-1151-6.
  • Armenta, S.; Garrigues, S.; de la Guardia, M. The Role of Green Extraction Techniques in Green Analytical Chemistry. TrAC - Trends Anal. Chem. 2015, 71, 2–8. DOI: 10.1016/j.trac.2014.12.011.
  • Ramos, L.; Ramos, J. J.; Brinkman, U. A. Miniaturization in sample treatment for environmental analysis. Anal. Bioanal. Chem. 2005, 381, 119–140.
  • Costa, R. Newly introduced sample preparation techniques: towards miniaturization. Crit. Rev. Anal. Chem. 2014, 44, 299–310.
  • Faraji, M.; Yamini, Y.; Gholami, M. Recent advances and trends in applications of solid-phase extraction techniques in food and environmental analysis.Chromatographia 2019, 82, 1207–1249.
  • Hansen, F. A.; Pedersen-Bjergaard, S. Emerging extraction strategies in analytical chemistry. Anal. Chem. 2019, 92, 2–15.
  • Płotka-Wasylka, J.; Szczepańska, N.; de La Guardia, M.; Namieśnik, J. Modern Trends in Solid Phase Extraction: New Sorbent Media. TrAC - Trends Anal. Chem. 2016, 77, 23–43. DOI: 10.1016/j.trac.2015.10.010.
  • Soares Maciel, E. V.; de Toffoli, A. L.; Lanças, F. M. Recent Trends in Sorption‐Based Sample Preparation and Liquid Chromatography Techniques for Food Analysis. Electrophoresis 2018, 39, 1582–1596. DOI: 10.1002/elps.201800009.
  • Płotka, J.; Tobiszewski, M.; Sulej, A. M.; Kupska, M.; Górecki, T.; Namieśnik, J. Green Chromatography. J. Chromatogr. A 2013, 1307, 1–20. DOI: 10.1016/j.chroma.2013.07.099.
  • Jędrkiewicz, R.; Głowacz, A.; Kupska, M.; Gromadzka, J.; Namieśnik, J. Application of Modern Sample Preparation Techniques to the Determination of Chloropropanols in Food Samples. TrAC - Trends Anal. Chem. 2014, 62, 173–183. DOI: 10.1016/j.trac.2014.07.012.
  • Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Miniaturized Preconcentration Methods Based on Liquid–Liquid Extraction and Their Application in Inorganic Ultratrace Analysis and Speciation: A Review. Spectrochim. Acta B: At. Spectrosc. 2009, 64, 1–15. DOI: 10.1016/j.sab.2008.10.042.
  • Manzoori, J. L.; Karim-Nezhad, G. Development of a Cloud Point Extraction and Preconcentration Method for Cd and Ni Prior to Flame Atomic Absorption Spectrometric Determination. Anal. Chim. Acta 2004, 521, 173–177. DOI: 10.1016/j.aca.2004.06.049.
  • Shah, F.; Kazi, T. G.; Afridi, H. I.; Soylak, M. Temperature controlled ionic liquid-dispersive liquid phase microextraction for determination of trace lead level in blood samples prior to analysis by flame atomic absorption spectrometry with multivariate optimization.Microchem. J. 2012, 101, 5–10.
  • Seidi, S.; Rezazadeh, M.; Yamini, Y. Pharmaceutical Applications of Liquid-Phase Microextraction. TrAC - Trends Anal. Chem. 2018, 108, 296–305. DOI: 10.1016/j.trac.2018.09.014.
  • Bosch Ojeda, C.; Sánchez Rojas, F. Separation and preconcentration by dispersive liquid–liquid microextraction procedure: a review.Chromatographia 2009, 69, 1149–1159.
  • Naeemullah, N.; Shah, F.; Kazi, T. G.; Afridi, H. I.; Khan, A. R.; Arain, S. S.; Arain, M. S.; Panhwar, A. H. Switchable Dispersive Liquid–Liquid Microextraction for Lead Enrichment: A Green Alternative to Classical Extraction Techniques. Anal. Methods 2016, 8, 904–911. DOI: 10.1039/C5AY02882E.
  • Hu, B.; He, M.; Chen, B.; Xia, L. Liquid Phase Microextraction for the Analysis of Trace Elements and Their Speciation. Spectrochim. Acta B: At. Spectrosc. 2013, 86, 14–30. DOI: 10.1016/j.sab.2013.05.025.
  • Rosado, T.; Barroso, M.; Vieira, D. N.; Gallardo, E. Trends in Microextraction Approaches for Handling Human Hair extracts-A Review. Anal. Chim. Acta 2021, 1185, 338792. DOI: 10.1016/j.aca.2021.338792.
  • Wang, M.; Ma, H.; Chi, Q.; Li, Q.; Li, M.; Zhang, H.; Li, C.; Fang, H. A Monolithic Copolymer Prepared from N-(4-Vinyl)-Benzyl Iminodiacetic Acid, Divinylbenzene and N, N′-Methylene Bisacrylamide for Preconcentration of Cadmium (II) and Cobalt (II) from Biological Samples Prior to Their Determination by ICP-MS. Microchim. Acta 2019, 186, 1–10. DOI: 10.1007/s00604-019-3656-6.
  • Neri, T. S.; Rocha, D. P.; Munoz, R. A.; Coelho, N. M.; Batista, A. D. Highly Sensitive Procedure for Determination of Cu (II) by GF AAS Using Single-Drop Microextraction. Microchem. J. 2019, 147, 894–898. DOI: 10.1016/j.microc.2019.04.014.
  • Payán, M. R.; López, M. Á. B.; Fernández-Torres, R.; Navarro, M. V.; Mochón, M. C. Hollow fiber-based liquid phase microextraction (HF-LPME) for a highly sensitive HPLC determination of sulfonamides and their main metabolites. J. Chromatogr. B. 2011, 879, 197–204.
  • Sixto, A.; Mollo, A.; Knochen, M. Fast and Simple Method Using DLLME and FAAS for the Determination of Trace Cadmium in Honey. J. Food Compos. Anal. 2019, 82, 103229. DOI: 10.1016/j.jfca.2019.06.001.
  • Thongsaw, A.; Chaiyasith, W. C.; Sananmuang, R.; Ross, G. M.; Ampiah-Bonney, R. J. Determination of Cadmium in Herbs by SFODME with ETAAS Detection. Food Chem. 2017, 219, 453–458.
  • Jeannot, M. A.; Cantwell, F. F. Solvent Microextraction into a Single Drop. Anal. Chem. 1996, 68, 2236–2240. DOI: 10.1021/ac960042z.
  • Nunes, L. S.; das Graças Andrade Korn, M.; Lemos, V. A. Direct Immersion Single-Drop Microextraction and Continuous-Flow Microextraction for the Determination of Manganese in Tonic Drinks and Seafood Samples. Food Anal. Methods 2020, 13, 1681–1689. DOI: 10.1007/s12161-020-01794-4.
  • Sheikhloie, H.; Saber-Tehrani, M.; Abrumand-Azar, P.; Waqif-Husain, S. Analysis of Tributyltin and Triphenyltin in Water by Ionic Liquid-Headspace Single-Drop Microextraction Then HPLC with Fluorimetric Detection. Acta Chromatogr. 2009, 21, 577–589. DOI: 10.1556/AChrom.21.2009.4.5.
  • Psillakis, E.; Kalogerakis, N. Developments in Single-Drop Microextraction. TrAC - Trends Anal. Chem. 2002, 21, 54–64. DOI: 10.1016/S0165-9936(01)00126-1.
  • Fan, Z. Determination of Antimony (III) and Total Antimony by Single-Drop Microextraction Combined with Electrothermal Atomic Absorption Spectrometry. Anal. Chim. Acta 2007, 585, 300–304. DOI: 10.1016/j.aca.2006.12.034.
  • Hyötyläinen, Tuulia. Critical evaluation of sample pretreatment techniques. Bioanal. Anal. Chem 2009, 394, 743–758.
  • Neri, T. S.; Rocha, D. P.; Munoz, R. A.; Coelho, N. M.; Batista, A. D. Highly Sensitive Procedure for Determination of Cu (II) by GF AAS Using Single-Drop Microextraction. Microchem. J. 2019, 147, 894–898. DOI: 10.1016/j.microc.2019.04.014.
  • Trindade, J. S.; Lemos, V. A.; Cerqueira, U. M. F. M.; Novaes, C. G.; Araujo, S. A.; Bezerra, M. A. Multivariate optimization of a dispersive liquid-liquid microextraction method for determination of copper and manganese in coconut water by FAAS. Food Chem. 2021, 365, 130473.
  • Martinis, E. M.; Wuilloud, R. G. Cold Vapor Ionic Liquid-Assisted Headspace Single-Drop Microextraction: A Novel Preconcentration Technique for Mercury Species Determination in Complex Matrix Samples. J. Anal. At. Spectrom. 2010, 25, 1432–1439. DOI: 10.1039/c004678g.
  • Vidal, L.; Chisvert, A.; Canals, A.; Salvador, A. Ionic Liquid-Based Single-Drop Microextraction Followed by Liquid Chromatography-Ultraviolet Spectrophotometry Detection to Determine Typical UV Filters in Surface Water Samples. Talanta 2010, 81, 549–555. DOI: 10.1016/j.talanta.2009.12.042.
  • Jain, A.; Verma, K. K. Recent Advances in Applications of Single-Drop Microextraction: A Review. Anal. Chim. Acta. 2011, 706, 37–65. DOI: 10.1016/j.aca.2011.08.022.
  • Sun, P.; Armstrong, D. W. Ionic Liquids in Analytical Chemistry. Anal. Chim. Acta 2010, 661, 1–16. DOI: 10.1016/j.aca.2009.12.007.
  • Almeida, J. S.; Anunciação, T. A.; Brandão, G. C.; Dantas, A. F.; Lemos, V. A.; Teixeira, L. S. Ultrasound-Assisted Single-Drop Microextraction for the Determination of Cadmium in Vegetable Oils Using High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta B: At. Spectrosc. 2015, 107, 159–163. DOI: 10.1016/j.sab.2015.03.002.
  • Pedersen-Bjergaard, S.; Rasmussen, K. E. Liquid − Liquid − Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis. Anal. Chem. 1999, 71, 2650–2656.
  • Zeng, C.; Lin, Y.; Zhou, N.; Zheng, J.; Zhang, W. Room Temperature Ionic Liquids Enhanced the Speciation of Cr (VI) and Cr (III) by Hollow Fiber Liquid Phase Microextraction Combined with Flame Atomic Absorption Spectrometry. J. Hazard. Mater. 2012, 237, 365–370.
  • Chanthasakda, N.; Nitiyanontakit, S.; Varanusupakul, P. Electro-Enhanced Hollow Fiber Membrane Liquid Phase Microextraction of Cr (VI) Oxoanions in Drinking Water Samples. Talanta 2016, 148, 680–685. DOI: 10.1016/j.talanta.2015.04.080.
  • Wang, Y.; Liu, Y.; Han, J.; Wang, L.; Chen, T.; Ni, L. Selective Extraction and Preconcentration of Trace Lead (II) in Medicinal Plant-Based Ionic Liquid Hollow Fiber Liquid Phase Microextraction System Using Dicyclohexyl-18-Crown-6 as Membrane Carrier. Anal. Methods 2015, 7, 2339–2346. DOI: 10.1039/C4AY02625J.
  • Rezaee, M.; Assadi, Y.; Hosseini, M. R. M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid–Liquid Microextraction. J. Chromatogr. A 2006, 1116, 1–9. DOI: 10.1016/j.chroma.2006.03.007.
  • Anthemidis, A. N.; Ioannou, K. I. G. On-Line Sequential Injection Dispersive Liquid–Liquid Microextraction System for Flame Atomic Absorption Spectrometric Determination of Copper and Lead in Water Samples. Talanta 2009, 79, 86–91. DOI: 10.1016/j.talanta.2009.03.005.
  • Shamsipur, M.; Ramezani, M. Selective Determination of Ultra Trace Amounts of Gold by Graphite Furnace Atomic Absorption Spectrometry after Dispersive Liquid–Liquid Microextraction. Talanta 2008, 75, 294–300. DOI: 10.1016/j.talanta.2007.11.009.
  • Gharehbaghi, M.; Shemirani, F.; Baghdadi, M. Dispersive Liquid–Liquid Microextraction and Spectrophotometric Determination of Cobalt in Water Samples. Int. J. Environ. Anal. Chem. 2008, 88, 513–523. DOI: 10.1080/03067310701809128.
  • Jiang, H.; Qin, Y.; Hu, B. Dispersive Liquid Phase Microextraction (DLPME) Combined with Graphite Furnace Atomic Absorption Spectrometry (GFAAS) for Determination of Trace Co and Ni in Environmental Water and Rice Samples. Talanta 2008, 74, 1160–1165. DOI: 10.1016/j.talanta.2007.08.022.
  • Chaiyamate, P.; Seebunrueng, K.; Srijaranai, S. Vortex-Assisted Low Density Solvent and Surfactant Based Dispersive Liquid–Liquid Microextraction for Sensitive Spectrophotometric Determination of Cobalt. RSC Adv. 2018, 8, 7243–7251.
  • Beal, A.; De Almeida, F. G.; Moreira, C. A.; Santos, I. M.; Curti, S. M.; Martins, L. D.; Tarley, C. R. A New Analytical Method for Lead Determination in Atmospheric Particulate Matter by a Combination of Ultrasound-Assisted Extraction and Supramolecular Solvent Preconcentration. Anal. Methods 2018, 10, 3745–3753. DOI: 10.1039/C8AY01092G.
  • Zanjani, M. R. K.; Yamini, Y.; Shariati, S.; Jönsson, J. Å. A New Liquid-Phase Microextraction Method Based on Solidification of Floating Organic Drop. Anal. Chim. Acta 2007, 585, 286–293. DOI: 10.1016/j.aca.2006.12.049.
  • Viñas, P.; Campillo, N.; Andruch, V. Andruch, V. Recent Achievements in Solidified Floating Organic Drop Microextraction. TrAC - Trends Anal. Chem. 2015, 68, 48–77. DOI: 10.1016/j.trac.2015.02.005.
  • Tuzen, M.; Kazi, T. G.; Citak, D.; Soylak, M. Pressure-Assisted Ionic Liquid Dispersive Microextraction of Vanadium Coupled with Electrothermal Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2013, 28, 1441–1445.
  • Jahromi, E. Z.; Bidari, A.; Assadi, Y.; Hosseini, M. R. M.; Jamali,.; M.; R. Dispersive Liquid–Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry: Ultra Trace Determination of Cadmium in Water Samples. Anal. Chim. Acta 2007, 585, 305–311. DOI: 10.1016/j.aca.2007.01.007.
  • Kazi, T. G.; Tuzen, M.; Shah, F.; Afridi, H. I.; Citak, D. Development of a New Green Non-Dispersive Ionic Liquid Microextraction Method in a Narrow Glass Column for Determination of Cadmium Prior to Couple with Graphite Furnace Atomic Absorption Spectrometry. Anal. Chim. Acta 2014, 812, 59–64. DOI: 10.1016/j.aca.2013.12.034.
  • Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Use of Switchable Solvents in the Microextraction Context. Talanta 2015, 131, 645–649. DOI: 10.1016/j.talanta.2014.08.031.
  • Heldebrant, D. J.; Yonker, C. R.; Jessop, P. G.; Phan, L. Organic Liquid CO2 Capture Agents with High Gravimetric CO2 Capacity. Energy Environ. Sci. 2008, 1, 487–493.
  • Kilaru, P. K.; Scovazzo, P. Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 2. Using Activation Energy of Viscosity. Ind. Eng. Chem. Res. 2008, 47, 910–919. [Database] DOI: 10.1021/ie070836b.
  • Bai, L.; Lu, S.; Zhao, Q.; Chen, L.; Jiang, Y.; Jia, C.; Chen, S. Low–Energy–Consuming CO2 Capture by Liquid–Liquid Biphasic Absorbents of EMEA/DEEA/PX. J. Chem. Eng. 2022, 450, 138490. DOI: 10.1016/j.cej.2022.138490.
  • Yilmaz, E.; Soylak, M. Switchable Solvent-Based Liquid Phase Microextraction of Copper (II): Optimization and Application to Environmental Samples. J. Anal. At. Spectrom. 2015, 30, 1629–1635. DOI: 10.1039/C5JA00012B.
  • Yilmaz, E.; Soylak, M. Switchable Polarity Solvent for Liquid Phase Microextraction of Cd (II) as Pyrrolidinedithiocarbamate Chelates from Environmental Samples. Anal. Chim. Acta 2015, 886, 75–82. DOI: 10.1016/j.aca.2015.06.021.
  • Zhang, S.; Chen, B.; He, M.; Hu, B. Switchable Solvent Based Liquid Phase Microextraction of Trace Lead and Cadmium from Environmental and Biological Samples Prior to Graphite Furnace Atomic Absorption Spectrometry Detection. Microchem. J. 2018, 139, 380–385. DOI: 10.1016/j.microc.2018.03.017.
  • Aydin Urucu, O.; Aracier, E. D. A Switchable Solvent-Based Liquid Phase Microextraction Method for the Detection of Cadmium in Water Samples with Flame Atomic Absorption Spectrometry. J. AOAC Int. 2021, 104, 645–649.
  • Thurman, E. M.; Mills, M. S. Solid Phase Extraction: Principles and Practice; Wiley: New York, 1998.
  • Poole, C. F. New Trends in Solid-Phase Extraction. TrAC - Trends Anal. Chem. 2003, 22, 362–373. DOI: 10.1016/S0165-9936(03)00605-8.
  • Tamayo, F. G.; Turiel, E.; Martín-Esteban, A. Molecularly Imprinted Polymers for Solid-Phase Extraction and Solid-Phase Microextraction: Recent Developments and Future Trends. J. Chromatogr. A 2007, 1152, 32–40. DOI: 10.1016/j.chroma.2006.08.095.
  • Nováková, L.; Vlčková, H. A Review of Current Trends and Advances in Modern Bio-Analytical Methods: Chromatography and Sample Preparation. Anal. Chim. Acta 2009, 656, 8–35. DOI: 10.1016/j.aca.2009.10.004.
  • Baggiani, C.; Anfossi, L.; Giovannoli, C. Solid Phase Extraction of Food Contaminants Using Molecular Imprinted Polymers. Anal. Chim. Acta 2007, 591, 29–39. DOI: 10.1016/j.aca.2007.01.056.
  • Żwir-Ferenc, A.; Biziuk, M. Solid Phase Extraction Technique–Trends, Opportunities and Applications. Pol. J. Environ. Stud. 2006, 15, 677–690.
  • Kumazawa, T.; Hasegawa, C.; Lee, X. P.; Hara, K.; Seno, H.; Suzuki, O.; Sato, K. Simultaneous Determination of Methamphetamine and Amphetamine in Human Urine Using Pipette Tip Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry. J. Pharm. Biomed. Anal. 2007, 44, 602–607. DOI: 10.1016/j.jpba.2006.12.025.
  • Rombouts, I.; Lamberts, L.; Celus, I.; Lagrain, B.; Brijs, K.; Delcour, J. A. Wheat Gluten Amino Acid Composition Analysis by High-Performance Anion-Exchange Chromatography with Integrated Pulsed Amperometric Detection. J. Chromatogr. A 2009, 1216, 5557–5562. DOI: 10.1016/j.chroma.2009.05.066.
  • Arthur, C. L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. DOI: 10.1021/ac00218a019.
  • Risticevic, S.; Lord, H.; Gorecki, T.; Arthur, C. L.; Pawliszyn, J. Protocol for Solid-Phase Microextraction Method Development. Nat. Protoc. 2010, 5, 122–139. DOI: 10.1038/nprot.2009.179.
  • Gupta, S. S.; Bhattacharyya, K. G. Adsorption of Metal Ions by Clays and Inorganic Solids. RSC Adv. 2014, 4, 28537–28586. DOI: 10.1039/C4RA03673E.
  • Korta, E.; Bakkali, A.; Berrueta, L. A.; Gallo, B.; Vicente, F. Study of Semi-Automated Solid-Phase Extraction for the Determination of Acaricide Residues in Honey by Liquid Chromatography. J. Chromatogr. A 2001, 930, 21–29. DOI: 10.1016/S0021-9673(01)01184-0.
  • Mei, M.; Huang, X.; Chen, L. Recent Development and Applications of Poly (Ionic Liquid) s in Microextraction Techniques. TrAC - Trends Anal. Chem. 2019, 112, 123–134. DOI: 10.1016/j.trac.2019.01.003.
  • Fei, J. J.; Zhao, L. Y.; Wu, X. H.; Cui, X. B.; Min, H.; Lian, H. Z.; Chen, Y. J. In-Tube Solid-Phase Microextraction with a Hybrid Monolithic Column for the Preconcentration of Ultra-Trace Metals Prior to Simultaneous Determination by ICP-MS. Microchim. Acta 2020, 187, 1–10. DOI: 10.1007/s00604-020-04329-0.
  • Barfi, B.; Asghari, A.; Rajabi, M.; Sabzalian, S.; Khanalipoor, F.; Behzad, M. Optimized Syringe-Assisted Dispersive Micro Solid Phase Extraction Coupled with Microsampling Flame Atomic Absorption Spectrometry for the Simple and Fast Determination of Potentially Toxic Metals in Fruit Juice and Bio-Fluid Samples. RSC Adv. 2015, 5, 31930–31941. DOI: 10.1039/C5RA03537F.
  • Mao, X.; Fan, W.; He, M.; Chen, B.; Hu, B. Hu, B. C 18-Coated Stir Bar Sorptive Extraction Combined with HPLC-ICP-MS for the Speciation of Butyltins in Environmental Samples. J. Anal. At. Spectrom. 2015, 30, 162–171. DOI: 10.1039/C4JA00294F.
  • Ouyang, G.; Pawliszyn, J. SPME in environmental analysis.Anal. Bioanal. Chem. 2006, 386, 1059–1073.
  • Spietelun, A.; Pilarczyk, M.; Kloskowski, A.; Namieśnik, J. Current trends in solid-phase microextraction (SPME) fibre coatings. Chem. Soc. Rev. 2010, 39, 4524–4537.
  • Spietelun, A.; Marcinkowski, Ł.; de la Guardia, M.; Namieśnik, J. Recent Developments and Future Trends in Solid Phase Microextraction Techniques towards Green Analytical Chemistry. J. Chromatogr. A 2013, 1321, 1–13. DOI: 10.1016/j.chroma.2013.10.030.
  • Ai, J. Headspace Solid Phase Microextraction. Dynamics and Quantitative Analysis before Reaching a Partition Equilibrium. Anal. Chem. 1997, 69, 3260–3266. DOI: 10.1021/ac970024x.
  • Silva, E.; A. S.; Risticevic, S.; Pawliszyn, J. Recent Trends in SPME concerning Sorbent Materials, Configurations and in Vivo Applications. TrAC - Trends Anal. Chem. 2013, 43, 24–36. DOI: 10.1016/j.trac.2012.10.006.
  • Vas, G.; Vekey, K. Solid‐Phase Microextraction: A Powerful Sample Preparation Tool Prior to Mass Spectrometric Analysis. J. Mass Spectrom. 2004, 39, 233–254.
  • Zhang, Z.; Pawliszyn, J. Headspace Solid-Phase Microextraction. Anal. Chem. 1993, 65, 1843–1852. DOI: 10.1021/ac00062a008.
  • Aulakh, J. S.; Malik, A. K.; Kaur, V.; Schmitt-Kopplin, P. A Review on Solid Phase Micro Extraction—High Performance Liquid Chromatography (SPME-HPLC) Analysis of Pesticides. Crit. Rev. Anal. Chem. 2005, 35, 71–85. DOI: 10.1080/10408340590947952.
  • Piri-Moghadam, H.; Alam, M. N.; Pawliszyn, J. Review of Geometries and Coating Materials in Solid Phase Microextraction: Opportunities, Limitations, and Future Perspectives. Anal. Chim. Acta 2017, 984, 42–65. DOI: 10.1016/j.aca.2017.05.035.
  • Khan, W. A.; Arain, M. B.; Yamini, Y.; Shah, N.; Kazi, T. G.; Pedersen-Bjergaard, S.; Tajik, M. Hollow Fiber-Based Liquid Phase Microextraction Followed by Analytical Instrumental Techniques for Quantitative Analysis of Heavy Metal Ions and Pharmaceuticals. J. Pharm. Anal. 2020, 10, 109–122. DOI: 10.1016/j.jpha.2019.12.003.
  • Li, J.; He, Q.; Wu, L.; Sun, J.; Zheng, F.; Li, L.; Liu, W.; Liu, J. Ultrasensitive Speciation Analysis of Mercury in Waters by Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Triple Quadrupole Mass Spectrometry. Microchem. J. 2020, 153, 104459. DOI: 10.1016/j.microc.2019.104459.
  • Borowska, M.; Jankowski, K. Photochemical Vapor Generation Combined with Headspace Solid Phase Microextraction for Determining Mercury Species by Microwave-Induced Plasma Optical Emission Spectrometry. Microchem. J. 2022, 172, 106905. DOI: 10.1016/j.microc.2021.106905.
  • Wu, J.; Lu, G.; Huang, X. Fabrication of Monolith-Based Solid-Phase Microextraction for Effective Extraction of Total Chromium in Milk and Tea Samples Prior to HPLC/DAD Analysis. Microchem. J. 2020, 159, 105549. DOI: 10.1016/j.microc.2020.105549.
  • Banihashemi, M.; Dalali, N.; Sehati, N.; Farajmand, B. Decoration of Fe3O4@ SiO2@ ZnO as a High Performance Nanosorbent on a Stir Bar Microextraction Device for Preconcentration and Determination of Cadmium in Real Water Samples. Microchem. J. 2020, 154, 104599. DOI: 10.1016/j.microc.2020.104599.
  • Eisert, R.; Pawliszyn, J. Automated in-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography. Anal. Chem. 1997, 69, 3140–3147. DOI: 10.1021/ac970319a.
  • Queiroz, M. E. C.; de Souza, I. D.; Marchioni, C. Current advances and applications of in-tube solid-phase microextraction.TrAC - Trends Anal. Chem. 2019, 111, 261–278.
  • Silva, B. J. G.; Lanças, F. M.; Queiroz, M. E. C. In-tube solid-phase microextraction coupled to liquid chromatography (in-tube SPME/LC) analysis of nontricyclic antidepressants in human plasma.J. Chromatogr. B. 2008, 862, 181–188.
  • Song, X.; Pang, J.; Wu, Y.; Huang, X. Development of Magnetism-Reinforced in-Tube Solid Phase Microextraction Combined with HPLC for the Sensitive Quantification of Cobalt (II) and Nickel (II) in Environmental Waters. Microchem. J. 2020, 159, 105370. DOI: 10.1016/j.microc.2020.105370.
  • Pang, J.; Chen, H.; Huang, X. Magnetism-Assisted in-Tube Solid Phase Microextraction for the on-Line Chromium Speciation in Environmental Water and Soil Samples. Microchem. J. 2021, 164, 105956. DOI: 10.1016/j.microc.2021.105956.
  • Turoňová, D.; Krčmová, L. K.; Švec, F. Application of Microextraction in Pipette Tips in Clinical and Forensic Toxicology. TrAC - Trends Anal. Chem. 2021, 143, 116404. DOI: 10.1016/j.trac.2021.116404.
  • Bertuzzi, A. S.; McSweeney, P. L.; Rea, M. C.; Kilcawley, K. N. Detection of volatile compounds of cheese and their contribution to the flavor profile of surface‐ripened cheese.Compr. Rev. Food Sci. Food Saf. 2018, 17, 371–390.
  • Mester, Z.; Lam, J.; Sturgeon, R.; Pawliszyn, J. Determination of methylmercury by solid-phase microextraction inductively coupled plasma mass spectrometry: a new sample introduction method for volatile metal species© Canadian crown copyright. J. Anal. At. Spectrom. 2000, 15, 837–842.
  • Wang, Z.; Liao, Y.; Liu, J.; Huang, X. On-Site Separation and Enrichment of Heavy Metal Ions in Environmental Waters with Multichannel in-Tip Microextraction Device Based on Chitosan Cryogel. Microchem J. 2022, 175, 107107. DOI: 10.1016/j.microc.2021.107107.
  • Carrera, S.; Santiago, G.; Vega, M. Spectrophotometric Determination of Dithizone–Mercury Complex by Solid Phase Microextraction in Micropipette Tip Syringe Packed with Activated Carbon Xerogel. Microchem J. 2016, 129, 133–136. DOI: 10.1016/j.microc.2016.04.013.
  • Kazi, T. G.; Afridi, H. I.; Shah, F.; Arain, S. S.; Arain, S. A.; Panhwar, A. H.; Samoon, M. K. Development of New Portable Miniaturize Solid Phase Microextraction of silver-APDC Complex Using Micropipette Tip in-Syringe System Couple with Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta - A: Mol. Biomol. 2016, 154, 157–163.
  • Panhwar, A. H.; Kazi, T. G.; Afridi, H. I.; Arain, S.; A.; Brahman, K. D.; Arain, M. S. A. New Solid Phase Microextraction Method Using Organic Ligand in Micropipette Tip Syringe System Packed with Modified Carbon Cloth for Preconcentration of Cadmium in Drinking Water and Blood Samples of Kidney Failure Patients. Spectrochim. Acta - A: Mol. Biomol. 2015, 138, 296–302. DOI: 10.1016/j.saa.2014.11.059.
  • Panhwar, A. H.; Tuzen, M.; Hazer, B.; Kazi, T. G. Solid Phase Microextraction Method Using a Novel Polystyrene Oleic Acid Imidazole Polymer in Micropipette Tip of Syringe System for Speciation and Determination of Antimony in Environmental and Food Samples. Talanta 2018, 184, 115–121. DOI: 10.1016/j.talanta.2018.03.004.
  • Zounr, R. A.; Tuzen, M.; Hazer, B.; Khuhawar, M. Y. Solid-Phase Microextraction and Determination of Tin Species in Beverages and Food Samples by Using Poly (ε-Caprolactone-b-4-Vinyl Benzyl-g-Dimethyl Amino Ethyl Methacrylate) Polymer in Syringe System: A Multivariate Study. Food Anal. Methods 2018, 11, 2538–2546. DOI: 10.1007/s12161-018-1237-7.
  • Arain, S. A.; Kazi, T. G.; Afridi, H. I.; Ullah, N.; Arain, M. S.; Panhwar, A. H. Development of Miniaturized Solid Phase Microextraction of Copper in Serum Using a Micropipette Tip in-Syringe System Combined with Micro Sampling Flame Atomic Absorption Spectrometry. Anal. Methods 2015, 7, 3431–3437. DOI: 10.1039/C5AY00393H.
  • Ali, J.; Tuzen, M.; Kazi, T. G.; Hazer, B. Inorganic Arsenic Speciation in Water Samples by Miniaturized Solid Phase Microextraction Using a New Polystyrene Polydimethyl Siloxane Polymer in Micropipette Tip of Syringe System. Talanta 2016, 161, 450–458. DOI: 10.1016/j.talanta.2016.08.075.
  • Tuzen, M.; Kazi, T. G. A New Portable Micropipette Tip-Syringe Based Solid Phase Microextraction for the Determination of Vanadium Species in Water and Food Samples. J. Ind. Eng. Chem. 2018, 57, 188–192. DOI: 10.1016/j.jiec.2017.08.021.
  • Arain, S. A.; Kazi, T. G.; Afridi, H. I.; Abbasi, A. R.; Baig, J. A.; Panhwar, A. H.; Ullah, N. Solid Phase Microextraction of Trace Levels of Copper in Serum Samples of Hepatitis B Patients, on Activated Carbon Cloth Modified with an Ionic Liquid by Using a Syringe Mountable Filter Technique. J. Anal. At. Spectrom. 2014, 29, 2362–2370. DOI: 10.1039/C4JA00304G.
  • Chen, L.; Wang, Z.; Pei, J.; Huang, X. Highly Permeable Monolith-Based Multichannel in-Tip Microextraction Apparatus for Simultaneous Field Sample Preparation of Pesticides and Heavy Metal Ions in Environmental Waters. Anal. Chem. 2020, 92, 2251–2257.
  • Rezaei Kahkha, M. R.; Daliran, S.; Oveisi, A. R.; Kaykhaii, M.; Sepehri, Z. The Mesoporous Porphyrinic Zirconium Metal-Organic Framework for Pipette-Tip Solid-Phase Extraction of Mercury from Fish Samples Followed by Cold Vapor Atomic Absorption Spectrometric Determination. Food Anal. Methods 2017, 10, 2175–2184. DOI: 10.1007/s12161-016-0786-x.
  • Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive Solid Phase Microextraction. TrAC - Trends Anal. Chem. 2019, 118, 793–809. DOI: 10.1016/j.trac.2019.07.012.
  • Naeemullah, N.; Tuzen, M.; Kazi, T. G.; Citak, D. A New Green Switchable Hydrophobic–Hydrophilic Transition Dispersive Solid–Liquid Microextraction of Selenium in Water Samples. Anal. Methods 2016, 8, 2756–2763. DOI: 10.1039/C6AY00278A.
  • Ahmad, H.; Zhao, L.; Liu, C.; Cai, C.; Ma, F. Ultrasound Assisted Dispersive Solid Phase Microextraction of Inorganic Arsenic from Food and Water Samples Using CdS Nanoflowers Combined with ICP-OES Determination. Food Chem. 2021, 338, 128028. DOI: 10.1016/j.foodchem.2020.128028.
  • Soylak, M.; Jagirani, M. S.; Uzcan, F. Metal-Doped Magnetic Graphene Oxide Nanohybrid for Solid-Phase Microextraction of Copper from Environmental Samples. Iran. J. Sci. Technol. Trans. A: Sci. 2022, 46, 807–817.
  • Huang, Y.; Peng, J.; Huang, X. Allylthiourea Functionalized Magnetic Adsorbent for the Extraction of Cadmium, Copper and Lead Ions Prior to Their Determination by Atomic Absorption Spectrometry. Microchim. Acta 2019, 186, 1–8. DOI: 10.1007/s00604-018-3101-2.
  • Tsai, W. H.; Huang, T. C.; Huang, J. J.; Hsue, Y. H.; Chuang, H. Y. Dispersive Solid-Phase Microextraction Method for Sample Extraction in the Analysis of Four Tetracyclines in Water and Milk Samples by High-Performance Liquid Chromatography with Diode-Array Detection. J. Chromatogr. A 2009, 1216, 2263–2269. DOI: 10.1016/j.chroma.2009.01.034.
  • Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir Bar Sorptive Extraction (SBSE), a Novel Extraction Technique for Aqueous Samples: Theory and Principles. J. Micro. Sep. 1999, 11, 737–747. DOI: 10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4.
  • He, M.; Chen, B.; Hu, B. Recent Developments in Stir Bar Sorptive Extraction. Anal. Bioanal. Chem. 2014, 406, 2001–2026.
  • Abdulra’uf, L. B.; Tan, G. H. Review of SBSE Technique for the Analysis of Pesticide Residues in Fruits and Vegetables. Chromatographia 2014, 77, 15–24. DOI: 10.1007/s10337-013-2566-8.
  • Huang, X.; Qiu, N.; Yuan, D.; Huang, B. A Novel Stir Bar Sorptive Extraction Coating Based on Monolithic Material for Apolar, Polar Organic Compounds and Heavy Metal Ions. Talanta 2009, 78, 101–106. DOI: 10.1016/j.talanta.2008.10.058.
  • Bicchi, C.; Iori, C.; Rubiolo, P.; Sandra, P. Headspace sorptive extraction (HSSE), stir bar sorptive extraction (SBSE), and solid phase microextraction (SPME) applied to the analysis of roasted Arabica coffee and coffee brew.J. Agric. Food Chem. 2002, 50, 449–459.
  • Pu, X.; Jiang, Z.; Hu, B. Zirconia‐Coated Graphite Adsorption Bar Micro‐Extraction Combined with ETV‐ICP‐MS for the Determination of Trace Amounts of Cd, Hg and Pb in Environmental and Biological Samples. J. Mass Spectrom. 2006, 41, 887–893.
  • Zhang, N.; Hu, B. Cadmium (II) Imprinted 3-Mercaptopropyltrimethoxysilane Coated Stir Bar for Selective Extraction of Trace Cadmium from Environmental Water Samples Followed by Inductively Coupled Plasma Mass Spectrometry Detection. Anal. Chim. Acta 2012, 723, 54–60. DOI: 10.1016/j.aca.2012.02.027.
  • Mei, M.; Pang, J.; Huang, X.; Luo, Q. Magnetism-Reinforced in-Tube Solid Phase Microextraction for the Online Determination of Trace Heavy Metal Ions in Complex Samples. Anal. Chim. Acta 2019, 1090, 82–90. DOI: 10.1016/j.aca.2019.09.028.
  • Jagirani, M. S.; Uzcan, F.; Soylak, M. A Selective and Sensitive Procedure for Magnetic Solid-Phase Microextraction of Lead (II) on Magnetic Cellulose Nanoparticles from Environmental Samples Prior to Its Flame Atomic Absorption Spectrometric Detection. J. Iran. Chem. Soc. 2021, 18, 1005–1013. DOI: 10.1007/s13738-020-02085-9.
  • Rezaee, M.; Yamini, Y.; Khanchi, A.; Faraji, M.; Saleh, A. A Simple and Rapid New Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Drop Combined with Inductively Coupled Plasma-Optical Emission Spectrometry for Preconcentration and Determination of Aluminium in Water Samples. J. Hazard. Mater. 2010, 178, 766–770.
  • Akkaya, E.; Chormey, D. S.; Bakırdere, S. Sensitive Determination of Cadmium Using Solidified Floating Organic Drop Microextraction-Slotted Quartz Tube-Flame Atomic Absorption Spectroscopy. Environ. Monit. Assess. 2017, 189, 1–7.
  • Zhang, J. W.; Ke, X. J.; Wang, Y. K.; Du, X.; Ma, J. J.; Li, J. C. Development of Dispersive Liquid‐Liquid Microextraction Based on Solidification of Floating Organic Drop for the Determination of Trace Cobalt in Water Samples. Jnl. Chin. Chem. Soc. 2011, 58, 911–918. DOI: 10.1002/jccs.201190144.
  • Mirzaei, M.; Behzadi, M. A Simple and Rapid Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Drop Method Combined with Flame Atomic Absorption Spectrometry for Preconcentration and Determination of Copper. J. AOAC Int. 2013, 96, 441–446.
  • Wang, Y.; Zhang, J.; Zhao, B.; Du, X.; Ma, J.; Li, J. Development of Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Drop for the Determination of Trace Nickel. Biol. Trace Elem. Res. 2011, 144, 1381–1393.
  • Aydın Urucu, O.; Dönmez, Ş.; Kök Yetimoğlu, E. Solidified Floating Organic Drop Microextraction for the Detection of Trace Amount of Lead in Various Samples by Electrothermal Atomic Absorption Spectrometry. J. Anal. Methods Chem. 2017, 2017, 1–7. DOI: 10.1155/2017/6268975.
  • Khan, M.; Soylak, M. Switchable Solvent Based Liquid Phase Microextraction of Mercury from Environmental Samples: A Green Aspect. RSC Adv. 2016, 6, 24968–24975. DOI: 10.1039/C5RA25384E.
  • Priyadarshini, E.; Pradhan, N. Gold Nanoparticles as Efficient Sensors in Colorimetric Detection of Toxic Metal Ions: A Review. Sens. Actuators B Chem. 2017, 238, 888–902. DOI: 10.1016/j.snb.2016.06.081.
  • Döker, S.; Uzun, L.; Denizli, A. Arsenic Speciation in Water and Snow Samples by Adsorption onto PHEMA in a Micro-Pipette-Tip and GFAAS Detection Applying Large-Volume Injection. Talanta 2013, 103, 123–129. DOI: 10.1016/j.talanta.2012.10.019.
  • Farajzadeh, M. A., Dabbagh, M. S. Development of a dispersive solid phase extraction method based on in situ formation of adsorbent followed by dispersive liquid–liquid microextraction for extraction of some pesticide residues in fruit juice samples.J. Chromatogr. A. 2020, 1627, 461398.
  • Saito, Y.; Jinno, K. Miniaturized sample preparation combined with liquid phase separations. J. Chromatogr. A, 2003, 1000, 53–67.
  • Luque de Castro, M. D.; Priego Capote, F. Miniaturisation of Analytical Steps: Necessity and Snobbism. Anal. Bioanal. Chem. 2008, 390, 67–69.
  • Manz, A.; Graber, N.; Widmer, H. Á. Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing. Sens. Actuators B Chem. 1990, 1, 244–248. DOI: 10.1016/0925-4005(90)80209-I.
  • Garrigues, S.; Armenta, S.; de la Guardia, M. Green Strategies for Decontamination of Analytical Wastes. TrAC - Trends Anal. Chem. 2010, 29, 592–601. DOI: 10.1016/j.trac.2010.03.009.
  • Płotka-Wasylka, J.; Szczepańska, N.; de La Guardia, M.; Namieśnik, J. Miniaturized Solid-Phase Extraction Techniques. TrAC - Trends Anal. Chem. 2015, 73, 19–38. DOI: 10.1016/j.trac.2015.04.026.
  • Hui, Y.; Xiong, C.; Bian, C.; Gui, S.; Tong, J.; Li, Y.; Gao, C.; Huang, Y.; Tang, W. C.; Xia, S. Temperature-Controlled Ionic Liquid Dispersive Liquid–Liquid Microextraction Combined with Fluorescence Detection of Ultra-Trace Hg 2+ in Water. Anal. Methods 2019, 11, 2669–2676. DOI: 10.1039/C9AY00029A.
  • Cao, J.; Liang, P.; Liu, R. Determination of Trace Lead in Water Samples by Continuous Flow Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry. J. Hazard. Mater. 2008, 152, 910–914.
  • Carasek, E.; Morés, L.; Merib, J. Basic Principles, Recent Trends and Future Directions of Microextraction Techniques for the Analysis of Aqueous Environmental Samples. Trends Environ. Anal. Chem. 2018, 19, e00060. DOI: 10.1016/j.teac.2018.e00060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.